
Characterizing dynamic neural representations of scene 
attractiveness 

 
 

Daniel Kaiser 
 

 
Mathematical Institute, Department of Mathematics and Computer Science, Physics, 

Geography, Justus-Liebig-University Gießen, Germany 
Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg and 

Justus-Liebig-University Gießen, Germany 
 
 
Correspondence to:  
 
Prof. Dr. Daniel Kaiser 
Mathematical Institute 
Justus-Liebig-University Gießen 
Arndtstraße 2 
35392 Gießen 
Germany 
 
danielkaiser.net@gmail.com 
www.danielkaiser.net 
 
 
Abstract 
 
Aesthetic experiences during natural vision are varied: they can arise from viewing 
scenic landscapes, interesting architecture, or attractive people. Recent research in 
the field of neuroaesthetics has taught us a lot about where in the brain such aesthetic 
experiences are represented. Much less is known about when such experiences arise 
during the cortical processing cascade. Particularly, the dynamic neural representation 
of perceived attractiveness for rich natural scenes is not well understood. Here, I 
present data from an EEG experiment, in which participants provided attractiveness 
judgments for a set of diverse natural scenes. Using multivariate pattern analysis, I 
demonstrate that scene attractiveness is mirrored in early brain signals that arise within 
200ms of vision, suggesting that the aesthetic appeal of scenes is first resolved during 
perceptual processing. In more detailed analyses, I show that even such early neural 
correlates of scene attractiveness are partly related to inter-individual variation in 
aesthetic preferences and that they generalize across scene contents. Together, these 
results characterize the time-resolved neural dynamics that give rise to aesthetic 
experiences in complex natural environments.  
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Introduction 
 
In our daily lives, aesthetic experiences can arise from a variety of different visual 
contents, such as from a scenic sunset, impressive historical architecture, or an 
attractive face. In the field of neuroaesthetics, one of the key questions is how the 
aesthetic appeal of such diverse experiences is dynamically extracted by the brain 
(Pearce et al., 2016; Skov & Nadal, 2020).  
 
Over the recent decades, we have learned a lot about where in the brain aesthetic 
experiences are processes. Researchers have used fMRI to pinpoint the neural 
correlates of perceived aesthetic appeal for a range of stimuli, such as faces, 
landscapes, abstract patterns, and artworks (Isik & Vessel 2021; Jacobsen et al., 2006; 
Kawabata & Zeki, 2004; Pegors et al., 2015; Vessel et al., 2019; Winston et al., 2007; 
Yue et al., 2006; Zhao et al., 2020). Some of these studies also demonstrate that the 
aesthetic appeal of vastly different visual contents, such as faces and scenes (Pegors 
et al., 2015) or artworks and photographs (Vessel et al., 2019) is represented in similar 
regions across cortex, including parts of the visual cortex and the frontal cortex, as well 
as the default mode network. These studies suggest that aesthetic experiences can 
not only arise from seemingly dissimilar visual stimuli, but that these experiences yield 
similar cortical correlates. 
 
Much less is known about when aesthetic experiences arise dynamically across the 
cortical processing cascade. Much of the M/EEG literature addressing this question 
has focused on the perception of face attractiveness (Carbon et al., 2018; Kaiser & 
Nyga, 2020; Schacht et al., 2008; Werheid et al., 2007; Zhang & Deng, 2012), with 
many studies highlighting that a face’s attractiveness can impact early and 
fundamental stages of the face processing hierarchy. In our own work, we have further 
highlighted that such early representations of face attractiveness are partly explained 
by personal preferences, rather than only by attractiveness judgments that are shared 
among a large group of observers (Kaiser & Nyga, 2020), suggesting that even the 
perceptual correlates of attractiveness are shaped in personally idiosyncratic ways. 
Unlike the rich literature on face attractiveness, only few studies have looked at the 
time-resolved neural correlates of aesthetic judgments for other stimuli, such as 
abstract patterns (Höfel & Jacobsen, 2007; Jacobsen & Höfel, 2003) and various types 
of artworks (Cela-Conde et al., 2004; de Tommaso et al., 2007; Strijbosch et al., 2021). 
However, we currently do now know how the brain dynamically represents 
attractiveness for the natural scenes we typically experience during our everyday lives.  
 
There are three open questions about the neural dynamics underlying perceived scene 
attractiveness: (1) Is the aesthetic appeal of natural scenes already represented during 
early stages of cortical processing, indicating that differences in fundamental 
perceptual processes are involved in the extraction of scene attractiveness? (2) Are 
judgments of scene attractiveness based on a general consensus of what is 
aesthetically pleasing or are they partly shaped by personal aesthetic preferences? (3) 
Is the aesthetic appeal of natural scenes extracted similarly across different scene 
contents? 
 
To answer these questions, I investigated how the perceived aesthetic appeal of a set 
of 100 diverse natural scene images is mirrored in temporally resolved EEG signals. 
For this, I use a multivariate pattern analysis framework that we recently developed in 
an EEG study of face attractiveness (Kaiser & Nyga, 2020). Specifically, I modelled 
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how the pairwise similarity between scenes in the EEG signals over time was related 
to the similarity in aesthetic appeal ratings. The resulting data demonstrate that (1) the 
aesthetic appeal of scenes is encoded in early brain signals emerging within 200ms 
after scene presentation, (2) part of this early neural correlate of scene attractiveness 
is explained by inter-individual variation in aesthetic perception, and (3) even early 
neural correlates of perceived aesthetic appeal generalize across a variety of scene 
contents.    
 
Materials and Methods 
 
Participants. 24 healthy adult participants took part (mean age 19.6 years, SD=1.7; 21 
female). This sample size was identical to our previous EEG study investigating face 
attractiveness (Kaiser & Nyga, 2020). One participant was excluded due to a technical 
error in the recordings, leaving a final sample of 23 participants. Participants received 
course credits. All participants provided written informed consent. Procedures were 
approved by the ethical committee of the Department of Psychology, University of 
York, and were in accordance with the Declaration of Helsinki.  
 

 
Figure 1. Stimuli and Paradigm. a) The stimulus set consisted of 100 natural scene 
photographs depicting a variety of diverse contents. Stimuli were arranged into visually 
similar pairs of high and low aesthetic appeal (based on visual aesthetics databases) 
to reduce the visual variability between scenes that were likely judged as relative 
attractive or unattractive. b) During each trial of the EEG experiment, participants 
viewed a single scene and subsequently rated its attractiveness on two complementary 
response screens asking whether the image was attractive (“yes/no response”) and 
how attractive it was on a 1-7 scale (“rating response”). Response options were 
arranged randomly around a circular response screen to prevent motor preparation 
during the image presentation. Trials were separated by an 800-1200ms inter-trial 
interval.    
 
Stimuli. The stimulus set consisted of 100 natural scene photographs. All stimuli were 
resized to 600-by-400 pixels. The stimuli were chosen from the top- and bottom-rated 
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images contained in the AVA (Murray et al., 2012) and photo.net (Datta et al., 2008) 
aesthetic rating databases. To match the overall visual content across images that 
were expected to yield high or low aesthetic appeal ratings, stimuli were arranged into 
pairs (Fig. 1a): in each pair, the two images depicted visually and/or conceptually 
similar contents (e.g., a group of people or an indoor room). To check whether there 
were any consistent visual differences across pairs, I computed GIST descriptors 
(Oliva & Torralba, 2001) for all images. I then checked whether the high attractiveness 
and low attractiveness images within each pair were reliably different. To this end, I 
trained a nearest-neighbor classifier (as implemented in CoSMoMVPA; Oosterhof et 
al., 2016) to classify the images’ attractiveness into high and low. This classifier was 
trained on the GIST descriptors for all but one pairs and then tested on the remaining 
pair of images (this procedure was repeated for each pair being left out). The GIST-
based classifier could not successfully discriminate between the images that were 
taken from the top- and bottom-rated images in the database (49% correct). Similar 
results were obtained using the “pooling” layers of an HMAX (Riesenhuber & Poggio, 
1999; Serre et al., 2007) filter-bank model (layer C1: 45% correct; layer C2: 49% 
correct). The pairing of stimuli thus ensured that there were no pronounced visual 
differences in basic visual characteristics between images of different aesthetic appeal 
(as indicated by their database rankings). In all subsequent analyses, I focused on the 
ratings provided by participants in the current study.  
 
Paradigm. The experimental paradigm and analysis approach was largely identical to 
our recent EEG study on face attractiveness perception (Kaiser & Nyga, 2020). 
Participants viewed a single scene on every trial (8 by 5.3 degrees visual angle), which 
was presented for 1,450ms on a uniform black background (Fig. 1b). After a 100ms 
blank screen, participants were asked to give two complementary responses: First, 
they were asked to provide a binary attractiveness response, indicating whether they 
found the scene attractive or not (hereinafter referred to as “yes/no response”). 
Second, they were asked to provide a more fine-grained rating, indicating how 
attractive they found the scene on a 1 to 7 rating scale (hereinafter referred to as “rating 
response”). Both ratings were given with the mouse and were non-speeded. 
Participants were instructed to indicate, how aesthetically pleasing, or attractive, or 
beautiful they rated each image (without any distinction between these concepts). To 
prevent participants from preparing a motor response, the response options for both 
responses were presented at random angular positions across a circular response 
screen (Fig. 1b). Participants were further instructed to keep central fixation on a pink 
fixation dot during the scene presentation and to restrict eye blinks to the period when 
they selected their responses.  Trials were separated by an inter-trial interval randomly 
varying between 800ms and 1,200ms. The experiment consisted of 7 blocks, in each 
of which each image was shown once, in random order. Each image was therefore 
repeated 7 times, yielding 700 trials in total. The experiment was carried out in a dimly 
lit and quiet room. Stimuli were presented on a VIEWPixx display with a 1920-by-1020 
resolution and stimulus presentation was controlled using the Psychtoolbox (Brainard, 
1997).  
 
EEG acquisition and preprocessing. EEG signals were recorded using an ANT 
Waveguard 64-electrode system and a TMSi REFA amplifier. Electrodes were 
arranged in accordance with the standard 10–10 system. EEG data were recorded at 
250Hz sampling rate using the ANT Neuroscan Sofware. Offline preprocessing was 
performed using FieldTrip (Oostenveld et al., 2011). EEG data were referenced to the 
Fz electrode (which was discarded after preprocessing), epoched from − 500ms to 
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1900ms relative to stimulus onset, and baseline-corrected by subtracting the mean 
pre-stimulus signal for each electrode. A band-pass filter was applied to remove 50Hz 
line noise. Channels and trials containing excessive noise were removed based on 
visual inspection. On average, 9 channels (SE=0.6) and 69 trials (SE=11) were 
removed. Blinks and eye movement artifacts were removed using independent 
component analysis and visual inspection of the resulting components. After 
preprocessing, EEG epochs were cropped from -250ms pre-stimulus to 1450ms post-
stimulus. 
 
Extracting neural representational similarity. To track representations across time, I 
used representational similarity analysis (RSA; Kriegeskorte et al., 2008). First, neural 
RDMs were constructed separately for each participant, using the CoSMoMVPA 
toolbox (Oosterhof et al., 2016). RDMs were created for 34 consecutive time bins of 
50ms width, from -250ms to 1450ms relative to scene onset. The following analyses 
were done separately for each time bin. At each bin, response patterns were extracted 
across 12 time points (covering 50ms at 250Hz) and 63 electrodes (after 
preprocessing, electrode counts could be lower for individual participants). These data 
were then unfolded into a 756-element vector. Before RDM construction, I performed 
principal-component analyses (PCAs) to reduce the dimensionality of the response 
vectors (Grootswagers et al., 2017; Kaiser et al., 2020a). I split the available data into 
two independent subsets, with an equal number of trials per condition randomly 
assigned to each subset. The first subset of the data was used to perform the PCA 
decomposition. The PCA decomposition was then projected onto the second subset, 
retaining only the components needed to explain 99% of the variance in the first subset 
(97 components on average, SD across time: 19, SD across participants: 16). RDMs 
were constructed from the second subset. I first averaged across all available trials for 
each condition, and then correlated (Spearman-correlations) the response vectors for 
each pairwise combination of scenes. These correlations were subtracted from 1 and 
arranged into a 100-by-100 RDM. Each entry in this RDM reflected a measure of neural 
dissimilarity for a specific pair of scenes. RDM diagonals were always empty. This 
procedure was then repeated with the two subsets swapped. Finally, the whole 
analysis was repeated 50 times, with trials assigned randomly to the two subsets each 
time. RDMs were averaged across all repetitions, yielding a single RDM for each time 
bin. 
 
Modelling representational similarity. Neural RDMs were modelled by a set of predictor 
RDMs that also spanned 100 by 100 entries and captured the scenes’ pairwise 
similarities on a set of candidate properties. Correspondence between the predictor 
RDMs and the neural RDMs was assessed by correlating (Spearman-correlations) all 
off-diagonal entries between the two types of RDMs, separately for each time point at 
which a neural RDM was available, yielding a time course of correspondence. I 
performed three types of RSA, using three types of predictor RDMs: First, to model 
how well neural representations were predicted by attractiveness judgments, I created 
two predictor RDMs that captured the scenes’ similarities in the yes/no responses and 
the rating responses. In these RDMs, each entry was computed by taking the absolute 
difference between the average yes/no responses (coded as 2:yes and 1:no) or 
attractiveness ratings between two scene images. These RDMs were constructed 
separately for each participant. Second, I tested whether the complex feature 
organization emerging in a deep neural network (DNN) model of categorization 
explains the correspondence between attractiveness judgments and neural 
representation. Although the stimulus set was matched in approximate content and 
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low-level features across the more or less attractive images, the images may still differ 
in a set of complex visual features that is routinely read out during visual categorization: 
to quantify the extraction of such features, I employed a DNN as a model of the cortical 
processing hierarchy (Cichy & Kaiser, 2019; Kriegeskorte, 2015). I extracted features 
along the 16 layers of a VGG16 DNN (Simonyan & Zisserman, 2014) trained on 
ImageNet (Deng et al., 2009). For each layer, I then constructed an RDM by computing 
1 minus the correlation of activation vectors for each pair of scenes. RDMs were then 
averaged within 6 layers blocks along the network (5 blocks of convolutional layers and 
1 block of fully connected layers; see Fig. 4a). These RDMs were then correlated with 
the neural RDMs to determine how well the DNN predicted the neural data in the first 
place. After that, I conducted partial correlation analyses in which I re-performed the 
correlation between the aesthetic judgment RDMs and the neural RDMs while 
partialing out the RDMs for each DNN layer block. Third, to model how well average 
and individual attractiveness judgments predict the neural data, I created RDMs that 
captured the scenes’ similarities in the average yes/no responses and the rating 
responses across a set of participants. These were created in the same way as the 
previous RDMs, but for each participant, I created an average RDM that was based on 
the average yes/no responses or rating responses from all other participants. In a 
partial correlation analysis, I then again correlated the predictor RDMs for the yes/no 
responses and ratings responses with the neural RDMs, but now partialing out the 
average response across all other participants. This yielded an estimate of how well 
individual responses account for cortical representations when average responses are 
controlled for (Kaiser & Nyga, 2020). Fourth, to test whether the neural correlates of 
scene attractiveness generalize across scene categories, I performed analyses in 
which the correspondence between the predictor RDMs for the yes/no responses or 
rating responses and the neural RDMs was only assessed for those pairwise 
comparisons in which the two scenes came from opposite categories. This analyses 
thus reveals whether attractive scenes from one category are represented similarly as 
attractive scenes from another category (and dissimilarly from less attractive scenes 
from another category), thus revealing a relatively content-independent representation 
of aesthetic appeal. I tested such generalization for three categorical distinctions: 
scenes containing (n=42) versus not containing (n=58) people, natural (n=58) versus 
man-made (n=42) scenes, and scenes containing (n=38) versus not containing (n=62) 
prominent foreground objects. Scenes were assigned to these labels by the author. 
 
Statistical testing. Correlations between neural and predictor RDMs were compared to 
zero using one-sample t-tests (one-sided against zero) for each time bin. The resulting 
p-values were corrected for multiple comparisons using FDR-corrections. Test 
statistics (t-values) and effect sizes (Cohen’s d) are provided for all peak effects.  
 
Data Availability. All data are available on OSF (doi.org/10.17605/OSF.IO/SKHF7). 
Other materials will be made available upon request. 
 
Results 
 
Ratings of scene attractiveness. The behavioral responses given during the 
experiment confirmed the pairing of images in our stimulus set, with stimuli obtained 
from the top-rated database images yielding consistently higher perceived aesthetic 
appeal than those obtained from the bottom-rated database images. Indeed, the 
expected difference within each pair was consistent across all pairs and both for the 
yes/no responses (Fig. 2a) and the rating responses (Fig. 2b). Across participants, the 
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top-rated images yielded significantly higher yes/no responses (t[22]=12.6, p<0.001) 
and rating responses (t[22]=11.7, p<0.001) then the bottom-rated images.  
 

 
Figure 2. Analysis of attractiveness judgments. a) Average yes/no responses 
across stimulus pairs (2:yes, 1:no; each line represents a pair).  b) Average rating 
responses across stimulus pairs (7:best, 1:worst; each line represents a pair). For both 
judgments and within each pair, the scene that had the higher attractiveness rating in 
the aesthetics databases also received the higher yes/no response and rating 
response in the experiment. 
 
Neural dynamics of perceived scene attractiveness. To track the emergence of neural 
responses related to scene attractiveness, I correlated neural RDMs with predictor 
RDMs that captured the images’ pairwise similarities in participants’ yes/no and rating 
responses. Yes/no responses (Fig. 3a) significantly predicted cortical responses from 
the 150-200ms time bin (peaking at 450-500ms, peak t[22]=6.94, pcorr<0.001, d=1.45). 
Rating responses (Fig. 3b) also predicted cortical responses from the 150-200ms time 
bin (peaking at 500-550ms, peak t[22]=5.80, pcorr<0.001, d=1.21). This shows that the 
aesthetic appeal of natural scenes is rapidly and sustainedly contained in EEG signals, 
suggesting that aesthetic experiences manifest during early stages of visual 
information processing and are encoded in brain responses for extended periods of 
time.  
 

 
Figure 3. Neural dynamics of perceived scene attractiveness. a) Average 
correlations between the neural RDMs (reflecting pairwise similarities between scenes 
at each time point) and a predictor RDM based on participants’ yes/no responses 
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(reflecting pairwise similarities in how similarly scenes were judged as attractive or 
unattractive).  b) Average correlations between the neural RDMs and a predictor RDM 
based on rating responses (reflecting pairwise similarities in how similarly scenes were 
rated). Both types of attractiveness judgments predicted neural responses from the 
150-200ms time bin and in a temporally sustained fashion. Error margins represent 
standard errors of the mean and significance markers denote pcorr<0.05.  
 

 
Figure 4. Controlling for DNN features. a) To approximate the extraction of 
categorization-related features in the visual system, I used a VGG16 DNN trained on 
ImageNet. From this network, I extracted RDMs for 6 layer blocks along the network, 
as illustrated; the last three layers are the network’s fully connected layers. b) The 
RDMs extracted from the DNN predicted neural activations well, with early layers 
predominantly predicting relatively early activations and late layers offering more 
accurate prediction of later activations. c) Re-performing the correlations between the 
RDMs based on yes/no attractiveness responses and the neural RDMs (as in Fig. 3a) 
while partialing out the DNN RDMs obtained from different layer blocks showed that 
DNN features at different depths cannot account for the correspondence between 
attractiveness judgments and brain representations. d) Similar results were obtained 
for the rating responses. Error margins represent standard errors of the mean and 
significance markers denote pcorr<0.05.  
 
Controlling for DNN features. Although the more and less attractive images in the 
stimulus set were matched for their approximate visual content and for low-level 
features, the correspondence between aesthetic judgments and neural 
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representations may still be accounted for when more complex visual features are 
considered. To test this possibility, I compared neural representations to the 
representations emerging in a DNN model of visual categorization (VGG16; Simonyan 
& Zisserman, 2014; see Figure 4a). When correlating RDMs extracted from 6 layer 
blocks along this DNN with the neural RDMs, I found strong signatures of hierarchical 
correspondence (Cichy et al., 2016), with early layers predominantly predicting early 
brain activations, and late layers more strongly predicting later activations (Fig. 4b). 
This result shows that the DNN was able to approximate visual feature processing in 
cortex. To test whether such categorization-related feature processing could account 
for the correspondence between attractiveness judgments and neural representations, 
I correlated the RDMs constructed from the yes/no responses and rating responses 
with the neural RDMs while partialing out the RDMs obtained from the DNN layer 
blocks. Across the board and for both types of responses, correlations remained 
significant (Fig. 4c/d), indicating that the features extracted during categorization (as 
approximated by the DNN) are not sufficient for explaining the cortical representation 
of scene attractiveness. Partialing out the RDMs from the last layer block (i.e., the fully 
connected layers of VGG16) produced the greatest drop in correlations, with a 
significant reduction compared to the original results, both for the yes/no responses 
and the rating responses (from 50-100ms and across the whole epoch). However, 
correlations remained well above chance, both for the yes/no responses (from the 200-
250ms time bin, peaking at 450-500ms, peak t[22]=5.69, pcorr<0.001, d=1.19) and the 
rating responses (from the 200-250ms time bin, peaking at 500-550ms, peak 
t[22]=4.90, pcorr<0.001, d=1.02). This indicates that aesthetic appeal is not solely a 
reflection of features that are read out during categorization, but that qualitatively 
different features determine the attractiveness of natural visual inputs. 
 
Personal versus shared aesthetic judgments. Next, I investigated whether personal 
ratings of aesthetic appeal predict cortical responses beyond the average ratings 
provided by a group of observers (Kaiser & Nyga, 2020). I thus correlated the neural 
RDMs with additional predictor RDMs that for each participant were constructed from 
the average responses of all other participants in the experiment. For the yes/no 
responses (Fig. 5a), averaged responses from all other participants predicted neural 
responses as well as participants’ own responses, starting from the 200-250ms time 
bin (peaking at 250-300ms, peak t[22]=6.47, pcorr<0.001, d=1.35). A similar pattern 
emerged for the rating responses (Fig. 5b), starting from the 200-250ms time bin 
(peaking at 250-300ms, peak t[22]=6.76, pcorr<0.001, d=1.41). For both measures, 
there were no significant differences between participants’ own ratings and the 
average of others’ ratings (all pcorr>0.93). Given this similarity, I next tested whether 
other people’s ratings explain the correspondence between participants’ own ratings 
and the neural responses. I thus performed a partial correlation analysis, correlating 
the neural RDMs with the RDMs constructed from participants’ own responses, 
partialing out the average responses from all other participants. This analysis still 
revealed a significant correlation, both for the yes/no responses (from the 200-250ms 
time bin, peaking at 400-450ms, peak t[22]=3.97, pcorr=0.004, d=0.83) and the rating 
responses (from the 150-200ms time bin, peaking at 500-550ms, peak t[22]=5.16, 
pcorr<0.001, d=1.08). This finding suggests that although both personal and shared 
ratings can predict (early) neural representations, these ratings explain complimentary 
shares of the neural dynamics: If predictions based on average judgments captured 
essentially identical variance in the neural data as predictions based on individual 
judgments, partialing out the RDM based on average judgments should have 
eliminated the correlation between the RDM based on individual judgments and the 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 8, 2022. ; https://doi.org/10.1101/2022.04.27.489648doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.27.489648
http://creativecommons.org/licenses/by-nd/4.0/


neural data. That individual judgments continued to predict neural representations in 
this analysis thus suggests that brain representations of aesthetic appeal cannot be 
fully accounted for by a form of “average taste”, but that individual ratings of aesthetic 
appeal are needed for more accurate prediction.  
 

 
Figure 5. Neural representation of personal aesthetic judgments. a) Correlations 
between the neural RDMs and a predictor RDM based on the average yes/no 
responses of all other participants modelled the data equally well as the predictor RDM 
based on each individual participant’s yes/no responses. Results from the previous 
analysis (pink line) are shown for reference (same as in Fig. 3a). The individual yes/no 
responses still predicted neural responses well when the average yes/no response 
across all people was controlled for, suggesting that inter-individual variability in 
aesthetic judgments is reflected in (early) cortical responses. b) A highly similar pattern 
of results emerged when the rating responses were analyzed. Results from the 
previous analysis (red line) are again shown for reference (same as in Fig. 3b). Error 
margins represent standard errors of the mean and significance markers denote 
pcorr<0.05.  
     
Extracting aesthetic appeal across scene contents. A key question in the literature is 
whether the aesthetic appeal of different content types is extracted through similar or 
different cortical mechanisms. However, a particular focus in the literature has thus far 
been placed on the attractiveness of humans. In a first analysis, I therefore asked 
whether aesthetic appeal is extracted differently for scenes that depict humans and 
scenes that do not. For this purpose, I split the stimulus set into scenes that did or did 
not depict humans. I then correlated the neural RDMs and predictor RDMs, only using 
the pairwise comparisons across scenes with and without humans (Fig. 6a). This 
analysis revealed a significant correspondence between perceived aesthetic appeal 
and brain responses, both for the yes/no response (from the 200-250ms time bin, 
peaking at 450-500ms, peak t[22]=6.22, pcorr<0.001, d=1.30) and the rating response 
(from the 200-250ms time bin, peaking at 500-550ms, peak t[22]=5.57, pcorr<0.001, 
d=1.16). Second, I asked whether aesthetic appeal is extracted similarly for natural 
and man-made scenes, as suggested by previous fMRI findings (Vessel et al., 2019). 
I then again performed the RSA only using pairwise comparisons across the natural 
and man-made scenes (Fig. 6b). This analysis also revealed a significant 
correspondence between perceived attractiveness and brain responses, both for the 
yes/no response (from the 200-250ms time bin, peaking at 200-250ms, peak 
t[22]=4.30, pcorr=0.005, d=0.90) and the rating response (from the 200-250ms time bin, 
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peaking at 500-550ms, peak t[22]=4.28, pcorr=0.002, d=0.89). Third, I asked whether 
scene attractiveness is represented differently when it is potentially derived primarily 
from prominent foreground objects (e.g., a person or an animal occupying the scene 
foreground), rather than more global scene information. I thus tested whether aesthetic 
appeal is extracted differently for scenes that had a dominant foreground object, which 
could allow for a rapid aesthetic appraisal solely based on a single object, and scenes 
that did not. I then performed the RSA only using pairwise comparisons across the 
foreground-object and no-foreground-object scenes (Fig. 6c). Yet again, this analysis 
revealed a significant correspondence between perceived aesthetic appeal and brain 
responses, both for the yes/no response (from the 200-250ms time bin, peaking at 
450-500ms, peak t[22]=5.92, pcorr<0.001, d=1.24) and the rating response (from the 
150-200ms time bin, peaking at 250-300ms, peak t[22]=5.96, pcorr<0.001, d=1.24). 
Together, these analyses show that the early extraction of aesthetic appeal for natural 
scenes is similar across broad natural contents, suggesting a common neural correlate 
for aesthetic perception that is already evident at early stages of visual processing.  
 

 
Figure 6. Neural representation of attractiveness across scene contents. a) 
Correlations between the neural RDMs and the predictor RDMs based on yes/no 
responses or ratings responses when only pairwise comparisons between scenes that 
did or did not contain a person were considered. b) Correlations between the neural 
RDMs and the predictor RDMs when only pairwise comparisons between natural and 
man-made scenes were considered. c) Correlations between the neural RDMs and 
the predictor RDMs when only pairwise comparisons between scenes that did or did 
not contain prominent foreground objects were considered. Together, these three 
analyses suggest that dynamic neural representations of scene attractiveness are 
relatively content-independent. Error margins represent standard errors of the mean 
and significance markers denote pcorr<0.05.  
 
Discussion 
 
In this study, I used multivariate pattern analysis on time-resolved EEG data to unveil 
the neural dynamics of perceived scene attractiveness. I report three key results: (1) 
Neural representations of scene attractiveness emerge rapidly in brain responses, 
starting within 200ms of stimulus onset. (2) These early representations are partly 
explained by inter-individual variation in attractiveness judgments. (3) Neural 
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responses similarly track aesthetic appeal across different scene contents. I will in turn 
discuss the implications of these three key results.  
 
My findings show that the aesthetic appeal of natural scenes is extracted early on 
during the visual processing cascade, suggesting that scene attractiveness is partly 
resolved during perceptual analysis. This is in line with multi-stage models of aesthetic 
perception that posit an initial sensory processing stage at which aesthetically pleasing 
features are extracted (Leder et al., 2004; Redies, 2015), as well as with models that 
explain aesthetic experiences via fluency in sensory processing (Reber et al., 2004). 
My results further complement EEG work using other visual inputs such as faces 
(Kaiser & Nyga, 2020; Schacht et al., 2008; Werheid et al., 2007; Zhang & Deng, 2012) 
or abstract patterns (Jacobsen & Höfel, 2003), which show that aesthetic appeal 
impacts early visual processing stages. So far, only one other MEG study also included 
scene photographs as stimuli (Cela-Conde et al., 2004), but primarily found late 
modulations of cortical responses starting after 400ms. However, most stimuli in this 
study were artworks, and no separate analyses for artworks and scene photographs 
were conducted. Together, our study suggests that scene attractiveness is first 
resolved during fundamental stages of scene analysis, around the time when other 
scene attributes such as scene category or geometry are analyzed (Cichy et al., 2017; 
Harel et al., 2016; Kaiser et al., 2020b). Which sensory properties allow scene 
attractiveness to be resolved during early cortical processing? The matching across 
relatively attractive and unattractive scenes in the current study suggests that scene 
attractiveness is not resolved based on a confined set of simple visual features. 
Further, the failure of categorization-related DNN features in explaining 
representations of scene attractiveness suggests that the features routinely extracted 
for the purpose of image categorization are not the same as the features used for 
determining an images aesthetic appeal. Which features are evaluated for this purpose 
is a key question for future research. Beyond these early responses, aesthetic appeal 
was represented in a sustained way. This sustained neural reflection of aesthetic 
perception may reflect a transitioning from earlier, sensory-driven responses to later, 
cognitive appraisal processes (Leder et al., 2004; Redies, 2015). The precise nature 
of this transition, however, needs to be mapped out in future studies that combine 
temporally resolved EEG recordings with spatially resolved neural recordings. 
 
Interestingly, the current data suggest that the early neural correlates of perceived 
scene attractiveness are not fully explained by average ratings across participants. 
When controlling for average attractiveness ratings across participants, brain 
responses were still predicted by individual participants’ personal ratings. This finding 
is in line with our previous study on face attractiveness perception (Kaiser & Nyga, 
2020), where we could show that early cortical responses are partly predicted by 
personal attractiveness ratings. Together, these findings suggest that, for multiple 
visual stimulus categories, even early cortical correlates of aesthetic perception are 
inherently personal. This notion is not only in line with behavioral studies highlighting 
substantial inter-individual variation in aesthetic judgment (Hönekopp, 2006; Leder et 
al., 2016), but also with recent neuroimaging results that show that even basic 
perceptual representations vary across observers in idiosyncratic ways (Charest et al., 
2014). An intriguing possibility that warrants further investigation is that individual 
differences in the functional architecture of the visual system give rise to different levels 
of processing fluency (Oppenheimer, 2008; Reber et al., 2004) across stimuli, which 
ultimately cause idiosyncrasies in aesthetic perception.   
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My findings further highlight that aesthetic appeal is extracted similarly across different 
scene contents, such as across (1) scenes that do or do not contain people, (2) natural 
or man-made scenes, and (3) scene that do or do not contain prominent foreground 
objects. These results are an important demonstration that even early cortical 
correlates of perceived aesthetic appeal do not need to be content-specific. They 
thereby support recent fMRI work that shows a generalization across aesthetic 
perception for faces, scenes, and artworks (Pegors et al., 2015; Vessel et al., 2019; 
but see Hu et al., 2020). However, such generalization across contents may ultimately 
depend on the intrinsic variability in stimulus sets (our stimuli were all rich natural 
scenes) and the sensitivity of the employed analyses (multivariate pattern analyses 
may yield higher sensitivity than univariate analyses). Further studies can use the 
multivariate EEG analysis framework developed here to test generalization across 
more vastly different visual contents or across modalities.  
 
Together, the current study provides a demonstration for an early cortical correlate of 
perceived scene attractiveness, which may form the basis of rapid aesthetic evaluation 
in the wild.  
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