
Characterizing Flash Memory: Anomalies, Observations,
and Applications

Laura M. Grupp Adrian M. Caulfield Joel Coburn Steven Swanson
The Department of Computer Science and Engineering

University of California, San Diego
{lgrupp,acaulfie,jdcoburn,swanson}@cs.ucsd.edu

Eitan Yaakobi Paul H. Siegel Jack K. Wolf
The Center for Magnetic Recording Research

University of California, San Diego
{eyaakobi,psiegel,jwolf}@ucsd.edu

ABSTRACT

Despite flash memory’s promise, it suffers from many idiosyn-
crasies such as limited durability, data integrity problems, and
asymmetry in operation granularity. As architects, we aim to
find ways to overcome these idiosyncrasies while exploiting flash
memory’s useful characteristics. To be successful, we must under-
stand the trade-offs between the performance, cost (in both power
and dollars), and reliability of flash memory. In addition, we must
understand how different usage patterns affect these characteris-
tics. Flash manufacturers provide conservative guidelines about
these metrics, and this lack of detail makes it difficult to design
systems that fully exploit flash memory’s capabilities. We have
empirically characterized flash memory technology from five man-
ufacturers by directly measuring the performance, power, and re-
liability. We demonstrate that performance varies significantly be-
tween vendors, devices, and from publicly available datasheets.
We also demonstrate and quantify some unexpected device char-
acteristics and show how we can use them to improve responsive-
ness and energy consumption of solid state disks by 44% and 13%,
respectively, as well as increase flash device lifetime by 5.2x.

Categories and Subject Descriptors

B.3.3 [Memory Structures]: Performance Analysis and Design
Aids

General Terms

Design, Documentation, Experimentation, Measurement, Perfor-
mance, Reliability, Verification

Keywords

Flash Memory, Non-volatile, Characterization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

1. INTRODUCTION
In recent years, flash memory has begun to make the transi-

tion from embedded devices to laptops, desktops, and data cen-
ters. It promises enormous performance gains and power savings
relative to disk while being much denser and less power hungry
than DRAM. However, fully exploiting these advantages requires
overcoming flash memory’s idiosyncrasies – it has limited dura-
bility, suffers from data integrity problems, and its read, program,
and erase operations function at mismatched granularities and have
vastly different latencies.

As architects, our goal is to find ways to overcome these id-
iosyncrasies while exploiting flash memory’s useful characteris-
tics. To be successful, we must understand the trade-offs between
flash memory’s performance, cost (in power and dollars), and re-
liability. In addition, we must understand how different usage pat-
terns affect these characteristics.

Unfortunately, flash manufacturers provide conservative and of-
ten vague guarantees about flash memory’s performance. For in-
stance, flash devices typically guarantee that their devices can
be erased between 10,000 and 100,000 times, but this assumes
a ten-year “shelf life” for the data, random access patterns, and
a loosely-specified error correction scheme. Applications may re-
quire greater or lesser erase counts, different error correction capa-
bilities, and a variety of storage longevity requirements. Likewise,
manufacturers provide maximum power consumption numbers but
do not provide details of power consumption on a per-operation
basis. This lack of detail complicates the design of systems which
fully exploit flash memory’s capabilities.

This paper empirically characterizes flash memory technology
by measuring the performance, power, and reliability of flash de-
vices from five manufacturers. We demonstrate that performance
varies significantly between vendors, devices, and from the pub-
licly available datasheet. We also demonstrate and quantify some
unexpected device characteristics. Then we provide two examples
of how to apply this detailed understanding of flash performance.
First we design an improved flash translation layer (FTL) that can
reduce flash energy consumption by up to 13% during battery-
powered operation and reduce latency for critical program oper-
ations by up to 44%. Second, we demonstrate how an alternative
data encoding scheme effectively increases flash device lifetime
by up to 5.2 times.

The remainder of this paper is organized as follows. Section 2
briefly describes flash memory technology. Section 3 describes our
experimental setup for characterizing flash devices and presents
our findings for different flash devices. Section 4 describes two
possible applications using the insight from the data we collected.
Section 5 concludes.



Minimum Maximum

Endurance 10,000 1,100,000

Rand Read Latency (µs) 12 200
Typ Program Latency (µs) 200 800
Max Program Latency (µs) 500 2,000

Typ Erase Latency (ms) 1.5 2.5
Max Erase Latency (ms) 2 10

Typ Read Power (mW) 30 45
Max Read Power (mW) 60 90

Typ Program Power (mW) 30 45
Max Program Power (mW) 60 90

Typ Erase Power (mW) 30 45
Max Erase Power (mW) 60 90

Typ Idle Power (µW) 30 60
Max Idle Power (µW) 150 300

Table 1: Values Reported in Datasheets This is a summary
of publicly available information from flash manufacturers. The
ranges include information from datasheets for chips we have not
measured.

2. FLASH MEMORY
Flash memory has risen to prominence over the last decade due

to the growing popularity of mobile devices with large storage re-
quirements (iPods, digital cameras, etc.). Currently, 64Gb flash
devices are available [7] with larger sizes on the way. Despite con-
tinued density scaling, the basic performance (read, program, and
erase latencies) of flash devices has been roughly constant for over
a decade. Density scaling may begin to wane as well, since flash
faces significant challenges in further scaling [4].

In recent years, the architecture community has started to inves-
tigate flash’s role in systems for a range of applications. These
include hard disk caches [12, 5], solid-state disks [6], transaction-
alized SSD [13], mobile sensor networks [10], and data-centric
computing [8]. Our goal is to provide additional insights in flash’s
behavior to enable further research in these and other directions.

2.1 Flash memory overview
Flash memory is a complex technology, and many factors im-

pact its overall performance, reliability, and suitability for a partic-
ular application. Below we give a brief description of flash tech-
nology and terminology. Then, we describe the aspects of flash
memory behavior that we quantify in this paper. These include the
performance and power consumption of individual operations, and
a range of recoverable and unrecoverable failure modes to which
it is susceptible.

In this section, the facts and figures we provide for flash devices
are typical values taken from publicly available data sheets. Values
for specific devices are in Table 2 and Section 3.
Flash technology Flash memories store data as charge trapped
on a floating gate between the control gate and the channel of a
CMOS transistor. Each gate can store one or more bits of infor-
mation depending on whether it is a single-level cell (SLC) or a
multi-level cell (MLC). Commercially available devices store be-
tween 1 and 4 bits per cell [16, 17, 7]. Modern SLC and MLC flash
devices achieve densities of 1 bit per 4F 2 and 1 bit per 1F 2 (for
4 bit-per-cell MLC devices) where F is the process feature size
(currently 34nm [15]), allowing for very high-density flash arrays.

Internally, a flash chip is broken into one or more planes or
banks. Depending on the device, planes are largely independent of
one another, contain local buffering for read and program data, and
perform some operations in parallel. Each plane, in turn, contains
a set of blocks, each made up of 64 (SLC) or 128 (MLC) pages.
Each page contains between 2112 and 8448 bytes. This includes
a 2-8KB primary data area as well as an “out of band” data area

Figure 1: Our flash testing board The flash testing board can
test two chips simultaneously and, combined with an FPGA board
and a current meter, supports high-resolution timing and power
measurements.

used to store bad block information, ECC, and other meta-data.
NAND flash devices support three primary operations: erase,

program, and read. Erase operates on entire blocks and sets all the
bits in the block to 1. Program operations write entire pages at
once and can only change 1s to 0s, so an erase operation (of the
entire block) is required to arbitrarily modify the page’s contents.
Read operations read an entire page in parallel. Table 1 reports the
typical and maximum latencies and power usage for each of these
operations. The time and power to transfer data across the pins and
into or out of the internal buffer, for program and read operations
respectively, are not included in these numbers.

In addition to these primary commands, flash devices also sup-
port a variety of other operations, such as copyback-read and
copyback-program [2]. These commands increase performance
by avoiding unnecessary operations or by skipping bus transfers
between the controller and the chip.
Performance and power Currently, most flash devices transmit
and receive data and commands over an 8- or 16-bit bus and can
send and receive a new data word every 25-30ns (33-40Mhz). In
theory, this interface could provide 33-80MB/s of bandwidth, but
read and program latencies limit performance in practice. Unfor-
tunately, the speed of this interface has not increased since 1995.
Industrial efforts [1] are underway to remedy these problems and
promise to raise peak bus bandwidth to between 133 and 400MB/s.

Read, program, and erase operations all require different
amounts of power. Datasheets give a maximum current draw of
between 20mA and 30mA at 2.7-3.3V for a peak power of 50-
100mW.
Reliability Flash memories can fail in a wide variety of ways.
Most notoriously, the devices wear out with use. After many rep-
etitions, the erase and program process can cause cells to become
unreliable due to charge trapping in the gate oxide. The expected
lifetime of one block in a flash device is 10,000 program/erase cy-
cles for MLC and 100,000 for SLC. Furthermore, some devices
retain data for only one year when programmed at this lifetime.
Flash devices report erase and program failures, and manufactures
recommend that the entire block be removed from service if any
data within that block experience an error that cannot be corrected
with ECC. To maximize the lifetime of a flash chip, flash systems
use wear-leveling [9, 11, 18] to ensure that blocks are erased with
equal frequency.

Bits can also become corrupt while stored in flash memory due
to “read disturb” and “program disturb”. Neither phenomenon
causes permanent cell damage. Program disturb causes corruption



Abbrev. Manufa- Chips Cell Cap. Tech. OOB Page Pgs/ Blk/ Planes/ Dies
cturer Measured Type (GBit) Node (nm) (Bytes) Size (B) Blk Plane Die

A-SLC2 A 3 SLC 2 64 2048 64 1024 2 1

A-SLC4 A 3 SLC 4 64 2048 64 4096 1 1

A-SLC8 A 3 SLC 8 64 2048 64 4096 2 1

B-SLC2 B 3 SLC 2 50 64 2048 64 2048 1 1

B-SLC4 B 3 SLC 4 72 64 2048 64 2048 2 1

E-SLC8 E 3 SLC 8 64 2048 64 4096 1 2

B-MLC8 B 3 MLC 8 72 64 2048 128 4096 1 1

B-MLC32 B 3 MLC 32 50 128 4096 128 2048 2 2

C-MLC64 C 3 MLC 64 256 8192 128 4096 1 2

D-MLC32 D 3 MLC 32 128 4096 128 4096 1 2

E-MLC8 E 3 MLC 8 128 4096 128 1024 1 2

Table 2: Parameters for the flash devices used in this study We characterized eleven devices from five manufactures.

because program operations on one page subject all the pages in
the block to weak programming voltages. The effect is greatest for
the pages immediately adjacent to the cells being programmed. To
mitigate program disturb, flash manufacturers require (MLC) or
strongly suggest (SLC) that pages within a block be programmed
in order. This ensures that once a bit is written, it will only be
subjected to one strong program disturbance.

Read disturb occurs because the voltages used to read data from
a flash cell also have a weak programming effect on the other pages
in the same block. As a result, data near pages that are frequently
read can be degraded by millions of reads. To correct these and
the other types of errors, flash systems must use ECC.

3. CHARACTERIZING FLASH MEMORY
To directly measure flash chip characteristics, we built a cus-

tomized flash testing rig that gives us direct control of the devices’
pins and provides facilities for measuring power consumption and
operation latency. This section describes that hardware, the flash
devices we used, and the data we collected.

3.1 Data collection hardware
Figure 1 shows a photo of our flash characterization board. The

custom-built daughter board attaches to a Xilinx XUP board. The
daughter board holds two flash chip test sockets with independent
power planes and facilities for measuring the current that each chip
consumes.

The FPGA on the XUP board implements a custom flash con-
troller that provides support for timing measurements with 10ns
resolution. The FPGA also hosts a full-blown Linux distribution.
A user space application drives the flash test board and collects the
results.

For power measurements we use a high-resolution current probe
(Agilent 1147A) attached to an mixed-signal oscilloscope. The
probe can measure current changes at up to 50Mhz, and the trig-
gering capabilities of the scope allow us to capture data for indi-
vidual flash operations.

3.2 Flash devices
Table 2 summarizes the flash devices we characterize in this

study. They come from five manufacturers and cover a range of
capacities at technology nodes including (among others) 50nm and
72nm.

Flash manufactures are guarded about the details of their de-
vices (many do not publicly release the data sheets for their de-
vices) and some flash devices themselves can be difficult to obtain
in the small quantities we needed. We overcame these problems by
purchasing flash chips from distributors when possible and remov-

A
−

S
L

C
2

A
−

S
L

C
4

A
−

S
L

C
8

B
−

S
L

C
2

B
−

S
L

C
4

E
−

S
L

C
8

B
−

M
L

C
8

B
−

M
L

C
3

2

C
−

M
L

C
6

4

D
−

M
L

C
3

2

E
−

M
L

C
8

P
e
a
k
 B

a
n
d
w

id
th

 (
M

B
/s

)

0

20

40

60

80

100 2
8

1
.2

1
5

0
.1

3
4

4
.0

1
3

8
.2

4
7

5
.6

Read

Program

Erase

Figure 2: Peak device bandwidth The peak bandwidth that each
device can deliver during single-plane operation.

ing them from commercially available flash-based USB “thumb
drives” otherwise. We also built a simple protocol analyzer to re-
verse engineer the command sets for each flash device, since the
command sets vary slightly between manufacturers.

We have elected not to reveal the manufacturers of our devices.
We are not interested in calling on manufactures to account for the
performance of their products. Rather, our goal is to understand
the range of flash behavior so that we (and other researchers) can
better understand flash memory’s strengths and weaknesses.

3.3 Basic operation performance
We began by measuring the latency of the basic flash memory

operations. Figure 3 shows the latencies for reads (a), programs
(b), and erases (c). For each operation we measured the latency on
16 blocks on each of two chips for each chip model. The read la-
tency varies little by manufacturer or chip (except for C-MLC64),
and are in good agreement with values from publicly available
datasheets. MLC chips have, on average, longer and enormously
variable program latencies, which we discuss in more detail below.
Erase latency exhibits a smaller gap, but manufacturer B enjoys an
advantage for SLC and E for MLC.

The first anomaly in our data is the variation in program time
within each MLC block. All of the MLC devices we tested ex-
hibited a regular and predictable variation in program latency be-
tween pages within a block. For instance, for B-MLC32 the first
four pages and every other pair of pages in each block are 5.8
times faster on average than the other pages. The performance for
these pages matches the “typical” values from the data sheet, but



A
−

S
L

C
2

A
−

S
L

C
4

A
−

S
L

C
8

B
−

S
L

C
2

B
−

S
L

C
4

E
−

S
L

C
8

B
−

M
L

C
8

B
−

M
L

C
3

2

C
−

M
L

C
6

4

D
−

M
L

C
3

2

E
−

M
L

C
8

R
e
a
d
 L

a
te

n
c
y
 (

u
s
)

0

20

40

60

80

100

120

140

(a)

A
−

S
L

C
2

A
−

S
L

C
4

A
−

S
L

C
8

B
−

S
L

C
2

B
−

S
L

C
4

E
−

S
L

C
8

B
−

M
L

C
8

B
−

M
L

C
3

2

C
−

M
L

C
6

4

D
−

M
L

C
3

2

E
−

M
L

C
8

P
ro

g
ra

m
 L

a
te

n
c
y
 (

u
s
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(b)

A
−

S
L
C

2

A
−

S
L
C

4

A
−

S
L
C

8

B
−

S
L
C

2

B
−

S
L
C

4

E
−

S
L
C

8

B
−

M
L
C

8

B
−

M
L
C

3
2

C
−

M
L
C

6
4

D
−

M
L
C

3
2

E
−

M
L
C

8

E
ra

s
e

 L
a

te
n

c
y
 (

u
s
)

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

(c)

Figure 3: Flash operation latencies Average flash operation latency for reads (a), programs (b), and erases (c) over ten program/erase
cycles for 16 blocks on each chip. Error bars represent one standard deviation.

the other pages take well over a millisecond to program. For C-
MLC64 every other page is fast. Figure 4 summarizes the results
and shows that the fast MLC programs are nearly as fast as SLC
programs, while the slow pages are very slow indeed.

This effect is well-known to flash designers, and arises from the
assignment of bits within one MLC cell to separate pages. MLC
cells can be in one of four states, depending on how much charge
is present on the floating gate, which allows each cell to store two
bits. To program either bit, the chip applies a programming pulse,
reads the value, applies another pulse, and so on until the cell
reaches the desired state. Since the high-order bits have a larger
target range, the pulses can be relatively powerful and only a few
are required. For the low-order bit the pulses are weaker and the
program requires more of them, resulting in longer latencies.

Section 4 demonstrates how exploiting this difference can sig-
nificantly improve flash drive responsiveness and efficiency. SLC
chips show no corresponding variability.

The second surprise in our investigation is that performance
varies predictably as the devices begin to wear out. Figure 5 shows
average program latency as a function of erase count for our SLC
chips. The data show that program performance increases as the
device wears out, resulting in nearly 50% faster program opera-
tions over the lifetime of an SLC device. MLC devices show much
less variation: their performance increases by only 10-15%. This
effect is due to charge trapping or breakdown of the gate oxide.
As the oxide becomes a less effective insulator, it easier to move
charge across it onto the gate. The same phenomenon is responsi-
ble for the eventual failure of the cell, since it also makes it easier
for charge to leak off the floating gating. We discuss a potential
application of this phenomenon in Section 4.

Figure 2 summarizes the bandwidth that each device can deliver
during single-plane operation. This value is a function of the oper-
ation latency, the page size, and the bus cycle time. For our exper-
iments we used a 30ns cycle time for sending and receiving data
to and from the chip. With a 20ns cycle time (the next faster clock
available on our testing rig), none of the chips operated properly,
although some are rated to 25ns. The motivation for MLC man-
ufacturers to increase page size is clear: programming more bits
in parallel allows them to nearly match SLC’s programming band-
width, despite their greater program latency.

3.4 Basic operation power consumption
A key advantage of flash memory over spinning disks is its low

power consumption. Unfortunately, datasheet power numbers do
not lead to good power modeling. We measured both peak and

A
−

S
L
C

2

A
−

S
L
C

4

A
−

S
L
C

8

B
−

S
L
C

2

B
−

S
L
C

4

E
−

S
L
C

8

B
−

M
L
C

8

B
−

M
L
C

3
2

C
−

M
L
C

6
4

D
−

M
L
C

3
2

E
−

M
L
C

8

P
ro

g
ra

m
 L

a
te

n
c
y
 (

u
s
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Fast 50%

Slow 50%

Figure 4: The programing speed anomaly Average program-
ming speed for over ten program/erase cycles for 16 blocks on
each chip. Programming speed varies dramatically between pages
in MLC devices in a predictable pattern. SLC chips show no such
variation. Error bars represent one standard deviation.

average power for our chips by using a high-speed amp-meter to
measure the current draw while the chips performed various oper-
ations. Table 3 summarizes the results.

The table presents peak power, average power, idle power, and
per-operation energy for each operation. The average power is
measured for a sequence of operations running as quickly as our
test setup can drive the chip. We calculate peak power by dividing
the energy for a single operation (measured using our amp meter)
by its latency.

The table breaks out MLC energy by “fast” and “slow” pages
and shows a disparity similar to the one we observed for program
time. The pages that are fastest to program also consume dramat-
ically less energy per operation (because program power is con-
stant). Again, SLC chips show no page-to-page variation.

The table also shows that SLC enjoys a large efficiency advan-
tage over MLC for all three operations as well as idle power. The
exception is E-MLC8, whose remarkably small erase latency pro-
vides an correspondingly small erase energy. Excluding the erase
energy of E-MLC8, MLC consumes 2.05, 2.70, and 1.13 times
more energy per bit for read, program, and erase operations, re-
spectively. They also consume 1.83 times more idle power, on
average.



A-SLC2 A-SLC4 A-SLC8 B-SLC2 B-SLC4 E-SLC8

Peak Read Power in mW (transfer) 35.3 (19.2) 41.1 (18.3) 58.8 (33.1) 27.2 (9.3) 29.9 (8.2) 19.1 (60.8)
Peak Erase Power in mW 30.9 35.5 47.6 25.3 20.0 25.5
Peak Program Power in mW (transfer) 55.2 (43.2) 59.9 (39.2) 78.4 (59.9) 35.0 (13.6) 35.0 (8.4) 56.0 (33.5)

Ave Read Power (mW) 10.3 14.0 21.0 7.4 11.0 18.8
Ave Erase Power (mW) 27.2 38.4 44.4 27.6 22.9 20.8
Ave Program Power (mW) 27.9 32.4 50.1 19.6 20.8 37.5

Idle Power (mW) 2.7 7.1 17.0 2.9 2.9 13.3

Read Energy (nJ/bit) 0.052 0.069 0.088 0.046 0.042 0.0056
Program Energy (nJ/bit) 0.72 0.61 0.97 0.47 0.41 1.01
Erase Energy (nJ/bit) 0.06 0.067 0.093 0.011 0.025 0.031

B-MLC8 B-MLC32 C-MLC64 D-MLC32 E-MLC8

Peak Read Power in mW (transfer) 54.0 (29.1) 75.9 (41.1) 112.0 (42.8) 66.3 (31.2) 13.4 (39.9)
Peak Erase Power in mW 42.4 70.6 111.8 57.0 21.3
Peak Program Power in mW (transfer) 58.9 (22.4) 94.7 (63.1) 132.2 (65.2) 82.3 (31.7) 118.4 (28.5)

Ave Read Power (mW) 18.1 31.1 41.5 28.3 21.3
Ave Erase Power (mW) 45.5 53.0 105.0 56.2 23.5
Ave Program Power (mW) 46.5 52.5 77.0 55.6 40.9

Idle Power (mW) 12.7 8.5 27.3 11.2 10.2

Read Energy (nJ/bit) 0.15 0.11 0.19 0.093 0.002
Fast Program Energy (nJ/bit) 1.09 0.96 0.66 0.79 0.46
Slow Program Energy (nJ/bit) 3.31 3.30 2.86 2.84 2.07
Erase Energy (nJ/bit) 0.070 0.056 0.038 0.051 0.0057

Table 3: Power and energy consumption for flash operations Peak values are taken from measuring consumption during a single
operation with our high-resolution amp meter. The power measurements for operations and the associated data transfer are listed separately.
Average values are taken over multiple operations on our test system.

3.5 Reliability
One of the most oft-cited concerns about flash memory is its re-

liability. Flash memories can corrupt data in three main ways. The
most important mechanism, wear-out, causes physical damage to
the cells and is not reversible. The two remaining mechanisms,
program disturb and read disturb, do not cause physical damage
and are fully reversible. Manufacturers recommend that systems
use error correction codes and access pattern restrictions to recover
from or prevent all three types of errors.

The datasheets for flash chips provide a rating telling how many
erase cycles a block can undergo before it is no longer reliable.
For SLC chips this is typically 100,000 cycles, and for MLC it is
typically 10,000.

Our results show that these ratings tell only part of the story.
To measure the effect of wear on reliability, we stress-tested flash
chips by performing 10 erase-program-read cycles in which we
wrote random data to each page, and then read the data to chack
for errors. Then, we performed 990 erase-program operations, also
with random data. We repeated this process until we had reached
1 million erases for SLC chips and 100,000 erases for MLC chips.

Figures 6 and 7 show the error rate for each chip. The difference
between SLC and MLC is stark. MLC devices show significant er-
ror rates from the very beginning. For most of the MLC models,
the error rate increases sharply shortly after their rated lifetime,
and some start to increase sharply even earlier. SLC devices, by
contrast, show almost zero errors until they reach their rated life-
time and maintain reasonably low rates for up to six times their
rated lifetime.

Wear out also has an adverse effect on data “shelf life.” Al-
though we have not quantified this effect, flash designers tell us
that for recent flash devices the data shelf life can be as low as one
year for the blocks that are close to their rated lifetime. Regardless,
our data show that for such applications with less stringent shelf
life requirements, the maximum number of erase/program cycles
before SLC chips become unusable may be much higher.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50000  100000  150000  200000

P
ro

g
ra

m
 L

a
te

n
c
y
 (

u
s
)

Program/Erase cycles

A-SLC2
A-SLC4
A-SLC8
B-SLC2
B-SLC4
E-SLC8

Figure 5: Program performance over time For SLC devices,
average program time drops by nearly 50% over the 100,000 pro-
gram/erase cycles of the chip. MLC devices (not shown) show a
much smaller, 10-15% decline.

The data also show a marked difference in reliability among
pages in MLC devices. Figure 9 plots the total error rate for four
chips over their rated lifetime of 10,000 program/erase cycles. In-
terestingly, although roughly half the pages in a block are signifi-
cantly more reliable than the others, and there seems to be a pattern
within the block, there is not a consistent correlation between pro-
gram speed and reliability. SLC devices show similar variation,
but error rates do not become significant until long past their rated
lifetime.
Program disturb To quantify program disturb, we erased a block
and repeatedly programmed half of one page to 0. After each pro-
gram we measured the number of unintentionally programmed bits
in the block. Figure 8 shows how the bit error rate increases with
the number of reprograms.

For SLC devices, we observed no program disturb for the first
100 iterations. At this point, several of the chips developed dis-



 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 0  3000  6000  9000  12000  15000

B
it
 e

rr
o

r 
ra

te

Program/Erase cycles

B-MLC32-1
B-MLC32-2
D-MLC32-1
D-MLC32-2
C-MLC64-1
C-MLC64-2

B-MLC8-1
B-MLC8-2
E-MLC8-1
E-MLC8-2

 0
 2e-07
 4e-07
 6e-07
 8e-07
 1e-06

 1.2e-06
 1.4e-06

 0  2000  4000

Figure 6: Wear out and error rate for MLC devices The error
rate for MLC devices increases dramatically with wear, and is
non-zero even for brand-new devices (inset). There is also large
variation in the change in error rate between instances of the same
chip (notably D-MLC32-1 and D-MLC32-2).

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 0  100000  200000  300000

B
it
 e

rr
o

r 
ra

te

Program/Erase cycles

A-SLC2
A-SLC4
A-SLC8
B-SLC2
B-SLC4
E-SLC8

Figure 7: Wearout and error rate for SLC devices For SLC
devices, the error rates are several orders of magnitude lower than
for MLC even at three times their rated lifetimes. Only A-SLC4
shows a significant increase.

tinctive patterns of errors. B-SLC4, A-SLC2 and A-SLC4 had
increasing errors on every other page with no errors on the re-
programmed page or the two adjacent pages. E-SLC8 developed
errors only in the first few pages. B-SLC2 and A-SLC8 developed
no clear pattern. Figure 10 shows a representative sample of these
patterns.

For MLC devices, the results were more immediate. For all
of the MLC chips, performing just one repeat program of certain
pages revealed two distinct patterns of errors. For C-MLC64, re-
programming pages 2n would disturb nearly all the bits in page
2n − 3, except for the first two pages (which caused no errors
on other pages) and the last two pages (which caused errors on
pages 123 and 125). Additionally, 32 bit errors occur on the repro-
grammed block itself. For the other chips, reprogramming pages
4n or 4n+1 disturbs nearly all the bits in pages 4n−6 and 4n−5

except for the first four pages (which cause no errors) and the last
four pages (which cause errors on pages 118, 119, 122 and 123).
Read disturb To measure the prevalence of read disturb, we wrote
a test pattern to several blocks on the flash chip and then repeatedly
read the pattern back, checking to see if any errors had appeared.
Figure 11 graphs the results. Our data show that, in most cases,
the effects of read disturb began to appear between 250 thousand
and 4.8 million repeated reads.

4. APPLICATIONS
The ultimate goal of this work is to understand the performance

of flash memories so that we can identify new ways to exploit their
performance and overcome their limitations. The following sec-
tions demonstrate how we can apply the understanding that Sec-
tion 3 provides to accomplish this.

We explore two applications. The first is a new flash transla-
tion layer (FTL) that takes advantage of the fast/slow page phe-
nomenon to increase responsiveness and decrease power consump-
tion. The second is the application of a different data encoding
scheme to increase flash’s effective lifetime. These applications
demonstrate that understanding flash’s characteristics in detail can
lead to significant system-level improvements.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0  200  400  600  800  1000

B
it
 e

rr
o

r 
ra

te

Number of Reprograms

E-SLC8
B-MLC32
C-MLC64
D-MLC32

E-MLC8

Figure 8: Program Disturb Most MLC devices experience a
sharp increase in error rates near a certain number of reprograms.

4.1 A variation-aware FTL
The data in Section 3 demonstrated two sources of variation in

program time. The first was the wide variation in program speed
and energy consumption between the “fast” and “slow” pages in
MLC devices. The second was the change in SLC program la-
tency as the chips aged. We have developed a flash translation
layer (FTL) called Mango to exploit the first variation to improve
performance and/or power efficiency.

We used the FTL described in [6] as the baseline FTL. The FTL
provides a disk-like, block-based interface while distributing erase
and program operations evenly across the flash memory to en-
sure uniform wear-out. The FTL maintains a map between logical
block addresses (LBAs) and physical flash addresses (PFAs).

The FTL maintains a “write point” at which all program opera-
tions occur. With each new write request, the FTL writes the new
data at the current write point and updates the map so that the LBA
in the write request points to the data that were just written. It then
advances the write point.

When the write point reaches the end of a block, the FTL must
locate a new, erased block for a new write point. It keeps a pool of



 0

 1e-07

 2e-07

 3e-07

 4e-07

 0  20  40  60  80  100  120

E
rr

o
r 

R
a
te

B-MLC8

 0

 1e-07

 2e-07

 3e-07

 4e-07

 0  20  40  60  80  100  120

DMLC32-1

 0

 1e-07

 2e-07

 3e-07

 4e-07

 0  20  40  60  80  100  120

E
rr

o
r 

R
a
te

Page # within a block

C-MLC64

 0

 1e-07

 2e-07

 3e-07

 4e-07

 0  20  40  60  80  100  120

Page # within a block

D-MLC32-2

Figure 9: Per-page error rates for MLC devices MLC chips show large variation in error rates among pages in a single block. The y-axis
measures the total raw error rate over the chips’ rated lifetime. The two chips at right are supposedly identical parts, but show very different
error rates.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60

E
rr

o
r 

R
a
te

B-SLC4

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0  10  20  30  40  50  60

A-SLC2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60

E
rr

o
r 

R
a
te

Page # within a block

E-SLC8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60

Page # within a block

B-SLC2

Figure 10: Program Disturb for SLC devices after 10,000 reprograms of page 32 Varied error patterns emerge when a page is repeatedly
reprogrammed. The reprogrammed page consistently shows no errors.

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0  2e+06  4e+06  6e+06  8e+06  1e+07

E
rr

o
r 

R
a
te

E-MLC8

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0  2e+06  4e+06  6e+06  8e+06  1e+07

E-SLC8

 0

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 0  2e+06  4e+06  6e+06  8e+06  1e+07

E
rr

o
r 

R
a
te

Number of Reads

A-SLC8

 0
 5e-06
 1e-05

 1.5e-05
 2e-05

 2.5e-05
 3e-05

 3.5e-05
 4e-05

 0  2e+06  4e+06  6e+06  8e+06  1e+07

Number of Reads

A-SLC4

Figure 11: Read disturb up to 10 Million re-reads Repeatedly reading a page without refreshing the data causes a steadily increasing
number of errors beginning at between 250 thousand and 4.8 million reads.



Build DeskDevFinancial Average

N
o
rm

a
liz

e
d
 W

e
a
r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Baseline

Mango

Build DeskDevFinancial Average

N
o
rm

a
liz

e
d
 R

e
s
p
o
n
s
e
 T

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
normal−reads

swap−reads

normal−writes

swap−writes

Build DeskDevFinancial Average

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Baseline

Mango

Figure 12: Mango results for the swap scenario Mango is able to significantly increase responsiveness for swap requests while only
marginally increasing energy consumption and increasing wear by only 3%.

Build DeskDevFinancial Average

N
o

rm
a

liz
e

d
 R

e
s
p

o
n

s
e

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
wall−reads

battery−reads

wall−writes

battery−writes

Build DeskDevFinancial Average

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Baseline−Battery

Mango−Battery

Baseline−Wall

Mango−Wall

Build DeskDevFinancial Average

N
o

rm
a

liz
e

d
 W

e
a

r

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Baseline

Mango

Figure 13: Mango results for the Netbook scenario Mango is able to significantly reduce the energy drain on the battery without
significantly increasing energy while plugged in. It also realizes a slight performance increase, while increasing wear by 55%.

Name Description Mean Req. KB %
Read Write Reads

Build Compile Linux kernel 3.7 4.0 12.14

Financial [3] Live OLTP trace 2.3 3.7 15.40

DesktopDev 24 hour software 17.0 4.0 65.81
development
desktop trace

SwapSpace Virtual memory for 7.8 4.0 84.07
desktop applications

Table 4: Workloads for evaluating Mango The traces cover a
wide range of application types.

erased blocks for this purpose. If the pool falls below a “low water
mark,” the FTL will perform a garbage collection in which it finds
a block with some invalid data (i.e., data for which a newer ver-
sion exists elsewhere in the array), completes the current operation
and continues cleaning in the background. The FTL repeats this
process until the pool reaches a “medium water mark.” When the
number of empty blocks reaches the “high water mark,” the FTL
stops background cleaning to avoid unnecessary erases.

Mango exploits the variation in program time between the fast
and slow pages by skipping slow pages for improved performance
or power/energy efficiency for some operations.

Mango adds a priority to incoming IO requests. For high-
priority writes, the FTL will do its best to use fast pages. The
FTL also provides a fast garbage collection mode that uses fast
pages for garbage collecting write operations as well. Since the
fast pages are also lower energy, high priority accesses are also
low energy.

To find a fast page, Mango uses the next fast page at the current
write point for MLC devices. For SLC devices, it could maintain

two write points (using techniques described in [8]), one in an old,
fast block and one in a young, slow block. We present results here
for the MLC case.

There are several dangers in this scheme. The first is increased
wear for MLC devices because skipping half of the pages in each
block means that we will need to erase blocks more frequently.
The second danger is that ignoring pages will increase the fre-
quency of garbage collection and ultimately increase latency for
disk-bound applications.

Finally, there is a limitation on how many pages we can skip.
Skipped pages appear as invalid pages, and at any time there must
be enough valid pages to account for the full, advertised capacity
of the SSD. The result is that in some cases, the FTL can be forced
to use slow pages during garbage collection.

We evaluate our new FTL in two different scenarios:

• Swap This scenario uses high-priority accesses for write re-
quests for paging out virtual memory pages. We interleaved
requests from the SwapSpace (see Table 4) trace with re-
quests from other traces so that swap requests accounted for
between 5 and 20% of the total requests. We measure the
average latency for swap and non-swap requests separately.
Garbage collection occurs in “slow” mode, unless it is re-
quired to service a high-priority request.

• Netbook This scenario models a mobile device in which en-
ergy saving is key. When the device is running from its bat-
tery, all operations are tagged as high priority and the FTL is
always in fast mode. When the device is running off of wall
power, all operations are low priority and garbage collection
occurs in slow mode. To model this scenario, we switch
from battery to wall power at irregular intervals so that half
of the trace is processed in each mode.



A
−

S
L

C
2

A
−

S
L

C
4

A
−

S
L

C
8

B
−

S
L

C
2

B
−

S
L

C
4

E
−

S
L

C
8

B
−

M
L

C
8

B
−

M
L

C
3

2

C
−

M
L

C
6

4

D
−

M
L

C
3

2

E
−

M
L

C
8

W
ri
te

 E
n
e
rg

y
 (

n
J
/l
o
g
ic

a
l 
b
it
)

0

0.5

1

1.5

2

2.5

3
Normal

WOM

Figure 14: Effective program energy Because WOM codes de-
crease the number of erases per logical bit programmed, using
them reduces programming energy by 9.5% on average.

B
−

M
L

C
8

B
−

M
L

C
3

2

C
−

M
L

C
6

4

D
−

M
L

C
3

2

E
−

M
L

C
8

L
if
e
ti
m

e
 I
m

p
ro

v
e
m

e
n
t

0

1

2

3

4

5
Normal

WOM

Figure 15: Effective device lifetime Measured in logical bytes
written before the device reaches the fatal error rate, WOM codes
allows up to 5.2 times longer lifetime.

Logical First Second
bits generation generation

00 111 000
01 110 001
10 101 010
11 011 100

Table 5: The write-only memory code Write-only memory codes
(WOM codes) allow multiple logical value to be written even if
physical bits can only transition once.

In each scenario we use a set of traces summarized in Table 4.
The traces are from several sources and represent a wide range of
application behaviors. The traces include operation arrival times,
and we use that to schedule arrival times at the SSD.

We implemented Mango in a flash memory simulator using the
performance and power measurements from Section 3.3 to deter-
mine the latency for each operation (including garbage collection
time if the operation needed to wait for it) and the overall energy
consumption for the trace. The simulator collects statistics on the
distribution of high and low priority accesses due to external IO re-
quests and internal garbage collection operations. It also measures
the fraction of slow pages that the FTL skipped during the trace
and the total number of erases performed to gauge the amount of
wear caused by the trace.

The simulator models an SSD comprised of a single flash chip.
For this study we used the data for chip C-MLC64 from Section 3,
since the power and performance for the other MLC devices were
comparable, we would expect similar performance and energy re-
sults.

Figure 12 summarizes the results for the swap scenario and
compares the responsiveness and power consumption of Mango
with the baseline FTL. The data show that Mango achieves its
goal of reducing swap latency: On average swap write requests
complete 1.5 times more quickly with Mango than with the base-
line.

As we expected, the downside of increasing priority on some
requests is increased overall wear. In this case, wear increased by
an average of 3% across the traces.

Figure 13 shows the results for the netbook scenario. Here, we
are most concerned about overall energy consumption, and Mango
reduces energy consumption compared to the baseline by 3% on
average while increasing wear by 55%. This increase is larger
than for the swap scenario because a larger fraction of accesses
were high priority.

4.2 Flash-aware data encoding
Flash devices require the use of error correction codes to de-

tect and recover from errors caused by wear, program-disturb, and
read-disturb effects. Their performance, as well as their lifetime,
can also be improved by using alternative data encoding schemes.

The data in Section 3 provide us with the means to evaluate
the impact of different encoding schemes on flash longevity. To
demonstrate this, we have implemented and evaluated the perfor-
mance of a simple write-once-memory (WOM) coding scheme for
flash memory [14].

WOM codes were originally developed for storage devices -
punch cards and early digital optical disks, for example - in which
a stored ’1’ could not be changed to a ’0’. This property would
nominally prevent the user from writing more than once to any
given bit of the storage medium. WOM codes provided a method
to overcome this limitation, allowing a trade-off between the num-
ber of writes and the recorded data density (the number of logical
bits stored in a physical bit location on the medium).

Table 5 illustrates a simple WOM code that we have imple-
mented. It uses three physical bits to represent two logical bits and
allows two logical sets of bits to be written. Each sequence of two
bits has two representations, one for the first program and one for
the second. These are the first and second generation code words.
The key to the code is that, with one exception, the 1s in each sec-
ond generation code word are a superset of the 1s in all of the first
generation code words. As a result, overwriting a first generation
word with a second generation word always results in the second
generation code word being stored. The exception is that the
first and second generation code words are complements, so that
the second generation pattern cannot be programmed. This leads
to ambiguity in decoding, which the code resolves by reading the
data before programming it and only reprogramming logical bits
that have changed.

In the context of flash memory, this encoding scheme allows
us to write data to a block twice before erasing it. The data in



Section 3 showed that, for MLC devices, program disturb is only a
problem for programing half of the pages in a block. Those pages
are unsuitable for WOM codes. The other pages, however, can
accept multiple programs with no ill effects. We refer to these
pages as “WOM safe.” For SLC devices, program disturb is not a
problem for the first few iterations on any page, therefore all page
are WOM safe.

The writing procedure is as follows. Initially, we program un-
encoded data into the non-WOM safe pages and first-generation
WOM-encoded data into the WOM-safe pages. On the second pro-
gramming pass, we program second-generation WOM-encoded
data into just the WOM-safe pages. WOM-enconding is 66% ef-
ficient, so the two writes to the WOM-safe pages combined with
a single write to unsafe pages gives a 1.16 times increase in the
number of bytes that can be written to a block per erase operation
for MLC. For SLC, there is a factor of 1.33 increase.

This leads to two favorable trade-offs. First, WOM codes allow
the chip to expend less energy to program a given amount of data.
This is because the energy to erase is not required as frequently
with respect to writes. Figure 14 displays these energy savings for
each chip.

The second measurable advantage of using WOM codes is a
commensurate increase in useful device lifetime. We measure this
as the amount of logical data written to the device before begins
to experience the fatal error rate. This is the error rate at the rec-
ommended lifetime of the device under normal operation (without
reprogramming or WOM-encoding).

Figure 15 shows this increase in effective lifetime. SLC chips
are not graphed because the WOM-encoded chips showed no er-
rors even after programming 1.33 times more data than the base-
line. We would expect a 17% (MLC) or 33% (SLC) increase in
the number of bytes programmed for every erase, but several of
the chips far exceed this expectation. There are several possible
explanations. For example, reprogramming bits to the same value
may reinforce the data or the WOM codes may have some other
error-reducing properties. These are questions we are still explor-
ing.

5. CONCLUSION
The devices we characterized in this study exhibited variation

both within a block and over time in terms of power consumption,
latency, and error rates. Our data also show that the values man-
ufacturers provide in publicly available datasheets often tell only
part of the story, and that actual performance can be significantly
worse and highly variable. Our application case studies demon-
strate that by looking beyond the datasheets manufacturers pro-
vide, we can make significant improvements to flash-based storage
devices. Exploiting two of the effects we measured enabled us to
significantly decrease latency for critical IO requests and extend
the effective lifetimes of chips.

ACKNOWLEDGEMENTS

This work was funded by NSF Awards 0643880 and 0811794 and
with support from the Center for Magnetic Recording Research at
the University of California, San Diego.

REFERENCES
[1] Onfi: Open nand flash interface.

http://onfi.org/specifications.
[2] Onfi: Open nand flash interface specification 2.0.

http://onfi.org/wp-
content/uploads/2009/02/onfi_2_0_gold.pdf.

[3] Umass trace repository.
http://traces.cs.umass.edu/index.php/Storage/Storage.

[4] International technology roadmap for semiconductors:
Emerging research devices, 2007.

[5] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and
M. Seltzer. Non-volatile memory for fast, reliable file
systems. In ASPLOS-V: Proceedings of the fifth

international conference on Architectural support for

programming languages and operating systems, pages
10–22, New York, NY, USA, 1992. ACM.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design
for high-performance flash disks. Technical Report
MSR-TR-2005-176, Microsoft Research, December 2005.

[7] e. a. C. Trinh. A 5.6mb/s 64gb 4b/cell nand flash memory in
43nm cmos. In Solid-State Circuits Conference. IEEE, 2009.

[8] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon:
using flash memory to build fast, power-efficient clusters for
data-intensive applications. SIGPLAN Not., 44(3):217–228,
2009.

[9] L.-P. Chang. On efficient wear leveling for large-scale
flash-memory storage systems. In SAC ’07: Proceedings of

the 2007 ACM symposium on Applied computing, pages
1126–1130, New York, NY, USA, 2007. ACM.

[10] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with
zebranet. In ASPLOS-X: Proceedings of the 10th

international conference on Architectural support for

programming languages and operating systems, pages
96–107, New York, NY, USA, 2002. ACM.

[11] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee. A
group-based wear-leveling algorithm for large-capacity flash
memory storage systems. In CASES ’07: Proceedings of the

2007 international conference on Compilers, architecture,

and synthesis for embedded systems, pages 160–164, New
York, NY, USA, 2007. ACM.

[12] T. Kgil, D. Roberts, and T. Mudge. Improving nand flash
based disk caches. In ISCA ’08: Proceedings of the 35th

International Symposium on Computer Architecture, pages
327–338, Washington, DC, USA, 2008. IEEE Computer
Society.

[13] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou.
Transactional flash. USENIX Symposium on Operating

Systems Design and Implementation, 2008.
[14] R. Rivest and A. Shamir. How to reuse a write-once

memory. Information and control, 55:1–19, December 1982.
[15] e. a. R.W. Zeng. A 172mm2 32gb mlc nand flash memory in

34nm cmos. In Solid-State Circuits Conference. IEEE, 2009.
[16] e. a. S. Chang. A 48nm 32gb 8-level nand flash memory

with 5.5mb/s program throughput. In Solid-State Circuits

Conference. IEEE, 2009.
[17] e. a. T. Futatsuyama. A 113mm2 32gb 3b/cell nand flash

memory. In Solid-State Circuits Conference. IEEE, 2009.
[18] D. Woodhouse. Jffs2: The journalling flash file system,

version 2. http://sources.redhat.com/jffs2/.


