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Abstract

Variation in DNAmethylation is being increasingly associated with health and disease out-

comes. Although DNAmethylation is hypothesized to be a mechanism by which both

genetic and non-genetic factors can influence the regulation of gene expression, little is

known about the extent to which DNAmethylation at specific sites is influenced by heritable

as well as environmental factors. We quantified DNAmethylation in whole blood at age 18 in

a birth cohort of 1,464 individuals comprising 426 monozygotic (MZ) and 306 same-sex

dizygotic (DZ) twin pairs. Site-specific levels of DNAmethylation were more strongly corre-

lated across the genome between MZ than DZ twins. Structural equation models revealed

that although the average contribution of additive genetic influences on DNAmethylation

across the genome was relatively low, it was notably elevated at the highly variable sites

characterized by intermediate levels of DNAm that are most relevant for epigenetic epidemi-

ology. Sites at which variable DNAmethylation was most influenced by genetic factors were

significantly enriched for DNAmethylation quantitative trait loci (mQTL) effects, and over-

lapped with sites where inter-individual variation correlates across tissues. Finally, we show

that DNAmethylation at sites robustly associated with environmental exposures such as

tobacco smoking and obesity is also influenced by additive genetic effects, highlighting the

need to control for genetic background in analyses of exposure-associated DNAmethylation

differences. Estimates of the contribution of genetic and environmental influences to DNA

methylation at all sites profiled in this study are available as a resource for the research com-

munity (http://www.epigenomicslab.com/online-data-resources).
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Author summary

The study of monozygotic (MZ) and dizygotic (DZ) twins provides an opportunity for

exploring the extent to which heritable and environmental factors contribute to pheno-

typic variation in human populations. We exploit the twin study design to explore the fac-

tors influencing epigenetic variation between individuals, focussing on DNAmethylation,

the best-characterized and most stable epigenetic modification. We find that site-specific

levels of DNAmethylation are more strongly correlated across the genome between MZ

than DZ twins. While the average contribution of additive genetic influences on DNA

methylation is relatively low, it is notably elevated at sites that are highly variable and have

intermediate levels of DNAm, which are most relevant for epigenetic epidemiology. Sites

at which variable DNAmethylation is strongly influenced by genetic factors are enriched

for DNAmethylation quantitative trait loci (mQTL) effects, and overlap with sites where

inter-individual variation correlates across tissues. Importantly, we show that DNAmeth-

ylation at sites robustly associated with environmental exposures such as smoking and

obesity is also influenced by genetic effects, highlighting the need to control for genetic

background in analyses of exposure-associated DNAmethylation differences. Finally, we

present a searchable database cataloguing the genetic and environmental contributions to

variable DNA methylation across the genome (http://www.epigenomicslab.com/online-

data-resources).

Introduction

The study of twins provides an opportunity for exploring the extent to which heritable and

environmental factors contribute to phenotypic variation in human populations [1]. By com-

paring concordance rates between monozygotic (MZ) and dizygotic (DZ) twins it has been

shown that most human traits are, at least in part, influenced by DNA sequence variation [2].

The fact that genetically-identical MZ twins exhibit phenotypic differences indicates that non-

sequence based factors, usually attributed to the environment, also contribute to phenotypic

variation. Increasing knowledge about the biology of the genome has stimulated interest in the

role of epigenetic processes—acting to developmentally regulate gene expression via modifica-

tions to DNA, histone proteins, and chromatin—in mediating phenotypic variation across the

life-course. Growing evidence identifies epigenetic differences between MZ twins [3], and epi-

genetic variation is associated with a range of health and disease phenotypes [4].

The primary focus of epigenetic epidemiology is on DNAmethylation, the best-character-

ized and most stable epigenetic modification, which is assumed to influence gene expression

via the disruption of transcription factor binding and the attraction of methyl-binding proteins

that initiate chromatin compaction and gene silencing. DNAmethylation can be influenced

by both environmental and genetic factors, meaning that careful study design in epigenome-

wide association studies (EWAS) is important to minimize the influence of confounders and

false positives [4, 5]. There is evidence that certain exposures–for example, to tobacco smoke

[6–8], dietary factors [9, 10] and psychosocial stress [11, 12]–are associated with changes in

DNAmethylation at specific sites across the genome. Likewise, studies have identified associa-

tions between DNA sequence variation and DNAmethylation at sites across the genome [13–

16]; these DNAmethylation quantitative trait loci (mQTLs) often overlap with DNA variants

associated with levels of gene expression (expression quantitative trait loci; eQTLs)[14, 17],

providing a potential mechanism linking genetic variation to gene regulation.
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Researchers are starting to exploit the twin study design to further explore the extent to

which epigenetic variation between individuals is influenced by genetic and environmental

factors. Recent studies have shown that DNAmethylation profiles are more similar between

related individuals than unrelated individuals, with greater concordance between MZ than DZ

twins [18, 19]. Twin studies suggest that the proportion of variance in DNAmethylation

explained by genetic factors is on average low (typically 5–19%) at the majority of sites that

have been tested across the genome [19–21]. Importantly, however, the contribution of genetic

and environmental factors to DNAmethylation varies at sites across the genome, and poten-

tially differs as a function of tissue, age and sex [21]. Studies investigating associations between

DNAmethylation and phenotypic variation, should not dismiss the impact that genetic varia-

tion may have on their results.

Here we report findings about the genetic and environmental architecture of DNAmethyl-

ation in whole blood at age 18 years using samples collected from the Environmental Risk

(E-Risk) Longitudinal Twin Study, a representative birth cohort of young-adult twins based in

the UK. Young adulthood is a life stage when people show great variation in health risk behav-

iors and exposures that have been hypothesized to alter an individuals’ epigenome. Our goal

was to characterize the genetic and environmental determinants of variation in DNAmethyla-

tion in order to inform future methylomic analyses of complex traits. By analyzing a sample

where all twin pairs provided a whole blood sample at the same age, we minimize the con-

founding influence of age-associated variation.

We first used structural equation modeling to calculate the proportion of variance in DNA

methylation explained by additive genetic (A), shared environmental (C) and unshared (or

unique) environmental (E) factors at sites across the genome. Second, we explored whether

the contribution of genetic and environmental influences on DNAmethylation differs

depending upon the level and/or variability in DNAmethylation at individual sites. Third, we

assessed how genetic and environmental influences on DNAmethylation differ as a function

of genic location, describing the factors influencing variable DNAmethylation across gene reg-

ulatory regions. Fourth, we tested the hypothesis that sites characterized by highly heritable

levels of DNAmethylation are enriched for known mQTL effects. Fifth, we explored the extent

to which biological phenotype estimates derived from DNAmethylation data itself (e.g. age

and blood cell proportions) are influenced by genetic and environmental factors, in addition

to estimating the genetic and non-genetic contribution to levels of DNAmethylation at sites

robustly associated with specific environmental exposures (e.g. tobacco smoking and obesity).

Finally, as a resource for the research community, we present a searchable database catalogu-

ing the genetic and environmental contributions to variable DNA methylation across all sites

on the Illumina 450K array (http://www.epigenomicslab.com/online-data-resources).

Results

Site-specific levels of DNAmethylation are more strongly correlated
between MZ twins than DZ twins, especially at sites with variable and
intermediate levels of DNAmethylation

We quantified genome-wide patterns of DNAmethylation using the Illumina Infinium

HumanMethylation450 BeadChip (“450K array”) in DNA samples isolated from whole blood

collected at age 18 years from members of the E-Risk cohort [22]. After implementing a strin-

gent quality control (QC) pipeline (seeMethods), our final sample included 426 MZ twin

pairs (48.5% female) and 306 DZ twin pairs (49.2% female) (1,464 individuals, a representative

65.6% of participants, seeMethods).

Genetic and environmental influences on variable DNAmethylation
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We first assessed the profile of DNAmethylation across all 420,857 autosomal 450K array

sites included in our final dataset. As expected, these ‘global’ patterns of DNAmethylation

were highly stable between individuals (S1 Fig), although the average inter-individual correla-

tion of DNAmethylation across sites was significantly higher between siblings than between

unrelated individuals (P = 2.20x10-223). MZ twin pairs were more similar to each other than

DZ twin pairs for the majority of sites tested (N = 277,077 (65.8%), sign test P = 1.98x10-323)

(Fig 1); the average sibling correlation across the 420,857 sites was significantly higher for MZ

twin-pairs than for DZ pairs (mean MZ sibling correlation = 0.996, mean DZ sibling correla-

tion = 0.995, P = 1.29x10-34). The magnitude of this difference was relatively small, reflecting

the fact that most autosomal 450K array probes are characterized by consistently high (>80%)

or low (<20%) levels of DNAmethylation, and minimal inter-individual variation. We there-

fore estimated sibling correlations for the subset of autosomal DNAmethylation sites we

defined as either “variable” (i.e. those where the range of DNA methylation values for the mid-

dle 80% of individuals was greater than 5%; N = 214,991 sites (51.1%)) or with intermediate

levels of DNAm (i.e. those where the mean level of DNA methylation was between 20% and

80%; N = 131,728 sites (31.3%)) (seeMethods). These probe subsets were not distinct; the

majority (N = 127,935 (97.1%)) of DNA methylation sites with intermediate levels of DNAm

were also classed as “variable” (S2 Fig). The elevated concordance in DNAmethylation levels

in MZ twins compared to DZ twins was more pronounced amongst both “variable” sites

(number of sites at which MZ twin pairs are more similar to each other than DZ twin

pairs = 166,783 (77.6%), sign test P = 1.48x10-323) and sites with intermediate levels of DNAm

(number of sites at which MZ twin pairs are more similar to each other than DZ twin

pairs = 109,303 (83.0%), sign test P = 9.88x10-324) (Fig 1). Furthermore, there was an overall

elevated average sibling similarity for DNAmethylation levels in MZ twins compared to DZ

twins amongst both “variable” DNAmethylation sites (mean MZ sibling correlation = 0.989,

mean DZ sibling correlation = 0.985, P = 3.92x10-38) and DNAmethylation sites with interme-

diate levels of DNAm (mean MZ sibling correlation = 0.979, mean DZ sibling correla-

tion = 0.968, P = 1.55x10-39) (S1 Fig), consistent with findings from previous twin studies of

DNAmethylation in whole blood [21, 23].

Fig 1. Monozygotic (MZ) twins are more concordant than dyzygotic (DZ) twins for DNAmethylation at the majority of
autosomal sites tested. (a) Scatterplot showing the correlation of DNAmethylation values within MZ twin-pairs (x-axis) and DZ
twin-pairs (y-axis) for all 420,857 autosomal Illumina 450K array sites passing our stringent quality control (QC) pipeline. MZ twin
pairs are more similar to each other than DZ twin pairs for 277,077 (65.8%) of sites (sign-test P = 1.98x10-323). The elevated
concordance of DNAmethylation in MZ twins compared to DZ twins is more pronounced amongst both (b) “variable” sites
(77.6%, sign-test P = 1.48x10-323) and (c) sites with intermediate levels of DNAm (83.0%, sign-test P = 9.88x10-324). The red
diagonal line indicates x = y. The color indicates the density of data points ranging from yellow (highest) to grey (lowest).

https://doi.org/10.1371/journal.pgen.1007544.g001
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Autosomal DNAmethylation is predominantly influenced by non-shared
environmental factors

DNAmethylation is widely hypothesized to be a mechanism by which both heritable and envi-

ronmental factors can influence the regulation of gene expression and function, but little is

known about the extent to which DNAmethylation at specific sites is actually influenced by

genetic and non-genetic factors. We fitted structural equation models to estimate the propor-

tion of variance in DNAmethylation explained by additive genetic effects (A), shared environ-

mental effects (C) and unshared (or unique) environmental effects (E) across all 420,857

autosomal sites (seeMethods) (Table 1). The average contribution of additive genetic effects

across all DNA methylation sites was relatively low but highly variable (mean A = 15.9%

(SD = 20.8%)) (Fig 2A–2C); our mean estimate of heritability was slightly below that observed

in previous studies of older and more variably-aged twin-pairs [19, 23]. On average, the largest

contribution to variation in DNAmethylation was attributable to unique environmental influ-

ences, which also indexes measurement error (mean E = 67.4% (SD = 22.9%)). The mean esti-

mate for common environmental influences across all 420,857 autosomal sites was similar to

that for additive genetic effects (mean C = 16.7% (SD = 17.8%)). These data highlight that vari-

ation in DNAmethylation can be influenced by both genetic and non-genetic factors, and that

the relative importance of these influences differs across sites in the genome. Because whole

blood is a heterogeneous tissue, we derived blood cell proportion estimates for each sample

using the DNAm data (seeMethods) and repeated our structural equation modelling in an

attempt to explore the effects of cellular heterogeneity on heritability estimates of DNAm.

Including derived blood cell-types as a covariate in our model did not change the pattern of

results (mean A = 16.5% (SD = 21.2%), mean C = 12.6% (SD = 13.7%), mean E = 71.0%

(SD = 20.9%)) (S3 Fig), with estimates for genetic and environmental influences on DNAm

across sites being highly correlated across both models (S4 Fig). Fig 3 shows examples of sites

at which the level of DNAmethylation was influenced by a high (Fig 3A) and low (Fig 3B)

additive genetic component. MZ and DZ twin correlations and estimates for A, C, and E for

all Illumina 450K array sites are available as an online resource at http://www.epigenomicslab.

com/online-data-resources).

Table 1. The contribution of additive genetic and environmental factors to levels of DNAmethylation. Shown are the results from structural equation models to esti-
mate the mean proportion of variance in DNAmethylation explained by additive genetic effects (A), shared environmental effects (C) and unshared (or unique) environ-
mental effects (E) across Illumina 450K probes. Results are presented separately for DNAmethylation sites located on the autosomes and X-chromosome, and stratified by
whether they have intermediate levels of DNAm and/or are “variable”.

A C E

Autosomes (all twins)

N probes Mean SD Mean SD Mean SD

All 420,857 15.9% 20.8% 16.7% 17.8% 67.4% 22.9%

Intermediate levels of DNAm 131,728 27.3% 24.6% 16.8% 16.5% 55.9% 22.3%

Variable 214,991 23.0% 23.8% 15.9% 16.8% 61.1% 23.2%

X Chromosome (female twins)

All 9,896 30.2% 17.0% 13.6% 20.4% 56.3% 22.1%

Intermediate levels of DNAm 7,911 32.1% 15.6% 14.8% 21.5% 53.1% 21.5%

Variable 9,127 31.3% 16.5% 13.5% 20.5% 55.3% 21.7%

X Chromosome (male twins)

All 9,896 12.1% 17.5% 17.7% 24.5% 70.2% 25.6%

Intermediate levels of DNAm 2,778 18.8% 20.7% 16.1% 16.7% 65.1% 20.0%

Variable 5,377 15.0% 19.4% 15.5% 18.5% 69.4% 22.1%

https://doi.org/10.1371/journal.pgen.1007544.t001
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Fig 2. The proportion of variance in DNAmethylation explained by additive genetic effects (A), shared environmental effects (C) and unshared (or unique)
environmental effects (E) across autosomal sites. Panels a-c show density distributions for estimates of A, C, and E across all 420,857 autosomal DNAmethylation
sites. At the majority of autosomal sites, environmental factors contribute more to the observed variance in DNAmethylation than additive genetic factors. We observe
significantly higher average heritability estimates for DNAmethylation across the subset of DNAmethylation sites defined as “variable” (d-f) (mean A = 23.0%
(SD = 23.8%); MannWhitney P< 2.2x10-16) and (g-i) “sites with intermediate levels of DNAm” (mean A = 27.3% (SD = 24.6%); MannWhitney P< 2.2x10-16).

https://doi.org/10.1371/journal.pgen.1007544.g002

Genetic and environmental influences on variable DNAmethylation

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007544 August 9, 2018 6 / 27

https://doi.org/10.1371/journal.pgen.1007544.g002
https://doi.org/10.1371/journal.pgen.1007544


Additive genetic influences on DNAmethylation are highest at highly
variable sites and sites with intermediate levels of DNAm

We next tested the hypothesis that DNA methylation at sites which are “variable” or have

intermediate levels of DNAm is more highly heritable than other sites in the genome. Average

additive genetic influences on DNAmethylation were markedly higher at “variable” autosomal

sites compared to non-variable sites (mean A = 23.0% (SD = 23.8%), MannWhitney

P< 2.2x10-16) (Fig 2D and S5 Fig). Likewise, additive genetic influences on DNAmethylation

were significantly higher at autosomal sites with intermediate levels of DNAm compared to

Fig 3. Examples of autosomal sites at which DNAmethylation is differentially influenced by additive genetic and environmental factors. (a) An example of a site
(cg00002033) at which DNAmethylation is highly heritable. The scatterplot shows DNAmethylation values in MZ (left panel) and DZ (right panel) twin pairs. Each
point represents an individual twin-pair. At this site, the correlation of DNAmethylation is markedly higher in MZ twins (r = 0.882) compared to DZ twins (r = 0.484).
Structural equation modelling highlights that DNAmethylation at this site is strongly influenced by additive genetic effects (A = 79.7%, C = 8.53%, E = 11.8%). (b) An
example of a site (cg00000289) at which DNAmethylation is not strongly influenced by genetic factors. The scatterplot shows DNAmethylation values in MZ (left
panel) and DZ (right panel) twin pairs. Each point represents an individual twin-pair. At this site, the correlation of DNAmethylation is similar in both MZ twins
(r = 0.363) and DZ twins (r = 0.449) highlighting that DNAmethylation is strongly influenced by the environment (A = 0%, C = 40.2%, E = 59.8%). MZ and DZ
correlations for DNAmethylation across all sites on the Illumina 450K array can be visualized at http://www.epigenomicslab.com/online-data-resources.

https://doi.org/10.1371/journal.pgen.1007544.g003
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hyper/hypo-methylated sites (mean A = 27.3% (SD = 24.6%), MannWhitney P< 2.2x10-16),

with a striking inverted U-shaped relationship between the level of DNAmethylation and the

extent to which it was influenced by additive genetic factors (Fig 2G and Fig 4). In contrast,

the influence of non-shared environmental factors was significantly lower at “variable” autoso-

mal sites compared to non-variable sites (mean E = 61.1% (SD = 23.2%); Mann-Whitney

P< 2.2x10-16) (Fig 2F). The contribution of non-shared environmental factors was also lower

at autosomal sites with intermediate levels of DNAm compared to either hyper- or hypo-meth-

ylated sites (mean E = 55.9% (SD = 22.3%); Mann-Whitney P< 2.2x10-16) (Fig 2I); there is a

U-shaped relationship between the mean level of DNAmethylation and the proportion of vari-

ance explained by unique environmental effects; the smallest contribution of E was observed at

sites that were 56–58% methylated (Fig 4). Shared environmental influences were fairly stable

and not strongly affected by either the average variability or level of DNAmethylation. These

results are important because they suggest that the effects of genetic variants associated with

phenotypic differences are likely to be more pronounced at DNAmethylation sites that are

variable or have intermediate levels of DNAm compared to hypo- or hyper methylated sites,

which are more stable in the population and often associated with cell-type-specific patterns of

gene expression.

Genetic influences on DNAmethylation are not evenly distributed across
genic regions

Although DNAmethylation across CpG-rich promoter regions is often associated with the

repression of gene expression, recent work has revealed a more nuanced relationship between

DNAmethylation and transcription that is frequently dependent on genomic context [24].

Fig 4. The contribution of genetic and environmental influences on DNAmethylation at autosomal sites differs
as a function of average DNAmethylation level at that location. Shown are estimates of additive genetic effects (A),
shared environmental effects (C) and non-shared (or unique) environmental effects (E) against mean DNA
methylation level. The most heritable sites are characterized by intermediate levels of DNAmethylation.

https://doi.org/10.1371/journal.pgen.1007544.g004
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DNAmethylation in the gene body, for example, can be a marker of active gene transcription

[25, 26], potentially playing a role in regulating alternative splicing and isoform diversity.

Given these contextual differences, we tested whether genetic and environmental contribu-

tions to variable DNAmethylation differ across genomic domains. As DNAm sites located in

specific gene features differ in their variability, these analyses focused on our subset of “vari-

able” DNAm sites to prevent any potential confounding. First, we used a sliding-window

approach to examine how the proportion of variation in DNAmethylation explained by

genetic and environmental influences changes across a canonical gene region (S6 Fig). There

was a peak in the contribution of shared environmental influences in the vicinity of the tran-

scription start site (TSS), accompanied by a reduction in the contribution of non-shared envi-

ronmental influences. The contribution of additive genetic factors to variation in DNA

methylation was highest at sites located immediately upstream of the TSS, and also in a region

spanning ~5 kilobases (kb) downstream of the transcription termination site. Second, we

tested the extent to which DNAmethylation levels at sites annotated to specific genic features

(S7 Fig) and CpG island features (S8 Fig) were influenced by additive genetic or environmen-

tal factors. Variation in DNAmethylation at sites in the immediate vicinity of a TSS, or anno-

tated to a first exon or CpG island, were associated with significantly higher additive genetic

and shared environmental influences (all Mann-Whitney P< 2.2x10-16) (S1 Table). Given the

presumed importance of promoter-region DNAmethylation in regulating gene expression,

these observations suggest that both environmental and genetic factors can influence tran-

scriptional regulation via DNA methylation at these promoter-region locations and that, on

average, the effects across features are relatively consistent. Finally, we investigated how the

influence of genetic and environmental factors on DNAm varies across regulatory features

and chromatin states defined by ChromHMM using ENCODE ChIP-seq data for a well-char-

acterized lymphoblastoid cell line (GM12878) (S9 Fig). This analysis revealed higher levels of

additive genetic effects on DNAm at sites in insulators (mean A = 23.0%, SD = 24.2%),

repressed (mean A = 19.6%, SD = 21.4%) and repetitive/CNV regions (mean A = 24.8–27.0%,

SD = 25.8–26.2%), with moderate levels of heritability in enhancer regions (mean A = 17.5–

19.1%, SD = 20.9–22.1%). In contrast, DNAm at sites located in promoters is characterized by

an increased proportion of variance explained by unique environmental factors (E = 65.6–

67.8%, SD = 22.3–23.2%) reflecting the genic annotation results above.

Sites at which variable DNAmethylation is strongly influenced by additive
genetic factors are significantly enriched for mQTL effects

Given that epigenetic epidemiology aims to understand both the causes and phenotypic conse-

quences of differential DNAmethylation, we focused our subsequent analyses on the subset of

214,991 “variable” autosomal DNA methylation sites. Hypothesizing that the majority of heri-

table DNA methylation sites identified in this study are influenced by common genetic varia-

tion, we tested whether they were enriched for mQTL effects, i.e. common genetic variants

known to be robustly associated with DNAmethylation at specific sites [13, 27, 28]. We used a

large mQTL database generated by our group on an independent set of whole blood samples

[29] to identify overlap with the most highly heritable DNAmethylation sites (defined as those

with A> 0.8; n = 4,882) identified in the E-Risk cohort. DNAmethylation at 84.7% of these

sites was significantly associated with at least one common genetic variant using a stringent

mQTL threshold (P< 1x10-8) (S2 Table); this represented a highly significant enrichment for

mQTL effects (P< 2.2x10-16) compared to less-heritable DNAmethylation sites (defined as

those with A< 0.8), amongst which only 24.5% were associated with a mQTL variant. Of note,

mQTL effect sizes vary as a function of the mean level of DNAm. Sites with intermediate levels
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of DNAm are associated with larger mQTL effects (mean = 4.99% change in methylation per

allele (SD = 3.61%)) compared to sites characterized as being hyper- or hypo-methylated

(mean = 3.56% change in methylation per allele (SD = 2.79%); Mann-Whitney P< 2.2x10-16);

this parallels the relationship observed between the level of DNAm and the influence of addi-

tive genetic factors (S10 Fig). These findings suggest that the incorporation of common SNP

data into epigenome-wide association studies (EWAS) will facilitate understanding about the

contribution of genetic and non-genetic factors to trait-associated methylomic variation. An

example of a highly heritable DNAmethylation site (cg02573566, A = 96.9%) that was also

associated with an mQTL SNP (rs11548104, P = 5.95x10-179) is shown in S11 Fig. Of note,

observed DNAmethylation at highly heritable sites for which we did not detect an mQTL

(15.3%) does not necessarily signal false positives as these sites may be associated with

rare variation or larger structural variants not assessed in existing mQTL databases.

mQTLs influencing levels of DNA methylation at highly heritable sites were associated

with larger effects (mean change in DNA methylation per allele = 6.77% (SD = 4.48%))

compared to all identified mQTLs (mean change in DNA methylation per allele = 3.03%

(SD = 3.10%)) (P = < 2.2x10-16). Across all autosomal 450K array sites, there was a rela-

tively linear relationship between the contribution of genetic influences to variation in

DNA methylation and the proportion of sites influenced by an mQTL (S12 Fig). In con-

trast, the proportion of DNA methylation sites that were associated with an mQTL

decreased as the contribution of the common or unique environment to levels of DNA

methylation increased. Taken together, these findings confirm our hypothesis that DNA

methylation at the majority of highly heritable sites is directly influenced by common

genetic variants.

DNAmethylation sites at which inter-individual variation is correlated
across tissues are characterized by higher levels of heritability

Epigenetic association studies of phenotypes where the presumed tissue of interest is challeng-

ing to obtain (e.g. regions of the human brain) typically use more accessible peripheral tissues

(e.g. whole blood) under the premise that variation identified in these ‘proxy’ tissues poten-

tially mirrors that in the disease-relevant tissue. We have previously shown, however, that

whole blood generally has limited utility for inferring inter-individual variation in multiple

regions of the human brain [30]. Where there is significant co-variation between two tissues

from the same individual, we hypothesized that this is likely to reflect genetic effects on DNA

methylation that are manifest across tissues. We used the matched blood and brain DNA

methylation datasets, previously generated by our group [30], to confirm that DNAmethyla-

tion at sites characterized by high inter-individual co-variation across tissues from the same

individual is more likely to be influenced by heritable factors. For example, we observed a

striking increase in the heritability of DNAmethylation at the subset of sites at which inter-

individual variation in our prior sample was strongly correlated between whole blood and the

prefrontal cortex (covariation between blood and prefrontal cortex> 0.5, N = 9,212 sites)

compared to those at which variation was less correlated across tissues (median A = 71.1% vs

14.7%, Mann-Whitney P< 2.2x10-16) (Fig 5A). Overall, there was a strong positive correlation

(r = 0.500) between the additive genetic contribution to DNAmethylation and tissue co-varia-

tion (blood vs prefrontal cortex) across variably methylated sites (S13 Fig), confirming that

sites at which DNAmethylation co-varies across tissues are more likely to be influenced by

heritable factors. Similar effects were seen for the other brain regions profiled from the same

individual donors (entorhinal cortex, superior temporal gyrus and cerebellum). An example of

a site where DNAmethylation significantly covaries between whole blood and brain, and is
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strongly influenced by additive genetic effects, is shown in Fig 5B–5H. These results are

important because they suggest that concerns regarding tissue-specific effects on DNAmethyl-

ation are likely to be more relevant for studies of environmentally-induced variation as com-

pared to analyses of genetic influences on DNAmethylation.

Fig 5. DNAmethylation sites at which inter-individual variation is correlated across tissues are characterized by higher levels of heritability. (a) A density plot of
heritability estimates for DNAmethylation at sites split by the extent to which DNAmethylation co-varies between whole blood and the prefrontal cortex using data
from Hannon et al (2015). Heritability is significantly higher in probes where the cross-tissue covariation in DNAmethylation is high (r2> 0.5, red). (b-h) An example
of a probe (cg08449049) at which DNAmethylation is strongly influenced by additive genetic effects and also co-varies between blood and multiple regions of the
human brain. Shown are scatterplots of DNAmethylation values at cg08449049 for (b) MZ (corr = 0.851) and c)DZ (corr = 0.364) twin pairs. Each point represents an
individual twin-pair. (d) A boxplot of the distribution of DNAmethylation levels at cg08449049 in blood and four brain regions (PFC = prefrontal cortex,
EC = entorhinal cortex, STG = superior temporal gyrus, CER = cerebellum) from the same individual donors using data generated by Hannon et al (2015). (e-h)
Scatterplots of the DNAmethylation values in blood against the DNAmethylation values in each of the four brain regions showing that there is significant covariation
across tissues.

https://doi.org/10.1371/journal.pgen.1007544.g005
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Genetic influences on DNAmethylation at sites on the X chromosome are
also highest at sites characterized by intermediate levels of DNAm and high
variability

Because DNAmethylation on the X-chromosome differs markedly between males and

females–primarily due to its role in regulating the dosage compensation of X-linked genes (see

S14 Fig)—the analyses presented above focused solely on autosomal DNAmethylation sites.

We next estimated the proportion of variance in DNAmethylation explained by additive

genetic effects, shared environmental effects and non-shared (or unique) environmental effects

for probes on the X chromosome in male and female twins separately (male: 156 DZ twin

pairs, 219 MZ twin pairs; female: 150 DZ twin pairs, 207 MZ twin pairs) (Table 1). As hypoth-

esized, X-chromosome DNAmethylation was much more variable in females than males; the

majority (N = 9,127, 92.2%) of X-linked DNAmethylation sites met our criteria for being “var-

iable” in females compared to just over half (N = 5,377, 54.3%) in males. Most DNAmethyla-

tion sites classified as “variable” in males were also found to be “variable” in females

(N = 5,195; 96.6%). In males, the contribution of genetic and environmental influences

to DNA methylation at sites on the X-chromosome was similar to that observed at autoso-

mal loci; for males, more variation was attributed to unique environmental influences

(mean = 69.4%, SD = 22.1%) than shared environmental (mean = 15.5%, SD = 18.5%) or

additive genetic (mean = 15.0%, SD = 19.4%) influences (S15 Fig). Furthermore, the influ-

ence of additive genetic factors on male X-chromosome DNA methylation was highest

at sites characterized by either “intermediate levels of DNAm” (S16 Fig) or “variable”

levels of DNA methylation (S17 Fig). Although most variance in X-chromosome DNA

methylation in females could also be attributed to the unique environment (mean E =

55.3%, SD = 21.7%), the average contribution of additive genetic factors (mean A = 31.3%,

SD = 16.5%) was significantly higher compared to that observed at autosomal sites (P <

2.2x10-16) and X-linked sites in males (P < 2.2x10-16) (Table 1). While the influence of

genetic and environmental factors on DNA methylation across sites on the X-chromo-

some was positively correlated between males and females (S18 Fig), with the strongest

correlation seen for unique environmental influences (r = 0.381), there was some notable

heterogeneity. A number of sites, for example, were characterized by sex-specific additive

genetic influences on DNA methylation (S19 Fig and S20 Fig). These results are interest-

ing as they could potentially mediate observed sex differences for certain inherited pheno-

types. This heterogeneity of effects may also have negative effects on power for statistical

significance in EWAS analyses that combine males and female samples to analyze sites

on the X chromosome; to truly disentangle genetic and environmental effects on X-chro-

mosome DNA methylation it is important to analyze the sexes separately. Finally, we

examined the genetic and environmental contribution to variable DNAm across regions

annotated to the small subset of genes known to escape X-chromosome inactivation

(XCI) in females. Using RNA-seq data from the GTEx consortium [31] we selected

DNAm sites annotated to the 5’UTR or within 1500 bp of the transcription start site of

genes highlighted as escaping XCI. As expected, the distribution of DNAm across sites

annotated to genes escaping XCI is dramatically different to other X-chromosome sites in

females, with a striking enrichment of hypomethylated loci. Despite the differences in lev-

els of DNAm associated with genes escaping XCI, the contribution of additive genetic and

environmental influences on DNAm at these sites is broadly comparable to that seen at

sites across the X-chromosome in females (S21 Fig).
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Estimates of chronological age and blood cell proportions derived from
DNAmethylation data are influenced by both genetic and environmental
effects

A number of classifiers can be used to derive estimates of biological phenotypes including age

(DNAmAge) [32] and the proportion (or abundance) of different cell types present in whole

blood [32–34] from DNAmethylation data. These estimates are useful because they can be

incorporated as covariates in EWAS analyses when empirical measures are missing, or used as

interesting variables in their own right in epidemiological analyses [35–37]. We examined the

twin correlations for each of these derived variables (S22 Fig) and estimated the contribution

of additive genetic and environmental influences to these measures by comparing MZ and DZ

twins (S23 Fig). The mean predicted DNAmAge of samples from participants in this study

was 20.7 years (SD = 4.10 years), slightly higher and more variable that the actual age at sam-

pling (mean = 18.4 years; SD = 0.37 years). As DNAmAge is associated with actual chronologi-

cal age, age acceleration is typically calculated as the residual from a linear regression model of

predicted age against reported age. Although the limited age variation in our sample provides

limited power for structural equation modelling, we found that DNAmAge acceleration was

characterized by an additive genetic contribution of 36.7%, with 42.8% and 20.5% of the vari-

ance explained by common environmental and unique environmental influences, respectively.

This heritability estimate is lower than the 100% reported previously for age acceleration in a

smaller set of newborns but comparable to the 39% reported for adult twin pairs (45–75 years

old) [32]. The contribution of additive genetic and environmental influences differed dramati-

cally across the predicted cellular heterogeneity variables, with heritability estimates ranging

from 0% (for CD8 T cells and granulocytes) to 47.0% (for CD8+CD28-CD45RA- T cells) (S3

Table). For seven of the ten derived cell estimates, the largest proportion of variance was

attributed to the influence of unique environmental factors. B cells had the largest proportion

of variance estimated as being explained by common environmental factors (52.1%), and

naïve CD8 T cells and natural killer cells had the largest proportion explained by genetic fac-

tors (at 42.1% and 40.0%, respectively). Comparison between these results and those for empir-

ically-measured cell abundance data is not straightforward as in many cases the estimated

cellular composition represents a proportion rather than abundance. Although, there is con-

tradictory evidence in the literature about whether variation in specific blood cell types is more

influenced by genetic or environmental factors[38–41], our results are consistent with reports

that T cells have higher heritability estimates than B cells [38, 41].

DNAmethylation at sites robustly associated with exposure to tobacco
smoking and body mass index (BMI) is strongly influenced by additive
genetic effects

Several environmental exposures have been robustly associated with differences in DNAmeth-

ylation at specific sites across the genome, although the extent to which these relationships are

potentially confounded by genetic influences is not known. We first examined whether varia-

tion in DNAmethylation at sites associated with tobacco smoking—an exposure known to be

characterized by robust and reproducible effects on DNAmethylation [6, 7, 42, 43]–is also

influenced by additive genetic factors. Using the extended E-Risk dataset including singletons

(i.e. individuals whose co-twin did not contribute to our DNAmethylation dataset), we per-

formed an EWAS of tobacco smoking, identifying 97 differentially methylated positions

(DMPs) (P< 1x10-7) (S4 Table) that are highly consistent with findings from previous studies

of smoking in adults [44] (S24 Fig). We next examined the extent to which DNAmethylation

at these sites was influenced by genetic and environmental factors. We identified a strong
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genetic component to levels of DNAmethylation at smoking-associated DMPs; overall there

were significantly higher contributions of additive genetic influences (mean A = 37.7% (SD =

22.2%); Mann-Whitney P = 3.20x10-12) as well as shared environmental influences (mean C =

23.5% (SD = 16.0%); Mann-Whitney P = 0.00419) across smoking-associated DMPs compared

to all “variable” DNAmethylation sites, with a significantly smaller contribution of unique envi-

ronmental influences (mean E = 38.9% (SD = 17.4%); Mann-Whitney P = 5.47x10-16) (Fig 6).

We next attempted to control for the fact that smoking behavior (and therefore the “exposure”

itself) is a heritable trait [45, 46]; by only considering 18-year-old twin pairs where both members

have never smoked it can be assumed that the influence of tobacco exposure on DNAmethyla-

tion is negligible and any observed heritability at these sites cannot result from smoking. For 95

of 97 smoking-associated DMPs, the correlation of DNAmethylation in MZ concordant non-

smokers (N = 315 twin-pairs) was greater than in DZ concordant non-smokers (N = 187 twin

pairs) (Fig 6), representing a significant enrichment (P = 6.00x10-26). S25 Fig highlights two

DMPs at which DNAmethylation was strongly associated with smoking status (cg05575921:

P = 1.73x10-80; cg26703534: P = 1.39x10-90) but also was notably more correlated in MZ twin

pairs (cg05575921: r = 0.845; cg26703534 r = 0.658) than DZ twin pairs (cg05575921: r = 0.579;

Fig 6. DNAmethylation at sites associated with tobacco smoking is strongly influenced by additive genetic factors. Shown is a series of density plots for estimates of
(a) additive genetic effects (A), (b) shared environmental effects (C) and (c) non-shared environmental effects (E) at 97 differentially methylated positions (DMPs)
associated with smoking (green). Also shown are density plots for A, C and E at ‘background’ sites not associated with smoking (red). Shown below is a series of
scatterplots showing the correlation in DNAmethylation betweenMZ twins (x-axis) against DZ twins (y-axis) for sites associated with smoking in (d) all twins, (e)
concordant non-smokers (n = 503 twin-pairs), (f) twins discordant for smoking status (n = 123 twin-pairs) and (g) concordant smokers (n = 106 twin-pairs). The
shaded area on each plot indicates the heritability estimate (using Falconer’s formula) for each site.

https://doi.org/10.1371/journal.pgen.1007544.g006
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cg26703534: r = 0.444). These data are important because they provide evidence that smoking

effects are not necessarily independent of smokers’ genetic background, and that it is important

to control for genetic background when testing for effects of tobacco on health. We also explored

the genetic and environmental contributions to variation in DNAmethylation at DMPs robustly

associated with BMI[47], again observing that these had significantly higher additive genetic

influences (mean A = 31.4% (SD = 19.4%); Mann-Whitney P = 1.83x10-11) and shared environ-

mental influences (mean C = 23.4% (SD = 15.4%)); Mann-Whitney P = 2.16x10-13) compared to

all “variable” DNAmethylation sites (S26 Fig; S5 Table). These data highlight how DNAmethyl-

ation at sites robustly associated with extrinsic factors can also be under strong genetic control,

highlighting the need to control for genetic background in future EWAS analyses of exposure-

associated DNAmethylation differences.

Discussion

We quantified genome-wide patterns of DNAmethylation in whole blood in 18-year-old

young adults using samples collected from a large representative birth cohort of MZ and

same-sex DZ twin pairs. We show that site-specific levels of DNA methylation are more

strongly correlated between MZ twins than DZ twins, especially at sites with variable and

intermediate levels of DNAmethylation. Using structural equation models, we calculated the

proportion of variance in DNAmethylation explained by additive genetic effects, shared envi-

ronmental effects and unshared (or unique) environmental effects, finding that, on average,

the largest contribution to variation in DNAmethylation can be attributed to unique environ-

mental influences. Although the average contribution of additive genetic influences on DNA

methylation was found to be relatively lower, it is variable and notably elevated at DNAm sites

that are highly variable and have intermediate levels of DNAm. Interestingly, sites at which

variable DNAmethylation is strongly influenced by additive genetic factors are significantly

enriched for blood mQTL effects, and also for sites at which inter-individual variation is corre-

lated across tissues. Finally, we show that DNAmethylation at sites robustly associated with

exposures such as tobacco smoking and BMI is, in fact, also influenced by additive genetic

effects, implying that environmental epigenetics research should routinely control for genetic

background in future analyses. Estimates of the contribution of genetic and environmental

influences to DNAmethylation at all sites profiled in this study are available as a resource for

the research community (http://www.epigenomicslab.com/online-data-resources).

Unlike previous studies that have used twins to explore the genetic and environmental

architecture of DNA methylation [19, 21, 23], we focused solely on same-sex twins who were

all the same chronological age, enabling us to negate the effects of age and DZ twin sex-discor-

dance on variable DNAmethylation. Despite these strengths, however, our study has a number

of important limitations that should be considered. First, because our analyses focused solely

on a cross-section of young adults we cannot say anything about how genetic and environ-

mental influences on DNAmethylation change over time. Of note, our average estimate of

additive genetic influences on DNAmethylation is slightly below that observed in previous

studies of older and more variably-aged twin-pairs [19, 23]. Second, our study cohort com-

prised individuals of European descent, like most other studies into the causes of variable

DNAmethylation. We know, however, that there are important racial and socioeconomic

inequalities in pathogenic exposures and it is crucial that future work explores the contribution

of genetic and environmental contributions to epigenetic variation in non-Caucasian popula-

tions. Third, although the Illumina 450K array quantifies DNAmethylation at sites annotated

to the majority of genes, the actual proportion of sites across the genome interrogated by this

technology is relatively low, with a predominant focus on CpG-rich promoter regions. It will
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be important for future studies to explore factors influencing levels of DNAmethylation across

regions not well-covered by the Illumina 450K array, especially given our finding that genetic

and environmental influences on DNAmethylation are not evenly distributed across genic

regions. Of note, most of the content (> 90%) of the Illumina 450K array is present on the new

Illumina EPIC array [48] and the results presented here are therefore applicable to future stud-

ies using this technology. Fourth, our study only assessed a single tissue–whole blood–which

itself is comprised of a heterogeneous mix of different cell-types. Although blood cell-type pro-

portions can be accurately derived from whole blood DNAmethylation data, it is likely that

the contribution of genetic and environmental factors to methylomic variation differs across

different cell-types. Future work should extend these analyses to quantify DNAmethylation in

purified blood cell-types and cell isolated from other tissues fromMZ and DZ twins to explore

the extent to which our findings are generalizable across tissues and cell-types. Of note, DNA

methylation sites at which inter-individual variation is correlated across tissues were character-

ized by higher heritability, suggesting that genetic effects on DNAmethylation may be rela-

tively conserved across tissues and cell types.

Although the largest contributor to inter-individual variation in DNAmethylation across all

tested sites was found to be non-shared environmental factors, which also captures measure-

ment error, our findings highlight the importance of genetic influences on DNAmethylation.

Genetic influences appear to be especially important in mediating levels of DNAmethylation at

highly variable DNAmethylation sites and those that are characterized by high levels of covaria-

tion across tissues suggesting that concerns relating to tissue-specific effects may be less relevant

for genetic studies of DNAmethylation. As expected, sites at which variable DNAmethylation

is strongly influenced by additive genetic factors are significantly enriched for known mQTL

effects. Our results could be potentially used to improve the power of mQTL studies by provid-

ing a refined list of ‘heritable’ DNAmethylation sites, thereby reducing the multiple testing bur-

den and sample sizes needed to identify significant mQTL associations. The mean estimate of

shared environmental effects on DNAm across the genome was higher than previously reported

[21] and comparable to the magnitude of influence of additive genetic factors. Given the young

and comparable ages of the participants in the E-Risk cohort (all ~ 18 years old) it is plausible

that a higher proportion of environmental influences are shared between the twins compared to

the variably-aged and older twin pairs profiled in other studies.

To conclude, we have characterized the genetic and environmental architecture of methylo-

mic variation in a large sample of young adult MZ and DZ twins. We show that both heritable

and non-genetic factors influence DNAmethylation in a site-specific manner, with the contribu-

tion of genetic variation being highest at the most variable DNAmethylation sites. Social-science

and health researchers in search of evidence for environmental effects on the genome should not

assume that “epigenetic” equates to “environmental”. Importantly, DNAmethylation at sites

robustly associated with extrinsic factors such as smoking and BMI can also be under strong

genetic control. Our online database provides estimates of the extent to which variable DNA

methylation across all sites profiled in this study are under genetic influence. Although this

resource is limited by some of the features of this study–i.e. it focuses on individuals of European

descent, a single age-group, and sites on the Illumina 450K array–it provides a useful framework

for interpreting the results of epigenetic epidemiological studies undertaken in whole blood.

Materials andmethods

Ethics statement

The study was approved by the NRES Committee London—Camberwell St Giles Ethics Com-

mittee, and The Joint South London and Maudsley and the Institute of Psychiatry Research
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Ethics Committee approved each phase of the E-Risk study (reference number: 1997/122).

Parents gave written informed consent and twins gave oral assent between 5–12 years and

then written informed consent at age 18.

Samples

Participants were members of the Environmental Risk (E-Risk) Longitudinal Twin Study,

which tracks the development of a 1994–95 birth cohort of 2,232 British children[22]. Briefly,

the E-Risk sample was constructed in 1999–2000, when 1,116 families (93% of those eligible)

with same-sex 5-year-old twins participated in home-visit assessments. This sample comprised

56% monozygotic (MZ) and 44% dizygotic (DZ) twin pairs; sex was evenly distributed within

zygosity (49% male). The study sample represents the full range of socioeconomic conditions

in Great Britain, as reflected in the families’ distribution on a neighborhood-level socioeco-

nomic index (ACORN [A Classification of Residential Neighbourhoods], developed by CACI

Inc. for commercial use)[49]: 25.6% of E-Risk families live in “wealthy achiever” neighbor-

hoods compared to 25.3% nationwide; 5.3% vs. 11.6% live in “urban prosperity” neighbor-

hoods; 29.6% vs. 26.9% in “comfortably off” neighborhoods; 13.4% vs. 13.9% in “moderate

means” neighborhoods; and 26.1% vs. 20.7% in “hard-pressed” neighborhoods. E-Risk under-

represents “urban prosperity” neighborhoods because such households are often childless.

Home visits were conducted when participants were aged 5, 7, 10, 12 and most recently, 18

years (93% participation). Our epigenetic study used DNA from a single tissue: whole blood.

At age 18, whole blood was collected in 10mL K2EDTA tubes from 1,700 participants and

DNA extracted from the buffy coat. (Study members who did not provide blood provided buc-

cal swabs, but these were not included in our methylation analysis to avoid tissue-source con-

founds). There were no differences between participants who did versus did not participate

and who did versus did not provide blood in terms of their socioeconomic background, IQ,

mental health, or victimization experiences [50].

Genome-wide quantification of DNAmethylation

We assayed 1669 blood samples (out of 1700); 31 samples were not useable (e.g., due to low

DNA concentration). ~500ng of DNA from each sample (diluted to a standard concentration

of 25ng/μL) was treated with sodium bisulfite using the EZ-96 DNAMethylation kit (Zymo

Research, CA, USA). DNAmethylation was quantified using the Illumina Infinium Human-

Methylation450 BeadChip (“Illumina 450K array”) run on an Illumina iScan System (Illumina,

CA, USA). Twin pairs were randomly assigned to bisulfite-conversion plates and Illumina

450K arrays, with siblings processed in adjacent positions to minimize batch effects. Data were

imported using the methylumIDAT function in methylumi[51] and subjected to quality con-

trol analyses, checking for sex mismatches, genotype data that did not concur with those typed

on Illumina OmniExpress24v1.2 arrays, and excluding low intensity samples (details in [50]).

In total, samples from 1658 participants passed our QC pipeline. Data were processed with the

pfilter function from the wateRmelon package[52] excluding 0 samples with>1% of sites with

a detection p value>0.05, 567 sites with beadcount<3 in 5% of samples and 1448 probes with

>1% of samples with detection p value>0.05. The data were normalized with the dasen func-

tion from the wateRmelon package[52]. This article reports about 732 complete twin pairs

(426 MZ and 306 same-sex DZ). Prior to any analyses, probes with common (>5%MAF) SNPs

within 10 bp of the single base extension and probes with sequences previously identified as

potentially hybridizing to multiple genomic loci were excluded[53, 54], resulting in a final data-

set of 430,802 probes. Zygosity of twin pairs in the E-Risk cohort was confirmed in two ways.

First, signal intensities at the 65 SNP probes on the Illumina 450K array were used to confirm
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that MZ twins were genetically identical. Second, SNP array genotype data for these samples

was used to confirm that MZ twins shared 100% of their genetic variation (PI_HAT = 1) and

DZ twins shared ~ 50% of their genetic variation (PI_HAT ~ 0.5). The results from these two

stages were then cross-validated for final confirmation.

Structural equation modelling to estimate the contribution heritable and
environmental influences on DNAmethylation

Biometrical modelling was applied to every probe passing QC on the Illumina 450K array. Spe-

cifically, an ACE model was fitted to calculate the proportion of variance in DNAmethylation

explained by additive genetic (A), shared environmental (C) and unshared or unique environ-

mental (E) factors, the latter which also includes measurement error. The assumptions behind

this model are that additive genetic factors are perfectly correlated between MZ twins (i.e.

genetic correlation = 1) but are only 50% correlated between DZ twins (i.e. genetic correla-

tion = 0.5) and that shared non-heritable influences are equally similar between MZ and DZ

twin pairs. The model was fitted using structural equation modelling implemented with func-

tions from the OpenMx R package [55, 56]. For DNAmethylation sites located on the auto-

somes this model was fitted using all twin pairs; for sites located on the X chromosome, the

analysis was performed separately for males and females. Given the sparse coverage on the Y

chromosome, Y-linked sites were dropped from analysis. The same model was used to calcu-

late A,C and E estimates for the predicted age and cell composition variables generated with

the Epigenetic Clock software[32].

Probe annotation of sites in the 450K array

The location of DNAmethylation sites within genic features (5’UTR, 3’UTR, 1st Exon, gene

body, within 200 or 1500bp of the transcription start site [TSS] and CpG island categories [CpG

Island, shelf, shore]) were taken from the annotation files provided by Illumina (ftp://ussd-ftp.

illumina.com/downloads/ProductFiles/HumanMethylation450/HumanMethylation450_

15017482_v1-2.csv).

DNAmethylation quantitative trait loci

DNAmethylation quantitative trait loci (mQTL) were taken from a previously published

study based on whole blood profiles from 639 adult samples [29]. After testing all DNAmeth-

ylation sites against all genetic variants, 8,960,441 mQTL were identified using a p value

threshold of 1x10-10. From this set of mQTL, 98,239/389,246 (25.2%) of DNA methylation

sites overlapping with the heritability analysis had an mQTL.

DNAmethylation sites associated with tobacco smoking

To identify DNAmethylation sites associated with tobacco smoking, a linear regression model

was fitted across the extended E-Risk sample including singletons (n = 1,658). Current smok-

ers (N = 392) were compared against former (N = 42) and never smokers (N = 1,223) whilst

controlling for sex, batch, and 7 estimated variables relating to cellular heterogeneity generated

with either the Houseman algorithm [33, 34] or Horvath Epigenetic clock [32]. To control for

the fact that many members of the sample are related robust standard errors were calculated

with the R packages plm [57] and sandwich [58] and used to generate p-values. 97 DNAmeth-

ylation sites were associated with current smoking status at an experiment-wide p-value

threshold of 1x10-7. It should be noted that the exact number of genome-wide significant asso-

ciations for tobacco smoking differs slightly from that reported in [50] due to differences in
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methods used to account for related samples and due to filtering DNAmethylation sites based

on their variability.

DNAmethylation sites associated with BMI

DNAmethylation sites associated with BMI were identified from the supplementary material

published as part of the EWAS performed byWahl et al [47]. Taking their 187 replicated, sen-

tinel associations, 176 of these were present in our set of variable DNAmethylation sites and

therefore were included for comparison with our estimates of heritability.

Supporting information

S1 Table. The extent to which DNAmethylation levels at sites annotated to specific genic

features and CpG island features are enriched for the influence of additive genetic or envi-

ronmental factors.

(PDF)

S2 Table. Sites at which DNAmethylation is strongly influenced by additive genetic effects

are often associated with mQTL variation.

(XLSX)

S3 Table. Estimated contribution of additive genetic and environmental influences to esti-

mated age and blood cell proportion estimates derived from DNAmethylation data.

(PDF)

S4 Table. Estimates of additive genetic and environmental influences on levels of DNA

methylation at the 97 differentially methylated positions (P< 1x10-7) associated with

tobacco smoking.

(PDF)

S5 Table. Estimates of additive genetic and environmental effects on levels of DNAmethyl-

ation at 176 differentially methylated positions associated with BMI.

(PDF)

S1 Fig. Genome-wide patterns of DNAmethylation are highly correlated between siblings,

with significantly higher average similarity in monozygotic (MZ) twin-pairs than dizygotic

(DZ) twin-pairs. Shown are violin plots for the average correlations of DNAmethylation

within each sibling pair (stratified by relatedness) averaged across A) all autosomal DNA

methylation sites (n = 420,857), B) autosomal sites characterized by “variable” DNAmethyla-

tion (n = 214,991), C) autosomal sites characterized by “non-variable” DNAmethylation

(n = 205,866),D) autosomal sites with intermediate levels of DNAmethylation (n = 131,728),

and E) autosomal sites characterized as being either hypo- or hyper-methylated (n = 289,129).

P-values are from a t-test comparing average correlations observed in MZ twins to those

observed in DZ twins. Also shown are comparisons between random pairs of unrelated indi-

viduals selected from the E-Risk cohort.

(PDF)

S2 Fig. There is considerable overlap between the set of autosomal DNAmethylation sites

defined as being ‘variable’ and having intermediate levels of DNAmethylation.

(TIFF)

S3 Fig. The proportion of variance in DNAmethylation explained by additive genetic

effects (A), shared environmental effects (C) and unshared (or unique) environmental

effects (E) across autosomal sites after adjusting for cellular composition. Panels a-c show
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density distributions for estimates of A, C, and E across all 420,857 autosomal DNAmethyla-

tion sites. At the majority of autosomal sites, environmental factors contribute more to the

observed variance in DNAmethylation than additive genetic factors. We observe significantly

higher average heritability estimates for DNAmethylation across the subset of DNAmethyla-

tion sites defined as “variable” (d-f) (mean A = 29.3% (SD = 25.0%); MannWhitney

P< 2.2x10-16) and (g-i) sites with intermediate levels of DNAmethylation (mean A = 24.3%

(SD = 24.2%); MannWhitney P< 2.2x10-16).

(PDF)

S4 Fig. The contribution of genetic and environmental influences on DNAmethylation is

not strongly influenced by blood cell heterogeneity. Scatterplots of additive genetic effects

(A), shared environmental effects (C) and non-shared (or unique) environmental effects (E)

for all autosomal DNAmethylation sites (n = 420,857), comparing DNAmethylation data

unadjusted for cellular composition (x-axis) and DNAmethylation data adjusted for cellular

composition variables (y-axis). Each point represents a DNA methylation site and the colour

of the point indicates the density of points at that location (gray–low to yellow–high).

(PDF)

S5 Fig. The contribution of genetic and environmental influences on DNAmethylation at

autosomal sites differs as a function of the variability in DNAmethylation level. Shown are

estimates of additive genetic effects (A), shared environmental effects (C) and non-shared (or

unique) environmental effects (E) plotted as a function of the variability in DNAmethylation

measured by A) the standard deviation (SD) and B) the range of the middle 80% of the distri-

bution of DNAmethylation levels. In panel B, the dashed vertical line indicates the cut-off

(5%) used to define DNAmethylation sites as being “variable” in this study.

(PDF)

S6 Fig. The contribution of genetic and environmental influences on DNAmethylation at

autosomal sites are not evenly distributed across genic regions. Shown is a line graph

depicting the extent to which variation in DNAmethylation is influenced by genetic and envi-

ronmental factors across a canonical gene region. Genetic influences on DNAmethylation are

highest immediately upstream of the transcription start-site (TSS), and in the region spanning

5 kilobases downstream of the gene coding sequence (red line, panel A). Sites located around

the TSS are enriched for shared environmental effects (blue line, panel A) and show reduced

non-shared environmental effects (green line, panel B).

(PDF)

S7 Fig. The contribution of genetic and environmental influences on DNAmethylation at

autosomal sites annotated to specific genic features. Shown is a density plot of estimates of

A) additive genetic, B) shared environmental, and C) non-shared environmental influences

on DNAmethylation at autosomal sites stratified by gene feature annotation.

(PDF)

S8 Fig. The contribution of genetic and environmental influences on DNAmethylation at

autosomal sites annotated to specific CpG island features. Shown is a density plot of esti-

mates of A) additive genetic, B) shared environmental, and C) non-shared environmental

influences on DNAmethylation at sites stratified by CpG island feature annotation.

(PDF)

S9 Fig. The influence of genetic and environmental factors on DNAm varies across regula-

tory features and chromatin states. Violin plots showing the proportion of variance

explained by additive genetic factors (A; red), common environmental factors (C; green), and
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unique environmental factors (E; blue) where DNAmethylation sites are stratified by their

location in regulatory annotation states as defined by ChromHMM [59] using ENCODE

experimental data from the GM12878 cell line.

(PDF)

S10 Fig. Sites with intermediate levels of DNAm are associated with larger DNAmethyla-

tion trait quantitative trait loci (mQTL) effects. Line graph of the moving mean mQTL effect

on DNAmethylation (measured as the % DNAmethylation change per allele; y-axis) as a

function of mean DNAmethylation (%; x-axis). The gray area indicates the 95% interquantile

range for the moving average.

(PDF)

S11 Fig. Example of a site at which DNAmethylation is highly heritable (A = 96.9%) and

associated with genotype at a DNAmethylation trait quantitative trait loci (mQTL). Panel

A) shows a boxplot of the association between DNAmethylation at cg02573566 and genotype

at rs11548104 (P = 5.95x10-179). Panel B) shows the correlation in DNAmethylation at

cg02573566 between MZ twins (r = 0.916) and panel C) shows the correlation in DNAmethyl-

ation at cg02573566 between DZ twins (r = 0.487).

(PDF)

S12 Fig. Sites at which DNAmethylation is more strongly influenced by genetic factors are

more likely to be associated with genotype at a mQTL. Shown is a line graph of the percent-

age of DNAmethylation sites significantly associated with an mQTL variant in our whole

blood dataset[29] (y-axis) as a function of increasing cut-offs for estimates of additive genetic

(black line), shared environmental (red line) and non-shared environmental (blue line) effects

on DNAmethylation (x-axis).

(PDF)

S13 Fig. There is a strong correlation between the extent to which inter-individual varia-

tion in DNAmethylation co-varies across tissues with the influence of additive genetic var-

iation on DNAmethylation. Scatterplot of the amount of variance in DNAmethylation

explained by additive genetic effects (y-axis) against the level of blood-brain covariation in

DNAmethylation (x-axis) using data from Hannon et al[30] for all sites on the Illumina 450K

array. Shown is data for covariation between whole blood and A) prefrontal cortex, B) entorhi-

nal cortex C) superior temporal gyrus andD) cerebellum. Color indicates the density of points

ranging from yellow (high) to gray (low). PFC = prefrontal cortex, EC = entorhinal cortex,

STG = superior temporal gyrus, CER = cerebellum.

(PDF)

S14 Fig. Distribution of DNAmethylation levels across sites on the X chromosome. A)

Shown is a density plot of DNAmethylation across sites on the X chromosome stratified by

sex. B) Shown is a scatterplot comparing mean DNAmethylation at sites across the X-chromo-

some in females (x-axis) and males (y-axis).

(PDF)

S15 Fig. Sex differences for the proportion of variance in DNAmethylation explained by

additive genetic and environmental influences for sites on the X chromosome. Shown are

density plots of estimates of additive genetic effects (A), shared environmental effects (C) and

non-shared (or unique) environmental effects (E) stratified by sex (red = females,

green = males).

(PDF)
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S16 Fig. The contribution of genetic and environmental influences on DNAmethylation at

sites on the X-chromosome differs as a function of mean DNAmethylation with notable

differences between males and females. Shown for A)males and B) females are estimates of

additive genetic effects (A), shared environmental effects (C) and non-shared (or unique) envi-

ronmental effects (E) plotted as a function of average DNAmethylation level.

(PDF)

S17 Fig. The contribution of genetic and environmental influences on DNAmethylation at

sites on the X-chromosome differs as a function of the variability in DNAmethylation

level, with notable differences between males and females. Shown are estimates of additive

genetic effects (A), shared environmental effects (C) and unshared (or unique) environmental

effects (E) against probe variability. Panels A and B show how genetic and environmental

influences differ as a function of the standard deviation (SD) in DNAmethylation in males

and females, respectively. Panels C andD show how genetic and environmental influences dif-

fer as a function of the middle 80% of the distribution of DNAmethylation levels in males and

females, respectively. The dashed vertical line indicates the cut-off of 5% used to define probes

as being “variable”.

(PDF)

S18 Fig. The contribution of genetic and environmental influences on DNAmethylation at

sites on the X-chromosome is modestly correlated between males and females. Shown are

scatterplots of the A) additive genetic, B) shared environmental, and C) non-shared environ-

mental contribution to DNAmethylation for sites on the X chromosome in female (x-axis)

and male (y-axis) twin pairs.

(PDF)

S19 Fig. An example of a site (cg00195237) on the X chromosome at which DNAmethyla-

tion is strongly influenced by additive genetic factors in females (A = 56.8%) but not males

(A = 6.70%). The scatterplots show DNAmethylation values in A) female MZ, B) female DZ,

D) male MZ, and E) male DZ twin pairs. Each point represents an individual twin-pair. At this

site, the twin correlation of DNAmethylation is notably higher in female MZ twins (r = 0.569)

compared to female DZ twins (r = 0.15), whereas the correlations for male MZ twins

(r = 0.0686) and male DZ twins (r = 0.0289) are similar. Results from structural equation

modelling are presented as stacked bar-plots for C) female and F) male twin-pairs respectively,

highlighting higher genetic effects on DNAmethylation at this site in females than males.

(PDF)

S20 Fig. An example of a site (cg19782749) on the X chromosome at which DNAmethyla-

tion is strongly influenced by additive genetic factors in males (A = 58.9%) but not females

(A = 3.76%). The scatterplots show DNAmethylation values in A) female MZ, B) female DZ,

D) male MZ, and E) male DZ twin pairs. Each point represents an individual twin-pair. At this

site, the correlation of DNAmethylation is notably higher in male MZ twins (r = 0.777) com-

pared to female DZ twins (r = 0.536), whereas the correlations for male MZ twins (r = 0.405)

and male DZ twins (r = 0.378) are similar. Results from structural equation modelling are pre-

sented as stacked bar-plots for C) female and F) male twin-pairs respectively, highlighting

higher heritability in females than males.

(TIF)

S21 Fig. The proportion of variance in DNAmethylation explained by additive genetic and

environmental influences for sites on the X chromosome. Shown are density plots of esti-

mates of additive genetic effects (A), shared environmental effects (C) and non-shared (or
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unique) environmental effects (E) stratified by sex and within females stratified by sites located

in the transcription start site or 5’UTR of genes that escape XCI (red = females, blue = females

sites that escape X chromosome inactivation, green = males).

(PDF)

S22 Fig. Twin-pair correlations for estimates of DNAmethylation age and blood cell com-

position derived from DNAmethylation data. Shown are co-twin correlations for A)DNA

methylation age, B) estimated plasma blast abundance, C) estimated CD8+CD28-CD45RA-

T cell abundance,D) estimated naïve CD8 T cell abundance, E) estimated naive CD4 T cell

abundance (all derived using the online Epigenetic Clock software[32]), F) estimated CD8 T

cell proportion, G) estimated CD4 T cell proportion,H) estimated natural killer cell propor-

tion, I) estimated B cell proportion, J) estimated monocyte proportion, and K) estimated gran-

ulocyte proportion (all derived using the Houseman algorithm[33, 34]). Panels on the left

show correlations for monozygotic (MZ) twin pairs and panels on the right show correlations

for dizygotic (DZ) twin pairs.

(PDF)

S23 Fig. The contribution of additive genetic and environmental influences to age and

blood cell-count estimates derived from the DNAmethylation data. AAR = age acceleration

residual derived from the DNAmethylation age clock.

(PDF)

S24 Fig. Effect sizes at DNAmethylation sites associated with tobacco smoking in the E-

risk cohort overlap with those previously identified in adult cohorts. A) The mean differ-

ence between current smokers and never smokers from the E-risk cohort (x-axis) against a

similar study in adults taken from Joehanes et al[44] (y-axis). B) Shown is the correlation of

the signed log10 P-values from a comparison between current smokers and never smokers

from the E-risk cohort (x-axis) against a similar study in adults taken from Joehanes et al[44]

(y-axis).

(PDF)

S25 Fig. Examples of DNAmethylation sites associated with smoking that are influenced

by both additive genetic and environmental factors. Scatterplot of DNAmethylation values

at cg05575921 for A) monozygotic (MZ) twin pairs and B) dizygotic (DZ) twin pairs, and

cg26703534 for C) MZ twin pairs andD)DZ twin pairs. Colors depict the concordance for

current smoking status in each twin-pair.

(TIF)

S26 Fig. DNAmethylation at sites associated with body mass index (BMI) is influenced by

additive genetic factors. Density plots for estimates of A) additive genetic effects (A), B)

shared environmental effects (C), and C) non-shared environmental effects (E) at 176 differen-

tially methylated positions (DMPs) recently associated with BMI (green)[47].

(PDF)
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