
Characterizing Geospatial Dynamics of Application

Usage in a 3G Cellular Data Network

M. Zubair Shafiq†, Lusheng Ji‡, Alex X. Liu†, Jeffrey Pang‡, Jia Wang‡

†Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, U.S.A.
‡AT&T Labs – Research, Florham Park, NJ, U.S.A.

Emails:{shafiqmu,alexliu}@cse.msu.edu, {lji,jeffpang,jiawang}@research.att.com

Abstract—Recent studies on cellular network measurement
have provided the evidence that significant geospatial correla-
tions, in terms of traffic volume and application access, exist
in cellular network usage. Such geospatial correlation patterns
provide local optimization opportunities to cellular network
operators for handling the explosive growth in the traffic volume
observed in recent years. To the best of our knowledge, in
this paper, we provide the first fine-grained characterization of
the geospatial dynamics of application usage in a 3G cellular
data network. Our analysis is based on two simultaneously
collected traces from the radio access network (containing lo-
cation records) and the core network (containing traffic records)
of a tier-1 cellular network in the United States. To better
understand the application usage in our data, we first cluster cell
locations based on their application distributions and then study
the geospatial dynamics of application usage across different
geographical regions. The results of our measurement study
present cellular network operators with fine-grained insights that
can be leveraged to tune network parameter settings.

I. INTRODUCTION

A. Background and Problem Statement

Cellular network operators have globally observed an ex-

plosive increase in the volume of data traffic in recent years.

Cisco has reported that the volume of global cellular data

traffic has tripled (year-over-year) for three years in a row,

reaching up to 237 petabytes per month in 2010 [1]. This

unprecedented increase in the volume of cellular data traffic

is attributed to the increase in the subscriber base, improv-

ing network connection speeds, and improving hardware and

software capabilities of modern smartphones. In contrast to

the traditional wired networks, cellular network operators are

faced with the constraint of limited radio frequency spectrum

at their disposal. As the communication technologies evolve

beyond 3G to long term evolution (LTE), the competition for

the limited radio frequency spectrum is becoming even more

intense. Therefore, cellular network operators are increasingly

focusing on optimizing different aspects of the network by cus-

tomized design and management to improve key performance

indicators (KPIs).

Two important aspects of a cellular network that present

significant optimization potential to the network operators are:

(1) diverse application mix constituting the data traffic and

(2) variations in the traffic depending upon the geo-location

of users. It has been shown that the performance of different

applications constituting the data traffic in cellular networks

is sensitive to various network KPIs [8], [13]. Tso et al. also

showed that the network performance perceived by users is

strongly related to their geolocation and mobility patterns [19].

Combining the above-mentioned two aspects, cellular network

operators can potentially find even better opportunities for

network optimization. However, to the best of our knowledge,

no prior work has jointly studied the relationship between

application usage and users’ geospatial movement patterns.

B. Limitations of Prior Art

Trestian et al. conducted a study that provided the first

evidence of geographic correlation of users’ “interests” in a

cellular network [18]. They showed that users in different

geographical regions have different interests; for example,

people mostly access mail URLs from office locations and

access more music URLs from residential locations. However,

cellular network operators not only need to know that there

is geographic correlation of interests, but also how those

interests translate into different types of application traffic.

This is because it is the type of traffic (bursty, bulk transfers,

streaming, etc.) that determines how an operator can best

optimize each geographic area. Furthermore, cellular network

operators would like to be able to map the above-mentioned

coarse-grained geographic correlation to a more fine-grained

cell sector correlation, as this is typically the smallest unit

that operators can configure. Paul et al. separately studied

application usage and geospatial patterns of aggregate traffic

volume; however, they did not study correlation between them

[13]. Other prior studies that either study application usage or

geospatial patterns (but not both simultaneously) include but

are not limited to [5], [8], [12], [16], [19], [21]. Further details

of prior art are provided in Section V.

C. Major Contributions

To the best of our knowledge, this paper presents the first

fine-grained characterization of the geospatial dynamics of

application usage in a 3G cellular data network. We summarize

the key contributions our research as follows:

1) Data Collection: For our study, we collected two traces

from the cellular network: (1) periodically collected cell

sector records of devices from the radio network and

(2) data traffic records of IP flows passing through the

core network. Due to the massive size of the collected

traces, our data set is limited to 32 hours worth of data



in December 2010 covering a large metropolitan area

spanning more than 1, 200 km2 in the United States.

2) Methodology: We study application usage characteris-

tics of users across more than two thousand 3G cell loca-

tions. For systematic analysis of application usage across

these cell locations, we first cluster cells based on their

application distribution. The results of our clustering

experiments show that cells can be robustly categorized

into a small number of clusters using traffic volume

in terms of byte, packet, flow, and unique user count

distributions. Using the clustering results, we analyze

the geospatial patterns of application usage across dif-

ferent geographical regions, e.g. downtown, university,

and suburban areas. To extract geospatial dependence

patterns, we utilize basic cluster composition analysis

and intensity function analysis in this paper.

3) Findings and Implications: The results of our geospa-

tial analysis experiments reveal new insights that have

important implications for network optimization. A ma-

jor finding of our measurement study is that cell cluster-

ing results are significantly different for traffic volume

in terms of byte, packet, flow count, and unique user

count distributions across different geographical regions.

These results present operators with an opportunity

to fine-tune network parameter settings for different

applications. However, they also suggest that operators

should not optimize cells solely by traffic volume in

terms of byte, packet, or flow counts because this may

negatively impact the performance of other low volume–

but popular–applications. Furthermore, we find that there

is differentiation between the application mix of dif-

ferent cells even within a close neighborhood such as

a university, downtown, or suburb. Consequently, there

are opportunities for fine-grained network optimization

within close neighborhoods.

Paper Organization: The rest of the paper proceeds as

follows. We describe the details of our collected data set

in Section II. In Section III, we provide the results of our

measurement analysis for characterizing geospatial dynamics

of application usage in cellular networks. We summarize the

major findings of our study in Section IV and also provide their

implications on cellular network optimization. We provide

an overview of the related work in Section V. Finally, we

conclude the paper in Section VI with an outlook to our future

work.

II. BACKGROUND AND DATA SETS

In this section, we first provide a brief overview of 3G Uni-

versal Mobile Telecommunications System (UMTS) cellular

data network architecture and then provide information about

the data set used in our study.

A. Network Architecture

Figure 1 shows the architecture of a typical 3G UMTS

cellular data network. A UMTS cellular data network consists

of two separate networks: radio access network and a core
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Fig. 1. Architecture of a typical 3G UMTS cellular data network.

network. The network elements in these networks are logically

connected to each other in a tree topology. The following

list orders the elements from the leaves to the root of the

tree: user equipment (UE), cell sectors, NodeBs, Radio Net-

work Controllers, Serving GPRS Support Nodes (SGSNs), and

Gateway GPRS Support Nodes (GGSNs). A UE, or cellular

device, connects to one or more cell sectors in the radio access

network. Each sector is distinguished by a different antenna on

a NodeB, or physical base station. The data traffic of a cellular

device is passed by the NodeB to a RNC, which manages

radio access network control signalling such as transmission

scheduling and handovers. Each RNC typically sends and

receives traffic to/from several NodeBs that cover hundreds

of cell sectors, each of which in turn serves many users

in its coverage area. The core network consists of SGSNs

facing cellular devices and GGSNs that connect to external

networks. RNCs send data traffic to SGSNs, which then send

it to GGSNs. Finally, GGSNs send data traffic to external

networks, such as the Internet. In order to support mobility

without disrupting a cellular device’s IP network connections,

the IP address of the device is anchored at the GGSN. The

IP address association is formed when the device connects

to the network and establishes a Packet Data Protocol (PDP)

Context which facilitates tunnelling of IP traffic from the

device to the GGSN. These tunnels, implemented using the

GPRS Tunneling Protocol (GTP), carry IP packets between

the cellular devices and their peering GGSNs.

B. Data Sets

In this paper, we use two anonymized data sets from a

tier-1 cellular network carrier for our study. The first data

set contains flow-level information about IP flows carried

in PDP Context tunnels (i.e., all data traffic sent to and

from cellular devices). This data set is collected from all Gn

links between SGSNs and GGSNs in the core network and

covers a 3% random sample of devices. The data contains

the following information for each IP flow per minute: start

and end timestamps, per-flow traffic volume in terms of bytes

and packets, device identifiers, user identifiers, and applica-

tion identifiers. All device and user identifiers (e.g., IMEI,

IMSI) are anonymized to protect privacy without affecting

the usefulness of our analysis. The data sets do not permit

the reversal of the anonymization or re-identification of users.

For proprietary reasons, the results presented in this paper

are normalized. However, normalization does not change the



range of the metrics used in this study. Furthermore, the

missing information due to normalization does not affect the

understanding of our analysis.

Application identifiers include information about applica-

tion protocol (e.g., HTTP, DNS, SIP), class (e.g., streaming

audio, streaming video, web, email), and, in the case of

applications registered in popular “App Stores,” the unique

name of the application. Applications are identified using a

combination of port information, HTTP host and user-agent

information, and other heuristics [4]. Since we encounter tens

of thousands of applications in the data, we only examine the

top 100 by traffic volume. These top applications comprise the

vast majority of all data traffic, so understanding the remainder

is not critical for the purpose of network engineering [23]. Fur-

thermore, we categorize the top applications into the following

19 application realms, in no particular order, by function

and traffic type (streaming, interactive, etc.): (1) ads, (2)

mixed HTTP streaming, (3) app store, (4) media

optimization, (5) dating, (6) email, (7) games, (8)

news info image media, (9) maps, (10) misc, (11)

mms, (12) music audio, (13) p2p, (14) radio audio,

(15) social network, (16) streaming video, (17)

voip, (18) vpn, (19) web browsing/other http. Note

that the application realms are non-overlapping.

Although this data set also contains the cell locations

associated with each PDP context, these locations are often

inaccurate because they are typically only recorded when PDP

contexts are established and may not be updated for hours or

days even when users are mobile [22]. Therefore, we cannot

study fine-grained geospatial dynamics of application usage

using the location information collected only from the core

network. To get accurate location information, we collect a

second data set at RNCs in the radio access network. The

second data set contains fine-grained logs of signaling events

at the RNCs, which include handover events. By joining the

PDP sessions in the first data set with complete handover

information in the second data set, we get accurate cell

locations at a 2 second granularity for IP flows in the first data

set.1 It is important to note that the second data set cannot be

continuously collected over long durations of time because its

collection can introduce non-trivial additional overheads at the

RNCs.

For this study, we simultaneously collected both data sets

over a weekday period of 32 hours in December 2010. The

data sets cover a large metropolitan area spanning more than

1, 200 km2 in the United States. The data sets cover more

than two thousand 3G cells, but do not cover any 2.5G cells.

It accounts for hundreds of gigabytes of IP traffic, consisting

of hundreds of millions of packets and tens of millions of

flows, and covers tens of thousands of devices. Although

we cannot study long-term application usage patterns due to

the significant overheads of collecting the second data set

over longer timescales, we believe our results still provide

1In practice, a device may be connected to multiple cell sectors at the same
time. For the purposes of our study, we use the primary or serving cell, which
is the sector that actually transmits downlink data to HSPA devices.
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Fig. 2. Application mix of aggregate traffic for byte, packet, flow, and user
distributions. The mapping of application indices is provided in Section II-B.

generalizable insights due to the volume of data and number

of devices studied.

III. MEASUREMENT ANALYSIS

In this section, we explain the details of our measurement

analysis conducted on the two data sets collected from the cel-

lular networks to study the geospatial dynamics of application

usage. Towards this end, we start by examining the application

usage distributions in the data traffic and then investigate the

relative popularity of individual applications across different

cell locations.

As mentioned in Section II, all data traffic records in

our data set are tagged with application and cell identifiers.

For initial analysis, we first segregate all traffic records with

respect to the application identifiers to study the application

usage patterns. We then construct application distributions

using application identifiers as keys and byte, packet, flow,

or user counts as values.2 Figure 2 shows the byte, packet,

flow, and user distributions for the collected data set. We note

that application popularity in the complete data set is highly

skewed, where web browsing and email realms dominate

with respect to byte, packet, flow, and user counts. We also

note some differences in the popularity of applications across

byte, packet, flow, and user distributions. Specifically, maps

and social network have higher volume with respect to

user counts as compared to byte, packet, and flow counts.

This observation shows that these applications are relatively

low volume (with respect to byte, packet, and flows) but are

accessed by relatively more number of users. This finding will

be further highlighted later in our analysis when we cluster

application distributions of different cells.

We now study the relative popularity of a given application

across different cell locations in our data set. Figure 3 shows

2In the rest of this paper, the terms byte, packet, flow, and user distributions
refer to the traffic volume distributions in terms of byte count, packet count,
flow count, and unique user count, respectively.
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Fig. 3. Distributions of traffic volume with respect to byte, packet, flow, and user counts across all cell sector locations.

the cumulative distribution of traffic volume of dating,

maps, social network, and web browsing applica-

tions with respect to byte, packet, flow, and user counts

across all cells in our data set. Our first observation is that

applications are not equally popular across all cells in our

data set. Furthermore, the popularity of some applications is

more skewed than others across cells. For instance, all traffic

volume of dating application is generated from less than

5% of all cells. On the other hand, web browsing is the

most ubiquitous application realm. However, even for web

browsing 80% of the byte traffic volume is generated from

50% of all cells. It is also interesting to note the differences

in the byte, packet, flow, and user volume of applications

across cells. For instance, the distribution of byte volume

of social network is more skewed than maps across

cells; however, this trend is reversed for flow and user volume

distributions. This observation indicates that flows and users

in a fraction of cells dominate byte volume for social

network applications.

Until now we have established two major findings: (1) the

traffic volume of a few application realms dominate others

overall and (2) the popularity of a given application realm

varies across different cell locations. These findings suggest

strong dependence of application usage on geospatial dynam-

ics. To do more useful fine-grained analysis, in the rest of this

section, we first introduce the analytical approaches used for

characterizing the geospatial dynamics of application usage in

a cellular network. We then present the results of our analysis

on our collected data set. We follow a two step methodology

to systematically conduct our analysis. First, we group the

application usage distributions of cells using an unsupervised

clustering algorithm. Second, we conduct a comprehensive

analysis of geospatial dynamics of application usage across

clusters using geospatial analysis techniques. The goal of our

analysis is to identify patterns in our data and to formulate

new hypotheses about the underlying processes that gave rise

to the data. We now separately discuss the above-mentioned

steps in the following text.

A. Cell Clustering

1) Methodology: We segregate all traffic records with

respect to the application and cell identifiers to study the

application usage patterns for any given cell. Our goal is to

cluster cells into a manageable number of groups based on

their application usage distributions. It is important to cluster

cells by byte, packet, and flow distributions to understand

which sectors have similar traffic distributions. But it is also

important to understand how cells cluster by user distributions

because the applications that are used widely but infrequently

by many users will not be well represented relative to the byte,

packet, or flow counts of higher volume applications, even if

those applications are not as popular. This argument follows

our earlier observation in this section from Figure 2.

We utilize a well-known unsupervised clustering algorithm

called k-means to cluster application distributions of cells. k-

means algorithm is a simple yet effective technique to cluster

feature vectors into a predefined k number of groups [10]. The

selection of appropriate value of k is crucial and is an open

research problem [2]. Several heuristics have been proposed in

prior literature, which primarily focus on the change in intra-

cluster dissimilarity for increasing values of k [7], [9], [11].

One of the most well-known heuristic, called gap statistic,
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(a) Byte: mixed HTTP streaming (≈
15%)
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(b) Byte: music audio (≈ 8%)
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(c) Byte: email (≈ 41%)
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(d) Byte: web browsing (≈ 36%)
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(e) Packet: mixed HTTP

streaming (≈ 11%)
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(f) Packet: multiple (≈ 38%)
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(g) Packet: email (≈ 15%)

1 2 3 4 5 6 7 8 9 10111213141516171819
0

0.2

0.4

0.6

0.8

1

Application Index

N
o

rm
a

liz
e

d
 T

ra
ff

ic
 

V
o

lu
m

e
 (

P
a

c
k
e

ts
)

(h) Packet: web browsing (≈ 36%)

1 2 3 4 5 6 7 8 9 10111213141516171819
0

0.2

0.4

0.6

0.8

1

Application Index

N
o

rm
a

liz
e

d
 T

ra
ff

ic
 V

o
lu

m
e

 (
F

lo
w

s
)

(i) Flow: email and web (≈ 44%)
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(j) Flow: music audio (≈ 3%)
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(k) Flow: email (≈ 12%)
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(l) Flow: web browsing (≈ 41%)
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(m) User: mms (≈ 6%)
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(n) User: multiple (≈ 76%)
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(o) User: email (≈ 12%)
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(p) User: web browsing (≈ 6%)

Fig. 5. Centroids of application distributions of cells identified using k-means clustering. Clustering results (centroids and composition distribution) are
separately provided for byte, packet, flow, and user distributions. The mapping of application indices is provided in Section II-B.
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Fig. 4. Gap statistic to find the optimal number of clusters for traffic
distributions of cells.

involves comparing the change in intra-cluster dissimilarity

Wk for given data and that for a reference null distribution

[17]. Gap statistic provides a statistical method to find the

elbow of intra-cluster dissimilarity Wk as the values of k is

varied. Gap statistic is defined as:

Gap(k) =
1

B

B∑

b=1

log(Wkb)− log(Wk),

where Wkb denotes the within-cluster dispersion of a reference

data set from a uniform distribution over the range of the

observed data. Using gap statistic, the optimal value of k is

chosen to be the smallest one for which:

Gap(k) ≥ Gap(k + 1)− σk+1,

where σ denotes the standard deviation of within-cluster

dispersions in reference data sets. Figure 4 shows the plot

of gap statistic for varying values of k. We observe that

Gap(4) ≥ Gap(5) − σ5, so we select the optimal value of

k = 4. After selecting the value of k = 4 using gap statistic,

we apply k-means clustering algorithm to cluster application

distributions of cells into four groups.

To gain insights into the clustering results, we plot four

cluster centroids of byte, packet, flow, and user distributions



TABLE I
CLUSTER COMPOSITION ANALYSIS RESULTS

Byte (%)

mixed HTTP music email web

streaming audio browsing

Downtown 12 4 37 47

University 11 11 22 55

Suburb 1 19 17 39 25

Suburb 2 29 0 42 29

Packet (%)

mixed HTTP multiple email web

streaming browsing

Downtown 11 34 7 48

University 11 22 11 55

Suburb 1 14 56 0 31

Suburb 2 7 50 14 28

Flow (%)

email, web music email web

browsing audio browsing

Downtown 42 0 5 51

University 33 0 22 45

Suburb 1 47 3 6 44

Suburb 2 64 0 7 28

User (%)

mms multiple email web

browsing

Downtown 5 74 15 5

University 11 78 11 0

Suburb 1 8 86 0 6

Suburb 2 0 93 7 0

in Figure 5. We have labeled the cluster centroids using

their popular application types. The cluster centroids that

do not have any outright popular application are labeled as

multiple. In Figure 5, we also provide the percentage

distribution of cells across all cluster types. As expected, we

observe that web browsing and email are the common

cluster centroids for byte, packet, flow, and user distributions.

Other cluster centroids include mixed HTTP streaming,

music audio, and mms. The plots of cluster centroids in

Figure 5 highlight important differences across byte, packet,

flow, and user distributions. For instance, we observe that only

one or two applications (e.g. email, web, and mixed HTTP

streaming) make up a predominant percentage of the traffic

volume in terms of bytes for a majority of cells. However,

the application distributions are relatively even in terms of

users for most cells. For example, Figure 5(n) shows that 76%
of cells fall into the multiple realm for user distributions,

implying that most cells have users that access a diverse set of

applications. Whereas, the percentage of cells with relatively

balanced application traffic is much lesser for byte, packet,

and flow distributions. Another important difference is that the

percentage of cells belonging to dominant applications, e.g.

web browsing and email, significantly vary across byte,

packet, flow, and user distributions. For example, only 6%
cells belong to web browsing cluster for user distributions;

whereas, ≈ 40% cells belong to this cluster for byte, packet,

and flow distributions. As we discuss later in Section IV, these

differences have important implications in terms of cellular

network planning and optimization.

B. Geospatial Analysis

Using the clustering methodology defined in the previous

subsection, we uniquely label all cell locations for each of the

byte, packet, flow, and user application distribution clusters.

For geospatial analysis, we apply basic cluster composition

analysis and intensity function analysis to the clustering re-

sults, which are separately discussed below. To gain interesting

insights from the geospatial analysis, we also study different

geographical regions, e.g. downtown, university, and suburban

areas.

1) Cluster Composition Analysis: In cluster composition

analysis, we study the distribution of cells belonging to dif-

ferent clusters in various geographical regions. This analysis

aims to uncover the cases when cells belonging to a particular

cluster type are more prevalent in certain geographical regions.

Table I shows the distribution of cells belonging to different

clusters across all geographical regions. We observe important

differences in application usage across different geographical

regions with respect to byte, packet, and flow distributions.

For example, the cells belonging to web browsing cluster

are typically less common in suburban areas as compared to

downtown and university areas; whereas, the cells belonging

to mixed HTTP streaming and music audio clusters

are more popular in suburban areas than downtown and

university areas. We also note that the cells belonging to mms

and email clusters are more popular in the university area.

These patterns show that the user interests in cellular data

networks are dependent on location and have implications for

cellular network optimization as discussed later in Section

IV. Table I also indicates that a majority of cells belong

to multiple cluster for user count distributions across all

geographical regions. For instance, Table I shows that as few

as 7% cells belong to clusters with a predominant application

with respect to users for suburb 2. Therefore, cellular network

operators can only optimize network parameters for specific

applications in a minority of cells while satisfying a majority

of users.

2) Intensity Function Analysis: The usefulness of basic

cluster composition analysis is limited because it does not

identify or quantify the patterns within a given geographical

region due to its aggregate nature. This limitation of the cluster

composition analysis is addressed by the intensity function.

Intensity function quantifies the expected number of points

(i.e. cells belonging to a particular cluster type) per unit area

[6]. Intensity function is constant for uniformly distributed

points and varies if points are non-uniformly distributed,

with peaks in denser regions and troughs in sparse regions.

To estimate the continuous intensity function using discrete

geographical location information, nonparametric techniques

such as Gaussian kernel smoothing are commonly utilized

[20]. A typical kernel estimated intensity function takes the

form:

λ̃(d) = e(d)

n∑

i=1

κ(d− xi),

where λ̃(d) is an unbiased estimator of the true intensity func-

tion λ(d), e(d) is an edge bias correction, κ(d) is the kernel

function (isotropic Gaussian kernels are most commonly used),

n is the number of points, and d denotes geographical distance.



(a) Byte (b) Packet

(c) Flow (d) User

Fig. 6. Kernel estimated intensity function for web browsing cluster types in a suburban region for byte, packet, flow, and user distributions.

The intensity functions of web browsing clusters over

a suburb area are shown for byte, packet, flow, and user

distributions in Figure 6. We can visually observe similarity

among the intensity functions for byte, packet, and flow

distributions; whereas, the intensity function for user distri-

bution is significantly different than the rest. To quantify this

similarity, we compute the pair-wise Pearson product-moment

correlation coefficient (denoted by ρ, |ρ| ∈ [0, 1]) between two

intensity functions [15]. The magnitude of one signifies perfect

correlation and zero signifies no correlation at all between

the two given intensity functions. Pearson product-moment

correlation coefficient is defined as:

ρ
λ̃1,λ̃2

=
E[(λ̃1 − µ

λ̃1
)(λ̃2 − µ

λ̃2
)]

σ
λ̃1
σ
λ̃2

,

where E and σ respectively denote the expected value and

standard deviation. As expected from visual observation, we

find that |ρ| ≥ 0.9 for all possible combinations of the

intensity functions of byte, packet, and flow clusters; however,

|ρ| ≈ 0.6 among the intensity functions of user clusters and

that of byte, packet, or flow clusters. The visual inspection

of intensity functions also shows that even within a close

neighborhood such as a university, downtown, or suburb, there

is differentiation between the application mix of different cells.

Consequently there are opportunities for fine-grained network

optimization within close neighborhoods, which are discussed

later in Section IV. Note that such detailed analysis is made

possible in our study because the mobility information in our

data set obtained from radio access network is fine-grained.

Fig. 7. Difference between intensity functions of music audio clusters
and email + web browsing clusters for byte distribution.

We can also identify the geographical areas where one type

of traffic is more prevalent than others using the difference of

the intensity functions. For such geographical areas, cellular

network operators can optimize network parameters to opti-

mize for specific performance metrics. In Figure 7, we add

up the intensity functions of email and web browsing

clusters and plot its difference to the intensity function of

music audio. We observe two distinct geographical areas

where either email and web browsing or music audio

traffic is dominant. It is well-known that email/web browsing



and music traffic have conflicting Quality of Service (QoS)

requirements. This type of analysis provides more actionable

insights as compared to the basic cluster composition analysis

described earlier.

IV. MAJOR FINDINGS AND IMPLICATIONS

In this section, we provide a summary of major findings

of our study and highlight their implications on network

optimization.

1) A few application realms dominate others in our data

set (Figure 2). We observed that web browsing and

email are overall the most popular applications in

our data set. This observation presents an optimization

opportunity for cellular operators as it is known that

web browsing and email traffic is typically bursty in

nature. Therefore, cellular network operators can fine-

tune radio network parameter settings. For instance,

inactivity timers of radio resource control (RRC) state

machine can be decreased for cells with more bursty-

natured traffic to avoid wasteful occupation of radio

channels that result in inefficient spectrum utilization

[14].

2) Any given application does not enjoy same level of

popularity across different cell locations (Figure 3). This

finding implies that cellular network operators cannot

take “one size fits all” approach in optimizing network

parameters for specific applications.

3) Application mix significantly varies across different

neighborhoods (Table I). From cluster composition anal-

ysis, we observed that application mixes significantly

vary across downtown, university, and suburban neigh-

borhoods. Furthermore, application mix of two same

type of neighborhoods (e.g. suburb 1 and suburb 2)

show significant similarity. Therefore, cellular network

operators can generalize their optimization strategies

across neighborhoods of the same type to some extent.

In addition, we also observed that music and video

applications are popular in a fraction of cells across

all neighborhoods. In contrast to web browsing and

email traffic, these applications are streaming in nature.

Therefore, cellular network operators can fine-tune radio

network parameter settings for them by increasing the

inactivity timers of RRC state machine to avoid exces-

sive state transitions that result in increased delays and

packet losses [14].

4) The popularity of different applications significantly

varies even within a given neighborhood (Figures 6 and

7). For more detailed optimization strategies, cellular

network operators can utilize the difference of the in-

tensity function of two applications to identify distinct

cell locations where either of the applications dominant.

Given the knowledge of the application preferences for a

specific cell location, the cellular network operator may

fine tune the QoS profile settings and the RNC admission

control procedure when processing Radio Access Bearer

(RAB) assignment requests for that specific cell. To the

best of our knowledge, this finding represents the most

fine-grained characterization of geospatial dynamics of

application usage in a cellular network and provides

actionable insights for network optimization.

5) Application distributions significantly vary for byte,

packet, flow, and user counts (Figure 2 and Table I). This

finding implies that cellular network operators should

take care not to optimize cells solely by byte, packet,

or flow volume as this may negatively impact other low

volume–yet popular–applications that many users use in

those cells. As a result, there is only a small set of cells

where a specific application is popular with respect to

all of the byte, packet, flow, and user counts. This leaves

cellular network operators with a minority of cells where

operators can optimize for specific applications while

satisfying most users.

V. RELATED WORK

In this section, we provide an overview of the prior re-

search relevant to characterizing application usage in cellular

data networks. The prior work that first provided evidence

of geographic correlation of users’ interests in a cellular

network is by Trestian et al. in [18]. In their study, the

authors categorized web requests into six groups: mail, social

networking, trading, music, news, and dating; and categorized

locations into ‘home’ and ‘work’. Their study focused on

differences in users’ interests across different locations. They

also identified hotspots – locations with large inflow of users

– and studied users’ interests across different hotspots. There

are three important limitations of their work that we overcame

in our study.

1) They only examined web requests (HTTP URLs), but

traffic in modern cellular networks can be differentiated

with respect to application protocol (e.g., HTTP, DNS,

SIP), class (e.g., streaming audio, streaming video, web,

email), and distinct applications downloaded from “App

Stores.” On the other hand, our data set is more represen-

tative of mobile data usage as we identify and analyze

19 application realms in all IP traffic, not only in HTTP

URLs as in [18]. This is important because a dominant

mode of application usage on smartphones is through

individual “apps,” not only via traditional web browsers.

2) They showed differentiation in application interests at

the macro-scale (neighborhoods) but not at the micro-

scale (cell sectors) — this leaves open the question

how granular geospatial differentiation actually is. On

the other hand, cell sector locations in our traces are

accurate to a finer timescales because they are collected

directly from a UMTS radio network, not from core

network servers, which do not record all cell changes

due to handovers [22]. This accuracy enables us to

detect distinct differences in application usage among

cell sectors very close to each other within both ‘home’

and ‘work’ areas.

3) They only studied user interests with respect to session

counts, whereas network operators are also interested



in understanding application usage distributions with

respect to traffic volume, flow counts, or unique user

counts as they may yield completely different estimates

of application popularity. On the other hand, we analyze

application usage on all of the above-mentioned four

dimensions important to network operators (volume in

terms of bytes and packets, flows, and users). We find

that the ‘top’ applications and their prevalence in differ-

ent areas does differ depending on the dimension used

to analyze them.

Several other studies have also examined cellular network

data traffic, but do not study the relationship between ap-

plication usage and location as we do in this paper [5],

[8], [12], [13], [16], [21]. The authors in [13] study traffic

volume dynamics in cellular data networks. In particular,

the authors study effective bit rate for different applications.

The results of their experiments show that P2P and http

traffic of certain popular sites have better effective bit rate

than that of VPN and https traffic. In [16], the authors

studied the distribution of applications across different cellular

devices. The results of their measurement analysis showed that

application volume distribution is highly skewed. They used

a Zipf-like distribution further modeled aggregate and device-

specific application volume distributions. In [5], Falaki et al.

studied application usage patterns in data collected from 255
smartphone users. The results of their experiments highlighted

strong diversity in the applications usage, in terms of number

of applications and interaction time across user population.

Huang et al. [8] studied data from a cross-platform mea-

surement tool. They studied key factors that impact network

and web browsing performance of applications for different

carrier networks, device capabilities, and sever configurations.

In a similar work, the authors in [12] studied end-to-end

key performance indicators in cellular networks. In [21], the

authors developed a measurement platform to collect end-to-

end latency, throughput, and timeout interval statistics between

cellular devices and the designated servers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we characterized the geospatial dynamics

of application usage in a 3G cellular data network. Using

traces collected from the network of a tier-1 cellular operator

in the United States, we first clustered cell locations based

on their application usage and then conducted the geospatial

analysis of cells belonging to different clusters. The results of

our empirical study revealed that the cell clustering results

are significantly different for byte, packet, flow, and user

distributions across different geographical regions. However,

our results also suggested that care should be exercised so

that cells are not optimized solely with respect to traffic

volume based on byte, packet, or flow counts because this

may negatively impact other low volume applications used by

most users in those cells. These and other findings of our

measurement analysis have important implications in terms of

network design and optimization.

To our best knowledge, this paper presents the first attempt

to conduct fine-grained analysis of the geospatial dynamics of

application usage in cellular networks. However, this analysis

has several limitations that we plan to overcome in our future

work. In terms of data, we plan to generalize the findings

presented in this study using multiple traffic traces that are

collected over longer time duration. In terms of analysis, we

plan to utilize other more rigorous techniques such as Ripley’s

k-cross function and variogram for analyzing geospatial dy-

namics of application usage in cellular networks [3]. We also

plan to jointly study the temporal and geospatial dynamics of

application usage in cellular networks.
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