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A widely used method for characterizing and comparing inefficiencies in perceptual processes is the method of
equivalent internal noise—the amount of random internal noise necessary to produce the degree of inefficiency
exhibited by the perceptual system in processing [J. Opt. Soc. Am. 46, 634 (1956)]. One normally estimates
the amount of equivalent internal noise by systematically increasing the amount of external noise added to the
signal stimulus and observing how threshold—signal stimulus energy required for an observer to maintain a
given performance level—depends on the amount of external noise. In a variety of perceptual tasks, a simple
noisy linear amplifier model [D. Pelli, Ph.D. dissertation (University of Cambridge, Cambridge, UK 1981)] has
been utilized to estimate the equivalent internal noise Nj,icma by fitting of the relation between threshold con-
trast ¢, and external noise N at a single (d') performance level: ¢,2 = (d'/B)%(N%, + N%mna)- This
model makes a strong prediction: Independent of observer and external noise contrast, the ratio between two
thresholds at each external noise level is equal to the ratio of the two corresponding d’ values. To our knowl-
edge, this potential test for the internal consistency of the model had never been examined previously. In this
study we estimated threshold ratios between multiple performance levels at various external noise contrasts in
two different experiments: Gabor orientation identification, and Gabor detection. We found that, in both
identification and detection, the observed threshold ratios between different performance levels departed sub-
stantially from the d’ ratio predicted by the simple noisy linear amplifier model. An elaborated perceptual
template model [Vision Res. 38, 1183 (1998)] with nonlinear transducer functions and multiplicative noise in
addition to the additive noise in the simple linear amplifier model leads to a substantially better description of
the data and suggests a reinterpretation of earlier results that relied on the simple noisy linear amplifier
model. The relationship of our model and method to other recent parallel and independent developments [dJ.
Opt. Soc. Am. A 14, 2406 (1997)] is discussed. © 1999 Optical Society of America [S0740-3232(99)02903-8]
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1. INTRODUCTION

Limited by various sources of noise such as intrinsic
stimulus variability, receptor sampling errors, random-
ness of neural responses, and loss of information during
neural transmission, perceptual processes exhibit various
inefficiencies. One can characterize such inefficiencies at
an overall system level by conceptualizing perceptual pro-
cesses as perfect, noise-free computations with separate,
equivalent internal noise—random internal noise neces-
sary to produce the degree of inefficiency exhibited by the
perceptual system.'”® Although this characterization
does not distinguish between various sources for the inef-
ficiency, it does allow us to quantify the overall efficiency
of the perceptual system and to compare the efficiency of
the perceptual system in different perceptual tasks.®4%7
In fact, specification of internal noise has become a re-
quirement of any realistic model for human perception.?
To estimate the amount of equivalent internal noise,
psychologists have adopted a method called equivalent in-
put noise that was developed and is frequently used in
electrical engineering to measure the properties of noisy
amplifiers.? 1! The method adds systematically increas-
ing amounts of external noise to the signal stimulus and
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observes how threshold—signal stimulus energy required
for an observer to maintain a given performance level—
depends on the amount of external noise.> The human
observer is modeled as a (simplest possible) noisy linear
amplifier (perfect linear amplification plus additive
noise). The amount of equivalent additive noise can then
be scaled in relation to the magnitude of external noise
from the threshold versus external noise functions.

The equivalent input noise procedure has been applied
to a wide range of perceptual tasks and, in many cases,
has  produced results with very important
implications.!"12-25 At the same time, there have been
several attempts to improve the noisy linear amplifier
model (LAM) to better accommodate experimental re-
sults. For example, Pelli attributed all the inconsisten-
cies between the data and the noisy LAM to stimulus un-
certainty in the decision process, asserting that, in
detecting a signal, observers have to monitor hundreds of
irrelevant channels.?® Burgess and Colborne found that
an additional multiplicative noise source with an ampli-
tude equal to approximately 0.6-0.8 times the added ex-
ternal white noise was necessary to account for their
data.?” Given this additional multiplicative noise source,
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they suggested that previous estimates of internal noise
had been too high and should be revised.

We first review the simple noisy LAM, because it has
been used so widely in perception studies. Although it
has been argued that the LAM is an incomplete model of
performance, 2?7 it is still extensively used.23%® The
current approach reveals key deficits of the model. We
develop a strong prediction from the model: The ratio be-
tween two thresholds at each external noise contrast is
equal to the ratio of the corresponding d’ values, indepen-
dent of the observer and the particular external noise con-
trast. We then critically examine this prediction in two
experiments. To reduce stimulus uncertainty effects, a
two-alternative forced-choice (2AFC) identification task
was used in the first experiment.2®  We then extend the
study to two-interval forced-choice (2IFC) detection in the
second experiment. We demonstrate that the simple
noisy LAM systematically mispredicts the relationship
between thresholds at different performance levels. We
then describe a perceptual template model (PTM), which
was developed by Dosher and Lu?® and by Lu and
Dosher®®3! in studying attention mechanisms.

The PTM?*-3! is an elaboration of the simple noisy
LAM with two additional components: nonlinear trans-
ducer function,?>3% and multiplicative noise.®2732-4% To
account for human performance in 2AFC identification,
no additional stimulus uncertainty was assumed in the
decision process. The PTM provides a much better ac-
count of the data than does the simple LAM, suggesting
that conclusions and additive noise estimates in earlier
studies based on the simple model may require reevalua-
tion.

Parallel to our development of the PTM, Eckstein
et al.%° proposed a different model of a human observer,
which we shall call the Eckstein-Ahumada-Watson
(EAW) model, consisting of additive and multiplicative
noise sources and a decision process with stimulus uncer-
tainties. The EAW model is mathematically quite simi-
lar (although not identical) to the Lu-Dosher PTM.29-31
However, the two models have very different conceptual
interpretations and could potentially be distinguished ex-
perimentally. The relationship between the PTM and
the EAW model is discussed in detail in Appendix A and
in Section 6.

2. NOISY LINEAR AMPLIFIER MODEL

A. Model
The existence of a sensory threshold for every perceptual
process suggests that the perceptual system is limited by
an equivalent internal noise source whose amplitude does
not depend on the input. Such an additive noise, pre-
ceded by a noise-free linear amplification and followed by
a decision process, constitutes the simplest model for an
observer with sensory thresholds.??

Figure 1(a) depicts such a model with three stages: (1)
a noise-free amplifier that amplifies the signal stimulus
by B with a total gain of 1.0 (integrated over space, time,
and feature space); (2) an independent, additive random
Gaussian noise source with standard deviation N ,4q; and
(3) a decision stage.
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Fig. 1. (a) Simple noisy LAM. The LAM has three major com-
ponents: (1) a perceptual template, (2) an additive internal
noise source, and (3) a decision process. A good example of a
perceptual template is a spatial-frequency filter F(f ), with a cen-
ter frequency and a bandwidth such that a range of frequencies
adjacent to the center frequency passes through with smaller
gains. Limitations of human observers are modeled as equiva-
lent additive internal noise—a noise source whose amplitude
does not vary with stimulus contrast. Additive noise is added to
the output from template matching, and the noisy signal is the
input to a task-appropriate decision process. (b) Contrast
threshold of the noisy LAM as a function of the contrast of the
external noise for three different performance levels (d’
= 1,1.41,2.0) for a hypothetical case in which N,4q = 0.00393,
B = 2.4. Foreachd’' level, the contrast threshold is nearly con-
stant when the amplitude of the external noise is small; it in-
creases with the amplitude of the external noise at high noise
amplitudes. In that range external noise dominates internal
noise; performance is mostly determined by the amount of exter-
nal noise.

B. Threshold versus External Noise Functions

For a given input consisting of a signal stimulus with rms
contrast ¢ plus an experimenter-controlled random noise
stimulus whose pixels are drawn from a Gaussian distri-
bution with standard deviation N, the total amount of
signal at the decision stage is

S = Be, (1)

and the total variance of noise at the decision stage is the
summation of the variance of the external and the inter-
nal noise:

N?=NZ,+ Nig 2)

Thus signal discriminability, d’, determined by the
signal-to-noise ratio at the decision stage is given by

S Be
d = —= ——— (3)

N VN 2 + szadd‘

For a fixed threshold d', we can rearrange Eq. (3) to
solve for threshold contrast ¢ ; as a function of the amount
of external noise:
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d’ 2
7'2 = (F) (N zxt + Ngdd)' (4)

If we define £ = (d'/B), Eq. (4) can be further simplified:

C

c2=Fk3NZ,+ N2. (5)

In Fig. 1(b) we plot log(c,) as a function of log (V) for
three fixed threshold levels (d’' = 1,1.41,2.0). Such
graphs have three regions: (1) When the external noise
N oy is much smaller than the internal noise N 44, N 544 18
the limiting factor in performance. Thus threshold con-
trast ¢, varies minimally with the amount of external
noise. (2) When the external noise N, is much larger
than the internal noise N,qq, external noise becomes the
dominant limiting factor. Thus log(c,) increases directly
as a linear function of log (IV,;). (3) When external noise
is comparable with internal noise, there is a smooth tran-
sition from region 1 to region 2.

C. Threshold Ratio at Two d’ Levels
In this section we derive an important prediction from the
noisy LAM: The ratio between two thresholds at each
external noise contrast is equal to the ratio of the two cor-
responding d’ values, independent of the observer and
the external noise level.

Following Eq. (4) above, we find that, at a given exter-
nal noise contrast N, threshold ¢, for d; and threshold
¢y for dy are

’

=(é‘/ 2 2
€1 8 Next + Nadd: (4a)

c —d—2\/N2 + N2 (4b)
2 = B ext add*

If we take the ratio between Egs. (4a) and (4b),

Cq _ di (6)
Co dé

That is, the simple noisy LAM predicts that the signal
contrast ratio between two threshold performance levels
for a given external noise contrast is independent of that
particular external noise level. Moreover, it predicts
that the ratio is equal to the ratio of the corresponding d’
values at the two performance levels.

This prediction [Eq. (6)] forms an important test for the
internal consistency of the model that is critically exam-
ined in Section 3.

3. EXPERIMENTS

We conducted experiments to measure threshold versus
external noise functions at several performance (d’) lev-
els in two different perceptual tasks: (1) 2AFC Gabor
orientation identification, and (2) 2IFC Gabor detection.
The aim was to test the threshold ratio prediction from
the simple noisy LAM.

Z.-L. Lu and B. Dosher

A. Experiment 1: Threshold versus External Noise at
Three Performance Levels in a Gabor Orientation
Identification Task

In this experiment we used the method of constant
stimuli®! to measure full psychometric functions for each
observer at each of nine external noise levels in a 2AFC
identification experiment. We report contrast thresholds
at three defined performance levels in each external noise
condition. This resulted in three threshold versus exter-
nal noise functions. The family of such functions pro-
vides additional ratio tests of the simple noisy LAM.

1. Method

Stimulus and Display. The signals in the task were
Gabor patterns tilted 6 deg either to the right or left of the
vertical with luminance /(x, y) at location (x,y) defined
by Eq. (7a):

l(x,y) = lo[ 1.0 + cpea sin[27f (x cos § = y sin 0)]

x2+y2

X exp| — 257

] , (7a)

where f = 0.9 cycle(s) per degree (c/deg), o = 1.1deg, 6
= 10deg, lo = 27cd/m% The peak contrast Cpeak WAas
set by the experimenter according to pilot studies.

Thus local stimulus contrast, defined as c(x,y)
= [Ux, y) — Lyl/ly, is

c(x,¥) = CpearSIN[27f (x cos 6 = y sin 0)]

x2+y2

X exp( —T (7b)

o

Each Gabor pattern was rendered on a 128 X 128 pixel
grid, subtending 5.9deg X 5.9deg.  External noise
frames were made of 2 X 2 pixel patches each subtending
0.092 X 0.092deg?®. The gray level of each pixel patch
was sampled from a Gaussian distribution with mean 0
and certain variance depending on the desired amount of
external noise. To guarantee that the external noise con-
formed to the Gaussian distribution, the maximum stan-
dard deviation of the noise was 33% or less of the maxi-
mum achievable contrast. The size of the noise frames is
identical to that of the signal frame.

Apparatus. All the signal and noise frames were gen-
erated and displayed in real time by use of programs
based on a C++ version of Video Toolbox®2%3 on a 7500/
100 Macintosh computer. The stimuli were presented on
a Nanao Technology FlexScan 6600 monitor with a P4
phosphor and a refresh rate of 120 frames/s, driven by the
internal videocard in the Macintosh. A special circuit®?
was used to combine two 8-bit output channels of the vid-
eocard to produce 6144 distinct gray levels (12.6 bits).

A psychophysical procedure was used to generate a lin-
ear lookup table that evenly divides the entire dynamic
range of the monitor (from 1 to 53 cd/m?) into 256 levels.
The background luminance was set at 27 cd/m?.

All displays were viewed binocularly with the natural
pupil at a viewing distance of approximately 72 ¢cm in a
dimly lighted room.
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Design. The experiment consisted of six sessions, each
with 630 trials. In each session nine different external
noise rms contrasts (0, 0.01, 0.02, 0.04, 0.08, 0.12, 0.16,
0.25, and 0.33) were used. A psychometric function, con-
sisting of seven sample points, was generated at each ex-
ternal noise level. The signal contrasts for each noise
condition were predetermined through pilot studies.

All the conditions were intermixed. For each observer,
data from all six sessions are combined to generate nine
psychometric functions, one at each external noise con-
trast level.

Figure 2 depicts a typical trial. Initialized by the ob-
server with a key press, a trial starts with a 0.25-s fixa-
tion cross in the center of the monitor. In the next five
refreshes, each lasting 8.3 ms, two independent noise
frames, one signal frame (a Gabor patch tilted either to
the left or to the right), and another two independent
noise frames appear in the center of the display. The ob-
server identified with a key press the orientation of the
Gabor. A correct response was followed immediately by
a brief beep. The program paused for 1 s before proceed-
ing to the next trial.

Observers. Two University of Southern California stu-

250 ms

Time

8.3 ms

8.3 ms

8.3 ms

8.3 ms

8.3 ms

8.3 ms

Fig. 2. Trial in the Gabor orientation identification task (experi-
ment 1). A trial starts with a 250-ms fixation cross. In the
next five stimulus frames, each lasting 8.3 ms, two external noise
frames, one signal Gabor frame, followed by another two noise
frames, appear in the center of the display. The Gabor patch is
tilted either to the left or to the right; its contrast varied across
trials according to a random mixture of nine signal contrasts.
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dents with normal or corrected-to-normal vision, naive to
the purposes of the experiment, and the first author
served as observers in the experiment.

2. Results

For each observer at each external noise contrast, we cal-
culated percent correct (in our notation, Pc) in Gabor ori-
entation identification at seven different signal contrast
levels. To compute threshold at various performance lev-
els, we first fitted a Weibull function®*:

Pc = 1.0 — 0.5 x 27 (/&) (8)

to each of the nine psychometric functions for each ob-
server, using a maximum-likelihood procedure.?®

We then computed threshold signal contrast at three
performance levels: 65%-, 75%-, and 85%-correct identi-
fication. In a 2AFC procedure like this one, these three
performance levels correspond to d’ values of 0.7706,
1.3490, and 2.0729, respectively.

In the upper panels of Fig. 3, log threshold (rms signal
contrast) versus log external noise (rms) contrast func-
tions are plotted at three performance levels for each of
the three observers. Error bars®® indicate the standard
deviation of each threshold. For each observer, the
threshold versus external noise functions at the three dif-
ferent performance levels are approximately vertical
shifts of each other, suggesting that the threshold ratio
between two performance levels at a given external noise
level is a constant across all the external noise levels.
Threshold ratios between 75% and 65% correct and be-
tween 85% and 75% correct are plotted at each external
noise level for each observer in the lower panels of Fig. 3.

The geometric mean threshold ratios between 75%- and
65%-correct performance levels across all the external
noise levels are 1.2579 for subject QL, 1.2413 for subject
SM, and 1.2928 for subject ZL. The geometric mean
threshold ratio between 85%- and 75%-correct perfor-
mance levels across all the external noise levels are
1.2101 for QL, 1.1967 for SM, and 1.2379 for ZL. How-
ever, the noisy LAM [Eq. (6)] predicts that the two thresh-
old ratios should be 1.7506 and 1.5366 and that they
should be the same for all observers. Clearly, the noisy
LAM systematically overestimates the threshold ratios.

The simple LAM, with Gaussian d’ assumptions, re-
quires that the psychometric functions correspond to a cu-
mulative Gaussian with u = 0 (signal contrast). This
prediction constitutes an additional test of the LAM.
However, the observed psychometric functions were very
poorly fitted by the cumulative Gaussian form (mean
r?2 = 0.6792 compared with r2 = 0.8818 for the Weibull
estimates). This is an alternative basis for rejecting the
LAM.

We chose to evaluate the LAM and the PTM in terms of
the threshold ratio tests because (1) the contrast ratios
highlight the nature of the model failures; (2) the ratios
clearly reveal the prediction of constant threshold ratios
over external noise levels, which is a consistency con-
straint on both models; (3) the Weibull fits and ratio tests
provide a direct and simple way to calculate and test the
applicability of the LAM without requiring that full model
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in a central Gabor orientation discrimination task for three observers, each at three different performance levels:
olds at 65% correct, X’s indicate thresholds at 75% correct, and O’s indicate thresholds at 85% correct.

deviation of each threshold estimation.

-’s indicate thresh-
Error bars indicate the standard

The solid curves are generated with the parameters of the best-fitting PTM model. (d)-(f)
Threshold ratios between performance levels versus external noise contrast for each of the three observers. The solid horizontal lines
The dashed horizontal

in each graph depict the geometric mean of all the threshold ratios across external noise levels for each observer.

lines denote predicted ratios from the noisy LAM.

fits be carried out; and (4) the ratios are the basis of con-
structive solutions for constrained estimates of model pa-
rameters.

Alternative direct model tests and a discussion of the
constructive solutions appear in Section 5.

B. Experiment 2: Threshold versus External Noise at
Three Performance Levels in a Gabor Detection

Task

In this experiment we extend our observations from 2AFC
orientation identification to 2IFC Gabor detection. Many
of the classic experiments measuring equivalent internal
noise were detection experiments.!® We again used the
method of constant stimuli®! to measure full psychometric
functions for each observer at each of nine external noise
contrasts. We computed thresholds at three performance
levels in each external noise condition. The resulting
three threshold versus external noise functions provide a
further test of the simple noisy LAM in the detection do-
main, where it has been most extensively applied.

1. Method
Unless noted, the method is identical to that of experi-
ment 1.

Stimulus and Display. The signals in the task were
vertical Gabor patterns:

x2+y2

202

, 9

U(x,y) = 1lp| 1.0 + ¢ sin(27fx) exp( —

with parameters identical to those of the Gabor patterns
used in experiment 1.

Design. Figure 4 depicts a typical trial. Initialized by
the observer with a key press, a trial starts with a 0.25-s
fixation cross in the center of the monitor. Starting with
a brief beep, the first interval, consisting of five refreshes
each lasting 8.3 ms, is made of two independent noise
frames, one signal or blank frame, and another two inde-
pendent noise frames in the center of the display. After
another 0.50-s delay, starting with another brief beep, the
second interval consists of two independent noise frames,
one blank or signal frame, and another two independent
noise frames. The observer has to report with a key
press which of the two intervals contains the Gabor. A
correct response is followed immediately by a brief beep.
There was a 1-s intertrial interval.

Observers. The observers were the same as those in
experiment 1.



Z.-L. Lu and B. Dosher

2. Results

Following the same data analysis procedure as in experi-
ment 1, we computed threshold signal contrast at three
performance levels, 65%, 75% and 85% correct, by first fit-
ting a Weibull function to each of the psychometric func-
tions at each external noise level for each observer.
These three performance levels correspond to d’ values of
0.7706, 1.3490, and 2.0729, respectively. We also esti-
mated the standard deviations for the thresholds, follow-
ing the same theoretical resampling procedure as in ex-
periment 1.

In the upper panels of Fig. 5, we plot log threshold (rms
signal contrast) versus log external noise (rms) contrast
functions at three performance levels for each of the three
observers. Error bars® indicate the standard deviation
at each threshold. For each observer, the threshold ver-
sus external noise functions at the three different perfor-
mance levels were approximately vertical shifts of each
other, again suggesting that the threshold ratio between
two performance levels at each external noise level was a
constant across all the external noise levels. Hence the

Temporal
Interval One

Temporal
Interval Two

250 ms

Time

8.3 ms

8.3 ms

8.3 ms

8.3 ms

Fig. 4. Trial in the 2IFC Gabor detection task (experiment 2).
A trial consists of two intervals. The first interval starts with a
250-ms fixation cross. In the next five stimulus frames, each
lasting 8.3 ms, two external noise frames, one signal or blank
frame, and then another two noise frames appear in the center of
the display. The second interval starts 500 ms after the end of
the first interval and is identical to the first, but only one of the
intervals contains a signal Gabor. The contrast of the Gabor
varied across trials according to a random mixture of nine signal
contrasts.
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threshold ratios between 75% and 65% correct and be-
tween 85% and 75% correct for each external noise level
are plotted for each observer in the lower panels of Fig. 5.
The geometric average threshold ratio between 75%-
and 65%-correct performance levels across all the exter-
nal noise levels was 1.3132 for QL, 1.2793 for SM, and
1.3461 for ZL. The geometric average threshold ratio be-
tween 85%- and 75%-correct performance levels across all
the external noise levels was 1.2541 for QL, 1.2271 for
SM, and 1.2801 for ZL.’® As before, the noisy LAM [Eq.
(6)] predicted that the two threshold ratios should be
1.7506 and 1.5366 for all the observers. Again, the noisy
LAM systematically overestimated the threshold ratios.

4. NOISY PERCEPTUAL TEMPLATE MODEL

From both the identification and the detection experi-
ments, it is clear that the simple noisy LAM cannot give
an adequate account for the data at multiple performance
levels. It must be elaborated to allow threshold ratios
less than dj/d; and to allow observer-to-observer varia-
tions in ratio. In this section we describe a PTM??-3!
that preserves many of the useful properties of the noisy
LAM yet is sufficiently elaborated that it accounts for the
observed data pattern. The PTM is related to several of
the models and observations in pattern vision and pattern
masking.3%:33,35,42,47,49.59.60  gpecifically, it incorporates
the notion of a nonlinear transducer function. To our
knowledge, however, this form has not been previously
applied to white-noise masking.

A. Noisy Perceptual Template Model: Overview
We elaborate the noisy LAM by adding two components:
a nonlinear transducer function in the signal path, and a
multiplicative noise source whose energy is controlled by
the stimulus energy. The nonlinear transducer function
is necessary to correct the overestimation of threshold ra-
tios between any two performance levels; the multiplica-
tive noise may in some cases be necessary to simulta-
neously accommodate data at three performance levels.
Figure 6(a) illustrates the PTM. It consists of (1) a
perceptual template with certain tuning characteristics,
(2) a nonlinear transducer function, (3) a multiplicative
internal noise whose amplitude is a monotonic function of
the input energy in the signal path, (4) an additive inter-
nal noise source, and (5) a decision process.

1. Perceptual Template with Certain Tuning
Characteristics

The first component of the PTM is a perceptual processor,
termed a perceptual template, which allows inputs with
different physical characteristics to go through the pro-
cessor with different gains. For example, a template
matching function could be a spatial-frequency filter
F(f), with a center frequency and a bandwidth such that
a range of frequencies adjacent to the center frequency
passes through the processor with smaller gains. A tem-
plate matching function might, however, be far more com-
plex (e.g., templates for objects, faces, etc.). It is related
to the concept of a matched filter in prior investigations of
identification performance.?



770 dJ. Opt. Soc. Am. A/Vol. 16, No. 3/March 1999

Without loss of generality,’! we assume that the total
gain (gain integrated over feature space and time) of the
template matching function is 1.0 and that the gain for a
signal-valued stimulus is 8. The gain B is directly re-
lated to the covariance of the stimulus and the template.
For a signal stimulus of contrast ¢, the output from the
template matching function S has an amplitude

S = Be. (10a)

The external noise—white Gaussian noise added to the
stimulus by the experimenter—has a flat Fourier spec-
trum (equal energy at all the spatial frequencies). For
external noise with standard deviation of N, the output
from the template is directly proportional to N;. In
fact, because the total gain of the template matching func-
tion is 1.0, the output from the template has the same
standard deviation:

Oext = Next . (113)
2. Nonlinear Transducer Function

We need to introduce an expansive nonlinear transducer
function in the signal path to correct the problem of over-
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estimating threshold ratios in the LAM. Following the
pattern vision literature,?33 we choose a power function

(|-]"). Thus, after the nonlinear transduction stage, the
signal stimulus becomes

S’ = BN, (10b)
and the external noise becomes

Oext' = NL. (11b)

3. Multiplicative Internal Noise

There is evidence both from psychophysics
and from neurophysiology®”-4143-46 that perceptual task
performance may be limited by a form of noise whose am-
plitude is directly related to the total amount of stimulus
energy. We model this limitation by postulating an inde-
pendent noise source that is Gaussian distributed with
mean 0 and standard deviation o, where

8,27,34-36,42,47-49

2

ol = N 2a(N

— Y: 2 2
o= 2 4 B2r2c2),

X

(12)

We assume that the signal stimulus and the external
noise both go through a nonlinear transducer function
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Fig. 5.

in a central Gabor detection task for three observers each at three different performance levels:
X’s indicate thresholds at 75% correct, and O’s indicate thresholds at 85% correct.
The solid curves are generated with the parameters of the best-fitting PTM model.

threshold estimation.

tween performance levels versus external noise contrast for each of the three observers.
the geometric mean of all the threshold ratios across external noise levels for each observer.

dicted ratios from the noisy LAM.

(a)-(c) Threshold contrast (rms contrast of the Gabor) versus external noise level (rms contrast of the Gaussian random noise )

—’s indicate thresholds at 65% correct,
Error bars indicate the standard deviation of each
(d)-(f) Threshold ratio be-
The solid horizontal lines in each graph depict
The dashed horizontal lines denote pre-
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Fig. 6. (a) Noisy PTM. There are five major components: (1) a
perceptual template, (2) nonlinear transducer functions, (3) a
multiplicative internal noise source, (4) an additive internal
noise source, and (5) a decision process. A good example of a
perceptual template is a spatial-frequency filter F(f ), with a cen-
ter frequency and a bandwidth such that a range of frequencies
adjacent to the center frequency passes through with smaller
gains. The nonlinear transducer function takes the form of an
expansive power function. Limitations of human observers are
modeled as equivalent internal noise. Multiplicative noise is an
independent noise source whose amplitude is proportional to the
(average) amplitude of the output from the perceptual template.
Additive internal noise is another noise source whose amplitude
does not vary with signal strength. Both multiplicative and ad-
ditive noises are added to the output from template matching,
and the noisy signal is the input to a task-appropriate decision
process. (b) Log(c,) plotted as a function of the standard devia-
tion of the external noise for three fixed threshold levels (d’
= 1.0,1.41,2.0).

(II-I”2) before their total energy is computed. We have
chosen this particular form of multiplicative noise with-
out cross terms for computational simplicity. For the
data set reported in this paper, including cross terms in
multiplicative noise did not lead to substantially different
model estimates.

Note that the formulation of multiplicative noise is
mathematically equivalent to a theory of contrast gain
control 33562

4. Additive Internal Noise

As in the simple LAM, to model human limitations at de-
tection threshold we postulate an independent additive
noise source whose amplitude does not vary with signal
strength. Independent additive noise is modeled as a
Gaussian random variable with mean 0 and standard de-
viation Nadd .

5. Decision Process

A noisy signal, quantitatively characterized by B8, S’,
Oext > Omuls> Tadd> Y1, and ys, is submitted to a decision
process. The details of the decision process depend on
the particular task, e.g., detection versus identification.
These are modeled elsewhere.®® In this paper we exclude
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stimulus uncertainty effects in the decision process for
identification. This approach follows Burgess’s?® demon-
stration that identification performance made nearly
ideal use of matched filters. We focus on the signal-to-
noise ratio.

B. Threshold Predictions for White Gaussian External
Noise
In this section we describe how an observer’s perceptual
threshold depends on the amplitude of the external noise
added to the signal in the PTM.

Signal discriminability, d’, is determined by the
strength of the signal, S’, and the standard deviation of
the total noise (external and internal), oy :

d'=8S'loy. (13)

The signal strength is given by Eq. (10b). Since all the
noise sources (external, multiplicative, and additive
noises) in the PTM are independent,®35%2 the total vari-
ance of the noise % is the sum of the variances of all the
noise sources:

2 12 2 2
on Text + T mul + T add

N2 o4 anul(ﬁ»??zc%/z + Niz/tz) + Nidd' (14)

ext

Combining these facts [Egs. (10b), (13), and (14)] gives
Ighc 71

= 2 92 2 2 )
[NZ + Noa(B272272 + N272) + Niggl”

ext

d/
(15)

The external noise in the stimulus had a Gaussian dis-
tribution. After nonlinear transduction, the distribution
of the external noise might deviate from the Gaussian dis-
tribution. However, spatial and temporal summation in
the perceptual system (see Ref. 61) should reduce this de-
viation. When the external noise is combined with addi-
tive and multiplicative noises, both of which are Gaussian
distributed, we assume that the sum of the noises is ap-
proximately Gaussian. However, we restrict ourselves to
performance levels below 90% so as to avoid the tails of
the distribution. The Gaussian assumption is not central
to the development of the PTM outlined above, but it does
simplify the application to signal detection estimation:
The Gaussian noise distribution allows us to use the
Gaussian form of signal detection calculations.

In the special case in which y = y; = vy, (correspond-
ing to the situation in which the rising portion of the
threshold versus external noise function has a slope of
1.0), we can rearrange Eq. (15) to express the required
threshold signal contrast ¢, as a function of the amount of

external noise for a fixed d’:
1[(1 + NZDNZL + N2 ">

B Vd'? — N?

mul

c,= (16)

Figure 6(b) plots log(c,) as a function of the log of the
standard deviation of the external noise for three fixed
threshold levels (d’ = 1, 1.41, 2.0). The threshold ver-
sus external noise functions have properties very similar
to those derived from the simple LAM: (1) When the ex-
ternal noise N, is small, threshold signal contrast c, in-
creases only slightly with the amount of external noise;
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(2) When the external noise N is very large, log(c,) in-
creases directly as a linear function of log external noise;
(3) There is a smooth transition when external noise is
comparable with internal noise.

C. Threshold Ratio between Two Performance Levels
for a Given External Noise Contrast

The threshold ratio at each external noise level between
two performance levels, derived from Eq. (16), is
c1 ( 1/dy: - N2 )”“

mul

1/d}> - N2

mul

— = am
Co

Thus, for two performance levels, the ratio between the
thresholds at each external noise level is predicted to be a
constant, independent of the external noise level. We
have introduced two extra free parameters, y and N,
in the threshold ratios, which could, in principle, vary
across observers.

From Eq. (17) it follows that, to fully characterize the
elaborated PTM, we need to estimate at least two thresh-
old ratios: threshold versus external noise contrast func-
tions at three performance levels. This corresponds to
the data reported for both experiments 1 and 2. This re-
quirement could also easily be satisfied by some of the ex-
isting data in the literature on equivalent internal noise if
several points on the psychometric functions can be com-
puted from the data. Thus the PTM and the analytical
approach developed in this section provides an easy way
to interpret the data in the previous literature without
any requirement for new experimentation.

5. APPLICATION OF THE PERCEPTUAL
TEMPLATE MODEL

In this section we apply the PTM to the data in experi-
ments 1 and 2.5 We also compare the quality of the
PTM fit to that of the noisy LAM.

A. Estimation Procedure

Our estimation procedure was implemented in MATLAB®?
and was applied separately to each data set for each ob-
server separately for the two experiments. The proce-
dure consists of

1. Solving the following equations [derived from Eq.
(17)] for yand N :

1/1.34902 — N2

mul

(1/0.77062 - N?mﬂ)”%
1= )

1/1.3490% — N 2 |\V27
2 = s (17a)

1/2.07292 — N2

mul

where %k, is the geometric mean of threshold ratio be-
tween correct-performance levels of 75% (corresponds to
d' = 1.3490) and 65%  (corresponds to d’
= (.7706) across external noise levels for a given ob-
server and k4 is the geometric mean of threshold ratio be-
tween correct-performance levels of 85% (corresponds to
d' = 2.0729) and 75% (corresponds to d’
= 1.3490) across external noise levels for a given

observer®;
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2. Given y and N,,, using Eq. (16) to compute
log(c'h*™) from the PTM with guessed parameters
(N ,q4q and B) for each external noise contrast level,

3. Computing the squared difference between the log
threshold prediction from the model and the observed
sqdiff = [log(c!"®™) — log(c,)J? for each external noise
condition®”;

4. Computing L: summation of sqdiff from all the ex-
ternal noise conditions;

5. Using a gradient descent method to adjust N,4q
and B to find the minimum of L;

6. After obtaining the least L, computing the r2 sta-
tistic to evaluate the goodness of the model fit:

> [og (ctheo™) — log (c,)]?

r2=1.0 - , (18)
> {log(c,) — mean[log (c,)]}?

where X and mean () run over all the data points for a
particular observer in an experiment.

Similar steps were used to fit the noisy LAM to the
data. The only difference between the two procedures is
that, in the LAM, y was fixed at 1, and N, 5 was set to 0.
Hence the LAM is a nested (reduced) model with respect
to the PTM.

B. Results
Estimated parameters for each observer from both the
noisy LAM and the PTM are listed in Tables 1 and 2 for
experiments 1 and 2, respectively. The models were fit-
ted to the threshold estimates at the three d’ levels.

A special variant of the PTM with 7y set to 1.0 was also
considered. When y = 1.0, from Eq. (17), we have
(01)2 1/dy® — N2

mul

T UdZ-NZ,

mul

— (17b)
Co

When N,,=0, (ci/cy)? has its minimum value:
(di/dy)?. In both experiments, we have shown that the
measured (c/cy) value is less than (di/d;). Thus, in fit-
ting the PTM with y = 1.0, the property of Eq. (17b) re-
quires that N, be zero to achieve its minimum value.
Thus this special variant of the PTM with y = 1 is the
same as the LAM, with an extra useless free parameter
N that is constrained to be 0. Computer fits of this
model resulted in exactly the same solution as that of the
LAM.

The PTM gives a much better account of the data. We
used an F-test for nested models to statistically compare
the two models. Defining the PTM as the fully saturated
model and the LAM as the reduced model, we have

(r%ull - r?educed)/dfl
(1 - r%uu)/de

where df; = kg — Rreduced and dfy = N — kgy — 1.
The % values are the number of parameters in each model,
and N is the number of predicted data points. For these
threshold data estimated from the Weibull, N = 27, the
number of parameters in the full PTM kg, = 4, and the
number of parameters in the reduced LAM % ,.quced = 2-
The r2, and rZ, .4 values are taken from the PTM fit

F(df1,dfs) = ) (19)
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Table 1. Best-Fitting LAM and PTM Parameters and Model Comparison (Experiment 1)

Subject Model ky ko Nou y N.aa B r? F(2, 22) p
QL LAM 1.7506 1.5366 0 1 0.07383 6.217 0.8116
PTM 1.2579 1.2101 0.1979 2.55 0.001163 4.939 0.9889 175.7 2.96 X 107 1*
SM LAM 1.7506 1.5366 0 1 0.1077 5411 0.6540
PTM 1.2413 1.1967 0.2002 2.71 0.001756 4.038 0.9595 82.98 5.65 x 10711
ZL LAM 1.7506 1.5366 0 1 0.09431 8.328 0.7923
PTM 1.2928 1.2379 0.2149 2.30 0.003734 6.602 0.9672 58.66 1.52 x 1079
Table 2. Best-Fitting LAM and PTM Parameters and Model Comparison (Experiment 2)
Subject Model kq ko Noua y N a4 B r? F(2, 22) p
QL LAM 1.7506 1.5366 0 1 0.1035 11.06 0.7844
PTM 1.3132 1.2541 0.2004 2.15 0.006622 8.825 0.9751 84.25 4.88 x 1071
SM LAM 1.7506 1.5366 0 1 0.09862 5.798 0.7649
PTM 1.2793 1.2271 0.2020 2.38 0.003426 4.545 0.9694 73.51 1.82 x 10710
ZL LAM 1.7506 1.5366 0 1 0.07866 8.816 0.8830
PTM 1.3461 1.2801 0.1995 1.97 0.006209 7.339 0.9904 123.1 1.13 x 10712

and the LAM fit, respectively. This test evaluates
whether the LAM fit is of a significantly worse quality.
The values of F(2,22) were 175.7, 82.98, and 58.66 for
subjects QL, SM, and ZL (all p < 10™%) in experiment 1.
The values of F(2,22) were 84.25, 73.51, and 123.1 for
subjects QL, SM, and ZL (all p < 2 X 107! in experi-
ment 2. Hence the noisy LAM can be rejected in favor of
the PTM. This conclusion follows from the failure in ra-
tio tests described above.

Across all six data sets reported in this paper, the ex-
ponent vy ranges between 1.97 and 2.71. vy values esti-
mated from the data in experiment 1 were, in general,
larger (2.30-2.71) than those estimated from the data in
experiment 2 (1.97-2.38). This small though systematic
variation of y between the two experiments may reflect
some intrinsic bias in the experiments: The threshold
values found in identification experiments tend to be
larger than those found in detection experiments.

The estimated y values in both experiments (the mean
vis 2.52 in experiment 1 and 2.17 in experiment 2) would
give rise to nonlinear transducer functions that are very
similar to those assumed in pattern masking
models 32333547 This suggests that similar neural
mechanisms are involved in white-noise masking and pat-
tern masking.

An alternative approach to testing the LAM and the
PTM evaluates their ability to directly predict the full
psychometric functions. For both models, the psycho-
metric functions take on the form G(d’'/2), where G() is
cumulative Gaussian. As noted above, this requires that
the psychometric function associated with the LAM be a
cumulative Gaussian on ¢, with u = 0 (signal contrast).
However, the psychometric function associated with the
PTM is a cumulative Gaussian on a somewhat complex
function of ¢”.

Full sets of maximum-likelihood fits were performed on
the psychometric functions for both the LAM and the
PTM. The results of these model fits corresponded

closely to those reported above, on the basis of only three
threshold levels. This confirms the claim that three
threshold levels provide a sufficient test of the model.
Estimated parameter values of the direct fits to the psy-
chometric functions were very close to those listed in
Tables 1 and 2. Over experiments and observers, the
mean r2 for the LAM was 0.6756, while the mean r? for
the PTM was 0.8657. The latter value is remarkable be-
cause it approaches the mean r2 for the Weibull fits of
0.8818. The Weibull fits were free to vary parameters in-
dependently for each external noise level, while the PTM
must fit all external noise levels with the same param-
eters. Consistent with Tables 1 and 2, each comparison
rejected the LAM in favor of the PTM (p < 0.0001).

6. RELATIONSHIP BETWEEN THE
PRESENT MODEL AND OTHER RELATED
MODELS

Parallel to our development of the PTM model, Eckstein
et al.%% independently proposed another elaborated LAM
(the EAW model) to account for human performance in
M-alternative (M = 4 in their experiments) forced-choice
signal detection in white Gaussian noise added to various
background patterns. The EAW model differs from the
PTM in several key respects: (1) The EAW model as-
sumes no nonlinear transducer functions; (2) the ampli-
tude of the multiplicative internal noise in EAW is pro-
portional only to the power of the external noise, while
the amplitude of the multiplicative internal noise in the
PTM is a function of both the amplitude of the signal and
the amplitude of the external noise; (3) the decision pro-
cess in the EAW model is affected by stimulus uncer-
tainty, while the PTM assumes that, at least in the case of
tasks involving a single stimulus location and known sig-
nals, the observer uses the best-matching template with-
out additional stimulus uncertainty. In the case of mul-
tiple external locations or of an increase in the number of
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possible signals, the PTM would require uncertainty ex-
tensions consistent with an ideal observer. However, the
PTM does not invoke uncertainty as a free parameter of
observer inefficiency, as does the EAW model.

Although the PTM and the EAW model are quite dif-
ferent conceptually, the mathematical properties of the
two models are very similar.®® This is not surprising, be-
cause it was recognized early in the auditory literature
that the energy detection model (a nonlinear transducer)
for tone detection can predict performance similar to that
of the phase-uncertain observer.®® The mathematical
properties of the nonlinear transducer functions in the
PTM are well approximated by the properties of the
equivalent uncertainty process in the EAW model over a
large range of d’ levels. In fact, in the d’' range 0.79
< d' < 2.50, where data were collected, both in the
present paper and in Eckstein et al.,’® the two models
may account for all the data essentially equally well (see
Appendix A for details).

However, the two models do make different predictions
when the d' levels involved are very small (d' =~ 0.5):
While the PTM, in its current form, predicts that the
threshold ratio between two d’ criteria at each external
noise level is independent of the particular external noise
level, the EAW model induces changes in ratios at small
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d' values under stimulus uncertainty. This suggests a
potential method for distinguishing the two models. In
the d' range in which data were available in three rather
different experimental conditions, both the data and the
model provided by Eckstein et al.?° confirm the constant-
ratio prediction. Although experiments aimed at d’
< 0.5 are technically demanding, such an experiment
might distinguish the two models.

The choice of nonlinear transducer function versus de-
cision uncertainty as a free parameter thus reflects differ-
ent approaches to the problem. We prefer the nonlinear
transducer function approach for the following reasons:

1. Nonlinear transducer functions are a key compo-
nent of models accounting for pattern masking data.3%33
Noise masking models should be, in principle, similar to
pattern masking models because the same neural sub-
strates are involved in both tasks;

2. The concept of a nonlinear transducer function is
consistent with nonlinear properties of visual neurons?;

3. In stimulus identification by well-practiced observ-
ers, previous evidence suggests that stimulus uncertainty
does not appear to play a major role.?® For example,
Burgess?® demonstrated that in ten-alternative forced-
choice identification a model utilizing the best-matching

Table 3. r2 Values for Best-Fitting EAW Models

Data Uncertainty U PTM
U= U= U= U=3 U=14 U= U= U=
qll 0.8116 0.8764 0.9042 0.9201 0.9302 0.9369 0.9425 0.9456 0.9889
sml 0.6540 0.7721 0.8234 0.8529 0.8719 0.8845 0.8954 0.9013 0.9595
z11 0.7923 0.8786 0.9145 0.9345 0.9469 0.9549 0.9615 0.9650 0.9672
ql2 0.7845 0.8655 0.8986 0.9167 0.9276 0.9346 0.9402 0.9432 0.9751
sm2 0.7649 0.8592 0.8989 0.9213 0.9353 0.9444 0.9521 0.9561 0.9694
z12 0.8831 0.9360 0.9568 0.9677 0.9741 0.9779 0.9809 0.9824 0.9904
U= U= U=10 U=11 U=12 U=13 U=14 U=15
qll 0.9477 0.9516 0.9527 0.9553 0.9566 0.9569 0.9581 0.9597 0.9889
sml 0.9054 0.9130 0.9151 0.9203 0.9230 0.9235 0.9260 0.9293 0.9595
zl1 0.9674 0.9717 0.9728 0.9755 0.9769 0.9771 0.9787 0.9797 0.9672
ql2 0.9452 0.9485 0.9494 0.9515 0.9525 0.9526 0.9534 0.9544 0.9751
sm2 0.9590 0.9640 0.9654 0.9687 0.9704 0.9707 0.9721 0.9741 0.9694
z12 0.9834 0.9848 0.9852 0.9859 0.9862 0.9862 0.9864 0.9866 0.9904
U =20 U =30 U =40 U =50 U =60 U="170 U =80 U =90
qll 0.9622 0.9649 0.9662 0.9669 0.9671 0.9673 0.9674 0.9674 0.9889
sml 0.9344 0.9406 0.9436 0.9455 0.9463 0.9470 0.9476 0.9479 0.9595
zI1 0.9818 0.9836 0.9839 0.9837 0.9835 0.9831 0.9824 0.9820 0.9672
ql2 0.9556 0.9561 0.9556 0.9547 0.9540 0.9533 0.9522 0.9514 0.9751
sm2 0.9769 0.9797 0.9806 0.9809 0.9809 0.9808 0.9804 0.9801 0.9694
z12 0.9863 0.9852 0.9838 0.9824 0.9815 0.9805 0.9792 0.9783 0.9904
U = 100 U = 200 U = 300 U = 400 U = 500 U = 600 U = 1700 U = 800
qll 0.9674 0.9667 0.9660 0.9653 0.9647 0.9643 0.9640 0.9637 0.9889
sml 0.9480 0.9481 0.9476 0.9468 0.9462 0.9457 0.9453 0.9449 0.9595
zl1 0.9816 0.9784 0.9763 0.9742 0.9729 0.9719 0.9711 0.9704 0.9672
ql2 0.9509 0.9464 0.9437 0.9411 0.9394 0.9382 0.9373 0.9363 0.9751
sm2 0.9799 0.9773 0.9756 0.9738 0.9727 0.9717 0.9711 0.9704 0.9694

z12 0.9777 0.9729 0.9702 0.9677

0.9661 0.9650 0.9641 0.9632 0.9904
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Fig. 7. d’ versus number of uncertainty channel U functions at
three observed performance levels (65%, 75%, and 85%) in a two-
alternative forced-choice decision task.

template for each of the alternative stimuli without any
additional uncertainty loss accounted for 94% of the vari-
ance in human performance. In a recent perceptual
learning experiment studying Gabor orientation identifi-
cation in peripheral vision, Dosher and Lu’® demon-
strated that the threshold ratio between two d’ levels at
all the external noise levels for each observer is constant
across days, even though the thresholds themselves were
improved by a factor of almost 3. This indicates that any
hypothetical uncertainty effects, counter to expectations,
were unchanged over substantial improvements in perfor-
mance. In contrast, it is reasonable to assume that non-
linear transducer functions (as in the PTM) may be unaf-
fected by practice;

4. To account for their data, Eckstein et al. had to
vary the degree of uncertainty for different external noise
levels for the same observer in the same experiment in
nonsystematic ways. Furthermore, the EAW model fits
are essentially equivalent for a wide range of values of
uncertainty U; the EAW model is not sharply tuned on U,
a consequence of the flatness of the percent correct versus
U function (see Fig. 7). The PTM, by contrast, uses a
single nonlinearity |-||” to account for the data across all
levels of external noise;

5. In accounting for the data in the present paper, the
best-fitting EAW models (Appendix A) require that U be
fairly large, in the range of 20-200 (Table 3). Current
models of early visual systems specify fewer visual
channels.”1-™

7. CONCLUSIONS

In this paper we examined the noisy linear amplifier
model (LAM), which is widely used to interpret data from
equivalent internal noise experiments, by testing its pre-
diction that the ratio between two thresholds at each
given external noise contrast should be equal to the ratio
of the corresponding d’ values for all the observers and
noise levels. We demonstrated in two experiments that
this prediction was not confirmed. Direct fits of the LAM
were also relatively poor, and the observed psychometric
functions were incompatible with the required cumulative
Gaussian form. The perceptual template model?®-3!
(PTM) is an elaboration of the LAM, with two additional
components: nonlinear transducer function, and multi-
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plicative noise. The PTM provides a good account of the
data. It accommodates the observed threshold ratios
while still predicting the equivalence of ratio over exter-
nal noise levels; it fit the three threshold data and yielded
a good direct fit to the full psychometric functions. The
PTM is a feasible alternative to the recently developed
EAW model. Earlier studies based on the simple noisy
LAM may require reinterpretation. Moreover, the PTM
and the new estimation techniques developed in this pa-
per provide an easy method of reanalysis that could be ap-
plied to all the existing data where three or more perfor-
mance levels were measured.

APPENDIX A: COMPARING THE
PERCEPTUAL TEMPLATE MODEL WITH
THE ECKSTEIN-AHUMADA-WATSON
MODEL

Following the request of an anonymous referee, here we
briefly describe the EAW model and the procedure and
the results of fitting the EAW model to our data.

1. Eckstein—Ahumada—Watson Model

The EAW model consists of two equations. The first ex-
presses d’ as a function of the rms signal contrast c, the
standard deviation of the external noise N, and the co-

efficient for the multiplicative noise component N,

C

- (N2a+ N2y + NZuN2Z)Y

ext ext,

d’ (A1)

Thus, for a given d’,
c,=d'(N23+ N2, + N2 ,N2)"2  (Ala)

ext ext

In log form,

log(c,) = log(d') + 1/2log(N 243 + N2, + N2 /N2,).
(Alb)

The second equation of the EAW model converts the in-
ternal d’ measure to percent-correct performance. To
detect a signal at one of M locations, intervals, or alterna-
tives, each with U additional hidden channels, we can ex-
press observed percent correct (Pc) as a function of M, U,
and d':

Pe(M,U,d’) = Jw [g(x — d")G(x)MI+D1

+ Ug(x)G(x)MITV2G(x — d')]dx.
(A2)

2. Procedure
To make a fair comparison of the PTM and the EAW
model, we fitted the EAW model to the contrast threshold
versus external noise function at three performance levels
(65%, 75%, and 85% correct) with one set of parameters
for each observer in each experiment. Because the con-
version between Pc and d' is a function of U, which is free
to vary, we fitted the EAW model with a range of U val-
ues.

For a given U, the computational procedure consists of
two steps:
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1. Compute the corresponding d’ value for each of the
performance levels. In our particular experiments, M
= 2. For a fixed Pc and U,, e.g., Pc(2,U,,d’) = 75%,
we can numerically solve Eq. (A2) for d’. Calculations
for a range of U values yield a table that lists d' as a func-
tion of U for a given percent-correct performance level.
Figure 7 plots d’ as a function of U for three fixed levels of
Pc values (65%, 75%, 85%). Thus, for each observer in
each experiment, we can express the measured threshold
contrast as a function of external noise and d’ levels;

2. Fit Eq. (Alb) to find the best model parameters
Naaa» Ny for each U, using a least-squares criterion; r2
is computed with Eq. (18).

3. Results

The purpose of this computation is to compare the perfor-
mance of the PTM and the EAW model. Table 3 lists the
r? value of the best-fitting EAW model for each data set
for a range of U values. We also list the 2 value for the
corresponding PTM fits.

Several conclusions can be drawn from this computa-
tional exercise. First, the PTM and the EAW model ac-
count for the data almost equally well. For the explicitly
considered U values, the PTM is better in four out of six
data sets. Second, the best-fitting EAW model tends to
have very large U values, in the range of 20-200. Not
only are these U values outside the range considered by
Eckstein et al. (maximum, U = 3), they also seem to be
too large to be physiologically meaningful. Third, the
EAW model does not sharply constrain the estimate of U
in all but the smallest U values. This is a consequence of
the flatness of the Pc versus U function for U values above
10.

For a subset of U values, we also performed fits of the
EAW model directly to the full psychometric functions.
These fits yielded results consistent with those reported
for fits to three threshold levels. Additionally, the com-
parisons of the quality of the EAW model fits and of the
PTM fits directly to the psychometric functions preserved
the same patterns as those shown in Table 3.
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