
Characterizing Hypervisor Vulnerabilities
in Cloud Computing Servers

Diego Perez-Botero, Jakub Szefer and Ruby B. Lee
Princeton University, Princeton, NJ, USA

diegop@cs.princeton.edu, {szefer,rblee}@princeton.edu

ABSTRACT
The rise of the Cloud Computing paradigm has led to secu-
rity concerns, taking into account that resources are shared
and mediated by a Hypervisor which may be targeted by
rogue guest VMs and remote attackers. In order to better
define the threats to which a cloud server’s Hypervisor is
exposed, we conducted a thorough analysis of the codebase
of two popular open-source Hypervisors, Xen and KVM, fol-
lowed by an extensive study of the vulnerability reports as-
sociated with them. Based on our findings, we propose a
characterization of Hypervisor Vulnerabilities comprised of
three dimensions: the trigger source (i.e. where the attacker
is located), the attack vector (i.e. the Hypervisor functional-
ity that enables the security breach), and the attack target
(i.e. the runtime domain that is compromised). This can
be used to understand potential paths different attacks can
take, and which vulnerabilities enable them. Moreover, most
common paths can be discovered to learn where the defenses
should be focused, or conversely, least common paths can be
used to find yet-unexplored ways attackers may use to get
into the system.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, Availability,
and Serviceability; D.4.6 [Operating Systems]: Security
and Protection—Invasive Software

Keywords
Hypervisor Vulnerabilities; Vulnerability Categorization;
Attack Vectors; Secure Cloud Computing; Virtualization

1. INTRODUCTION
Virtual Machines (VMs) have become commonplace in

modern computing, as they enable the execution of multiple
isolated Operating System instances on a single physical ma-
chine. This increases resource utilization, makes administra-
tive tasks easier, lowers overall power consumption, and en-
ables users to obtain computing resources on demand. Vir-
tualized environments are usually implemented with the use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudComputing’13, May 8, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-2067-2/13/05 ...$15.00.

of a Hypervisor, which is a software layer that lies between
the Virtual Machines (VMs) and the physical hardware. The
Hypervisor allocates resources to the VMs, such as main
memory and peripherals. It is in charge of providing each
VM with the illusion of being run on its own hardware, which
is done by exposing a set of virtual hardware devices (e.g.
CPU, Memory, NIC, Storage) whose tasks are then sched-
uled on the actual physical hardware. These services come
at a price: Hypervisors are large pieces of software, with
100,000 lines of code or more. As a result, researchers have
been tackling security concerns of traditional Hypervisors,
e.g. [22], further motivated by numerous bug reports dis-
closed for popular Hypervisors (e.g. Xen, KVM, OpenVZ)
in a variety of software vulnerability databases, including
SecurityFocus [20] and NIST’s Vulnerability Database [15].

While the databases provide a plethora of information,
not much analysis of the information has thus far been per-
formed. Our work aims to fill this gap through an extensive
study of the vulnerability reports associated with Xen and
KVM.

The goal of this paper is to characterize the security vul-
nerabilities of Hypervisors, based on real attacks. Our key
contributions are:

1. Three classifications for Hypervisor vulnerabilities based
on (1) the Hypervisor functionality where the vulnera-
bility arises, (2) the source that triggers such vulnera-
bility, and (3) the target that is affected by the security
breach.

2. An integration of these three classifications to:

(a) Show potential attack paths (Section 6).
(b) Understand existing attacks (Section 7.1).
(c) Help focus defenses (Section 7.2).
(d) Assist in the discovery of new attacks

(Section 7.3).

The rest of the paper is organized as follows. Section 2
provides background on Hypervisors. Section 3 gives a high-
level view of Hypervisor vulnerabilities. Sections 4, 5 and 6
describe our extensive analysis and classification of Hyper-
visor vulnerabilities and potential attack paths. Section 7
describes an existing attack, and some Hypervisor defenses
that have been proposed. Section 8 discusses related work.
We conclude in Section 9.

2. BACKGROUND ON HYPERVISORS
The virtualization marketplace is comprised of both ma-

ture (e.g. VMWare and Xen) and up-and-coming (e.g. KVM
and Hyper-V) participants. Of the four main Hypervisor of-
ferings, which take up 93% of the total market share [8],

3

two are closed-source (VMWare and Hyper-V) and two are
open-source (Xen and KVM). Recent surveys [8, 9] suggest
that the number of different Hypervisor brands deployed in
datacenters is broad and expanding, with a multi-Hypervisor
strategy becoming the norm. As such, the percentage of dat-
acenters actively using a specific Hypervisor to host client
VMs is known as that Hypervisor’s presence. Under that
definition, VMWare has a total presence of 81%, and 52%
of the datacenters use it as their primary Hypervisor, fol-
lowed by Xen (81% presence, 18% as primary), KVM (58%
presence, 9% as primary), and Microsoft’s Hyper-V (43%
presence, 9% as primary) [8, 9].

We decided not to study VMWare and Hyper-V because of
the dearth of public knowledge about their internals. Public
Code Vulnerabilities and Exposures (CVEs) for VMWare
are always from an outsider’s perspective. As such, most
of those CVEs focus on network attacks targeting remote
management software (e.g. Cross-Site Scripting in CVE-
2012-5050). Meanwhile, we were only able to find three
CVEs for Hyper-V (i.e. CVE-2011-1872, CVE-2010-3960
and CVE-2010-0026), which does not constitute a represen-
tative sample set. Consequently, we have decided to focus on
Xen and KVM. Considering Xen’s and KVM’s influence over
the virtualization marketplace, with 81% and 51% datacen-
ter presence respectively, understanding their vulnerabilities
can benefit millions of users worldwide.

Below, we briefly summarize Xen’s and KVM’s architec-
tural traits and their different Hypervisor designs.

2.1 Xen
Xen is a very well-known Open Source Hypervisor, in use

since 2003. As shown in Figure 1, Xen is a Type-I (bare
metal) Hypervisor, running directly on top of the hardware
and managing all of the host’s resources. It also has a priv-
ileged VM named Dom0, which carries out all of the VM
management actions (e.g. start, stop and migrate guest
VMs). The Dom0 VM is a full custom-tailored Linux kernel
that is aware of the Xen deployment, whereas the normal
guest VMs usually run in full virtualization mode (HVM
mode), which emulates the entire system (i.e. BIOS, HDD,
CPU, NIC) and does not require any modifications to the
guest OS. In addition to basic administrative tasks, Dom0
exposes the emulated devices by connecting an instance of
a device emulator (i.e. QEMU) to each guest VM.

Figure 1: Xen Architecture.

2.2 KVM
KVM is a relatively new open-source project, which dates

back to Red Hat’s acquisition of Qumranet in 2008. Its
adoption has spiked since it was made part of the main
Linux kernel branch starting from version 2.6.20, becom-
ing the main virtualization package in Ubuntu, Fedora, and
other mainstream Linux operating systems. From Figure
2, one can identify many differences with Xen. Each guest
VM runs as a separate user process and has a correspond-

ing QEMU device emulation instance running with it. The
Hypervisor itself runs as a module inside a host Operating
System, which makes KVM a Type-II (hosted) Hypervisor.

Figure 2: KVM Architecture.

3. OVERVIEW OF VULNERABILITIES
We searched a set of well-known vulnerability databases

for reports regarding KVM and Xen: NIST’s National Vul-
nerability Database (NVD) [15], SecurityFocus [20], Red
Hat’s Bugzilla [17] and CVE Details [3]. Fortunately, all
vulnerability reports are assigned a unique CVE Identifier
by a CVE Numbering Authority (CNA) and all CNAs use
the MITRE Corporation as an intermediary to guarantee
the uniqueness of their identifiers, making it easy to elimi-
nate duplicate reports. According to the CVE reports, 59
vulnerabilities have been identified in Xen and 38 in KVM
as of July 15, 2012.

Successful exploitation of a vulnerability leads to an at-
tack, which can hinder the Confidentiality, Integrity, or Avail-
ability of the Hypervisor or one of its guest VMs. Each CVE
report explicitly indicates the type of security breach that it
can lead to as a combination of those three security proper-
ties. Roughly 50% of vulnerabilities reported so far can lead
to security breaches in all three fronts. The second most
common effect of exploiting these vulnerabilities is to only
pose a threat to the availability of the Hypervisors (Denial
of Service).

4. HYPERVISOR FUNCTIONALITIES
AS ATTACK VECTORS

To better understand the different vulnerabilities, we con-
sidered 11 functionalities that a traditional Hypervisor pro-
vides and mapped vulnerabilities to them:

1. Virtual CPUs
2. Symmetric Multiprocessing (SMP)
3. Soft Memory Management Unit (MMU)
4. Interrupt and Timer Mechanisms
5. I/O and Networking
6. Paravirtualized I/O
7. VM Exits
8. Hypercalls
9. VM Management (configure, start, pause and stop VMs)

10. Remote Management Software
11. Hypervisor Add-ons

Categories 1 through 6 present the virtualized hardware
infrastructure that VMs require to operate properly. VM
Exits and Hypercalls (Categories 7 and 8) are mechanisms
through which VMs can delegate sensitive operations to the
Hypervisor. Category 9 deals with facilities needed by the
Hypervisor to manage VM state. Category 10 deals with
non-essential remote management, while Category 11 allows
optional add-on modules to the Hypervisor. We further ex-
plain these categories below, and describe an actual attack
from a CVE report. The CVE reports mentioned through-
out this section are readily available online.

4

1© Virtual CPUs: A set of virtual CPUs (vCPUs) is as-
signed to each guest VM being hosted by a Hypervisor.
The state of each of these vCPUs is saved to and loaded
from their respective VM’s Virtual Machine Control Struc-
ture (VMCS) guest-state area. Since vCPUs must mirror a
physical CPU’s actions for each and every machine language
instruction, the Hypervisor must handle register states ap-
propriately and schedule vCPU tasks to the physical CPUs
while making any necessary translations back and forth.

CVE-2010-4525 is an example of a disclosure of Hyper-
visor memory contents through vCPU registers because of
an incomplete initialization of the vCPU data structures,
where one of the padding fields was not zeroed-out. Given
that the memory for the data structure is allocated in kernel
space, the padding field might end up containing informa-
tion from data structures previously used by the Hypervisor.

2© Symmetric Multiprocessing (SMP): Hypervisors
can host guest VMs with SMP capabilities, which leads to
the possibility of two or more vCPUs belonging to a single
VM being scheduled to the physical CPU cores in parallel.
This mode of operation adds complexity to the management
of guest VM state and requires additional precautions at the
moment of deciding a vCPU’s Current Privilege Level (CPL,
e.g., Ring 0 or Ring 3).

SMP vulnerabilities arise from Hypervisor code making
assumptions that only hold true on single-threaded processes.
For example, CVE-2010-0419 refers to a bug that permitted
malicious Ring 3 processes to execute privileged instructions
when SMP was enabled because of the presence of a race
condition scenario. To do so, they would invoke a legitimate
I/O instruction on one thread and attempt to replace it with
a privileged one from another thread right after KVM had
checked its validity, but before it was executed.

3© Soft MMU: Guest VMs cannot be granted direct ac-
cess to the MMU, as that would allow them to access mem-
ory belonging to the Hypervisor and other co-hosted VMs.
Under the absence of a virtualization-aware hardware MMU,
such as Extended Page Tables (EPT), a Soft MMU is run
by the Hypervisor to maintain a shadow page table for each
guest VM. Every page mapping modification invoked by a
VM is intercepted by the Soft MMU so as to adjust the
shadow page tables accordingly.

Vulnerabilities in the Soft MMU’s implementation are dan-
gerous because they may lead to the disclosure of data in
arbitrary address spaces, such as a co-hosted guest VM’s
memory segment or the Hypervisor’s memory segment. In
the specific case of CVE-2010-0298, KVM’s emulator always
uses Ring 0 privilege level when accessing a guest VM’s
memory on behalf of the guest VM’s code. Given that
MMIO instructions are emulated, an unprivileged (Ring 3)
application running inside a VM could leverage access to an
MMIO region (e.g. framebuffer) to trick KVM into execut-
ing a malicious instruction that modifies that same VM’s
kernel-space memory.

4© Interrupt and Timer Mechanisms: A Hypervisor
must emulate the interrupt and timer mechanisms that the
motherboard provides to a physical machine. These include
the Programmable Interval Timer (PIT), the Advanced Pro-
grammable Interrupt Controller (APIC), and the Interrupt
Request (IRQ) mechanisms.

In the case of CVE-2010-0309, lack of validation of the
data contained in the PIT-related data structures enabled a
rogue VM to cause a full host OS crash, a serious denial-of-
service attack.

5© I/O and Networking: The Hypervisor also emulates
I/O and networking. Xen and KVM make device emulation
possible through division of labor, by having two types of
device drivers. Front-end drivers reside inside the guest VMs
and run in Ring 0, providing the usual abstraction that the
guest OS expects. Nonetheless, those drivers cannot access
physical hardware directly, given that the Hypervisor must
mediate user accesses to shared resources. Therefore, front-
end drivers communicate with back-end drivers, which have
full access to the underlying hardware, in order to fulfill
the requested operations. In turn, back-end drivers enforce
access policies and multiplex the actual devices. KVM and
Xen employ QEMU’s back-end drivers by default.

Device emulation is usually implemented in higher-level
languages (e.g. C and C++), so the data abstractions are
richer but more dangerous when hijacked. Very elaborate
attacks are enabled by the expressiveness of higher-level lan-
guages like C. For example, CVE-2011-1751 describes a bug
that was used to develop the Virtunoid attack [5]. QEMU
tried to hot-unplug whichever device the programmers de-
sired, regardless of the device’s support for hot-unplugging.
Therefore, the lack of state cleanup by some virtual devices
resulted in use-after-free opportunities, where data struc-
tures that were previously being used by a hot-unplugged
virtual device remained in memory and could be hijacked
with executable code by an attacker.

6© Paravirtualized I/O: paravirtualized VMs run mod-
ified guest kernels that are virtualization-aware and use spe-
cial hypercall APIs to interact with the Hypervisor directly.
Paravirtualization of I/O operations decreases the number
of transitions between the guest VM and the Hypervisor,
resulting in performance gains. This scenario requires spe-
cial front-end and back-end drivers which are not necessarily
developed by the same vendor as the one responsible for reg-
ular device emulation (e.g. QEMU).

Paravirtualized I/O vulnerabilities and emulated I/O vul-
nerabilities are very much alike. They are rooted in the in-
teractions between front-end and back-end drivers, as well
as those between back-end drivers and the outside world.
For instance, CVE-2008-1943 describes a vulnerability in
Xen that allowed paravirtualized front-end drivers to cause
denial-of-service conditions and possibly execute arbitrary
code with Dom0 privileges. This could be done by sending
a malicious shared framebuffer descriptor to trick Xen into
allocating an arbitrarily large internal buffer inside Dom0.

7© VM Exits are the mechanism used by the Hypervisor
to intercept and carry out operations invoked by guest VMs
that require Virtual Machine eXtensions (VMX) root priv-
ileges. These VM-to-Hypervisor interfaces are architecture-
dependent (e.g. different code for x86 than for AMD64) and
are very well specified in the architecture manuals. They
are usually implemented using low-level programming lan-
guages (Assembly or Machine language), relying on restric-
tive bitwise operations. For Intel VT-x, this code is the one
supporting all operations described in chapters 23 through
33 of Intel’s Software Developer’s Manual [10].

5

The fact that VM Exit-handling code does not possess
very rich data structures means that vulnerabilities hardly
have any exploitable effects other than a host or guest VM
crash (Denial-of-Service). For example, all VMCS fields
have a unique 32-bit field-encoding, which rules out com-
mon vulnerabilities that arise from variable-size input, such
as buffer overflows. According to CVE-2010-2938, request-
ing a full VMCS dump of a guest VM would cause the entire
host to crash when running Xen on a CPU without Ex-
tended Page Table (EPT) functionality. The reason for this
was that Xen would try to access EPT-related VMCS fields
without first verifying hardware support for those fields, al-
lowing privileged (Ring 0) guest VM applications to trigger
a full denial-of-service attack on certain hosts at any time.

8© Hypercalls are analogous to system calls in the OS
world. While VM Exits are architecture-specific (e.g. AMD64,
x86), hypercalls are Hypervisor-specific (e.g. Xen, KVM)
and provide a procedural interface through which guest VMs
can request privileged actions from the Hypervisor. Hyper-
calls can be used to query CPU activity, manage Hard Disk
partitions, and create virtual interrupts.

Hypercall vulnerabilities can present an attacker, who con-
trols a guest VM, with a way to attain escalated privileges
over the host system’s resources. Case in point, CVE-2009-
3290 mentions the fact that KVM used to allow unprivi-
leged (Ring 3) guest callers to issue MMU hypercalls. Since
the MMU command structures must be passed as an ar-
gument to those hypercalls by their physical address, they
only make sense when issued by a Ring 0 process. Having
no access to the physical address space, the Ring 3 callers
could still pass random addresses as arguments to the MMU
hypercalls, which would either crash the guest VM or, in the
worst case, read or write to kernel-space memory segments.

9© VM Management functionalities make up the set of
basic administrative operations that a Hypervisor must sup-
port. The configuration of guest VMs is expressed in terms
of their assigned virtual devices, dedicated PCI devices, main
memory quotas, virtual CPU topologies and priorities, etc.
The Hypervisor must then be able to start, pause and stop
VMs that are true to the configurations declared by the
cloud provider. These tasks are initiated by Xen’s Dom0
and KVM’s libvirt toolkit [14].

Kernel images must be decompressed into memory and
interpreted by the management domain when booting up
a VM. CVE-2007-4993 indicates that Xen’s bootloader for
paravirtualized images used Python exec() statements to
process the custom kernel’s user-defined configuration file,
leading to the possibility of executing arbitrary python code
inside Dom0. By changing the configuration file to include
the line shown in Listing 1, a malicious user could trick
Dom0 into issuing a command that would trigger the de-
struction of another co-hosted domain (substituting id with
the victim domain’s ID).

1 d e f a u l t ”+s t r (os . sys tem (”xm dest roy id ”))+”

Listing 1: Contents of /boot/grub/grub.conf for an
attack on Dom0 with a user-provided kernel

10© Remote Management Software: These pieces of soft-
ware are usually web applications running as a background
process and are not essential for the correct execution of the

virtualized environment. Their purpose is generally to facil-
itate the Hypervisor’s administration through user-friendly
web interfaces and network-facing virtual consoles.

Vulnerabilities in these bundled applications can be ex-
ploited from anywhere and can lead to full control over the
virtualized environment. For example, CVE-2008-3253 de-
scribes a Cross-Site Scripting attack on a remote adminis-
tration console that exposed all of Xen’s VM management
actions to a remote attacker after stealing a victim’s authen-
tication cookies.

11© Hypervisor Add-ons: Hypervisors like Xen and KVM
have modular designs that enable extensions to their ba-
sic functionalities – Hypervisor Add-ons. For example, the
National Security Agency (NSA) has developed their own
version of Xen’s Security Modules (XSM) called FLASK.

Hypervisor add-ons increase the likelihood of Hypervisor
vulnerabilities being present, since they increase the size of
the Hypervisor’s codebase. For example, CVE-2008-3687
describes a heap overflow opportunity in one of Xen’s op-
tional security modules, FLASK, which results in an escape
from an unprivileged domain directly to the Hypervisor.

4.1 Breakdown of Vulnerabilities
We analyzed all of KVM’s and Xen’s CVE reports from

the 4 vulnerability databases, labeling each with its functio-
nality-based attack vector. Our resulting vulnerability break-
downs are presented in Table 1. It can be observed that the
Device Emulation categories (i.e. I/O and Networking along
with Paravirtualized I/O) account for more than one third of
the known vulnerabilities for each of the Hypervisors (33.9%
of Xen’s and 39.5% of KVM’s vulnerabilities). This can be
attributed to the variety of back-end drivers that are sup-
ported by both Xen and KVM. A normal QEMU installation
is capable of emulating all sorts of virtual devices (e.g. NIC,
display, audio) and different models of each type (Intel Eth-
ernet i82559C, Realtek Ethernet rtl8139, etc.), leading to a
considerable number of distinct use cases and a fairly large
codebase.

Table 1: Breakdown of known vulnerabilities under
functionality-based classification for Xen and KVM.
Attack Vector Xen KVM
Virtual CPUs 5 (8.5%) 8 (21.1%)

SMP 1 (1.7%) 3 (7.9%)

Soft MMU 4 (6.8%) 2 (5.3%)

Interrupt and Timer Mechanisms 2 (3.4%) 4 (10.5%)

I/O and Networking 11 (18.6%) 10 (26.3%)

Paravirtualized I/O 9 (15.3%) 5 (13.2%)

VM Exits 4 (6.8%) 2 (5.3%)

Hypercalls 2 (3.4%) 1 (2.6%)

VM Management 7 (11.9%) 2 (5.3%)

Remote Management Software 9 (15.3%) 1 (2.6%)

Hypervisor add-ons 5 (8.5%) 0 (0.0%)

Total 59 38

The number of Remote Management Software vulnerabili-
ties in Xen (accounting for 15.3% of its vulnerabilities) shows
that non-essential services may increase the attack surface
significantly. More interestingly, KVM reports a markedly
lower contribution from VM Management vulnerabilities to-
wards the total (5.3% in KVM vs 11.9% in Xen). This might
suggest that KVM’s architectural decision of running the lib-

6

virt toolkit (in charge of VM Management functionalities)
as an additional module inside Hypervisor space is more se-
cure than Xen’s decision of allocating an entire privileged
VM (Dom0) for the same purpose. After all, Xen’s Dom0
domain is a specialized linux kernel, which means that it
needs to execute at least a minimal set of OS services in
order to run, therefore increasing the likelihood of bugs.

5. FURTHER CHARACTERIZATION
OF HYPERVISOR VULNERABILITIES

Our analysis of KVM and Xen vulnerability reports gave
rise to two additional complementary classifications: trigger
source and attack target. A Hypervisor vulnerability mani-
fests itself inside a module’s code, but can be triggered from
a variety of runtime spaces and can target one or more of
those runtime spaces. Listed from lowest to highest privilege
level: (1) Network, (2) Guest VM’s User-Space, (3) Guest
VM’s Kernel-Space, (4) Dom0/Host OS, (5) Hypervisor.

The trigger source and attack target are of great impor-
tance when assessing a vulnerability’s ease of exploitability
and impact, respectively. The trigger source can be deter-
mined by comparing the restrictions of each of the runtime
spaces with the execution rights required to reproduce the
vulnerability. Since these five categories correspond to hier-
archical privilege levels, we show the least possible privilege
level for the trigger source, and the greatest possible privi-
lege level for the attack target in Tables 2 and 3.

5.1 Trigger Sources and Attack Targets
1© Network: This is the least privileged runtime space,

but also the easiest to attain. Any remote user can initiate
an attack on a Hypervisor and its guest VMs if it is located
in a subnet from which the machine running the Hypervisor
is reachable.

2© Guest VM’s User-Space: Almost any code can be
executed from a guest VM’s Ring 3; however, some function-
ality will be limited by the OS or the Hypervisor (causing
an exception). Nevertheless, it is easiest to get user-space
code to run, so any exploits from this ring are attractive
to an attacker. For example, CVE-2010-4525 mentions an
attack from a guest VM’s Ring 3 involving the CPUID x86
instruction.

3© Guest VM’s Kernel-Space: Injecting malicious OS-
level (Ring 0) code requires compromising the OS security.
Interestingly, in IaaS cloud deployments, tenants can simply
lease VMs and run their OS of choice – one which may al-
ready be malicious. For example, CVE-2008-1943 mentions
an attack from a Guest VM’s Kernel-Space, as it requires
control over the paravirtualized front-end driver.

4© Dom0/Host OS: Some runtime spaces have privilege
levels that lie between those of a guest VM’s OS and the
ones possessed by the Hypervisor. In Xen’s case, Dom0 is
a privileged VM with direct access to I/O and networking
devices. At the same time, Dom0 is allowed to invoke VM
Management operations. While KVM does not have a Dom0
equivalent, the fact that the Hypervisor is part of a fully-
operational Linux kernel gives way to other types of threats
(e.g. local users in the host system).

5© Hypervisor: This is the most desired runtime space
because it has Ring -1 privileges, so any command can be run
from this space. The Hypervisor can access any resource in
the host system (i.e. memory, peripherals, CPU state, etc),
which means that it can access every guest VM’s resources.

5.2 Breakdown of Vulnerabilities
As can be observed in Table 2, the most common trigger

source is Guest VM User-Space (Ring 3), accounting for
39.0% of Xen’s and 34.2% of KVM’s vulnerabilities. This
is worrying, as it indicates that any unprivileged guest VM
user has the necessary privileges to pose a threat to the
underlying Hypervisor. The Guest VM Kernel-Space is the
second most common trigger source, with roughly 32% of
the total in both cases. Hence, 71.2% of all Xen and 65.8%
of all KVM vulnerabilities are triggered from a guest VM.
Also note that there are no vulnerabilities with Hypervisor
space as their trigger source, which makes sense because an
attacker who has control over the Hypervisor already has
the maximum privilege level attainable.

Table 2: Breakdown of known vulnerabilities under
trigger source classification for Xen and KVM.

Trigger Source Xen KVM
Network 11 (18.6%) 2 (5.3%)

Guest VM User-Space 23 (39.0%) 13 (34.2%)

Guest VM Kernel-Space 19 (32.2%) 12 (31.6%)

Dom0/Host OS 6 (10.2%) 11 (28.9%)

Hypervisor 0 (0.0%) 0 (0.0%)

Total 59 38

Two differences between the two Hypervisors stand out:
Xen is much more vulnerable to network-based attacks than
KVM, but KVM is more sensitive to Host OS-based attacks.
The first observation follows from our attack vector analysis
(Section 4), which showed that Remote Management Soft-
ware vulnerabilities are a big problem for Xen. On the other
hand, KVM’s sensitivity to Host OS threats is to be ex-
pected because, being part of the main Linux kernel branch,
its code can be invoked by other kernel-space processes run-
ning on the host, leaving it exposed to malicious privileged
local users.

Table 3: Breakdown of known vulnerabilities under
target-based classification for Xen and KVM.

Attack Target Xen KVM
Network 0 (0.0%) 0 (0.0%)

Guest VM User-Space 0 (0.0%) 0 (0.0%)

Guest VM Kernel-Space 12 (20.3%) 9 (23.7%)

Dom0/Host OS 25 (42.4%) 11 (28.9%)

Hypervisor 22 (37.3%) 18 (47.4%)

Total 59 38

It can be observed from Table 3 that Dom0 is a more
common target than the Hypervisor in Xen, whereas KVM
shows the opposite behaviour (its Host OS is less common
than the Hypervisor as a target). This difference between
the two Hypervisors is due to the location of the Device
Emulation back-end drivers, which are found in Dom0 with
Xen and in the Hypervisor with KVM. The Device Emu-
lation functionalities contribute more than one third of the
known vulnerabilities in both Hypervisors, so the location
of the back-end drivers has great influence over the relative
distribution of vulnerabilities among the possible attack tar-
gets.

6. HYPERVISOR ATTACK PATHS
Tables 4 and 5 show an integration of all of our three

attack classifications for Xen and KVM, respectively. Each
row illustrates a potential attack path; starting at some trig-
ger source, exploiting a specific Hypervisor functionality, to

7

attack a set of targets. In each row, the trigger sources are
less privileged software entities, while the attack targets are
the more privileged software entities, thus enabling privilege
escalation. A co-located hostile VM can take multiple iter-
ations through the attack paths (left to right, wraparound
to left to right, etc.) to achieve privilege escalation, eventu-
ally attaining Dom0/Host OS or Hypervisor-level privileges.
When the attacker achieves these elevated privileges, it can
see, modify or deny services to a victim VM, thus breaching
the victim’s confidentiality, integrity or availability.

Table 4: Xen’s Vulnerability Map in tabular form
Trigger Source

Attack Vector
Attack Target

NW Usr OS Dom0 OS Dom0 HV
X X Virtual CPUs X X
X SMP X
X X X© Soft MMU X X©
X X I&T. Mech. X

X X X I/O and NW X X
X X Paravirt. I/O X X
X X VM Exits X X

X Hypercalls X
X X© X VM Management X© X

X Rem. Mgmt. SW X
X X X HV add-ons X X

Table 5: KVM’s Vulnerability Map in tabular form
Trigger Source

Attack Vector
Attack Target

NW Usr OS Host OS Host HV
X X X Virtual CPUs X X X
X SMP X X
X X Soft MMU X X
X X X I&T. Mech. X X

X X X X I/O and NW X X X
X X Paravirt. I/O X X X

X VM Exits X X
X Hypercalls X

X VM Management X
X Rem. Mgmt. SW X

HV add-ons

Legend: NW = Network; Usr = Guest VM User-Space;
OS = Guest VM Kernel-Space; Host = Host OS; HV =
Hypervisor; I&T Mech. = Interrupt and Timer Mechanisms;
Paravirt. I/O = Paravirtualized I/O; Rem. Mgmt. SW =
Remote Management Software

The specially marked X©s in Table 4 are an example of
a possible 2-step privilege escalation path that a privileged
guest VM user (Ring 0) could follow in order to reach Hy-
pervisor runtime space (Ring -1) in a Xen deployment. The
first step would be to exploit a VM Management vulnerabil-
ity to gain control of Dom0. A viable attack to achieve this
transition is CVE-2007-4993 (see Section 4), which enables
the execution of arbitrary python code inside Dom0. Once
in control of Dom0, exploiting a Soft MMU vulnerability
could grant the malicious user control over the most desired
runtime space: Ring -1. The Q35 attack (CVE-2008-7096),
covered in the next section, could be used to that end.

7. CASE STUDY AND DEFENSES
The goal of our exploration of the vulnerabilities, their

classification and creation of the vulnerability maps is to
help researchers better understand attacks on Hypervisors

and determine where defenses should be concentrated. We
now first show how a real world attack can be analyzed using
the maps.

7.1 Understanding Existing Attacks
For our case study, we present the Dom0 Attack on Xen

from Black Hat USA 2008 [19].

7.1.1 Case Study:
Dom0 Attack on Xen (Black Hat USA 2008)

This attack [19] revolves around Intel’s Q35 chipset for
the Core 2 Duo/Quad platforms. In Q35 chipsets, the pro-
cessor provides the capability to re-claim the physical mem-
ory overlapped by the Memory Mapped I/O logical address
space. Under normal operation, the REMAPBASE and
REMAPLIMIT registers are calculated and loaded by the
BIOS. The amount of memory remapped is the range be-
tween Top of Low Usable DRAM (TOLUD) and 4 GB. This
physical memory will be mapped to the logical address range
defined between the REMAPBASE and the REMAPLIMIT
registers. The end result is shown in Figure 3.

Figure 3: Memory remapping during normal opera-
tion of Q35 chipset.

Figure 4: Memory remapping during attack on Q35
chipset.

The Invisible Things team [19] managed to hijack Xen’s
Hypervisor memory from the Dom0 domain in Q35 chipsets
by exploiting the host system’s remapping registers. Xen’s
Dom0 has write access to the host system’s REMAPBASE
and REMAPLIMIT registers, so a malicious Dom0 kernel is
able to set up a memory remapping range pointing to the

8

Hypervisor’s physical memory, as shown in Figure 4. As a
result, the Dom0 attacker can read and modify the Hyper-
visor’s memory space during runtime. This constitutes a
serious confidentiality and integrity breach, making it pos-
sible for the attacker to run any series of instructions with
Ring -1 privilege level.

Note that the Invisible Things team [19] employed an
already-compromised Dom0 kernel to carry out the Q35
attack. Therefore, in terms of the Xen vulnerability map
shown in Table 4, the initial trigger source for the original
Q35 attack is Dom0 (which runs in Ring 0). The attack
vector is via part of the Soft MMU because memory man-
agement and memory control is mediated incorrectly. A
mechanism to lock the remapping registers after the BIOS
has set them up is a possible defense, eliminating the possi-
bility for a rogue Dom0 domain to write new values to them.
Finally, the attack target is the Hypervisor (Ring -1), whose
memory space is completely compromised.

7.2 Helping Focus Defenses
While we believe this to be the first categorization of Hy-

pervisor vulnerabilities, researchers have been aware of var-
ious attacks on Hypervisors and have proposed a number of
defenses. We summarize some of these, then suggest areas to
focus defenses based on our Hypervisor vulnerability maps.

One defense strategy against attacks is to make the Hy-
pervisor codebase more resilient to attacks. Projects such as
HyperSafe [25] have looked at hardening the code to make
it more difficult to inject code and subvert the control flow
of the Hypervisor through clever programming techniques.
This aims to address attack paths targeting the Hypervisor;
however, this does not mean that all attack vectors with the
Hypervisor as the attack target are mitigated.

Protecting the Hypervisor kernel from an untrusted man-
agement OS [13] is another approach that has been pro-
posed. Such work covers Dom0/Host OS trigger sources,
and especially paths with a VM Management attack vector.

Another defense strategy is to use hardware-assisted tech-
niques for protecting the software integrity of the Hypervisor
to detect the attacks before they can do damage. For ex-
ample, Copilot [16] employs a special purpose PCI device to
read the physical memory of the target system. HyperCheck
[24] looks at using features of the microprocessor, namely
the system management mode (SMM) to inspect the Hy-
pervisor. HyperSentry [1] also used the SMM to bypass the
Hypervisor for integrity measurement purposes. Such work
aims to cover paths toward the Hypervisor attack target.

A fourth defense strategy is removing the Hypervisor alto-
gether. The NoHype [11, 22] architecture for cloud comput-
ing eliminates the Hypervisor layer and places VMs directly
on top of the physical hardware while still being able to
start, stop and run multiple VMs at the same time.

From our analysis of CVEs, we believe that defenses for
commodity Hypervisors should start by focusing on Hypervi-
sor correctness. Thorough input validation, proper tracking
of context changes, complete initialization of control struc-
tures, complete clearing of sensitive data on process ter-
mination, and full awareness of the underlying hardware’s
capabilities would immediately reduce the Hypervisor’s at-
tack surface. The emulation of I/O and networking devices
proves to be a common point of failure, so Hypervisor ven-
dors should aim at developing a small set of secure back-end
drivers instead of trying to provide a large number of virtual

devices with overlapping functionality (e.g. e1000, ne2k pci
and rtl8139 networking cards) that are hard to maintain.

7.3 Assisting in the Discovery of New Attacks
While many proposed defenses exist, numerous paths thro-

ugh the Hypervisor vulnerability maps (Table 4 or 5) are
not yet covered. However, it should be noted that some of
them can be dismissed. For example, it is inconceivable for
a remote (network-bound) attacker to directly exploit VM
Exit-related vulnerabilities because VM Exits are a mecha-
nism that only exists in the boundary between a VM and
the Hypervisor, so the attacker must first gain access to a
VM. Even though some attack paths can be ruled out, most
of them are valid. The absence of current attacks with a
specific [source, vector, target] combination does not neces-
sarily rule out the possibility of a future attack leading to
those conditions. For instance, KVM’s vulnerability map
(Table 5) does not report any existing attacks with a VM’s
Kernel-Space as the source and the Hypervisor as a target
using Hypercalls as an attack vector (i.e. [OS, Hypercalls,
HV]), which we know for a fact to be a possibility judging
from Xen’s vulnerability map (Table 4).

Our vulnerability maps provide a way to assess the cov-
erage of each protection mechanism that a cloud provider
can employ. Equally important, they provide a way of iden-
tifying weak spots before an actual attack surfaces. If a
given [source, vector, target] combination is not addressed
by a secure Hypervisor, a malicious user will be able to de-
cide where to concentrate his efforts. Conversely, our work
suggests specific areas where the cloud provider can focus
hardening efforts to minimize the risk of such attacks.

8. RELATED WORK
To the best of our knowledge, there has been no detailed

categorization of Hypervisor vulnerabilities as presented in
this paper. Many researchers have looked at security issues
in cloud computing and produced surveys of those issues.
The surveys (e.g. [23], [26]) focus on various threats for the
cloud environment as a whole: abuse of cloud computing
resources, insecure APIs, etc. There has also been work on
classification of threats based on the different service de-
livery models of cloud computing [21]. Other works have
presented classifications of security issues at different levels,
such as network, host or application [2].

As one of its contributions, our work aims to categorize
different attack vectors. Outside of cloud computing, re-
searchers have explored categorizing kernel-level rootkits to
aid future detection [12]. Others have looked at attack sur-
faces in cloud computing, however, at the level of user, ser-
vices and cloud without diving into details of the attack
surfaces on the virtualization layer itself [7]. Attack surface
inflation [6] has been explored including the change of the
attack surface as new components are integrated into an ex-
isting system, e.g. adding virtualization. Researchers have
also looked at the classification of threats and challenges
faced by different components of an IaaS (infrastructure-as-
a-service) cloud computing deployment, components such as
cloud software, platform virtualization, network connectiv-
ity, etc. [4]. Different from all these works, our work focuses
on the Hypervisor attack surface.

Interesting work on mapping cloud infrastructure [18] has
given insights on how to find a specific target cloud server
to attack. There have not been, however, other works which
aim, as we do, to map the cloud infrastructure attack paths.

9

9. CONCLUSIONS
To successfully compromise a system, malicious users must

characterize the attack surface available to them and eval-
uate their possible targets while considering the restrictions
of their vantage point (trigger source). In this work, we
conducted a thorough analysis of the codebase of two pop-
ular Hypervisors, Xen and KVM, followed by an extensive
study of vulnerability reports associated with them. Based
on our findings, we are the first to propose and integrate
three Hypervisor Vulnerability classifications: by Hypervi-
sor functionality, by trigger source, and by attack target.
Our integration of these three classifications gives a clear pic-
ture of the different Hypervisor modules and runtime spaces
that are traversed during the course of a successful attack.
We demonstrated the practicality of this abstract model for
vulnerability analysis in describing the flow of events in-
volved in a well-known attack that achieved privilege esca-
lation in virtualized systems. By clearly exposing potential
attack paths, our Hypervisor vulnerabilities characterization
is also actionable: it enables us to see what vulnerabilities
have been covered by proposed solutions in past work, and
what needs to be covered by new defenses. Our work can
assist in better establishing a specific user’s security needs
and determining the scope of the solutions that might be
proposed to address them.

10. REFERENCES
[1] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,

and N. C. Skalsky. Hypersentry: enabling stealthy
in-context measurement of hypervisor integrity. In
Proceedings of the ACM Conference on Computer and
Communications Security, CCS, pages 38 – 49,
October 2010.

[2] R. Bhadauria, R. Chaki, N. Chaki, and S. Sanyal. A
survey on security issues in cloud computing. arXiv,
http: // arxiv. org/ abs/ 1109. 5388 , September
2011.

[3] Cve security vulnerability database.
http://www.cvedetails.com/.

[4] W. Dawoud, I. Takouna, and C. Meinel. Infrastructure
as a service security: Challenges and solutions. In
Proceedings of the International Conference on
Informatics and Systems, INFOS, pages 1 – 8, March
2010.

[5] N. Elhage. Virtunoid: Breaking out of KVM.
nelhage.com/talks/kvm-defcon-2011.pdf, August
2011.

[6] D. Geer. Attack surface inflation. IEEE Security
Privacy Magazine, 9(4):85 – 86, July – August 2011.

[7] N. Gruschka and M. Jensen. Attack surfaces: A
taxonomy for attacks on cloud services. In Proceedings
of the IEEE International Conference on Cloud
Computing, CLOUD, pages 276 – 279, July 2010.

[8] Nexenta Hypervisor Survey.
http://www.nexenta.com/corp/nexenta-

hypervisor-survey.

[9] Is the Hypervisor Market Expanding or Contracting?
http://www.aberdeen.com/Aberdeen-Library/8157/

AI-hypervisor-server-virtualization.aspx.

[10] Intel. Intel 64 and IA-32 Architectures Software
Developer’s Manual., October 2011.
http://www.intel.com/content/dam/doc/manual/

64-ia-32-architectures-software-developer-

manual-325462.pdf.

[11] E. Keller, J. Szefer, J. Rexford, and R. B. Lee.
Nohype: virtualized cloud infrastructure without the
virtualization. In Proceedings of the Annual
International Symposium on Computer Architecture,
ISCA, pages 350 – 361, June 2010.

[12] J. Levine, J. Grizzard, and H. Owen. Detecting and
categorizing kernel-level rootkits to aid future
detection. IEEE Security Privacy Magazine, 4(1):24 –
32, January – February 2006.

[13] C. Li, A. Raghunathan, and N. K. Jha. Secure Virtual
Machine Execution under an Untrusted Management
OS. In Proceedings of the Conference on Cloud
Computing, CLOUD, pages 172 – 179, July 2010.

[14] libvirt. http://libvirt.org/.

[15] National vulnerability database.
http://web.nvd.nist.gov/view/vuln/search.

[16] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot - a coprocessor-based kernel runtime
integrity monitor. In Proceedings of the USENIX
Security Symposium, pages 179 – 194, August 2004.

[17] Red hat bugzilla. https://bugzilla.redhat.com/.

[18] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings
of the ACM Conference on Computer and
Communications Security, CCS, pages 199 – 212,
November 2009.

[19] J. Rutkowska and R. Wojtczuk. Preventing and
detecting xen hypervisor subversions.
invisiblethingslab.com/resources/bh08/part2-

full.pdf, July 2008.

[20] Securityfocus. http://www.securityfocus.com/.

[21] S. Subashini and V. Kavitha. A survey on security
issues in service delivery models of cloud computing.
Journal of Network and Computer Applications,
34(1):1 – 11, 2011.

[22] J. Szefer, E. Keller, R. B. Lee, and J. Rexford.
Eliminating the hypervisor attack surface for a more
secure cloud. In Proceedings of the Conference on
Computer and Communications Security, CCS,
October 2011.

[23] L. Vaquero, L. Rodero-Merino, and D. Morán.
Locking the sky: a survey on iaas cloud security.
Computing, 91:93 – 118, 2011.

[24] J. Wang, A. Stavrou, and A. Ghosh. Hypercheck: A
hardware-assisted integrity monitor. In Recent
Advances in Intrusion Detection, volume 6307 of
Lecture Notes in Computer Science, pages 158 – 177.
2010.

[25] Z. Wang and X. Jiang. Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In Proceedings of the IEEE Symposium on
Security and Privacy, S&P, pages 380 – 395, May
2010.

[26] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou.
Security and privacy in cloud computing: A survey. In
Proceedings of the International Conference on
Semantics Knowledge and Grid, SKG, pages 105 –112,
November 2010.

10

