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Abstract
In optical tomography, one tries to determine the spatial absorption and
scattering distributions inside a body by using measured pairs of inward
and outward fluxes of near-infrared light on the object boundary. In many
practically important situations, the scatter and the absorption inside the
object are smooth apart from inclusions where at least one of the two optical
parameters jumps to a higher or lower value. In this work, we investigate
the possibility of characterizing these inhomogeneities in the framework
of the diffusion approximation of the radiative transfer equation using the
factorization method: for purely scattering inclusions, or if the scattering
and absorption coefficients interplay in a correct way, the outcoming flux
corresponding to a point source belongs to the range of an operator, determined
through boundary measurements, if and only if the point source lies inside one
of the inclusions.

1. Introduction

In optical tomography, a physical body is illuminated with a flux of near-infrared (NIR) photons
and the outcoming flux is measured on the surface of the body. The idea is to reconstruct the
optical properties inside the object by using the measured pairs of input and output fluxes.
NIR tomography has a few possible clinical applications, the most important of which are,
arguably, screening for breast cancer and the development of a cerebral imaging modality
for mapping structure and function in newborn infants, and also possibly adults. For more
medical and instrumental details we refer to [1–3, 7] and the references therein.

In the framework of transport theory, propagation of light in tissue is modelled by the
radiative transport equation (RTE). Since a straight application of RTE is numerically quite
expensive, the model is usually simplified by using the diffusion approximation, which is
well established for materials that are strongly scattering [1]. If it is assumed that the flux
conducted through the object boundary is either static in time or modulated with a fixed
harmonic frequency, the diffusion approximation of RTE leads to an elliptic partial differential
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equation, the coefficients of which are what one needs to reconstruct when solving the inverse
problem of optical tomography.

In this work, we consider the situation where the background optical properties of the
investigated object are known but the object is contaminated with a number of inhomogeneities
with unknown characteristics. We investigate the possibility of characterizing these inclusions
using the factorization method introduced and justified for inverse scattering in [11], and
later for electrical impedance tomography with classical boundary conditions in [4] and with
complete electrode boundary conditions in [10]. Our aim is to derive sufficient conditions for
the factorization procedure to be functional in the framework of the diffusion approximation.

This text is organized as follows. Section 2 introduces the radiative transfer equation
and its diffusion approximation. In section 3, we consider briefly the unique solvability
of the forward model associated with the diffusion approximation and introduce the Robin-
to-Robin boundary operator that maps the used input flux onto the measured output flux.
The factorization of the difference of two Robin-to-Robin maps, one corresponding to the
background optical properties and the other corresponding to the object with inclusions, is
conducted in section 4. Section 5 investigates the properties of the operators needed in the
factorization, and finally in section 6 we state the characterization results.

2. Approximating light propagation

Propagation of electromagnetic radiation in a medium is governed by Maxwell’s equations.
Particularly, this holds for our case of interest, namely, near-infrared light travelling through
some biological tissue. However, since the wavelength of NIR light is small compared to the
characteristic distances of human tissue, the exact models are totally useless. Therefore, we
will model light propagation by using the diffusion approximation of the radiative transfer
equation, which has been shown to model fairly well light propagation in strongly scattering
tissues.

2.1. Radiative transfer equation

Let � ⊂ R
n, n = 2 or n = 3 be a bounded body with a smooth boundary and connected

complement. The radiance at x ∈ � at time t ∈ R in direction θ̂ ∈ Sn−1 is written as
I (x, t, θ̂ ). In the framework of transport theory, this scalar function satisfies the radiative
transfer equation,

1

c
It (x, t, θ̂ ) + θ̂ · ∇I (x, t, θ̂ ) + (µ(x) + µs(x))I (x, t, θ̂ )

−µs(x)

∫
Sn−1

f (x, θ̂ , ω̂)I (x, t, ω̂) ds(ω̂) = q(x, t, θ̂ ), (2.1)

where c is the speed of light (assumed to be constant), the positive scalar functions µ and
µs are the absorption and scattering coefficients, respectively and q denotes the source term
which is assumed to vanish in this discussion. The kernel f is the scattering phase function,
satisfying the following three physical conditions:∫

Sn−1
f (x, θ̂ , ω̂) ds(θ̂) =

∫
Sn−1

f (x, θ̂ , ω̂) ds(ω̂) = 1,

f (x, θ̂ , ω̂) � 0, x ∈ R
n, θ̂ , ω̂ ∈ Sn−1,

f (x, θ̂ , ω̂) = f (x,−ω̂,−θ̂ ), θ̂ , ω̂ ∈ Sn−1.

(2.2)
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The energy fluency and the energy current density corresponding to given radiance are
defined by

ϕ(x, t) =
∫

Sn−1
I (x, t, θ̂ ) ds(θ̂ ), �J (x, t) =

∫
Sn−1

I (x, t, θ̂ )θ̂ ds(θ̂ ),

respectively. Note that ϕ(x, t) and �J (x, t) may be considered to be the coefficients of the
zeroth- and first-order terms for the linearization of I (x, t, θ̂ ) with respect to θ̂ . For more
transport theory the reader should consult, for example, [5].

2.2. Strong scattering

Being an integrodifferential equation, the radiative transfer equation, as discussed above, leads
easily to numerical problems of prohibitive size if no simplifications are made. The commonly
used simplification is called the diffusion approximation, which has been shown to be justified
for materials that are much more scattering than absorbing [1].

Let P : L2(Sn−1) → span{1, θ1, . . . , θn} be an orthogonal projection, which linearizes
the dependence on the scattering direction. Denoting the integrodifferential operator induced
by the left-hand side of (2.1) by B, we define the diffusion approximation of the radiative
transfer equation as

PBPI = 0, (2.3)

where I denotes the radiance. Due to the way that the projection P is defined, one should
be able to write the diffusion approximation using only the energy fluency ϕ and the energy
current density �J defined at the end of the previous subsection. Indeed, by a straightforward
calculation [8, 2], one sees that equation (2.3) is equivalent to the coupled system

1

c
ϕt = −∇ · �J − µϕ, (2.4)

1

c
�J t = −1

n
∇ϕ − (µ + (I − B)µs) �J , (2.5)

where I ∈ R
n×n is the identity matrix and the symmetric matrix B ∈ R

n×n is defined by

Bjk = n

|Sn−1|
∫

Sn−1

∫
Sn−1

θjωkf (x, θ̂ , ω̂) ds(θ̂ ) ds(ω̂).

In order to handle the boundary conditions corresponding to the diffusion approximation,
we need to write the total flux inwards (−) and outwards (+) on the boundary ∂� when the
dependence on the scattering direction is linearized. In [8], the linearized radiance is projected
on the unit normal at x ∈ ∂� obtaining the fluxes

�±(x, t) = γ ϕ(x, t) ± 1
2ν(x) · �J (x, t), (2.6)

where ν(x) is the outer unit normal of ∂�, in two dimensions γ = 1
π

and in three dimensions
γ = 1

4 . Note that the expression for the fluxes �± in (2.6) differs somewhat from the one
given in most references. However, since (2.6) is carefully conducted from the mathematical
model described above [8] and it also represents natural symmetry between the two fluxes, it
is one reasonable choice. Furthermore, note that the sign of the inward flux �− in (2.6) is
different from that given in [8, 9]: In this work, the net flux through ∂� is obtained by taking
the difference �+ − �−, i.e. here both the inward and outward fluxes are treated as positive
quantities.
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3. Forward problem

In this section, we will introduce the forward problem corresponding to the diffusion
approximation of the radiative transfer equation assuming that the measurements are static in
time. Let � ⊂ R

n, n = 2 or n = 3 be a bounded body with a smooth boundary and connected
complement and suppose that a time invariant flux � is conducted through ∂�. Setting the
time derivatives to zero in (2.4) and (2.5), solving (2.5) for �J and substituting into (2.4) and
(2.6) we end with the following elliptic boundary value problem for ϕ:

∇ · K∇ϕ − µϕ = 0 in �, γϕ + 1
2ν · K∇ϕ = � on ∂�, (3.1)

where ν = ν(x) is the unit normal pointing out of � and

K = 1

n
(µ + (I − B)µs)

−1,

is symmetric. We claim that under the physically reasonable conditions

0 < ca < µ < Ca and 0 < µs < Cs, (3.2)

problem (3.1) has a unique solution.

Theorem 3.1. Assume that the absorption and scattering coefficients satisfy (3.2) and
equations (2.2) are valid. Then for � ∈ H−1/2(∂�), the boundary value problem (3.1)
has a unique weak solution ϕ ∈ H 1(�). Further,

‖ϕ‖H 1(�) � C‖�‖H−1/2(∂�). (3.3)

Proof. First of all, by using the conditions on µ, µs and the scattering phase function, one
easily sees that the matrix K is well defined and positive definite. The claim then follows by
using the Lax–Milgram lemma [14] on the variational formulation of (3.1). For further details
we refer to [9], where similar analysis is conducted for square integrable input flux. �

In the rest of this work we will forget the scattering coefficient µs , which does not appear
explicitly in (3.1), and treat the diffusion tensor K and the absorption coefficient µ as the two
independent optical parameters. Hence, it is important to note that the result of theorem 3.1
remains valid if we assume that µ satisfies the first part of (3.2) and K ∈ R

n×n satisfies

cKI < K < CKI, cK, CK > 0, (3.4)

where the inequalities should be understood in the sense of positive definiteness (similar
notation will be used throughout this text). In the rest of this work, we will take
equations (3.2) and (3.4), as well as the symmetry of K, for granted.

3.1. Robin-to-Robin boundary map

We assume that our measurement setting is such that we can control the input flux penetrating
the object boundary and the flux coming out of the object can be measured. In other words, it
is assumed that the data that we can collect using non-invasive methods is the linear Robin-
to-Robin boundary map defined by

ϒ : H−1/2(∂�) → H−1/2(∂�), � �→ (
γ ϕ − 1

2ν · K∇ϕ
)∣∣

∂�
,

where ϕ ∈ H 1(�) is the unique weak solution of (3.1) corresponding to the input �. To
collect all Robin–Robin boundary value pairs is in a pure mathematical sense equivalent to
collecting all Neumann–Dirichlet pairs. However, since in real life Robin boundary values
are those that can be controlled and measured, they are more easily sampled, and so from the
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practical point of view the above described Robin-to-Robin operator is the boundary map that
should be explored when implementing the factorization method.

The following lemma lists some basic properties of ϒ . In what follows, we will denote
by 〈u, v〉L2(∂�) = ∫

∂�
uv dS the dual pairing between H−1/2(∂�) and H 1/2(∂�) as well as

the L2(∂�) inner product.

Lemma 3.2. The operator ϒ : H−1/2(∂�) → H−1/2(∂�) can be written as T − I , where
T : H−1/2(∂�) → H 1/2(∂�) is bounded; in particular, ϒ is a Fredholm operator of index 0.
Further, ϒ |L2(∂�) : L2(∂�) → L2(∂�) is self-adjoint.

Proof. First of all, we may clearly write ϒ = T − I , where

T : H−1/2(∂�) → H 1/2(∂�) ⊂ H−1/2(∂�), � �→ 2γ ϕ|∂�,

is bounded due to the continuity of the solution map � �→ ϕ from H−1/2(∂�) to H 1(�), given
by (3.3), and the trace theorem. Since the embedding H 1/2(∂�) ↪→ H−1/2(∂�) is compact
[13], T : H−1/2(∂�) → H−1/2(∂�) is compact, and it follows that ϒ is a Fredholm operator
of index 0.

Using the above-derived expansion for ϒ , it is easy to see that ϒ |L2(∂�) ∈ L(L2(∂�)).
Let �1,�2 ∈ L2(∂�) be two input fluxes and ϕ1, ϕ2 ∈ H 1(�) the corresponding solutions of
(3.1). By using Green’s formula, (3.1) and the symmetry of K we see that∫

∂�

ν · K∇ϕ2ϕ1 dS =
∫

∂�

ν · K∇ϕ1ϕ2 dS.

Hence,

〈ϒ�1,�2〉L2(∂�) = γ 2
∫

∂�

ϕ1ϕ2 dS − 1

4

∫
∂�

(ν · K∇ϕ1)(ν · K∇ϕ2) dS = 〈�1, ϒ�2〉L2(∂�),

which proves that ϒ |L2(∂�) : L2(∂�) → L2(∂�) is self-adjoint. This completes the proof.
�

Corollary 3.3. Let ϒ and ϒ̃ be the Robin-to-Robin boundary maps corresponding to the pairs
(K,µ) and (K̃, µ̃), respectively. Then ϒ − ϒ̃ ∈ L(H−1/2(∂�),H 1/2(∂�)) is self-adjoint.
Further, if K � K̃ and µ � µ̃, with one of the inequalities being strict on a set of non-zero
measure, then ϒ − ϒ̃ is injective.

Proof. The fact that ϒ − ϒ̃ maps H−1/2(∂�) continuously to H 1/2(∂�) is a straightforward
consequence of the decomposition of lemma 3.2, and the self-adjointness of ϒ − ϒ̃ :
H−1/2(∂�) → H 1/2(∂�) follows from the self-adjointness of the restricted operator
(ϒ − ϒ̃)|L2(∂�) : L2(∂�) → L2(∂�) through a density argument.

To prove the second part of the claim, let K � K̃ and µ � µ̃ with one of the inequalities
being strict on a set of non-zero measure. Assume that � ∈ H−1/2(∂�) satisfies (ϒ−ϒ̃)� = 0
and let ϕ, ϕ̃ ∈ H 1(�) be the corresponding solutions of (3.1). Clearly,

(ϕ − ϕ̃)|∂� = (ν · K∇ϕ − ν · K̃∇ϕ̃)|∂� = 0.

On the other hand, denoting f = (ν · K∇ϕ)|∂� = (ν · K̃∇ϕ̃)|∂� and using the minimization
properties of ϕ and ϕ̃, one sees that (cf, for example, [4] and [6])

〈f, ϕ − ϕ̃〉L2(∂�) � 0,

where the equality holds if and only if f = 0. In consequence, it follows from the unique
solvability of (3.1) with Robin data replaced by Neumann data [13] that ϕ = ϕ̃ = 0 everywhere
in �. In particular, � = (

γ ϕ + 1
2ν · K∇ϕ

)∣∣
∂�

= 0, which proves the claim. �
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4. Factorization

We will first consider the factorization method with only one inclusion; the generalization
for the case of multiple inclusions will be addressed briefly at the end of this work. Let the
diffusion matrix K and the absorption coefficient µ be of the form

K =
{
K0 + κ in D,

K0 in �\D,
µ =

{
µ0 + δ in D,

µ0 in �\D,
(4.1)

where K0, µ0 ∈ C∞(�) are the known background diffusion tensor and absorption coefficient,
respectively, D is an open connected subset of � with connected complement and a smooth
boundary ∂D ∩ ∂� = ∅ and κ, δ ∈ C∞(D) are the perturbations corresponding to D. In what
follows, we will denote the Robin-to-Robin boundary map corresponding to (K,µ) by ϒ and
the map corresponding to (K0, µ0) by ϒ0. Our goal in this section is to prove the following
theorem:

Theorem 4.1. The difference of the boundary maps ϒ,ϒ0 : H−1/2(∂�) → H−1/2(∂�)

can be factorized as ϒ − ϒ0 = LFL′, where L : H−1/2(∂D) → H 1/2(∂�), its adjoint
L′ : H−1/2(∂�) → H 1/2(∂D) and F : H 1/2(∂D) → H−1/2(∂D) are bounded. In addition,
F is self-adjoint.

In the following considerations, as well as in the rest of this paper, on the inner boundary
∂D the unit normal ν = ν(x) points out of �\D into D—note that this convention differs
from that used in, e.g., [4] and [10]. We begin defining L and L′ by introducing the following
Robin boundary value problem:

∇ · K0∇v − µ0v = 0 in �\D,

γ v + 1
2ν · K0∇v = 0 on ∂�,

γ v + 1
2ν · K0∇v = � on ∂D,

(4.2)

which has a unique solution v ∈ H 1(�\D) for � ∈ H−1/2(∂D) due to a slight modification
of theorem 3.1. Thus, we may define L by

L : H−1/2(∂D) → H 1/2(∂�), � �→ (
γ v − 1

2ν · K0∇v
)∣∣

∂�
.

Due to the trace theorem and the continuous dependence on boundary data (3.3), we have∥∥γ v − 1
2ν · K0∇v

∥∥
H 1/2(∂�)

= ‖2γ v‖H 1/2(∂�) � C‖v‖H 1(�\D) � C‖�‖H−1/2(∂D),

and so L is bounded. The adjoint operator L′ is given by

L′ : H−1/2(∂�) → H 1/2(∂D), � ′ �→ (
γ v′ − 1

2ν · K0∇v′)∣∣
∂D

,

where v′ ∈ H 1(�\D) is the unique solution of

∇ · K0∇v′ − µ0v
′ = 0 in �\D,

γ v′ + 1
2ν · K0∇v′ = � ′ on ∂�,

γ v′ + 1
2ν · K0∇v′ = 0 on ∂D.

Indeed, with the help of the boundary conditions that v and v′ satisfy, we may write

〈� ′, L�〉L2(∂�) =
∫

∂�

(
γ v′ +

1

2
ν · K0∇v′

) (
γ v − 1

2
ν · K0∇v

)
dS

= γ

∫
∂�

ν · K0∇v′v dS − γ

∫
∂�

ν · K0∇vv′ dS
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= γ

∫
∂D

ν · K0∇vv′ dS − γ

∫
∂D

ν · K0∇v′v dS

=
∫

∂D

(
γ v +

1

2
ν · K0∇v

) (
γ v′ − 1

2
ν · K0∇v′

)
dS

= 〈�,L′� ′〉L2(∂D),

where we also used Green’s formula and the symmetry of K0. As an adjoint of a linear
bounded operator, L′ is linear and bounded.

Before we can introduce the third operator needed for the factorization of theorem 4.1,
we need to consider some notational details. On the inner boundary ∂D we define

v±(x) = lim
t→0+

v(x ± tν), (ν · K∇v)±(x) = lim
t→0+

ν · (K∇v)(x ± tν),

for x ∈ ∂D with ν(x) the unit normal pointing into D, and further

[v]∂D = v+ − v− and [ν · K∇v]∂D = (ν · K∇v)+ − (ν · K∇v)−.

Note that the signs of the above-defined limits are the opposite compared to the definitions
given in [4] because ν points here in the opposite direction.

The inner boundary operator F : H 1/2(∂D) → H−1/2(∂D) is defined through
F = Fκ − F0, where

Fκ : � �→ (
γw + 1

2ν · K∇w
)−∣∣

∂D
, F0 : � �→ (

γw0 + 1
2ν · K0∇w0

)−∣∣
∂D

,

and w,w0 ∈ H 1(�\∂D) are the unique weak solutions of the diffraction problem

∇ · K∇w − µw = 0 in �\∂D,

γw + 1
2ν · K∇w = 0 on ∂�,

2γ [w]∂D = −[ν · K∇w]∂D = �,

(4.3)

corresponding to the pairs (K,µ), given by (4.1), and (K0, µ0), respectively. Note that the
conditions on the inner boundary in (4.3) are equivalent to the following: the flux going into
the region D jumps by � on ∂D and the flux coming out of D is continuous over ∂D.

Lemma 4.2. The operator F : H 1/2(∂D) → H−1/2(∂D) is well defined, bounded and
self-adjoint.

Proof. The fact that (4.3) is uniquely solvable and the solution depends continuously on the
data follows from material in [12], and so the continuity of F : H 1/2(∂D) → H−1/2(∂D) is a
consequence of the trace theorem and the boundedness of the map

H(div,�\D) → H−1/2(∂D), v �→ (ν · v)−|∂D, (4.4)

where H(div,�\D) = {v ∈ (L2(�\D))n | ∇ · v ∈ L2(�\D)}, cf, e.g., [6].
Let us next consider the self-adjointness. For �1,�2 ∈ H 1/2(∂D) let w1, w2 ∈

H 1(�\∂D) be the corresponding solutions of the diffraction problem (4.3) with the pair
(K,µ). By using the boundary conditions that w2 satisfies, we may write

〈Fκ�1,�2〉L2(∂D) = γ

∫
∂D

w−
1 ((ν · K∇w2)

− − (ν · K∇w2)
+) dS

+ γ

∫
∂D

(ν · K∇w1)
−(

w+
2 − w−

2

)
dS

= γ

{∫
∂D

(ν · K∇w2)
−w−

1 dS −
∫

∂D

(ν · K∇w1)
−w−

2 dS

}

+ γ

{∫
∂D

(ν · K∇w1)
−w+

2 dS −
∫

∂D

(ν · K∇w2)
+w−

1 dS

}
. (4.5)



744 N Hyvönen

Due to Green’s formula, the term on the second to last row of (4.5) equals

γ

{∫
∂�

ν · K∇w1w2 dS −
∫

∂�

ν · K∇w2w1 dS

}
= 0,

where we used the boundary conditions on the outer boundary ∂�. Hence, by using Green’s
formula and the boundary conditions of (4.3) on ∂D, we obtain

〈Fκ�1,�2〉L2(∂D) =
∫

∂D

((ν · K∇w1)
+ + �1)γw+

2 dS −
∫

∂D

1

2
(ν · K∇w2)

+
(
2γw+

1 − �1
)

dS

=
∫

∂D

(
γw2 +

1

2
ν · K∇w2

)+

�1 dS

=
∫

∂D

(
γw2 +

1

2
ν · K∇w2

)−
�1 dS

= 〈Fκ�2,�1〉L2(∂D).

Since a similar reasoning also holds for F0, we have altogether shown that F is self-adjoint.
�

Now it is time to provide a proof for theorem 4.1.

Proof of theorem 4.1. For a fixed input flux � ∈ H−1/2(∂�), denote by ϕ, ϕ0 ∈ H 1(�)

the solutions of the forward problem (3.1) corresponding to the pairs (K,µ) and (K0, µ0),
respectively. Clearly, (ϕ −ϕ0)|�\D solves (4.2) for � = {

γ (ϕ −ϕ0)+ 1
2ν ·K0∇(ϕ −ϕ0)

}−∣∣
∂D

and, in particular,

L
({

γ (ϕ − ϕ0) + 1
2ν · K0∇(ϕ − ϕ0)

}−∣∣
∂D

) = {
γ (ϕ − ϕ0) − 1

2ν · K0∇(ϕ − ϕ0)
}∣∣

∂�

= (ϒ − ϒ0)�.

By introducing the operator Gκ : � �→ (
γ ϕ + 1

2ν · K∇ϕ
)−∣∣

∂D
= (

γ ϕ + 1
2ν · K0∇ϕ

)−∣∣
∂D

and
setting G = Gκ − G0, where G0 is the counterpart of Gκ corresponding to ϕ0, we have so far
derived the factorization

ϒ − ϒ0 = LG. (4.6)

Note that G is a well-defined bounded operator from H−1/2(∂�) to H−1/2(∂D) due to (3.3),
the trace theorem and (4.4).

The next task is to calculate the dual operator G′
κ : H 1/2(∂D) → H 1/2(∂�) of Gκ . To

this end, consider w ∈ H 1(�\∂D) the solution of diffraction problem (4.3) corresponding
to � ∈ H 1/2(∂D) and (K,µ). With the help of the jump conditions [ϕ]∂D = [ν · K∇ϕ]∂D

= 0 (cf [12]), the Green’s formula in both interior and exterior regions, and the boundary
conditions on ϕ and w, we deduce

〈Gκ�,�〉L2(∂D) =
∫

∂D

(
γ ϕ +

1

2
ν · K∇ϕ

)−
� dS

= γ

∫
∂D

ν · K∇ϕ(w+ − w−) dS − γ

∫
∂D

((ν · K∇w)+ − (ν · K∇w)−)ϕ dS

= γ

∫
∂D

(ν · K∇w)−ϕ dS − γ

∫
∂D

ν · K∇ϕw− dS

= γ

∫
∂�

ν · K∇ϕw dS − γ

∫
∂�

ν · K∇wϕ dS

=
∫

∂�

1

2
ν · K∇ϕ

(
γw − 1

2
ν · K∇w

)
dS +

∫
∂�

(
γw − 1

2
ν · K∇w

)
γ ϕ dS

=
〈
�, γw − 1

2
ν · K∇w

〉
L2(∂�)

,
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which shows that G′
κ� = (

γw − 1
2ν · K∇w

)∣∣
∂�

= (
γw − 1

2ν · K0∇w
)∣∣

∂�
∈ H 1/2(∂�) due

to the trace theorem and the outer boundary condition of (4.3). Hence, with w0 ∈ H 1(�\∂D)

being the solution of (4.3) corresponding to � and (K0, µ0), we have

G′� = {
γ (w − w0) − 1

2ν · K0∇(w − w0)
}∣∣

∂�
.

The restriction (w−w0)|�\D solves (4.2) for � = {
γ (w−w0)+ 1

2ν ·K0∇(w−w0)
}−∣∣

∂D
,

which means that

L
({

γ (w − w0) + 1
2ν · K0∇(w − w0)

}−∣∣
∂D

) = {
γ (w − w0) − 1

2ν · K0∇(w − w0)
}∣∣

∂�
,

which equals G′�. Due to the way F : H 1/2(∂D) → H−1/2(∂D) is defined and since
� ∈ H 1/2(∂D) was chosen arbitrarily, the above relation is equivalent to G′ = LF . Taking
the transpose of this and plugging it into (4.6), we obtain

ϒ − ϒ0 = LF ′L′ = LFL′,

which is what we set out to prove. �

5. Further properties of F

To use the factorization given in theorem 4.1 for inclusion characterization in the same way
as in [4], one needs to show that F : H 1/2(∂D) → H−1/2(∂D) is self-adjoint, bijective and
either positive or negative definite. The self-adjointness is a fundamental property of F, but
the latter two conditions hold only if suitable conditions are imposed on the perturbations κ

and δ.
Physically speaking, the inner boundary operator F is positive if and only if the existence

of the inclusion D ⊂ � decreases the amount of absorbed photons inside the body � for any
input flux. In the framework of the diffusion approximation, a sufficient condition is

κ � 0 and δ � 0 in D, (5.1)

where the first inequality is to be interpreted in the sense of positive definiteness and one of
the inequalities is strict on a set of non-zero measure in D. Similarly, F is negative definite if

κ � 0 and δ � 0 in D, (5.2)

with one of the inequalities being strict on a set of non-zero measure.

Lemma 5.1. If condition (5.1) is valid, then F : H 1/2(∂D) → H−1/2(∂D) is positive definite.
On the other hand, if (5.2) holds, F is negative definite. In either of these cases F is injective.

Proof. We start by showing that the solution of (4.3), w ∈ H 1(�\∂D), corresponding to
� ∈ H 1/2(∂D) and the pair (K,µ), is the unique minimizer of the quadratic functional
Eκ(·, ·), defined by

Eκ(u, v) =
∫

�

K∇u · ∇v dx +
∫

�

µuv dx + 2γ

∫
∂�

uv dS + 2γ

∫
∂D

(u−v− − u+v+) dS,

(5.3)

over the subset

H� = {w̃ ∈ H 1(�\∂D) | 2γ [w̃]∂D = �}.
Indeed, denoting v = w̃ − w for an arbitrary w̃ ∈ H�, we have

Eκ(w̃, w̃) = Eκ(w,w) + Eκ(v, v) + 2Eκ(w, v). (5.4)
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By using Green’s formula, the boundary conditions of (4.3) and noting that [v]∂D = 0, we
may write∫

�

K∇w · ∇v dx =
∫

∂D

((ν · K∇w)− − (ν · K∇w)+)v dS −
∫

�

µwv dx +
∫

∂�

ν · K∇wv dS

=
∫

∂D

�v dS −
∫

�

µwv dx − 2γ

∫
∂�

wv dS,

from which it follows that

Eκ(w, v) =
∫

∂D

�v dS + 2γ

∫
∂D

(w− − w+)v dS = 0.

Moreover, since [v]∂D = 0, the inner boundary term of Eκ(v, v) vanishes, meaning that
Eκ(v, v) � 0 with the equality holding if and only if v = 0. Combining the material above,
we have altogether established that Eκ(w,w) � Eκ(w̃, w̃), where the equality holds if and
only if w̃ = w. In the same way one also sees that the solution of (4.3) corresponding to
� ∈ H 1/2(∂D) and (K0, µ0) is the unique minimizer of the quadratic form E0(·, ·), obtained
by replacing (K,µ) with (K0, µ0) in (5.3), over the very same set H�.

On the other hand, for � ∈ H 1/2(∂D) and w, defined as above, it also holds that

〈Fκ�,�〉L2(∂D) =
∫

∂D

(
γw +

1

2
ν · K∇w

)−
� dS

=
∫

∂D

1

2
(ν · K∇w)−� dS −

∫
∂D

γw+� dS + γ

∫
∂D

(w− + w+)� dS

= −γ

{∫
∂D

(ν · K∇w)−w− dS −
∫

∂D

(ν · K∇w)+w+ dS

+ 2γ

∫
∂D

((w−)2 − (w+)2) dS

}
,

where the last equality follows by writing � in two ways: using the normal derivatives in the
second term and the Dirichlet boundary values in the first and third terms. With the help of
Green’s formula, in both inner and outer regions, and the boundary condition that w satisfies
on ∂�, one sees that

〈Fκ�,�〉L2(∂D) = −γEκ(w,w). (5.5)

Denoting the solution of (4.3) corresponding to � and the pair (K0, µ0) by w0 ∈ H 1(�\∂D),
we obtain in similar fashion that

〈F0�,�〉L2(∂D) = −γE0(w0, w0). (5.6)

Due to the minimization properties of w and w0 considered above, for κ � 0 and δ � 0,
with one of the inequalities being strict on a set of non-zero measure, we have

Eκ(w,w) < Eκ(w0, w0) � E0(w0, w0).

Similarly, for κ � 0 and δ � 0, with one of the inequalities being strict on a set of non-zero
measure, it holds that

E0(w0, w0) < E0(w,w) � Eκ(w,w).

Now the claim follows from these estimates together with (5.5) and (5.6). �

We still need to say something about the surjectivity of F. In order to be successful
in this task, we need to define a couple of auxiliary operators. The Robin-to-Robin map
corresponding to the pair (K,µ), given in (4.1), and the interior region D is defined by

ϒD : H−1/2(∂D) → H−1/2(∂D), �in �→ (
γφ + 1

2ν · K∇φ
)+∣∣

∂D
,
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where φ ∈ H 1(D) satisfies the boundary value problem

∇ · K∇φ − µφ = 0 in D,(
γφ − 1

2ν · K∇φ
)+ = �in on ∂D.

(5.7)

Note that ϒD has all the properties given in lemma 3.2; the sign changes in the boundary
conditions are due to the fact that the unit normal ν points into the region D not out of it.
The Robin-to-Robin map ϒD

0 : H−1/2(∂D) → H−1/2(∂D) corresponding to the background
pair (K0, µ0) is defined in similar fashion. Further, we introduce the exterior Robin-to-Robin
boundary map:

ϒ�\D : H−1/2(∂D) → H−1/2(∂D), �out �→ (
γψ − 1

2ν · K0∇ψ
)−∣∣

∂D
,

where ψ ∈ H 1(�\D) is the solution of

∇ · K0∇ψ − µ0ψ = 0 in �\D,(
γψ + 1

2ν · K0∇ψ
)− = �out on ∂D,

γψ + 1
2ν · K0∇ψ = 0 on ∂�.

(5.8)

One easily sees that ϒ�\D also has the properties of lemma 3.2.
The following two technical lemmas give information that is essential when proving the

surjectivity of F.

Lemma 5.2. The operator I − ϒDϒ�\D maps H−1/2(∂D) injectively to H 1/2(∂D).

Proof. First of all, let us prove that R(I − ϒDϒ�\D) ⊂ H 1/2(∂D). As in the proof
of lemma 3.2, one easily sees that ϒ�\D can be given in the form T �\D − I , where
T �\D : H−1/2(∂D) → H 1/2(∂D). Using this together with the analogous representation
ϒD = T D − I , where T D : H−1/2(∂D) → H 1/2(∂D), we obtain

ϒDϒ�\D = I − T D − T �\D + T DT �\D,

which proves the claim.
In order to prove the injectivity, assume that ϒDϒ�\D�out = �out for some �out ∈

H−1/2(∂D), i.e. �out ∈ N (I −ϒDϒ�\D). We define u ∈ H 1(�\D) to be the unique solution
of (5.8) for this flux �out, and continue u to the inner region D as the unique solution of (5.7)
with the input �in = ϒ�\D�out = (

γ u − 1
2ν · K∇u

)−∣∣
∂D

. Combining this with the original
assumption on �out, we deduce that[

γ u − 1
2ν · K∇u

]
∂D

= [
γ u + 1

2ν · K∇u
]
∂D

= 0,

or in other words

[u]∂D = [ν · K∇u]∂D = 0.

Since also
(
γ u + 1

2ν · K∇u
)∣∣

∂�
= 0 and clearly u ∈ H 1(�\∂D), it follows from the unique

solvability of (4.3) that u = 0. In particular, �out = (
γ u + 1

2ν · K∇u
)−∣∣

∂D
= 0, from which

it follows that N (I − ϒDϒ�\D) = {0}. �

In what follows, we will assume for simplicity that K0 and κ are scalar functions.

Lemma 5.3. Let K0 and κ be scalar functions and assume that either (5.1) holds
and κ is negative on ∂D or (5.2) is valid and κ is positive on ∂D. Then the map
ϒD − ϒD

0 : H−1/2(∂D) → H 1/2(∂D) is bijective.
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Proof. To begin with, the injectivity of ϒD − ϒD
0 follows straight away from corollary 3.3.

Our plan is to prove that ϒD − ϒD
0 : H−1/2(∂D) → H 1/2(∂D) is a Fredholm operator of

index 0, whence the surjectivity follows from the injectivity. By using the decomposition
derived in lemma 3.2, for �in ∈ H−1/2(∂D) we may write(

ϒD − ϒD
0

)
�in = 2γ (φ − φ0)

+|∂D,

where φ, φ0 ∈ H 1(D) are the solutions of (5.7) corresponding to the pairs (K,µ) and (K0, µ0),
respectively. Hence, by defining auxiliary operators B, T : H−1/2(∂D) → H 1/2(∂D) through

B : �in �→
((

K0

K
− 1

)
φ0

)+∣∣∣∣
∂D

, T : �in �→
(

φ − K0

K
φ0

)+∣∣∣∣
∂D

, (5.9)

we have ϒD − ϒD
0 = 2γ (B + T ). We claim that B is bijective and T is compact.

Indeed, by assumption K0/K − 1 is smooth and does not equal zero anywhere on ∂D,
and so for any g ∈ H 1/2(∂D) the problem

∇ · K0∇u − µ0u = 0 in D,

(
K0

K
− 1

)
u = g on ∂D, (5.10)

has a unique solution u ∈ H 1(D) that depends continuously on the data [13]. In consequence,
the mapping

B̃ : H 1/2(∂D) → H−1/2(∂D), g �→ (
γ u − 1

2ν · K0∇u
)+∣∣

∂D
,

is well defined, and also continuous, by the trace theorem and an obvious variant of (4.4).
Using the unique solvability of (5.7) and (5.10), it is easy to see that B̃ is the inverse of B,
which proves the first part of the claim.

Let us next consider the non-homogeneous boundary value problem

∇ · K∇u − µu = f in D,(
γ u − 1

2ν · K∇u
)+ = � on ∂D.

(5.11)

Due to the regularity theory of elliptic partial differential equations, if f ∈ L2(D) and
� ∈ H 1/2(∂D), equation (5.11) has a unique solution u ∈ H 2(D) and, in addition, the
solution map

T1 : L2(D) × H 1/2(∂D) → H 2(D), (f,�) �→ u,

is continuous [13].
Let φ, φ0 ∈ H 1(D) still be the solutions of (5.7) corresponding to the input flux

�in ∈ H−1/2(∂D) and the pairs (K,µ) and (K0, µ0), respectively. By a straightforward
calculation, one sees that the difference φ − K0/Kφ0 satisfies equation (5.11) for

f =
(

µ
K0

K
− µ0

)
φ0 − ∇ · φ0K∇ K0

K
,

� =
{
γ

(
1 − K0

K

)
φ0 +

1

2
ν · φ0K∇ K0

K

}+∣∣∣∣
∂D

.

Clearly, the operator T2 : H 1(D) → L2(D) × H 1/2(∂D),

v �→
((

µ
K0

K
− µ0

)
v − ∇ · vK∇ K0

K
, γ

(
1 − K0

K

)
v +

1

2
ν · vK∇ K0

K

)
,

is well defined and bounded, and so putting the above material together, we have

φ − K0

K
φ0 = T1T2φ0 ∈ H 2(D),
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where T1T2 : H 1(D) → H 2(D) is bounded. By using this together with the trace theorem
and continuous dependence on boundary data in (5.7), we deduce that T, given in (5.9),
maps H−1/2(∂D) continuously to H 3/2(∂D). In consequence, due to the compactness of the
imbedding H 3/2(∂D) ↪→ H 1/2(∂D), T : H−1/2(∂D) → H 1/2(∂D) is compact.

Hence, ϒD − ϒD
0 : H−1/2(∂D) → H 1/2(∂D) can be given as a sum of an invertible and

a compact operator, meaning that it is a Fredholm operator of index 0, and so the bijectivity
of ϒD − ϒD

0 follows from its injectivity. �

Now we have introduced enough weaponry for stating a result about the bijectivity of F.

Lemma 5.4. Suppose that the assumptions of lemma 5.3 hold. Then the operator
F : H 1/2(∂D) → H−1/2(∂D) is bijective.

Proof. The injectivity of F : H 1/2(∂D) → H−1/2(∂D) follows from lemma 5.1. Hence,
all we have to prove is that F is surjective: Let � ∈ H−1/2(∂D) be arbitrary. According to
lemmas 5.3 and 5.2, there exists �0

in ∈ H−1/2(∂D) such that
(
ϒD − ϒD

0

)
�0

in = (I − ϒDϒ�\D)�. (5.12)

Let us define w0 ∈ H 1(D) as the unique solution of (5.7) with the flux �0
in satisfying

(5.12) and (K,µ) replaced with (K0, µ0), and continue w0 to the exterior region �\D as
the H 1-solution of (5.8) with the flux �0

out = (
γw0 + 1

2ν · K0∇w0
)+∣∣

∂D
. Finally, we set

� = 2γ [w0]∂D ∈ H 1/2(∂D) and claim that F� = �.
To begin with, it is easy to see that w0 ∈ H 1(�\∂D) is the solution of (4.3) with (K0, µ0)

and the input � defined above; let wκ ∈ H 1(�\∂D) be the solution of (4.3) corresponding to
the pair (K,µ) and the same input �. To simplify our notation let us define a few auxiliary
fluxes:

�κ
in = (

γwκ − 1
2ν · K∇wκ

)+∣∣
∂D

,

�κ
out = (

γwκ + 1
2ν · K∇wκ

)+∣∣
∂D

= (
γwκ + 1

2ν · K∇wκ

)−∣∣
∂D

,(
�0

in

)− = (
γw0 − 1

2ν · K0∇w0
)−∣∣

∂D
,(

�κ
in

)− = (
γwκ − 1

2ν · K∇wκ

)−∣∣
∂D

.

Note that due to the jump conditions of (4.3), �0
out and �κ

out are continuous over ∂D whereas
�κ

in − (
�κ

in

)− = �0
in − (

�0
in

)− = �. With the help of (4.3) and the way ϒD,ϒD
0 and ϒ�\D

are defined, we may write

�κ
out − �0

out = ϒD�κ
in − ϒD

0 �0
in = ϒD

((
�κ

in

)−
+ �

) − ϒD
0 �0

in

= (
ϒD − ϒD

0

)
�0

in + ϒD
((

�κ
in

)− − (
�0

in

)−)
= (I − ϒDϒ�\D)� + ϒDϒ�\D(

�κ
out − �0

out

)
,

where we also used (5.12). In consequence,

(I − ϒDϒ�\D)
((

�κ
out − �0

out

) − �
) = 0,

from which it follows by lemma 5.2 that, actually,

F� = �κ
out − �0

out = �.

Since � ∈ H−1/2(∂D) was chosen arbitrarily, this completes the proof. �
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6. Characterizing the inclusion

From now on we will assume that the conditions of lemma 5.3 hold, i.e. K0 and κ are
scalars, and either (5.1) holds and κ is negative on ∂D or (5.2) holds and κ is positive on ∂D.
According to lemmas 4.2, 5.4 and 5.1, under these conditions F : H 1/2(∂D) → H−1/2(∂D) is
self-adjoint, bijective and either positive or negative definite. In what follows, we will denote
by |F | the absolute value of F, meaning that |F | = F if F is positive, and |F | = −F if F is
negative. The following lemma, like most of the content of this section, is adopted from [4].

Lemma 6.1. The operator |F | : H 1/2(∂D) → H−1/2(∂D) can be given as |F | = (F 1/2)′F 1/2,
where F 1/2 : H 1/2(∂D) → L2(∂D) and (F 1/2)′ : L2(∂D) → H−1/2(∂D) are bounded,
bijective and dual to each other.

By using theorem 4.1 and lemma 6.1, it is easy to see that the absolute value of the
difference of the Robin-to-Robin boundary maps, defined by

|ϒ − ϒ0| = L|F |L′ = L(F 1/2)′F 1/2L′ : H−1/2(∂�) → H 1/2(∂�), (6.1)

is positive definite. As a consequence, the unique, positive, restricted square root operator
|ϒ−ϒ0|1/2

L2(∂�)
: L2(∂�) → L2(∂�) is well defined. The following lemma is a straightforward

consequence of the factorization (6.1)—for proof we refer again to [4].

Lemma 6.2. The ranges R
(|ϒ − ϒ0|1/2

L2(∂�)

)
and R(L) coincide.

Note that R
(|ϒ − ϒ0|1/2

L2(∂�)

)
is something that can be obtained through boundary

measurements and, as a consequence, so is R(L). Keeping this in mind, we consider the
solution hy of the following homogeneous Robin problem:

∇ · K0∇h(x) − µ0h(x) = δ(x − y) in �,

γh + 1
2ν · K0∇h = 0 on ∂�,

(6.2)

where y ∈ � is a parameter and δ is the delta functional. Physically speaking, hy is the energy
fluency corresponding to a point source at y and no input flux on ∂�. It is well known that
(6.2) is uniquely solvable with hy ∈ C∞(�\{y}) and hy singular at y.

Now it is the time to present the main result of this work. Note that the algorithm induced
by the following theorem is non-invasive: ϒ0 and hy can be computed and ϒ can be measured.

Theorem 6.3. Let K0, µ0 ∈ C∞(�) and κ, δ ∈ C∞(D) be scalar functions and assume that
either (5.1) holds and κ is negative on ∂D or (5.2) is valid and κ is positive on ∂D. Then the
output flux

(
γ hy − 1

2ν · K0∇hy

)∣∣
∂�

, corresponding to the singular solution of (6.2), belongs

to the range of |ϒ − ϒ0|1/2
L2(∂�)

if and only if y ∈ D.

Proof. Let us first consider the case y ∈ D. Since hy |�\D is smooth, it is easy to see that it is
the unique solution of (4.2) corresponding to � = (

γ hy + 1
2ν · K0∇hy

)−∣∣
∂D

. In other words,

L
((

γ hy + 1
2ν · K0∇hy

)−∣∣
∂D

) = (
γ hy − 1

2ν · K0∇hy

)∣∣
∂�

,

which proves one part of the claim.
To prove the other part, we assume the opposite: Let y ∈ �\D and � ∈ H−1/2(∂D) be

such that the solution of (4.2) satisfies γ v − 1
2ν · K0∇v = γ hy − 1

2ν · K0∇hy on ∂�. Due to
the outer boundary conditions of (4.2) and (6.2), v and hy have the same Cauchy data on ∂�,
and so it follows from Holmgren’s uniqueness theorem that v = hy on �\(D ∪ {y}). Since
hy is singular at y whereas v is not, we have arrived at a contradiction, which completes the
proof. �



Characterizing inclusions in optical tomography 751

In theorem 6.3, the behaviour of the diffusion tensor is more important than the behaviour
of the absorption coefficient since a strict inequality is posed only on κ . In consequence,
the factorization method is applicable to the characterization of purely diffusive inclusions
whereas there is no guarantee that it would work for purely absorbing inhomogeneities.

To end this work, we note that the above theorem can be generalized for the case of multiple
non-intersecting inclusions, D1, . . . , Dm ⊂ �, by replacing the trace spaces H±1/2(∂D) used
above with the products H±1/2(∂D1) × · · · × H±1/2(∂Dm). The numerical implementation
of theorem 6.3 will be considered in forthcoming papers.
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