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The fractal scaling properties of DNA sequences are analyzed using the wavelet transform. Because
the wavelet transform microscope can be made blind to the "patchiness" of genomic sequences, we

demonstrate and quantify the existence of long-range correlations in genes containing introns and

noncoding regions. Moreover, the fluctuations in the patchy landscapes of DNA walks are found

to be homogeneous with Gaussian statistics.

PACS numbers: 87.10.+e, 05.40.+j, 07.07.—t, 72.70.+m
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Tp(xo, a) =-
a

x(x) t/ ( )
dx,

where xo is the space parameter and a () 0) the scale

parameter. The main advantage of using the WT for

The possible relevance of scale invariance and fractal

concepts to the structural complexity of genomic DNA

has been the subject of considerable recent interest. Dur-

ing the past few years, there has been intense discussion

about the existence and the nature of long-range corre-

lations within DNA sequences [1—6]. But despite the

efforts spent, it is still an open question whether the long-

range correlation properties are different for intronless and

intron-containing coding regions. On more fundamental

ground, there is still continuing debate as to whether the

reported long-range correlations really mean a lack of in-

dependence at long distances or simply refIect the "patchi-
ness" (bias in nucleotide composition) of DNA sequences

[1—6]. One of the main reasons for this controversial situ-

ation is that the different techniques (e.g. , DNA walk, cor-

relation function, and power spectrum analyses) used, so

far, for characterizing the presence of long-range correla-

tions are not well adapted to study patchy sequences [6].
In that respect, there have been some attempts to elimi-

nate local patchiness using ad hoc methods such as the

so-called "min-max" [1] and "detrended fiuctuation analy-
sis" [4(c)] methods. The purpose of this Letter is to advo-

cate the use of a new technique, the wavelet tranform [7]
(WT), which has proven to be well suited for character-

izing the scaling properties of fractal objects even in the

presence of low-frequency trends [8]. We will proceed
to a statistical analysis of DNA sequences by applying
the wavelet transform modulus maxima (WTMM) method

[8(b)] that has been recently proposed as a generalized

multifractal formalism for fractal functions.

The WT is a space-scale analysis which consists of ex-

panding signals in terms of wavelets that are constructed

from a single function, the analyzing wavelet P, by means

of dilations and translations [7]. The WT of a function

s(x) is defined as

analyzing the regularity of a function s is its ability to

eliminate polynomial behavior by an appropriate choice
of the wavelet P. Indeed, if s has, at the point xo,

a local scaling (Holder) exponent h(xo) E ]n, n + 1[, in

the sense that, around xo, Is(x) —P„(x)I—Ix —xoI" ",
where P„(x)is some order-n polynomial, then one can

easily prove [8] that T&(xo, a) —a" '"~, provided the first

n + 1 moments of
iver

are zero [fx ill(x)dx = 0, 0 ~
m ~ n] Ther. efore the WT turns out to be a very

powerful tool to detect and characterize singularities,

even when they are masked by a smooth behavior. This

property will be of fundamental importance to break free
from the intrinsic patchiness of DNA sequences without

using any ad hoc recipe. In this work, we will use

the derivatives of the Gaussian function as analyzing

wavelets: $1~1 = d~(e ' t2)/dx~ (the first N moments of
/~~1 are vanishing).

The WTMM method [8(b)] is a natural generalization

of classical box-counting techniques. It consists of inves-

tigating the scaling behavior of some partition functions

defined in terms of wavelet coefficients,

Z(q, a) = P sup IT~(x, a')I — ~~a1, (2)
IEg (a) -(x,a')El

where q E R. The sum is taken over the WT skeleton

defined at each scale a by the local maxima of ITp(x, a)l
considered as a function of x, these WTMM are disposed
on connected curves called maxima lines; the set X (a) of
all maxima lines that exist at scale a indicates how to po-
sition the wavelets ("generalized oscillating boxes") in or-

der to obtain a partition at this scale. In the framework

of this wavelet-based multifractal formalism, r(q) is the

Legendre transform of the singularity spectrum D(h) de-

fined as the Hausdorff dimension of the set of points x
where the Holder exponent is h. Homogeneous fractal
functions (i.e., functions with a unique Holder exponent h)
are characterized by a linear ~(q) spectrum (h = Br/Bq).
On the contrary, a nonlinear r(q) curve is the signature of
nonhomogeneous functions that displays multifractal prop-

erties [i.e., h(x) is a fiuctuating quantity that depends upon
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x]. For some specific values of q, r(q) has a well-known

meaning. For example, —r(0) can be identified to the frac-

tal dimension (capacity) of the set where s is not smooth;

r(1) is related to the capacity of the graph of the consid-

ered function; furthermore, r(2) is related to the scaling

exponent P of the spectral density: 5(f) = ~s( f) ~

—f
with P = 2 + r(2). Thus r(2) 4 0 indicates the presence
of long-range correlations. Previous studies of DNA se-

quences [1—6] have mainly focused on the estimate of the

power-law exponents of the rms fluctuations of the DNA

walk or the autocorrelation function, which are simply re-

lated to the power spectrum exponent P and thus to r(2).
For its ability to resolve multifractal scaling via the esti-

mate of the entire r(q) spectrum, the WTMM method is a

definite step beyond the techniques used so far in the lit-

erature. Its reliability has been tested [8(b)] on various

experimental and mathematical examples including frac-

tional Brownian motions [9] (FBM). The FBM's BH(x)
are Gaussian stochastic processes of zero mean with sta-

tionary increments, which are indexed by a parameter H

(0 ( H ( 1) that accounts for the presence (H 4 -) or
1

2

the absence (H = z) of correlations between increments.

The FBM's are statistically homogeneous fractals charac-

terized by a single Holder exponent h = H and thus by
a r(q) spectrum which is a linear function of slope H:

r(q) = qH —1.
As a first application of the WTMM method in a bio-

logical context, this study is devoted to the statistical analy-

sis of 70 human DNA sequences, extracted from the

EMBL data bank and long enough (L ~ 6000 nucleotides)

to make the fractal analysis meaningful with respect to
finite-size effects [4(b)]. We processed separately the en-

tire genes, the coding (individual exons, cDNA s) and the

noncoding (individual introns, flanks) regions, provided

the length of these subsequences exceed 2000 nucleotides.

To graphically portray these sequences, we followed

the strategy originally proposed in [1], which consists

of transforming them into random walks by defining an

incremental variable that associates to the position i the

value y(i) = 1 for purine (A, 6) or —1 for pyrimidine

(C, T) The graph of the D. NA walk defined by the cu-

mulative variable s(x) = g;, g(i) is plotted in Fig. 1(a)
for the human desmoplakin I cDNA. The patchiness of
this DNA sequence is patent; one clearly recognizes three

regions of different strand bias. Figure 1(b) shows the

WT space-scale representation of this DNA signal when

using order 1 analyzing wavelet Pl' . This WT displays

a treelike structure from large to small scales, that looks

qualitatively similar to the fractal branching observed in

the WT representation of Brownian or turbulent signals

[8]. In Figs. 1(c) and 1(d) two horizontal cuts T&ii~(x, a)
are shown at two different scales a = a~ = 32 and

a2 = 512 that are represented by the dashed lines in

Fig. 1(b). When focusing the WT microscope at small

scale a = ai in Fig. 1(c), since P~') is orthogonal to con-

stants, one filters the local (high frequency) fluctuations

1000

0

j

40—

on/br 3 nin
0

2000 4000

X

6000 BOOO

FIG. 1. WT analysis of the human desmoplakin I cDNA (L =
8499). (a) DNA walk displacement s(x) (excess of purines
over pyrimidines) vs nucleotide distances x. (b) WT of s(x)
computed with the analyzing wavelet Pi' '

T~(i)(x, a) is coded,
independently at each scale a, using 32 grey levels from white

[minT&~i~(x, a)] to black [maxT&ii~(x, a)]; small scales are at the

top. (c) T&~i~(x, a = a&) vs x for a& = 32. (d) T&ii~(x, a = a&)

vs x for a2 = 512. (e) Same analysis as in (d) but with the

analyzing wavelet Pi2'.

of s(x), i.e. , the fluctuations over a characteristic length

of the order of ai = 32 nucleotides. When increasing

the WT magnification in Fig. 1(d), one realizes that these

fluctuations actually occur around three successive linear

trends; P~') not being blind to linear behavior, the WT
coefficients fluctuate about nonzero constant behavior

that correspond to the slopes of those linear trends.

Even though this phenomenon is more pronounced when

progressively increasing the scale parameter a, it is indeed

present at all scales and drastically affects the fractal

branching of the WT. In Fig. 1(e) at the same coarse
scale a = a2 as in Fig. 1(d), the fluctuations of the WT
coefficients are shown as computed with the order-2

wavelet /~2). The WT microscope being now orthogonal

also to linear behavior, the WT coefficients fluctuate about

zero and one does not see the inhuence of the strand

bias anymore. Furthermore, by considering successively
Pi3), P~"), . . . , one can hope to eliminate more complicated

nonlinear trends, with the ultimate goal of filtering the

fractal underlying structure that might be responsible

for the presence of long-range correlations in DNA

sequences [10].
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In Figs. 2(a) —2(c) typical data are reported coming from

the quantitative application of the WTMM method to the

DNA walk graph corresponding to an intron-containing

sequence (L = 73 326) which has been widely stud-

ied in previous works [1,6(b),6(c)]: the human

beta-globin intergenomic sequence (gene bank name

HHUMHBB). First, let us mention that the patchy

structure of this sequence is a little trickier than the one

of the cDNA sequence in Fig. 1(a), in so far as it is not

so easily amenable to ad hoc detrending methods such as

the min-max procedure [1]. Figures 2(a) and 2(b) display

plots of IogzZ(q, a) vs log&a for some values of q; two

sets of data are represented corresponding to computations

performed with P(') (~) and Pl ) (o), respectively. While

the scaling behavior expected from Eq. (2) seems to

operate over a wide range of scales when using P( ), it

does not show up so clearly for the data obtained with
P(') for which some continuous (nonlinear) crossover phe-

nomenon are observed as the signature of the breaking of
the scale invariance by the extent patchiness of the DNA

walk [6(b)]. The overall r(q) spectrum obtained with

P( ) using a linear regression fit of the data is compared

in Fig. 2(c) to the corresponding spectrum (U) derived

for the same sequence but after randomly shuffling the

nucleotides. The data for both the true and the shuffled

HHUMHBB sequences remarkably fall on straight lines

which are the hallmark of homogeneous fractal functions.

The corresponding unique Holder exponents can be

estimated by fitting the slope h of these straight lines; the

value extracted for the original sequence h = 0.60 ~ 0.02

[7(2) = 0.20 ~ 0.02] is significantly different from the

expected value h = 0.50 ~ 0.02 [~(2) = 0.00 ~ 0.02] ob-

tained for the uncorrelated random shuffled sequence (the

error bars have been estimated from the fluctuations of h

17

observed when splitting the original signals in samples

of length I = 2000). We checked the reliability of this

measurement by reproducing this WTMM analysis with

higher order analyzing wavelets (P ",P' '). Let us point

out that the value h = 0.60 is clearly lower than previous

estimates reported in the literature, e.g. , h = 0.71 in [1]
or h = 0.67 in [6(c)]. Note that if we had used the inap-

propriate analyzing wavelet P 'l, we would have obtained

a similar biased estimate h = 0.70 ~ 0.03. Therefore the

WTMM method not only corroborates the existence of
long-range correlations in this intron-containing sequence

[~(2) ) 0], but it also provides a very efficient methodol-

ogy to correct some systematic overestimates reported in

previous works. In Fig. 2(c) the ~(q) spectrum computed

when analyzing (using P( )) the coding DNA sequence

portrayed in Fig. 1(a) is also shown for comparison.

The data (6) are almost indistinguishable from those

previously obtained from the shuffled sequence; the

~(q) spectrum is linear with a slope h = 0.49 ~ 0.02, as

expected for homogeneous fractal fluctuations that do not

display long-range correlations.

Actually the linearity of the r(q) spectrum turns out to

be a general result for all the DNA walks that we con-

sidered. In Figs. 2(d) —2(f) the results of a systematic in-

vestigation of our statistical sample of 70 human genomic

sequences are summarized under the form of histograms

of Holder exponent values. In order to test the robust-

ness of our results with respect to the rule used to map the

DNA sequences to DNA walks, we reproduced our original

analysis based on purine (A, G) vs pyrimidine (C, T) dis-

tinction [Fig. 2(d)], for the two other possible choices of
identifying two base pairs [Figs. 2(e) and 2(f)]. Whatever

the association rule, the histograms obtained for individ-

ual introns are very similar to the histograms obtained for
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FIG. 2. WTMM analysis of protein coding and noncoding DNA sequences. (a) HHUMHBB: log2Z(q, a) vs log2a for different
values of q; the data correspond to the analyzing wavelets P"' (~) and P'2' (o). (b) HHUMHBB: log, Z(q, a) vs log, a for q

= 1.5;
the symbols (~) and (o) have the same meaning as in (a); the symbol (Q) corresponds to the data for the shuftled sequence (see
text) when using P"', the dashed and solid lines represent the corresponding least-squares fit estimates of ~(q). (c) ~(q) vs q for the
HHUMHBB sequence when using P'" (~), the HHUMHBB sequence (o), the shuftled HHUMHBB sequence (G), and the human

desmoplakin I cDNA (4) when using P"'. Histograms of Holder exponent values extracted from the WTMM analysis (with P'")
of 70 human DNA sequences, ( ) cDNA's and ( ) intron-containing sequences, the DNA walk graphs are constructed on the
basis of the following identifications: (A, G) vs (C, T) in (d), (C, G) vs (A, T) in (e), and (A, C) vs (G, T) in (f).
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the entire genes; they display a rather pronounced peak for
h = 0.63. Despite some slight overlap, the histograms ob-

tained for individual exons and cDNA are systematically

shifted towards lower h values and markedly peaked at

h = 0.50. These results are in qualitative agreement with

the conclusions of [1,4,5] and suggest that the experimental

finding of long-range correlations in the human noncoding

sequences is very likely to be a general characteristic fea-

ture of nucleotide organization in DNA.
Let us stress that the r(q) spectra extracted from both

coding and noncoding DNA walks are remarkably well fit-

ted by the theoretical spectrum for FBM's [r(q) = qH—
I]. Within that prospect, we studied the probability distri-

bution function of wavelet coefficient values P(Tpn) (., a)),
as computed at a fixed scale a in the scaling range. The

distributions obtained for both the coding DNA sequence

of Fig. 1(a) and the largest intron (L = 33 895) contained

in the human retinoblastoma susceptibility gene are shown

in Figs. 3(a) and 3(b), respectively. When plotting lnP

vs T~/o. (a), where cr(a) is the rms value at scale a, all

the data points computed at different scales fall on the

same parabola independently of the nature of the sequence.
Thus the fIuctuations in the DNA walks are likely to have

Gaussian statistics. The presence of long-range correla-

tions in the intron sequence is in fact contained in the scale

dependence of the rms o.(a) —a", where h = 0.60 ~ 0.02

as compared to the uncorrelated random walk value h =
0.50 ~ 0.02 obtained for the coding sequence.

To conclude, we have emphasized the WT as a very

powerful and reliable tool to characterize the fractal scaling

organization of DNA sequences. Our main experimental

finding is that the fIuctuations in the patchy DNA walks are

homogeneous with Gaussian statistics. Those for noncod-

ing and intron-containing DNA sequences display long-

range correlations and are well modeled by FBM's with
1

H & 2. In contrast, those for coding sequences cannot be

distinguished from classical (uncorrelated steps) Brown-

ian motions. Actually, much more can be learned from the

WTMM analysis, especially as far as the nature of the over-

all superimposed patchy structure of the DNA sequences

—2

(b)

P
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—6 —~
1I'
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0
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FIG. 3. Probability distribution functions of wavelet coefh-
cient values at fixed scale a = 32 (~), 64 (4), and 128 (~); the

analyzing wavelet is /~2~. Iog2P is plotted vs T/o. (a), where
o.(a) = o.a" is the rms value. (a) Human desmoplakin I cDNA
sequence: h = 0.5. (b) Largest intron in the human retinoblas-
toma susceptibility gene: h = 0.6. The dashed lines in (a) and

(b) are parabolas characteristic of Gaussian statistics.
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is concerned. For instance, very instructive information

is contained in the way the scaling range [Figs. 2(a) and

2(b)] depends upon the shape of the analyzing wavelet

and the value of q, whether there exists some finite char-

acteristic scale above which either the scaling is broken or
some crossover to a different scaling regime is observed.
This information is likely to provide decisive tests for the

validity of various models proposed to account for the

long-range correlations in DNA sequences. On a more

fundamental ground, further application of the WTMM
analysis to DNA sequences of different evolutionary cate-

gories [3] looks promising for future understanding of the

role played by introns, repetitive motifs, and noncoding in-

tergenic regions in the nonequilibrium dynamical process

[1,2] that produced nucleic acid sequences.
We are very grateful to A. Henaut and A. Kuhn for

helpful discussions. This work was supported by the GIP
GREG (project "Motifs dans les Sequences" ).
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