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Abstract 1 

Gene expression noise plays an important role in many biological processes, such as 2 

cell differentiation and reprogramming. It can also dramatically influence the behavior 3 

of synthetic gene circuits. MicroRNAs (miRNAs) have been shown to reduce the noise 4 

of lowly expressed genes and increase the noise of highly expressed genes, but less is 5 

known about how miRNAs with different properties may regulate gene expression 6 

noise differently. Here, by quantifying gene expression noise using mathematical 7 

modeling and experimental measurements, we showed that competing RNAs and the 8 

composition of miRNA response elements (MREs) play important roles in modulating 9 

gene expression noise. We found that genes targeted by miRNAs with weak competing 10 

RNAs show lower noise than those targeted by miRNAs with strong competing RNAs. 11 

In addition, in comparison with a single MRE, repetitive MREs targeted by the same 12 

miRNA suppress the noise of lowly expressed genes but increase the noise of highly 13 

expressed genes. Additionally, MREs composed of different miRNA targets could 14 

cause similar repression levels but lower noise compared with repetitive MREs. We 15 

further observed the influence of miRNA-mediated noise modulation in synthetic gene 16 

circuits which could be applied to classify cell types using miRNAs as sensors. We 17 

found that miRNA sensors that introduce higher noise could lead to better classification 18 

performance. Our results provide a systematic and quantitative understanding of the 19 

function of miRNAs in controlling gene expression noise and how we can utilize 20 

miRNAs to modulate the behavior of synthetic gene circuits. 21 

 22 

Introduction 23 

Stochastic fluctuations lead to variation, or noise, in gene expression levels, which is 24 

inevitable even among genetically identical cells exposed to the same environmental 25 

conditions (1). In clonal populations of microbes, gene expression noise enables cells 26 
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to generate diverse phenotypes, which may improve the fitness of the population in 1 

certain environments (2–5). In multicellular organisms, noise is involved in many 2 

biological processes, such as cell differentiation (6, 7), reprogramming (8), and 3 

apoptosis (9). Noise can give rise to the heterogeneity of cancer cells within individual 4 

tumors (10, 11). In addition, gene expression noise can influence the behavior of 5 

synthetic gene circuits. In transcriptional cascades, noise is amplified near the transition 6 

region of the dose-response curve, reducing the precision of signal transduction (12–7 

15). Nonetheless, noise is necessary in excitable circuits for the initiation of transient 8 

state switching (3, 4, 16). Therefore, it is valuable to understand the mechanism of noise 9 

modulation in nature and thus to manipulate gene expression noise to control 10 

phenotypes according to expectations. 11 

MiRNAs are ~22 nt noncoding RNAs that mediate the posttranscriptional regulation of 12 

their target genes by either translational repression or poly(A)-tail shortening (17, 18). 13 

Recently, researchers proposed that miRNAs can control gene expression noise and 14 

confer robustness to biological processes (19–23). MiRNAs can reduce the noise of 15 

lowly expressed genes by accelerating mRNA turnover, which can be compensated for 16 

by higher transcription rates, and miRNAs can increase the noise of highly expressed 17 

genes by introducing additional extrinsic noise (20). These discoveries provided an 18 

explanation for the observation that many highly expressed housekeeping genes do not 19 

harbor miRNA binding sites (24). Furthermore, the capacity of miRNAs to modulate 20 

noise was found to be highly related to the strength of their repression on the expression 21 

of target genes (20). 22 

MiRNAs are important regulators in both natural gene networks and synthetic gene 23 

circuits. Different types of miRNAs and various miRNA targets are involved in diverse 24 

biological processes. Therefore, it is essential to delineate how the properties of 25 

miRNAs and their targets beyond repression strength, such as the competing RNAs of 26 

miRNAs and the composition of miRNA binding sites, could modulate gene expression 27 
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noise. For example, the competing RNAs of miRNAs have been shown to have the 1 

capacity to modulate gene expression noise (25, 26). Previously, we analyzed gene 2 

expression noise at the mRNA level by single-cell RNA-seq and revealed that miRNAs 3 

with weakly-interacted competing RNAs could buffer gene expression noise compared 4 

to miRNAs with few targets (27). However, there is a lack of comprehensive studies to 5 

systematically and quantitatively depict how the properties of miRNAs and the 6 

compositions of miRNA response elements (MREs) modulate gene expression noise 7 

and how such noise modulation further influences the output behavior of synthetic gene 8 

circuits. The absence of investigation hinders the understanding and utilization of 9 

miRNAs to control gene expression noise in natural gene regulatory networks and 10 

synthetic gene circuits. 11 

Here, by quantifying gene expression noise via mathematical modeling and flow 12 

cytometry analysis with a dual-fluorescent reporter system, we investigated how 13 

competing RNA networks can influence gene expression noise at the protein level. 14 

Specifically, in comparison with genes targeted by miRNAs with strong competing 15 

RNAs, those targeted by miRNAs with weak competing RNAs show reduced gene 16 

expression noise over a wide range of gene expression levels. Furthermore, genes with 17 

repetitive MREs for the same miRNA exhibit lower noise than genes with a single MRE 18 

when the gene expression level is low but show a strong increase in noise when the 19 

gene expression level is high due to the saturation effect. Additionally, in comparison 20 

with repetitive MREs, MREs composed of targets that are regulated by different 21 

miRNAs exert a similar repression strength but cause lower noise on their target genes. 22 

To investigate how gene expression noise can influence the behavior of synthetic gene 23 

circuits, we further applied the results to a transcription activator-like effector repressor 24 

(TALER) switch circuit that can be employed to classify cell types using endogenous 25 

miRNAs as sensors. We found that the increase in noise mediated by miRNAs could 26 

significantly improve the classification accuracy by enhancing cell state transition. In 27 

summary, this work quantitatively characterized patterns of the miRNA-mediated 28 
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modulation of gene expression noise as well as how such modulation influences the 1 

performance of synthetic gene circuits. The results provide novel insight into the 2 

function of miRNAs in gene regulatory networks and could be useful to guide the 3 

design of synthetic gene circuits to confer robustness or variability. 4 

 5 

Results 6 

Measurement of gene expression noise by a dual-fluorescent reporter system 7 

To quantify the modulation of gene expression noise by endogenous miRNAs, we 8 

constructed a dual-fluorescent reporter system to measure the expression levels and 9 

noise of fluorescent proteins in HeLa cells. The system is composed of two fluorescent 10 

proteins (mKate2 and EYFP) that are transcribed from a bidirectional promoter. MREs 11 

are fused to the 3’ untranslated region (3’UTR) of EYFP, whereas the expression of 12 

mKate2 is not regulated by miRNAs (Fig. 1A). Therefore, the fluorescence intensity of 13 

mKate2 can be used to indicate the transcription rate of the promoter. After the transient 14 

transfection of the system into HeLa cells, the intensity of mKate2 and EYFP was 15 

quantified by flow cytometry (Fig. 1B). Cells with similar transcription rates were 16 

binned according to their mKate2 fluorescence intensity (Fig. 1B). The mean value and 17 

noise (coefficient of variation, CV) of the EYFP fluorescence intensity in each bin were 18 

calculated (Fig. 1C-E). 19 
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 1 

Fig. 1. Measurement of gene expression noise by a dual-fluorescent reporter system. 2 

(A) Schematic diagrams of the dual-fluorescent reporter system. 3 

(B-E) Procedures for calculating gene expression noise using flow cytometry data. Flow cytometry 4 

results of systems with no MRE (gray), the single miR-19b-3p MRE (blue), or the single miR-30a-5 

5p MRE (orange) are shown in (B). Cells were binned according to mKate2 fluorescent intensity 6 

(C). The repression strength of miRNAs (D) and the gene expression noise (E) in each bin were 7 

further calculated. The lines represent the mean value of EYFP in different mKate2 bins in (B). The 8 

lines and shading show the mean ± SD of three independent replicates in (D) and (E). The dotted 9 

line in (E) represents the fitted noise of reporters without MREs. 10 

We identified the 20 endogenous miRNAs showing the highest expression in HeLa cells 11 

by high-throughput sequencing and cloned one perfectly complementary MRE to the 12 

3’UTR of EYFP for each of them (Fig. S1 and Table S1). Then, we measured the 13 

correlation between the strength of miRNA-mediated repression (R, logarithmic fold 14 

change) and the noise of EYFP (CV) at different EYFP levels (Fig. 2A and Fig. S2). 15 

Previous studies (20) have demonstrated that the repression strength of miRNAs is a 16 

critical factor in miRNA-mediated noise control. Higher repression strength could 17 

reduce intrinsic noise, which is mainly contributed by the stochastic gene transcription, 18 

to a greater extent, thus leading to significant noise reduction at low gene expression 19 

levels. Additionally, the noise of miRNAs can propagate to the noise of the observed 20 

gene as extrinsic noise, which is dominant at high expression levels. Consistent with 21 
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these findings, we found that miRNA-mediated repression strength was negatively 1 

correlated with the noise of EYFP when expressed at a low level but positively 2 

correlated under high expression (Fig. 2A). However, the correlation was not 3 

sufficiently high when gene expression levels were intermediate. Genes that are 4 

repressed to a similar extent may show quite different noise levels (Fig. 2A), leading to 5 

the speculation that other properties of miRNAs can also influence gene expression 6 

noise. 7 

 8 

Competing RNAs of miRNAs modulate gene expression noise 9 

It has been shown that each miRNA targets tens or hundreds of different endogenous 10 

RNAs (28), yet most of them are only modestly repressed (less than twofold) (29–31). 11 

These RNAs compete for miRNA binding with each other, mutually playing the role of 12 

competing RNAs and constituting a complex miRNA-mediated regulatory network. By 13 

combining mathematical modeling and single-cell RNA-seq analysis, we previously 14 

showed that the abundant weak targets of miRNAs have the capacity to buffer gene 15 

expression noise (26, 27). In addition, previous research using a similar dual-16 

fluorescent reporter system investigated how the strength of exogenous competing 17 

RNAs introduced by transfected plasmids influences gene expression noise (25). 18 

However, the binding affinities of these exogenous competing RNAs to miRNAs are 19 

much higher than those of endogenous interactions, so the results can hardly represent 20 

how endogenous miRNA-mediated regulatory networks modulate gene expression 21 

noise. 22 

To investigate how competing RNAs regulate gene expression noise, we performed 23 

computational simulations using a minimal miRNA-competing RNA model that we and 24 

others have used previously (26, 32, 33). The model describes the interactions between 25 

one miRNA and two RNAs that can bind the miRNA competitively. The simulation 26 
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results showed that when repression strengths were similar, the noise of lowly 1 

expressed genes was not sensitive to competing RNAs. However, at intermediate or 2 

high expression levels, genes targeted by miRNAs with weak competing RNA pools 3 

tended to show lower noise than genes that were not regulated by any miRNAs and 4 

those regulated by miRNAs with strong competing RNA pools (Fig. 2B). 5 

To verify the computational results, we used a reporter system to analyze the noise 6 

modulation patterns of miRNAs with similar repression ability to exclude the influence 7 

of repression strength on noise. As the repression strength may be reduced with the 8 

increase of gene expression level (34), we took the repression strength at the lowest 9 

EYFP expression level as the maximum repression strength (RM) to describe the 10 

repression ability of a miRNA. To figure out the impact of noise on miRNAs with same 11 

repression strength, we chose all miRNA pairs exhibiting a difference of maximum 12 

repression strength (ΔRM, RMmiR-A – RMmiR-B) less than 0.1 for further analysis. For 13 

example, reporters with a single perfectly complementary MRE of miR-30a-5p or miR-14 

19b-3p showed similar repression strengths and noise levels at low expression (Fig. 15 

1D). However, at high expression, the reporter with the miR-19b-3p MRE showed less 16 

noise than that with the miR-30a-5p MRE (Fig. 1E). We further quantified the levels of 17 

the competing RNAs of these miRNAs by RNA-seq and used the total system energy 18 

(ΔGtotal) calculated by miRmap (35) to represent the interaction strength between 19 

miRNAs and their competing RNAs. In comparison with miR-19b-3p, miR-30a-5p 20 

tended to be associated with more substantial levels of strong competing RNAs and 21 

lower levels of weak competing RNAs (Fig. 2C-D). Therefore, consistent with the 22 

computational model predictions (Fig. 2B), the different noise levels observed for this 23 

reporter pair could be partially explained by distinct interaction strength distributions 24 

of the competing RNA pool. 25 

We performed a similar analysis for all the other pairs of reporters targeted by miRNAs 26 

with |ΔRM| < 0.1. The competing RNAs were divided into a strong group and a weak 27 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.193094doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.193094


 

 

9 

group with a ΔGtotal threshold (7 kcal/mol), and the difference between the levels of 1 

competing RNAs in the strong group and the weak group was defined as the noise 2 

modulation capacity (MC, FPKMstrong – FPKMweak) to roughly assess the integrated 3 

influence of competing RNAs on gene expression noise. Interestingly, the differences 4 

of noise between reporter pairs (ΔCV, CVmiR-A – CVmiR-B) with similar maximum 5 

repression strengths showed a moderate positive correlation with the differences of the 6 

miRNA noise modulation capacity (ΔMC, MCmiR-A – MCmiR-B) (Fig. 2E-F). This 7 

positive correlation was even more significant when using the miRmap score to define 8 

the interaction strength (miRmap score threshold = –0.05) (Fig. 2E and G). These 9 

observations supported the hypothesis that gene expression noise is buffered by weak 10 

competing RNAs. 11 

 12 
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Fig. 2. The influence of repression strength and competing RNAs on gene expression noise. 1 

(A) Spearman correlation between repression strength (R) and noise (CV) among reporter systems 2 

containing MREs with a single target of the top 20 most highly expressed miRNAs in HeLa cells at 3 

different expression levels of EYFP. Solid lines and shading represent the mean ± SD with three 4 

independent replicates. Dashed lines represent the linear regression results of points. 5 

(B) Simulation results of the influence of competing RNAs on gene expression levels and noise. 6 

The simulation parameters are shown in Table S3. 7 

(C) Competing RNA abundance associated with miR-19b-3p and miR-30a-5p under different ΔGtotal 8 

values. 9 

(D) The difference between competing RNA abundance associated with miR-19b-3p and miR-30a-10 

5p under different ΔGtotal values. The black line represents the smoothing of the abundance 11 

distribution. The gray line represents the threshold of ΔGtotal that divides the competing RNAs into 12 

strong and weak groups. 13 

(E) Spearman correlations between ΔCV and ΔMC divided by ΔGtotal (dark blue line), between ΔCV 14 

and ΔMC divided by the miRmap score (light blue line), and between ΔCV and –ΔR (gray line). 15 

Solid and hollow points represent the significance of the correlation coefficients. 16 

(F-G) Spearman correlations between ΔCV and ΔMC divided by the ΔGtotal threshold (F) and 17 

between ΔCV and ΔMC divided by the miRmap score threshold (G) at the EYFP expression level 18 

of approximately 103.5 a.u. Each point represents the mean ± SD with three independent replicates. 19 

Gray lines and shading represent the linear regression and the 0.95 confidence interval of the results. 20 

 21 

The composition of MREs influences miRNA-mediated noise modulation 22 

The 3’UTRs of both endogenous genes and genes included in synthetic circuits often 23 

contain many miRNA binding sites (36, 37). Some 3’UTRs are targeted by the same 24 

miRNA multiple times to enhance the repression strength of miRNAs (18). Some 25 

3’UTRs are targeted by different miRNAs, constituting a complex regulatory network 26 

controlling various biological processes robustly and precisely (38). Therefore, it is 27 
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necessary to investigate how the composition of MREs can influence gene expression 1 

noise. 2 

To investigate how multiple MREs of the same miRNA can modulate noise, we 3 

constructed reporters that contain three perfect complementary tandem MREs for each 4 

of the 20 miRNAs showing the highest expression in HeLa cells (Fig. 3A and Fig. S3). 5 

Compared to reporters with a single MRE, reporters with triple MREs showed a greater 6 

repression strength at low expression levels, but the repression strength decreased 7 

markedly as expression increased (Fig. 3C), which is a consequence of the saturation 8 

effect of miRNA regulation (34). The sensitivity of the strength of gene expression 9 

repression (dR) around the threshold generated by saturation therefore increases in 10 

reporters with triple MREs (Fig. 3E), which has been shown to increase gene expression 11 

noise in previous studies (14, 26). Therefore, reporters with triple MREs showed 12 

stronger noise reduction at low expression levels in comparison with those with a single 13 

MRE but exhibited a remarkable increase in noise at high expression levels (Fig. 3I). 14 

Furthermore, accompanied by the alteration of the threshold, the regime with maximum 15 

sensitivity showed a shift to lower expression levels in triple-MRE reporters, causing 16 

an increase in noise even at low expression levels, which counteracted the noise 17 

reduction arising from the increased repression strength of triple MREs (Fig. 3G and I). 18 

This phenomenon is consistent with previous work (25, 34).  19 

We further used the reporter systems to assess the modulation pattern of MREs 20 

composed of targets of different miRNAs. Each composite MRE is composed of three 21 

perfectly complementary MREs that are targeted by miRNAs with adjacent expression 22 

level ranks in HeLa cells. The top 20 most highly expressed miRNAs in HeLa cells 23 

were selected, and they constituted 18 sequential composite targets. Interestingly, the 24 

composite MREs exhibited distinct noise modulation patterns compared to repetitive 25 

MREs and a single MRE (Fig. 3B, S4, and S5). In comparison with reporters with a 26 

single MRE, reporters with composite MREs showed higher miRNA-mediated 27 
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repression strength and thus lower noise at low expression levels (Fig. 3D, H, and J). 1 

Additionally, the composite MREs could lead to greater saturation (Fig. 3F), thus 2 

increasing noise at very high expression levels (Fig. 3H, J, and S4). Compared with 3 

triple MREs, the composite MREs showed similar repression levels but a higher 4 

saturation threshold, leading to a wide range of noise reduction levels compared with 5 

repetitive MREs except in the case of extremely high expression levels (Fig. 3H and K 6 

and S5). 7 

 8 

Fig. 3. The influence of MRE composition on gene expression noise. 9 

(A-B) Schematic diagrams of a single MRE (A), triple repetitive MREs (A), and composite MREs 10 

(B). 11 

(C-H) Repression strength (C-D), saturation (E-F, the difference of repression strength) and noise 12 

(G-H) of reporters with a single MRE (colored solid lines), triple MREs (colored dashed lines), 13 

and composite MREs (red dotted lines). Lines and shading represent the mean ± SD with three 14 

independent replicates. Gray lines represent reporters without the regulation of miRNAs. 15 
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(I-K) Comparison of noise (I) between the reporter with triple MREs and the reporter with the 1 

corresponding single MRE, (J) between the reporter with composite MREs and all three reporters 2 

with the corresponding single MRE, and (K) between the reporter with composite MREs and all 3 

three reporters with the corresponding triple MREs. Only EYFP expression levels measured in ≥ 4 

five comparison groups are shown. 5 

 6 

MiRNA-mediated noise modulation could enhance state transition and improve 7 

the accuracy of synthetic cell-type classifiers 8 

miRNAs have been widely employed in synthetic gene circuits as input signals to 9 

classify cells of different types or in different states (39–44). Previous studies have 10 

shown that gene expression noise can impact the performance of synthetic gene circuits 11 

(3, 14), so it is reasonable to hypothesize that the ability of miRNAs to control gene 12 

expression noise could further modulate the behaviors of gene circuits with miRNAs 13 

as inputs. Here, we used a well-established miRNA-mediated TALER circuit that 14 

behaves as a cell-type classifier (42) (Fig. 4A and S6A) to investigate whether miRNA-15 

mediated noise modulation can affect the classification accuracy of the circuit. 16 

As shown in Figure 4A and S6A, the TALER switch was composed of two TALER 17 

genes that could repress the transcription of each other, forming a closed-loop (CL) 18 

topology. The TALER genes were fused with EYFP or mKate2 so that their expression 19 

levels were reflected by the intensity of these fluorescent proteins. The expression of 20 

both TALERs was driven by the transcription activator Gal4VP16 fused with TagBFP. 21 

We selected the top eight most highly expressed miRNAs in HeLa cells and cloned one 22 

perfectly complementary MRE or triple tandem perfectly complementary MREs for 23 

each of them to the 3’UTR of EYFP-TALER. To exclude the influence of the 24 

transfection efficiency on EYFP and mKate2 intensity, we binned cells according to 25 

their TagBFP intensity and chose cells with TagBFP intensity between 104.3 and 104.4 26 

a.u. for further analysis. The results for other bins exhibited similar trends and are 27 
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shown in supplementary figure S7. 1 

Previous studies (42) have shown that CL switches without miRNA regulation exhibit 2 

a state with moderate levels of both EYFP and mKate2. When the expression of EYFP 3 

is repressed by miRNA, CL switches will transition to a low-EYFP, high-mKate2 state. 4 

Cell state transitions were successfully observed in this study, but the extent of the 5 

transition was quite different across these CL switches with different MREs (Fig. 4C). 6 

Some CL switches exhibited an approximately complete transition to the low-EYFP, 7 

high-mKate2 state, while others exhibited intermediate states. The CL TALER switches 8 

could be used to classify different cell types or states employing different miRNAs as 9 

input (42, 45), and an incomplete transition will decrease the classification accuracy 10 

between the circuits with and without the inputs (Fig. 4C). We depicted the 11 

classification accuracy in a receiver operating characteristic (ROC) curve and 12 

quantified the accuracy by using the area under the ROC curve (AUC) (Fig. 4D). 13 

Furthermore, to determine the repression-strength-independent influence of noise 14 

modulation mediated by miRNAs on the performance of CL switches, we also 15 

quantified the repression strength of each MRE by using an open-loop (OL) TALER 16 

circuit, the only difference of which in comparison with the CL switch was that mKate2-17 

TALER could not repress the expression of EYFP-TALER (Fig. 4B and S6B). 18 

As shown in Figure 4E, the classification accuracies were positively correlated with the 19 

repression strength. However, circuits with MREs sharing similar repression strengths 20 

in OL circuits could exhibit distinct AUCs in CL switches. In particular, CL switches 21 

with triple tandem MREs (blue points) showed higher classification accuracies than 22 

those with a single MRE (green points), which was consistent across all TagBFP 23 

intensity bins (Fig. S7). For instance, single let-7i-5p MRE and triple let-7i-5p MREs 24 

could lead to similar repression strengths in OL circuits (Fig. 4E and S8A), but only the 25 

CL switch with triple let-7i-5p MREs exhibited a near-complete state transition (Fig. 26 

4C) in comparison with the CL switch with single let-7i-5p MRE, leading to higher 27 
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classification accuracy (Fig. 4D-E).  1 

To understand the mechanism of such phenomena, we examined the behavior of OL 2 

circuits with these MREs. The OL circuits can be regarded as a signal transduction 3 

cascade in which the signal of miRNA propagates to mKate2-TALER via EYFP-4 

TALER. We found that although similar repression strengths in the first step (EYFP) 5 

were exerted, circuits with triple MREs could induce a greater expression increase in 6 

the second step (mKate2) (Fig. S8B). For example, although the OL circuit with triple 7 

let-7i-5p MREs exhibited the same EYFP level as that with a single let-7i-5p MRE, the 8 

former circuit showed a significantly higher mKate2 level than the latter (Fig. S8A). 9 

The experimental results of the dual-fluorescent reporter system showed that triple 10 

MREs could introduce higher noise at low and intermediate expression levels in 11 

comparison with a single MRE, independent of repression strength (Fig. 3). Therefore, 12 

we speculated that the miRNA-mediated modulation of noise may affect the signal 13 

transduction efficiency of the OL circuits, and it may further influence the classification 14 

accuracy of CL switches. 15 

We performed Monte Carlo simulations (46) to investigate the impact of noise. In OL 16 

circuits, the results showed that when mean EYFP levels were equal, higher EYFP noise 17 

could lead to a higher mKate2 level, resulting from the nonlinear relationship between 18 

EYFP and mKate2 (Fig. S9A-B). In CL switches, the increase in the mKate2 level 19 

caused by higher EYFP noise could in turn suppress the expression of EYFP, thus 20 

bringing about a significant change of the distribution to a lower-EYFP and higher-21 

mKate2 situation (Fig. S9D-F). Besides, in CL switches, where the expression of EYFP 22 

was repressed by mKate2, the stronger saturation effects of repetitive MREs in 23 

comparison with the single MRE (Fig. 3E) could lead to a more remarkable increase of 24 

repression strength in CL switches (Fig. S9C), which resulted in the alteration of the 25 

steady state to a low-EYFP and high-mKate2 state (Fig. S9D-E). Therefore, the 26 

alteration of repression strength caused by saturation promoted the cell state transitions 27 
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in CL switches, and the high expression noise modulated by MREs further enhanced 1 

the cell state transitions (Fig. S9E and F), both of which upheld the improvement of 2 

classification accuracy (Fig. S9G). The results suggested that detailed characteristics of 3 

miRNA regulation should be taken into account in the design of synthetic circuits with 4 

miRNAs. 5 

 6 

Fig. 4. miRNAs can regulate the behavior of TALER switches by modulating gene expression 7 

noise. 8 

(A) Schematic diagrams of closed-loop (CL) TALER switches. 9 

(B) Schematic diagrams of open-loop (OL) TALER circuits. 10 

(C) Joint and marginal distribution of EYFP and mKate2 in CL switches. 11 

(D) ROC curves obtained when classifying cells by mKate2 in CL switches. Student’s t-tests were 12 

performed between the AUCs of two groups, and the significance levels are indicated by **: p < 13 

0.01. 14 

(E) The relationship between the repression strength of MREs in OL circuits and the AUCs 15 

classified by mKate2 in CL switches. The size of the point represents the noise level (CV) of 16 

EYFP mediated by the MRE in OL circuits. Dashed curves represent the loess regression of the 17 

points. Each point represents the mean ± SD with three independent replicates. Points that 18 

represent reporters with single MRE or triple MREs of the same miRNA are connected by gray 19 

lines.  20 
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 1 

Discussion 2 

We applied mathematical modeling and a dual-fluorescent reporter system to 3 

investigate how competing RNAs and miRNA binding sites of genes influence the 4 

expression noise of genes at different expression levels. We showed that genes targeted 5 

by miRNAs with weak competing RNAs tend to exhibit lower noise than those without 6 

MREs or those targeted by miRNAs with strong competing RNAs at a wide range of 7 

gene expression levels. In addition, repetitive MREs of the same miRNA can reduce 8 

noise at low expression levels but increase gene expression noise at high expression 9 

levels compared to a single MRE, while composite MREs composed of targets for 10 

different miRNAs can maintain low-expression noise reduction but reduce the increase 11 

of high-expression noise. We showed that the proper choice of miRNAs and 12 

corresponding MREs to modulate gene expression noise could significantly enhance 13 

cell state transition and improve the performance of synthetic gene circuits for cell 14 

classification. 15 

Each miRNA has tens or hundreds of targets, but most of them are weakly repressed, 16 

raising questions about the function of the widespread weak interactions between 17 

miRNAs and their targets (29–31). A generally accepted hypothesis posited that 18 

miRNAs usually make fine-scale adjustments to most of their targets (17, 19, 28). An 19 

alternative proposed view is that a large proportion of miRNA targets are competitive 20 

inhibitors of miRNAs. Moderate repression of these targets might not lead to 21 

consequences at the physiological level (28) but may function to titrate miRNA activity, 22 

instead of being regulated by miRNAs (17). Our results suggested that widespread weak 23 

interactions might act as buffers to reduce gene expression noise (Fig. 2) and thus confer 24 

robustness to gene regulatory networks, similar to previous theoretical analysis (47, 48) 25 

and our observations at the mRNA level (27). 26 
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It is noteworthy that current algorithms for predicting miRNA targets, such as miRmap 1 

(35, 49), TargetScan (50), and PITA (51), were designed to discover targets that are 2 

thought to be repressed by corresponding miRNAs with high confidence. To reduce the 3 

false-positive rate, these algorithms usually ignore weak or nonconserved targets. 4 

However, it has been suggested that the number of these weak targets that cannot be 5 

predicted by current algorithms is quite large and that they might play important roles 6 

in the regulation of gene expression by miRNAs (52). According to our computational 7 

simulation results, these widespread weak targets can buffer gene expression noise. 8 

Therefore, if algorithms for predicting these weak targets can be developed in the future, 9 

we could better understand the modulation of gene expression noise by miRNAs and 10 

employ the results of this study to explain the function of endogenous miRNAs in 11 

biological processes or modulate the performance of synthetic gene circuits. 12 

In synthetic gene circuits with miRNAs as inputs, MREs are often designed as tandem 13 

repeats of the same miRNA instead of a single MRE of the miRNA (39, 42, 53). We 14 

have shown that genes with repetitive MREs may exhibit higher noise levels at high 15 

expression levels or even globally than those with a single MRE, demonstrating that 16 

the composition of MREs can strongly influence gene expression noise. In addition, as 17 

shown in the TALER-based cell-type classifiers, switches with repetitive MREs 18 

exhibited better classification accuracies than those with a single MRE when subjected 19 

to similar repression strengths measured in OL circuits. The results indicated that during 20 

the design of MREs in synthetic gene circuits, it is necessary to consider not only the 21 

repression strengths measured in some certain conditions, but also miRNA-mediated 22 

modulations of noise and saturation as well as the intricate behaviors of the modulations 23 

in gene regulatory networks. 24 

The engineering of large-scale synthetic gene circuits is limited by the poor stability of 25 

the complex system, which is usually caused by noise in gene expression. Previous 26 

studies have revealed several strategies for modulating gene expression noise without 27 
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changing the mean expression levels, including the mutation of TATA boxes (2, 54), the 1 

regulation of transcriptional rates and translational rates at the same time (3), the 2 

alteration of epigenetics (55) and the arrangement of two transcriptional regulators (56). 3 

Our investigation of the influence of miRNA properties on gene expression noise might 4 

provide a new tool for modulating noise in synthetic gene circuits and thus regulating 5 

their behaviors. 6 

In summary, we performed an elaborate analysis of how competing RNAs and the 7 

composition of MREs influence gene expression noise and how such modulation could 8 

further impact the performance of synthetic gene circuits. The results provided an 9 

explanation for the function of the widespread weak interactions between miRNAs and 10 

their targets and presented guidelines for the design of miRNA binding sites in synthetic 11 

gene circuits to better employ miRNAs as endogenous signals. 12 

 13 

Materials and Methods 14 

Reagents and enzymes 15 

Polynucleotide kinase (PNK), ATP, T4 ligase, and all restriction endonucleases were 16 

purchased from New England Biolabs. Oligonucleotides were synthesized by Genewiz. 17 

Doxycycline (Dox) was purchased from Clontech. 18 

Construction of dual-fluorescent reporter systems and TALER switches 19 

The sequences of the single MREs are listed in Table S1. The sequences of the triple 20 

MREs consisted of three tandem single MRE sequences without gaps. The sequences 21 

of the composite MREs were joint by single MRE sequences of three miRNAs with 22 

adjacent ranks of expression levels without gaps. The MREs were synthesized as 23 

oligonucleotides, which were annealed and then phosphorylated using PNK and ATP 24 
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for ligation. The MREs were then inserted into the 3’UTR of EYFP in the dual-1 

fluorescent reporter system via the SpeI and HindIII digestion sites with T4 ligase. 2 

The TALER-based switches were modified from circuits described in a previous study 3 

(42). The closed-loop (CL) switch (Fig. S6A) was composed of three plasmids. The 4 

constitutively expressed transcription activator Gal4VP16, which was fused with 5 

TagBFP via a self-cleaving 2A linker (Gal4VP16-2A-TagBFP, or Gal4VP16-TagBFP 6 

in short) (57), drove the expression of EYFP-2A-TALER9 and mKate2-2A-TALER14. 7 

The promoter of EYFP-TALER9 was flanked with four TALER14 binding sites (T14), 8 

and the promoter of mKate2-TALER14 was flanked with four TALER9 binding sites 9 

(T9). Therefore, EYFP-TALER9 and mKate2-TALER14 exerted mutual expression 10 

inhibition against each other. The MREs were inserted into the 3’UTR of EYFP-11 

TALER9 via the SpeI and MluI digestion sites with T4 ligase. Compared with the CL 12 

switch, the only difference in the open-loop (OL) circuit was that mKate2-TALER14 13 

was replaced by mKate2-TALER10 so that the expression of mKate2-TALER10 could 14 

not inhibit the expression of EYFP-TALER9 (Fig. S6B). 15 

Cell culture, transient transfection and flow cytometry 16 

HeLa cells (originally obtained from ATCC) were grown in DMEM with 4.5 g/L 17 

glucose (Gibco) supplemented with 10% FBS (Gibco) at 37 ℃ and 5% CO2. On the 18 

day before transfection, approximately 1.6×105 HeLa cells were plated in 12-well plates. 19 

Lipofectamine LTX (Thermo Fisher) was used for transfection according to the 20 

manufacturer’s protocol. For the observation of dual-fluorescent reporter systems, 21 

transfection with 40 ng of the plasmids carrying the dual-fluorescent reporter, 40 ng of 22 

the plasmids carrying the reverse tetracycline-controlled transactivator (rtTA) gene, and 23 

420 ng of pDT004, a plasmid with no protein-coding sequences (42), was performed in 24 

the wells of a 12-well plate. For the observation of TALER switches, the transfection 25 

of 100 ng of the plasmids carrying Gal4VP16-TagBFP, 100 ng of the plasmids carrying 26 

EYFP-TALER9-MRE, and 100 ng of the plasmids carrying mKate2-TALER10 (for OL) 27 
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or mKate2-TALER14 (for CL) in the wells of a 12-well plate. On the day of transfection 1 

and one day after transfection, the medium was refreshed with DMEM. For the dual-2 

fluorescent reporters, we supplemented DMEM with 1 μg/ml Dox to induce their 3 

expression. Cells were harvested 48 h after transfection and centrifuged at 500 g for 3 4 

min at room temperature. Then, the cells were washed with PBS once and resuspended 5 

in PBS. Flow cytometry was conducted using Fortessa flow analyzers (BD Biosciences) 6 

with the settings listed in Table S2. For the dual-fluorescent reporter systems, 7 

approximately 3×104 mKate2-positive cells were collected. For the TALER switches, 8 

approximately 5×104 TagBFP-positive cells were collected. 9 

High-throughput sequencing of HeLa cells 10 

The miRNA-seq of HeLa cells was conducted on the HiSeq 2500 platform (Illumina) 11 

and analyzed by using miRDeep2 (v 0.1.2). The RNA-seq of HeLa cells was conducted 12 

on the NovaSeq 6000 platform (Illumina) and analyzed by using TopHat (v 2.1.1) and 13 

HTSeq (v 0.6.1). 14 

Flow cytometry data processing 15 

All data processing and analysis described below were performed by using R v3.6.1. 16 

For the dual-fluorescent reporter system used to measure gene expression noise, the 17 

data were processed as previously described with some modifications (20), as follows. 18 

Cells were binned according to the mKate2 intensity (bin width 0.2 in log10 space). 19 

Cells with mKate2 intensity of less than 102 were considered to be untransfected cells 20 

and were thus removed. In each bin, cells above the 0.05 quantile and below the 0.95 21 

quantile of the EYFP intensity distribution were selected. Three independent biological 22 

replicates were performed for each reporter. The noise of reporters without MREs was 23 

fitted using the method described in Ref. (20). 24 

For the data of TALER circuits, the cells were binned according to the TagBFP intensity 25 
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(bin width 0.1 in log10 space) to control the transfection efficiency. Cell type 1 

classification was performed between the CL switches with MREs and without MREs 2 

in the same replicate. 3 

The repression strength, R, of each miRNA was calculated as the difference between 4 

the logarithmic mean value of EYFP without miRNA regulation (μ0) and with miRNA 5 

regulation (μ) at the same transcriptional level (in the same mKate2 bin for the dual-6 

fluorescent reporter system or the same TagBFP bin for the OL TALER circuits): R = 7 

log10(μ0) – log10(μ). 8 

For the dual-fluorescent reporter system, R and CV were interpolated in the space of 9 

the EYFP mean expression level. The repression strength at the lowest EYFP 10 

expression level was regarded as the maximum repression strength, RM. miRNA pairs 11 

with similar RM (|RMmiR-A – RMmiR-B| < 0.1) values were considered to be pairs of 12 

miRNAs with the same repression strength for further analysis in Fig. 2E-G. 13 

Characterization of competing RNAs 14 

We calculated competing RNA abundance from the RNA-seq data of HeLa cells and 15 

the miRNA target predictions for humans by using miRmap (release mirmap201301e). 16 

For the analysis based on ΔGtotal, all transcripts with ΔGtotal < 7 kcal/mol were regarded 17 

as strong competing RNAs; otherwise, they were regarded as weak competing RNAs. 18 

The total abundance (FPKM) of the strong and weak competing RNAs was used to 19 

define the noise modulation capacity (MC): MC = FPKMstrong – FPKMweak. For analysis 20 

based on the miRmap score, all transcripts with a miRmap score < –0.05 were regarded 21 

as strong competing RNAs. 22 

Mathematical modeling of gene expression noise 23 

The mathematical model and parameter settings for simulating the noise modulation of 24 

competing RNAs were adopted from our previous work (26). The model is briefly 25 
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described using ordinary differential equations (ODEs) as follows: 1 
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Where RF denotes the concentration of free miRNA; TiF denotes the concentration of 9 

free RNA #i; TiC denotes the concentration of the complex of miRNA and RNA #i; P1 10 

denotes the protein of RNA #1. In this model, RNA #1 represents the RNA transcribed 11 

from the observed gene, and RNA #2 represents the competing RNA. kTi is the 12 

transcription rate of RNA #i. gTi is the degradation rate of RNA #i. RNA #i and the 13 

miRNA form a complex at a rate of ki+, and the complex dissociates at a rate of ki– and 14 

degrade at a rate of gi. When complex #i degrades, miRNAs on the complex degrades 15 

with a probability of αi. The production and degradation rate of the protein of RNA #1 16 

are kP1 and gP1 respectively. The transcription and degradation rate of the miRNA are  17 

kR and gR respectively. The noise levels of all the molecular species are calculated using 18 

fluctuation-dissipation theorem as in Ref. (26). The parameters for Fig. 2B are shown 19 

in Table S3.  20 

Stochastic simulation of TALER circuits 21 
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To model how the noise of EYFP-TALER influences the level of mKate2-TALER, we 1 

conducted a stochastic simulation using the Gillespie algorithm (46). The EYFP-2 

TALER was denoted as E, and the mKate2-TALER was denoted as K. The transcription 3 

of K mRNAs (TK) was repressed by E proteins (PE) in both OL and CL circuits, while 4 

the transcription of E mRNAs (TE) was repressed by K proteins (PK) only in CL 5 

switches. TE and TK transcribes at a rate of kTE and kTK respectively without repression. 6 

The repressions of PK for TE and PE for TK follow the Hill’s function. For the repression 7 

of PE for TK, KE denotes the number of PE that gives 50% repression of TK, and m 8 

denotes the Hill coefficient of this reaction. For the repression of PK for TE, which only 9 

exists in CL switches, KK denotes the number of PK that gives 50% repression of TE, 10 

and n denotes the Hill coefficient of this reaction. The values of Hill coefficients were 11 

adopted from Ref (42). gTE, gTK, gPE and gPK denote the degradation rate of TE, TK, PE 12 

and PK respectively. The deterministic model of OL circuits is described in the 13 

following ODEs: 14 

𝑑𝑇*

𝑑𝑡
= 𝑘(* − 𝑔(*𝑇* 15 

𝑑𝑃*

𝑑𝑡
= 𝑘)*𝑇* − 𝑔)*𝑃* 16 
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= 𝑘)+𝑇+ − 𝑔)+𝑃+ 18 

In CL switches, the first equation is replaced by  19 

𝑑𝑇*

𝑑𝑡
= 𝑘(*
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-

𝐾
+

- + 𝑃
+

-
− 𝑔(*𝑇* 20 

Two major factors of miRNA regulation, repression strength and gene expression noise, 21 

were simulated separately. We defined kTE0 and gTE0 as the production rate and 22 
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degradation rate of TE in the condition without the regulation of miRNA. Furthermore, 1 

we defined the relative repression rate R and the turnover rate t for a certain condition, 2 

where 3 

𝑘(* = 𝑡𝑘(*. 4 

𝑔(* = 𝑡𝑅𝑔(*. 5 

The relative repression rate R represents the condition with or without the regulation of 6 

miRNA and the difference of repression strengths in CL switches. The turnover rate t 7 

represents different expression noise of EYFP-TALER. A high turnover rate indicates 8 

low noise, and a low turnover rate indicates high noise. The parameters are listed in 9 

Table S4.  10 

For simulation using Gillespie algorithm, there are 8 reactions total: the production and 11 

degradation of TE, TK, PE, PK respectively. Their propensity functions in the Gillespie 12 

algorithm are the same with the coefficients in the ODEs. We simulated 100 trajectories 13 

for each parameter setting. After the fluctuation reached an approximately steady state 14 

(t = 10000 s), a total of 400 points were sampled per 100 seconds from every trajectory 15 

for plotting Fig. S9A and S9D. The mean values of EYFP and mKate2 from 10000 s to 16 

50000 s of all trajectories were used to perform the Mann–Whitney U test in Fig. S9B 17 

and S9F. 18 
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