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ABSTRACT 

Jordan is very vulnerable to drought because of its location in the arid to semi-arid part of the Middle East. Droughts 
coupled with water scarcity are becoming a serious threat to the economic growth, social cohesion and political stability. 
Rainfall time series from four rain stations covering the Jordan River Basin were analyzed for drought characterization 
and forecasting using standardized precipitation index (SPI), Markov chain and autoregressive integrated moving aver- 
age (ARIMA) model. The 7-year moving average of Amman data showed a decreasing trend while data from the other 
three stations were stable or showed an increasing trend. The frequency analysis indicated 2-year return period for near 
zero SPI values while the return period for moderate drought was 7 years. Successive droughts had occurred at least 
three times during the past 40 years. Severe droughts are expected once every 20 - 25 year period at all rain stations. 
The extreme droughts were rare events with return periods between 80 and 115 years. There are equal occurrence 
probabilities for drought and wet conditions in any given year, irrespective, of the condition in the previous year. The 
results showed that ARIMA model was successful in predicting the overall statistics with a given period at annual 
scales. The overall number of predicted/observed droughts during the validation periods were 2/2 severe droughts for 
Amman station and, 0/1, 1/1, 0/1 extreme droughts for Amman, Irbid and Mafraq stations, respectively. In addition, the 
ARIMA model also predicted 3 out of 4 actual moderate droughts for Amman and Mafraq stations. It was concluded 
that early warning of developing droughts can be deduced form the monthly Markov transitional probabilities. ARIMA 
models can be used as a forecasting tool of the future drought trends. Using the first and second order Markov prob- 
abilities can complement the ARIMA predictions. 
 
Keywords: Drought Charactering; Drought Forecasting; ARIMA; Standard Precipitation Index (SPI); Markov Chain; Jordan 

River Basin 

1. Introduction 

Drought is a natural dynamic phenomenon that can in- 
flict damages of disastrous proportions, which includes 
among other effects, the reduction of crop production and 
distressing the general population over the lack of water. 
Droughts occur in almost all climatic regions of the 
world with varying frequency, severity and duration but 
their impacts are aggravated in countries with limited 
water supply like Jordan. In contrast to aridity, which is a 
permanent feature of climate and is restricted to low rain- 
fall areas, drought is a temporary aberration [1]. Many 

definitions of droughts have been adopted with reference 
to the components of the hydrological cycle and to the 
different impacts on water resources and ecosystems [2]. 
Reference [3] defined drought as a temporary imbalance 
of water availability consisting of a persistent lower than 
average precipitation of uncertain frequency, duration and 
severity, of unpredictable or extremely hard to predict oc- 
currence, resulting in diminished water resources avail- 
ability. Reference [4] introduced a broader and possibly 
more operational definition of drought as: the state of ad- 
verse and wide-spread hydrological, environmental so- 
cial and economical impacts due to less than generally 
anticipated water resources quantities. Definitions are  *Corresponding author. 
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related to specific drought impacts and are generally 
classified into four categories which include: meteorolo- 
gical, hydrological, agricultural and socio-economic droughts 
[5]. 

For the purpose of this study, meteorological drought 
was adopted where precipitation is commonly used for 
drought analysis. Meteorological drought is defined as a 
lack of precipitation over a region for a period of time [6]. 
Droughts over a region can be characterized using dif- 
ferent indices, which all use precipitation either singly or 
in combination with other meteorological elements, de- 
pending upon the type of requirements. Reference [6] 
discussed in a review paper a number of different indices 
that have been developed to quantify a drought, each 
with its own strengths and weaknesses. Drought indices 
evaluate the departure of climate variables in a given 
time interval (month, season or year) from the “normal” 
conditions and are used as monitoring tools and opera- 
tional indicators for water managers. Drought indices can 
be either based on accessing the hydrological balance 
equation over different spatial and temporal scales such 
as the Palmer Drought Severity Index (PSDI) and Z in- 
dices [7], or on determining the precipitation deficits that 
trigger drought events such as the NOAA Drought Index 
(NDI) [8], and the Standardized Precipitation Index (SPI) 
[9]. 

The Palmer Drought Severity Index (PDSI), a well- 
known index, is based on soil water balance algorithm 
that requires a comprehensive set of hydrological inputs 
[7]. The PSDI is a function of the soil water conditions of 
the recent and previous months. The Z index [7] shares 
the same algorithm with the PSDI but it is based on the 
soil water conditions of the recent month only. Thus, the 
Z index fluctuates more rapidly than the PSDI. It was 
found that the Z-index was the most appropriate for pre- 
dicting crop yield in the Canadian prairies [10]. However, 
since its introduction by Reference [9], the SPI was 
widely used to measure the duration and severity of 
drought [4,11-16]. The NDI compares the historical mean 
of weekly precipitation and 8 weeks moving average of 
actual precipitation. If the normal precipitation exceeds 
the 8 weeks average by 60%, then drought conditions are 
considered until the precipitation deficit is eliminated. 
The SPI applies the precipitation probability to a standar- 
dized scale that consists of different levels of wet and 
drought conditions.  

Reference [4] concluded that the SPI is appropriate for 
Mediterranean countries. Reference [17] found a linear 
relationship between vegetative conditions and the SPI. 
Similarly, Reference [18] reported that SPI calculated for 
60 month period adequately predicts plant responses to 
drought. 

Reference [11] results showed that the SPI12 (SPI es- 
timated for 12 months period) and PSDI indicated similar 
drought trends for most of Europe. However, the SPI was 

favored over the PSDI because of the SPI’s standardized 
scale. The same consideration promoted Guttman to sug- 
gest the SPI as an alternative to the PSDI [19]. 

The Standardized Precipitation Index (SPI) is a tool 
which was developed primarily for defining and moni- 
toring drought. It allows an analyst to determine the rar- 
ity of a drought at a given time scale (temporal resolution) 
of interest for any rainfall station with historical data. It 
can also be used to determine periods of anomalously 
wet events. The SPI is not a drought prediction tool. Ref- 
erence [20] cited four advantages for the SPI scale; they 
are 1) the calculations for the SPI are relatively simple 
requiring only the precipitation as an input. 2) it can be 
calculated on different time scales suited for agricultural 
and hydrological applications 3) it is consistent measure 
of drought for any location and timescale because of the 
SPI’s standardized scale 4) it is not adversely affected by 
topography since it only depends on precipitation [20]. 
However, the SPI main disadvantage is that SPI calcula- 
tion requires a precipitation monthly database of 30 years 
or longer. 

Markov chains have been used for the stochastic char- 
acterization of drought [21]. An early warning system 
was developed by Reference [22] using Markov chain 
along with PSDI to probabilistically assess the severity, 
duration and return time of drought. Similarly, Paulo et al. 
(2005) and Paulo and Pereira (2007, 2008) applied Mar- 
kov chain to the SPI analysis [13,23,24]. They characte- 
rized drought based on the probabilities of occurrence of 
different SPI’s drought classes, average duration of a par- 
ticular drought, and short term prediction of drought bas- 
ed on the most probable SPI class 1 to 3 months ahead. 

For drought forecasting, it is recommended to use time 
series analysis because it has two goals, modeling ran- 
dom mechanisms and predicting future series using his- 
torical data [25]. There are several methods that utilize 
historical record of rainfall in order to predict future 
trend. The most relevant would be the autoregressive in- 
tegrated moving average (ARIMA) model which was in- 
troduced by Box-Jenkins in 1970 [26]. The ARIMA mo- 
del, which is used in this paper, possesses many appeal- 
ing features. It allows a researcher who has data only on 
past years (e.g., rainfall) to forecast future events without 
having to search for other related time series data such as 
temperature [27]. A comparison of six rainfall-runoff 
modeling approaches was conducted to simulate daily, 
monthly and annual flows in eight unregulated catch- 
ments in Australia [28]. It was concluded that a time- 
series approach can provide adequate estimates of month- 
ly and annual yields in the water resources of the catch- 
ments. 

Jordan is very vulnerable to drought because of its li- 
mited water resources and its location at the edge of the 
arid zone and the desert of the Fertile Crescent. Water  
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stress and scarcity are becoming a serious threat to the 
economic growth, social cohesion and political stability. 
Droughts are not predictable and are frequent due to the 
persistence of the Red Sea high pressure and jet stream 
path over the Gulf of Aqaba. When the jet stream moves 
north, a drought year is expected and a wet year is an- 
ticipated if the jet stream moves south [29]. Drought can 
certainly aggravate the water scarcity problem in Jordan 
and create severe crises. During summer, water ration- 
ings are enforced for domestic supply and the amount of 
water allocated for irrigation is usually reduced after 
successive droughts events. Therefore, Reference [30] 
proposed deficit irrigation strategies to cope with drought 
in Jordan. Drought research in Jordan is fragmented and 
limited but lacks the forecasting component. Few studies 
were conduced regarding drought identification and cha-
racterization in some localities in Jordan [27,31-33]. 
Reference [34] evaluated the SP1 and the NDI at several 
rainfall stations across Jordan. They found that severe 
drought tends to occur at large spatial scale. However, 
they did not have enough data to identify trends. This 
study covers the northern part of Jordan; namely the Jor- 
danian part of the Jordan River Basin (JRB). The JRB 
includes major watersheds like the basins of the Yarmouk 
River, Zerqa River and other side wadies that flow into 
the River Jordan. The main problem in the JRB is the 
scarcity of water which is a result of the wide fluctuation 
in annual rainfall, population growth, urbanization and 
water quality deterioration. About 5.85 million people 
live in the basin compared to the country total popula- 
tion of 6.5 million [35]. Owing the importance of the 
area and in order to contribute to better water manage- 
ment and to help decision maker in water resources plan-
ning, this study was initiated aiming at 1) characterizing 
of drought and identifying its behavior using SPI, 2) 
studying the stochastic properties of the SPI at selected 
monitoring stations in Jordan, and 3) establishing a frame- 
work for drought forecasting in Jordan using Markov 
chains and ARIMA model. 

for Amman airport, Irbid, Mafraq and DeirAlla stations 
from the Jordan Meteorological Department (JMD). The 
four stations were selected to cover the whole area of the 
Jordanian part of Jordan River Basin. They have the lon- 
gest historical records among other stations (Table 1). 
Table 1 also shows the location attributes and main sta- 
tistical characteristics of the annual precipitation data col- 
lected from these stations. As shown in Figure 1, pre- 
cipitation in Jordan starts on October and lasts till May, 
however, most precipitation occurs during December to 
March. The mean precipitation at Irbid was approximate- 
ly 45% higher than the annual precipitation at Amman 
and DeirAlla stations. The monthly distribution was po- 
sitively skewed at the four stations. However, the highest 
skewness was calculated for DeirAlla station. The Mann- 
Whitney test, available within the Change Point Model 
(cpm) package in R language, was applied for the all sta- 
tions to ensure the homogeneity of the rainfall data. 

2.2. Frequency Analysis 

The return period (T) is a function of the probability dis- 
tribution function F(XT) for wet condition, where rainfall 
is expected to equal or exceed a specific annual precipi- 
tation value. The relationship between F(XT) and T is ex- 
pressed as: 

  1
1 TF X

T
                 (1) 

Whereas for drought condition, where total rainfall 
does not exceed a threshold level, the relationship be- 
comes:  

  1
TF X

T
                 (2) 

2.3. Standardized Precipitation Index (SPI) 

The SPI was used because of its suitability for Jordan 
and the Mediterranean region in general [4,34]. The 
Standardized Precipitation Index quantifies precipitation 
deficits by transforming the precipitation distribution into 
standardized normal distribution. The procedure for es- 
timating the SPI has adequately discussed by previous re- 
searchers [11]. In this study, the built-in statistical functions 

2. Methodology 

2.1. Precipitation Data and Trends Identification 

Historical monthly precipitation records were obtained  
 

Table 1. Location attributes and statistical characteristics of the stations. 

Station Latitude (North) Longitude (East) Altitude (m) Record Length (Yrs) Mean (mm) Min (mm) Max (mm) SDEV SKEW

Amman 31˚39ʹ 35˚59ʹ 766 88 270.9 106.8 546.5 93.8 0.64 

Irbid 32˚33ʹ 35˚51ʹ 616 56 480.9 192.5 894.9 155.5 0.51 

DeirAlla 32˚13ʹ 35˚37ʹ −314 46 277.0 102.1 599.6 103.2 0.83 

Mafraq 32˚20ʹ 36˚12ʹ 696 68 153.3 62.2 332.0 59.2 0.72 
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Figure 1. Normal monthly precipitation for Amman, Irbid, 
DeirAlla and Mafraq stations. 
 
available in Microsoft EXCEL were utilized for the cal- 
culations of the SPI using three main steps, as follows: 

1) Determining frequency distribution of the precipita- 
tion time series. 

2) Fitting the precipitation distribution to the gamma 
cumulative distribution function (CDF).  

3) Inversing the CDF from step 2 to cumulative nor- 
mal distribution function to produce Gaussian CDF of 
zero mean and unity variance. 

Reference [9] considered that an SPI value of <0 in- 
dicates a drought condition. The drought severity is ca- 
tegorized into four classes as mild (SPI ≤ 0 and SPI ≥ 
−0.99), moderate (SPI ≤ −1.00 and SPI ≥ −1.49), severe 
(SPI ≤ −1.50 and SPI ≥ −1.99) and extreme (SPI ≤ 
−2.00). 

In this study, the SPI was calculated for the total an- 
nual precipitation. Also it was determined for the month- 
ly cumulative rainfall; the total rainfall of the current 
month and the previous months, up to the months of Oc- 
tober, November, December, January, February, March 
and April. The rationale behind using the cumulative 
amounts rather than the total amount for each month is 
that the precipitation in Jordan is scarce and the rainfall 
season is relatively short, therefore, an above average 
precipitation in a single month may prevent the onset of 
drought for the rest of the season; while a below average 
rainfall may create a drought condition that remains un- 
relieved to the end of the season. Thus, rendering the SPI 
values calculated from the total rainfall during a single 
month meaningless. 

2.4. Markov Chain 

Markov chain is a discrete stochastic process where the 
state (X) at a future time step (t + 1) is dependent on the 
current state Xt and independent of previous states, Xt − 1, 
Xt − 2,··· Xt−n. For a system of n states, X = {S1, S2,··· S3). 
The system can move from S1 to S2, S3··· Sn according to 
the transitional probabilities; p12, p13,··· p1n, or remain at 

state S1 with a transitional probability of p11. Thus, pij 
denote the transitional probabilities form Si to Sj. The 
transitional probabilities pij can be arranged in a matrix 
of n × n entries known as the transition matrix P, where 
the entries in each column represent the transition from 
any given state to the other state. Each entry is calculated 
from the number of transitions; nij, from a given state i to 
the next state j, thus: 

1

ij
ij k

iji

n
p

n





               (3) 

Hence: 

1
1

k

iji
p


                 (4) 

The transition matrix at any given time (Pt+n) is de- 
pendent on the transition matrix at the initial time (Pt) 
and the transition matrix of the previous time step (Pt+n−1) 
is: 

1t n t t nP P P                 (5) 

Markov chain becomes steady after several time steps. 
Thus, the stationary matrix π is: 

π πtP                  (6) 

The stationary probabilities are independent of the pre- 
vious state, therefore the entries in each row of π is equal 
to each other. Thus π is an Eigenvector of Pt provided 
that the Eigen value is 1 [36]. Noting that πj is the statio- 
nary probability for the state j then: 

1
π 1

k

jj
                (7) 

Reference [36] presented persistence and recurrence 
time as two main descriptors of the Markov chain. Per- 
sistence is defined as the probability that the system will 
remain in the same state in following time step. Persis- 
tence probability (Pr) is expressed as: 

1
ˆ π

k

jj jj
Pr p


              (8) 

According to Reference [36] the recurrence time is the 
average time for the system to move from state j and then 
back again to state j. The recurrence time (tjj) is express- 
ed as: 

 
1

ˆ1 π

j
jj

jj j

t
p




 
            (9) 

Furthermore, Reference [23] considered the first pas- 
sage time (tij) which is the time required for a system to 
move for the first time from state i to state j. They ex- 
pressed tij as: 

1ij ik kjk j
t p t


             (10) 
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2.5. Autoregressive Integrated Moving Average  
(ARIMA) Model 

ARIMA is a time series forecasting model that combines 
the autoregressive (AR) and the moving average terms. 
The principle behind the autoregressive analysis is that 
the future value of the time series (yt) is dependent on the 
previous values of the time series. Thus, the autoregres- 
sive linear model is: 

1 1 2 2t t t p t p ty y y y C               (11) 

where p is the order of the autoregressive model {e.g. AR 
(p)}, 1 2, , p    are the AR coefficients of the past 
time series values 1 2 , t, ,t t t py y y     is the random 
and independent error term, and C is a constant, usually 
assumed to be equaled to zero. 

Solving the AR(p) system of Equation (11), e.g. using 
the Yule-Walker equations [37], would eliminate the er- 
ror term because of the orthogonal characteristics of Equ- 
ation (11). Therefore, the AR(p) predictions can be en- 
hanced by including the moving average of past error or 
white noise in the time series: 

1 1 2 2t t t t p t qy             

, ,

      (12) 

where q is the order of the moving average (MA) model 
{MA(q)} and 1 2 p    is the MA coefficients. The 
MA and AR terms can be combined in a single model in 
order to minimize the order of the AR model. The two 
can be combined to each other. Thus an ARIMA(p, q) is 
expressed as: 

1 1 2 2t t t p t py y y y

1 1 2 2t t p t q

t        

          
     (13) 

The formulation of Equation (13) assumes a stationary 
time series, i.e. independent of initial conditions. How- 
ever, many time series exhibits seasonal cycles and trends. 
Therefore, before using Equation (13) any cycles or trend 
should be removed in order to render the time series sta- 
tionary, which can be accomplished by taking the differ- 
ence between the current values yt and a lag from the 
previous values of the time series, yt-d, where d is the ord- 
er or lag difference. Thus the order of ARIMA is (p, d, q) 
or ARIMA(p, d, q). The ARIMA model was fitted to SPI 
time series of Amman, Irbid, Mafraq and DeirAlla sta- 
tions using the FORECAST package in the R program- 
ming language [38].  

3. Results and Discussion 

3.1. Exploratory Data Analysis 

The 7-year moving average for the rainfall data collected 
from Amman station (data not shown) showed a slightly 
decreasing trend, however, the moving averages for the 
Mafraq and Irbid showed no increasing or decreasing 

trend, while the rainfall at DeirAlla stations demonstrated 
an increasing trend. Reference [32] statistically analyzed 
the historical rainfall record at Amman station (from 
1922 to 2003). They suggested that stating the mid-1950s, 
there was an abrupt decline in the number of rainy days, 
but their analysis for the precipitation record at Mafraq 
station showed insignificant differences in the number of 
rainy days between the pre-1950 and post-1960 periods. 
The statistical analysis of the climatic record form six 
meteorological stations across Jordan showed trendless 
fluctuations in annual precipitation and maximum tem- 
perature, while the same results indicated an increasing 
trend of minimum temperature [33]. Reference [39] stu- 
died the structural characteristics of annual precipitation 
data for 13 meteorological stations distributed across Jor- 
dan and utilized the Isohyetal method to plot rainfall dis- 
tribution. They employed a number of tests, such as con- 
sistency, randomness, best-fit distribution, and others in 
order to characterize the annual precipitation. There was 
no evidence of negative or positive precipitation trends at 
any station. However, these results cannot be directly 
compared with previous studies. 

Using a 35 years of record (from 1970-2004), Refer- 
ence [34] evaluated the SP1 and the Normalized Differ- 
ence index at several rainfall stations across Jordan. They 
found that severe drought tends to occur at larger spatial 
scale. Using a Global Climate Model, they found a 10% 
average decrease in future rainfall for the year 2050. 
These results, however, were based on presumed climate 
change scenarios. Climate change is expected in the fu- 
ture, but the available research has not furnished a con- 
crete evidence for an onset of climate change during the 
period of the historical record considered in this study.  

The frequency analysis indicated a 2-year return pe- 
riod for near zero SPI values. This result is expected 
since the borderline between the wet and drought condi- 
tions corresponds with the average precipitation. It is 
possible to cope with an occasional occurrence of mild or 
moderate drought. However, it is evident that droughts 
occur frequently, which also implies the risk of succes- 
sive droughts that occurred at least three time during the 
past 40 years, namely, from 1974 to 1977, from 1998 to 
1990 and from 2004 to 2009 (Figure 2). In fact, three 
severe droughts were observed at Mafraq stations from 
1958 to 1998 with an equal interval of 20 years. These 
droughts registered SPI values of −1.89, −1.52, and 
−1.79. The corresponding return periods were 34, 15.6 
and 27.2 years respectively. Less dramatic, but more fre- 
quent severe drought were recorded at Amman station 
which has the longer historical record among the moni- 
toring stations considered in this study. Five severe 
droughts were observed at Amman station with SPI val- 
ues between −1.53 and −1.64 and a return period be- 
ween 16 and 20 years. Similarly, the return period range  t    
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Figure 2. The standardized precipitation index (SP1). 
 

rence probabilities for drought and wet conditions in any 
given year; irrespective, of the condition in the previous 
year due to the close proximity between the transitional 
and stationary probabilities. The yearly recurrence times 
calculated by Equation (1), and shown in Figure 3, were 
1.7 and 1.8 years for the wet and drought conditions, 
respectively. Thus, two years is the average duration, or 
the time required, to return back from drought to wet 
condition. However, average drought duration greater 
than 1 and less than 2 years indicate that droughts can oc- 
ur successively over several years. First order Markov  

for severe drought at Irbid and DeirAlla stations were 
16.5 to 39 years and 25 to 31 years; respectively. The ex- 
treme droughts were rare events with return periods be- 
tween 70 and 93 years. Extreme droughts were not ob- 
served at DeirAlla station, while the number of extreme 
droughts observed at Amman, Irbidand Mafraq were 1 
drought for each station, respectively.  

3.2. Markov Chain 

c  The results presented in Table 2 indicate equal occur-  
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Table 2. First order Markov transitional and stationary probabilities (Wet and drought states were deduced from SPI values 
calculated on yearly basis). 

Amman Irbid DeirAlla Mafraq Amman Irbid DeirAlla Mafraq State  
transition Transitional Probability Stationary Probability 

W to W 0.45 0.48 0.41 0.51 0.52 0.51 0.49 0.52 

W to D 0.55 0.52 0.59 0.49 0.48 0.49 0.51 0.48 

D to W 0.59 0.54 0.57 0.52 0.52 0.51 0.49 0.52 

D to D 0.41 0.46 0.43 0.48 0.48 0.49 0.51 0.48 

W: wet; M: mild or moderate drought; E: severe or extreme drought. 
 

 

Figure 3. The yearly recurrence time for wet (W) and 
drought (D) conditions.stations. 
 
probabilities calculated on yearly basis are not sufficient 
to predict the succession of drought condition, especially 
that the yearly analysis is restricted to two conditions. 
Therefore, considering second order Markov transitional 
probabilities (Table 3) indicated that a drought at Am- 
man station is more probable than the wet conditions 
after two successive wet or drought years. However, a 
drought is less likely than the wet condition if preceded 
by wet and drought sequence. For Irbid, DeirAlla and 
Mafraq stations the transitional probabilities for wet or 
drought condition are almost equal after two successive 
droughts. The other transitional probabilities for DeirAlla 
and Mafraq stations are similar to, but less pronounced, 
than transitional probabilities at Amman stations. At Ir- 
bid station the second order transitional probabilities 
showed that drought conditions should be expected after 
wet and drought sequence. 

The monthly based Markov probabilities for three 
states, namely, wet, mild/moderate and severe/extreme 
droughts, presented in Table 4, gave better indications of 
the short term transition between similar and different 
conditions. The average drought duration was 4.5, 6, 6.5 
and 5 months for the Amman, Irbid, DeirAlla and Mafraq 
stations, respectively as shown Figure 4. The importance 
of these determinations is that they are proximate with 
the actual length of the rainfall season. Therefore, drought 
occurring at the beginning of the seasonal will likely con- 
tinue to the end of the season. The first expected passage 
time as shown in Figure 5 from any condition to wet 

 

Figure 4. The monthly recurrence time for wet (W), mild/ 
moderate droughts (M) and severe/extreme droughts (E). 
 

 

Figure 5. The expected passage times calculated using equa-
tion 7 for Amman, Irbid, Deir Alla stations. The expected 
transitions are: (W)(M): wet to mild/moderate drought, (W) 
(E): wet to severe/extreme drought, (M)(W): mild/moderate 
drought to wet, (M)(E): mild/moderate to severe/extreme 
drought, (E)(W): severe/extreme drought to wet, (E)(M): 
severe/extreme to mild/moderate drought. 
 
or mild/moderately drought condition were between 4 to 
6 months. However, the expected passage time from wet 
or mild/moderate drought to severe/extreme conditions 
was more variable among the four monitoring stations. 
At Amman station, approximately 16 to 20 months were 
required for the system to change from wet or mild/mo- 
derately drought to severe or extreme droughts. Whereas 
the first passage time to severe or extreme drought con- 

itions was approximately 30 to 35 months at Irbid d  
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Table 3. First order Markov transitional and stationary probabilities (Wet and drought states were deduced from SPI values 
calculated on monthly basis). 

Amman Irbid DeirAlla Mafraq Amman Irbid DeirAlla Mafraq 
State transition 

Transitional Probability  Stationary Probability  

W to W 0.78 0.81 0.82 0.83 0.50 0.46 0.54 0.56 

W to M 0.21 0.19 0.18 0.17 0.42 0.48 0.40 0.40 

W to E 0.01 0.0 0.0 0.00 0.08 0.06 0.06 0.04 

M to W 0.22 0.16 0.20 0.22 0.50 0.46 0.54 0.56 

M to M 0.67 0.78 0.73 0.73 0.42 0.48 0.41 0.40 

M to E 0.11 0.06 0.07 0.05 0.08 0.06 0.05 0.04 

E to W 0.22 0.22 0.35 0.19 0.50 0.46 0.54 0.56 

E to M 0.35 0.33 0.24 0.37 0.42 0.48 0.41 0.40 

E to E 0.43 0.45 0.41 0.44 0.08 0.06 0.05 0.04 

W: wet; M: mild or moderate drought; E: severe or extreme drought. 
 
Table 4. Second order Markov transitional probabilities. 

Probability transition Amman Irbid Mafraq DeirAlla

(Wet, Wet) to Wet 0.29 0.62 0.39 0.22 

(Wet, Wet) to Drought 0.71 0.38 0.61 0.78 

(Wet, Drought) to Wet 0.79 0.46 0.59 0.62 

(Wet, Drought) to Drought 0.21 0.54 0.41 0.38 

(Drought, Wet) to Wet 0.65 0.31 0.62 0.54 

(Drought, Wet) to Drought 0.35 0.69 0.38 0.46 

(Drought, Drought) to Wet 0.31 0.47 0.46 0.44 

(Drought, Drought) to Drought 0.69 0.53 0.54 0.56 

 
and DeirAlla stations and approximately 45 to 50 month 
at Mafraq stations. Thus, persistence of severe/extreme 
was less than the wet or mild/moderate drought. Also the 
severe or extreme droughts at Amman station were more 
frequent than the three other stations.  

3.3. ARIMA Forecasting 

ARIMA model of p = 20, d = 0 and q = 3 {ARIMA(20, 0, 
3)} was fitted for Amman station. The model was cali- 
brated using 48 years of the historical record, and vali- 
dated on the remaining 38 years (Figure 6). The auto- 
correlation function (acf) plot of the calibration period 
(Figure 7) demonstrated a decline of the acf values after 
the first lag; thus indicating a quick convergence of the 
acf. Although the acf value never reached zero; however, 
allvalues lie within the 95% confidence intervals. Based 
on this interpretation of the acf function; it can be con- 
cluded that the SPI data series of Amman station is sta-  

 

Figure 6. The comparison between the observed and simu-
lated SPI values during the validation period for Amman 
station. 
 

 

Figure 7. The autocorrelation function (acf) of the SPI time 
series at Amman station. 
 
tionary and without evidence of seasonality. Therefore 
the order of d was set as zero. 

The models were selected based on their performance 
during the calibration period, especially their ability to 
mimic the high and low values of the observed record. 
Therefore the selected orders of p and q were more than 
minimum orders inferred from the analysis of the partial 
autocorrelation function (pacf). However, Figure 8  
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Figure 8. Two partial autocorrelation functions (pacf) of 
ARIMA(3,0,0) and ARIMA (20,0,2) models, The two mod-
els were fitted to the SPI time series at Amman station. 
 
shows a comparison between partial autocorrelation func- 
tion (pacf) of the fitted model residuals and the residuals 
of ARIMA (3, 0, 0) and ARIMA (20, 0, 3). The pacf 
values indicate that an ARIMA model of a lower order 
sufficiently explain all the lags of the ARIMA (0, 0, 0). 
The SPI values predicted by ARIMA (3, 0, 0) were with- 
in −0.57 and 0.38 range. Such model falls short because 
of its inability to predict moderate to extreme drought 
events. On the other hand, the fitted model {ARIMA (20, 
0, 3)} clearly improved the simulation results. 

The model shown in Figure 6 predicted the exact SPI 
values of the droughts that occurred on 1983 (SPI = 
−0.9), 1985 (SPI = −1.53), 1993 (SPI = −1.26) and 2007 
(SPI = −0.69). However, it overestimated or underesti- 
mated most of the drought or wet events. For some 
events it totally missed the prediction.For example, the 
model predicted that 1979/1980 was a drought season of 
an SPI of −1.0, where in reality it was an extremely wet 
season of an SPI value greater than 2.0. The model un- 
derestimated the extreme that drought of 1998/1999 and 
missed the prediction of the moderate droughts that oc- 
curred in two following season. 

A closer look at the results showed that the model was 
successful in predicting the overall statistics with a given 
period at an annual scale. Using monthly time series, 
Momani (2009), found that the model was not appropri- 
ate to predict the exact monthly rainfall data. An inter- 
vention time series analysis could be used to forecast the 
peak value of rainfall. 

At Amman station, the observed record during the va- 
lidation period included 1 extreme drought event, and 2 
severe, 3 moderate and 17 mild droughts events. In com- 
parison, the model predicted 2 severe droughts, 4 moder- 
ate droughts and 14 mild droughts season. Similar results 
were reported in Jordan using graphical visual interpreta- 
tion of depicted rainfall data of Amman and Irbid where 
4 events of sever to moderate droughts for 20 year dura- 
tion were found [29]. 

Similarly, ARIMA (24, 0, 2), ARIMA (20, 0, 2) and  

ARIMA (16, 0, 1) models were fitted for SPI time series 
at Irbid, Mafraq and DeirAlla stations. The ARIMA mod- 
el performance at Irbid and Mafraq stations were similar 
to that of Amman station. At Mafraq station the model 
underestimated the extreme drought of 1997/1998 season, 
therefore the overall model predictions/observed record 
indicated 14/13 mild, 3/4 moderate and 0/1 extreme droughts 
as shown in Figure 9. 

The ARIMA model at Irbid station, shown in Figure 
10, predicted 8 mild drought events, in addition to 1 ex- 
treme and 1 moderate drought events, which compared 
well with that observed record that indicated 1 extreme, 
10 mild and 2 moderate drought events. The ARIMA 
model for DeirAlla station (Figure 11) was inadequate 
possibly due to the relatively short observed record. 
 

 

Figure 9. The comparison between the observed and simu-
lated SPI values during the validation period for Mafraq 
station. 
 

 

Figure 10. The comparison between the observed and simu- 
lated SPI values during the validation period for Irbid sta-
tion. 
 

 

Figure 11. The comparison between the observed and simu- 
lated SPI values during the validation period for DeirAlla 
station. 
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4. Conclusions 

Drought forecasting can be a challenging task since exact 
predictions of the SPI values are not possible using 
ARIMA model. By definition, Markov chain probabili- 
ties can give only the probable condition based on the an- 
tecedent condition of the one or two previous seasons. 
However, both methods can supplement each other in an 
important way and on three time scales levels. 

Level 1: ARIMA models can be used as a long term 
(>10 years) forecasting tool of the future drought trends.  

Level 2: Using the first and second order Markov pro- 
babilities to supplement the ARIMA predictions. For 
example, ARIMA models can predict a dry spells, how- 
ever, interrupted by mildly wet seasons. Such results ad- 
justed to more conservative prediction using the second- 
order Markov probabilities indicate the drought will pro- 
bably continue for the next season if it was preceded by 
two dry sequences. 

Level 3: Early warning of developing droughts can be 
deduced form the monthly Markov transitional probabili- 
ties. 
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