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External noise methods and observer models have been widely used to characterize the intrinsic

perceptual limitations of human observers and changes of the perceptual limitations associated with

cognitive, developmental, and disease processes by highlighting the variance of internal representations.

The authors conducted a comprehensive review of the 5 most prominent observer models through the

development of a common formalism. They derived new predictions of the models for a common set of

behavioral tests that were compared with the data in the literature and a new experiment. The comparison

between the model predictions and the empirical data resulted in very strong constraints on the observer

models. The perceptual template model provided the best account of all the empirical data in the visual

domain. The choice of the observer model has significant implications for the interpretation of data from

other external noise paradigms, as well as studies using external noise to assay changes of perceptual

limitations associated with observer states. The empirical and theoretical development suggests possible

parallel developments in other sensory modalities and studies of high-level cognitive processes.
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Human decisions are based on internal representations of infor-

mation. Understanding how stimuli are represented internally is

one of the classic problems in psychology. This article examines

how modifying an external stimulus with external noise can pro-

vide insight into how the stimulus is processed by the human

observer. We conducted a systematic and comprehensive review of

the external noise paradigms and observer models widely used in

characterizing the internal response properties of human observers.

The observer approach builds on the broadly applicable framework

of signal detection theory (SDT) by elaborating the relationships

between external stimuli and the internal response distributions

that form the basis for decision. The empirical tests introduce

external noise—either masking noise or variation in the relevant

stimulus dimension—to provide a reference for characterizing and

quantifying the limiting factors in perceptual sensitivity. The cur-

rent review, analysis, and empirical test focus on visual perception.

Some of the model properties, especially the empirical findings,

may be modality specific. Still, this framework and the findings

could serve as an example for parallel development of the empir-

ical methods and theoretical models in other sensory modalities.

The model development and testing also have major implications

for applications of the external noise paradigms in understanding

the mechanisms underlying changes of perceptual sensitivity in

different cognitive, disease, and/or developmental states.

Internal Response Distributions

SDT provides a general framework for analyzing human deci-

sion making in perceptual and cognitive tasks (Green & Swets,

1966; Macmillan & Creelman, 1991). In a simple yes–no task, an

observer is presented with a single input stimulus, which either

contains or does not contain a signal, and must decide whether the

signal is present (“yes”) or absent (“no”). According to the SDT,

signal-present and signal-absent trials generate internal perceptual

representations characterized by two different internal response

distributions (see Figure 1A). The observer makes the decision on

the basis of a subjective criterion: If the internal response is greater

than the criterion, the observer reports that the signal is present;

otherwise, the observer reports that the signal is absent. The

internal response distributions and the criterion jointly determine

the probabilities of all four possible outcomes: hit, false alarm,

miss, and correct rejection. Critically, d�, the sensitivity of the

observer, which is independent of the subjective criterion, can be

obtained by measuring the receiver operating characteristics

(ROCs; see Figure 1B)—the hit-versus-false-alarm-rate function

(see Appendix A). In another paradigm, the two-alternative forced-

choice (2AFC) task, an observer is presented with two input

stimuli, one from each of two stimulus categories, and must sort

the stimuli into the two categories. The SDT postulates that stimuli

from the two categories generate two different internal response

distributions (see Figure 1C). In each trial, the observer compares

the magnitudes of the two internal responses and decides that the
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stimulus that generates the greater internal response belongs to the

category with a higher expected internal response. For an unbiased

observer, the probability of making a correct choice can be calcu-

lated from the distribution of the differences between the internal

responses to the two stimulus categories (see Figure 1D); one can

derive the sensitivity of the observer directly from measurements

of performance accuracy (see Appendix A).

The analysis of the yes–no and 2AFC tasks represents two

rudimentary applications of the SDT framework. The most impor-

tant concept in both applications is the noisy internal response

distribution. Over the past 5 decades, the formal development of

the SDT framework has included multidimensional internal re-

sponse distributions (Ashby, 1992); general classification para-

digms in which observers use M responses to sort N stimuli into

categories, of which the yes–no and 2AFC tasks are two special

cases (Green & Swets, 1966; Macmillan & Creelman, 1991);

comparison paradigms (e.g., same or different) and compound

tasks (G. Sperling & Dosher, 1986); and decision under uncer-

tainty (Graham, 1989). Empirically, the SDT framework has been

applied extensively not only in studying all the sensory modalities

but also in studying high-level cognitive tasks such as object

recognition, memory, and language processing, as well as diagno-

sis and assessment (Swets, 1996). Theoretically, many models of

human behavior are motivated and based on the SDT framework

(see Logan, 2004, for a review of an alternative approach). Over

decades of development, noisy internal response distributions have

remained the central concept in the framework.

The enormous success of the SDT framework has highlighted

the critical role of internal response distributions in understanding

human behavior. Yet the SDT, as a theoretical framework, does

not specify the internal representations. Additional assumptions

about the functional relationship between the internal representa-

tions and the physical characteristics of external stimuli are re-

quired to make specific predictions. Gaussian internal response

distributions, although not necessary for the framework, prove to

suffice in most SDT applications (Wilkens, 2002). The mean and

the variance fully specify a Gaussian distribution. The success of

the SDT framework illustrates the power of studying not just the

mean but also the variance of representations underlying human

performance. In most SDT applications, however, the variances of

the internal response distributions are theoretical constructs that

are not referenced to the physical characteristics of external stimuli

(Wilkens, 2002).

Characterizing Internal Responses

The critical role of internal response distributions for under-

standing human performance has prompted major research efforts

in both psychology and neurophysiology to independently specify

and model the internal responses (Barlow, 1956; Burgess, Wagner,

Jennings, & Barlow, 1981; Legge, Kersten, & Burgess, 1987;

Nagaraja, 1964; Pelli, 1981). One approach is to attempt to iden-

tify, measure, and interpret the brain responses to relevant stimuli.

An alternative approach is to construct observer models that spec-
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Figure 1. Two example applications of the signal detection theory (SDT). A: SDT in a yes–no task. The two

bell curves in each panel represent internal response distributions for signal-absent (N) and signal-present (S �

N) trials. To decide whether the signal is present (“yes”) or not (“no”), the observer first chooses a subjective

criterion response. If the (single) input stimulus generates an internal response greater than the criterion response,

the observer decides that the signal is present; otherwise, she or he decides that the signal is absent. The internal

response distributions and the criterion jointly determine the probabilities of hit, false alarm (FA), miss, and

correct rejection (CR), denoted by the four shaded areas. B: Receiver operating characteristics (ROCs)—hit rate

as a function of the false-alarm rate as the observer varies his or her criterion response. C: SDT in a

two-alternative forced-choice (2AFC) task. A 2AFC task presents two stimuli to an observer in each trial, one

from each of two categories, and forces the observer to decide the correspondence between the stimuli and the

categories. The two bell curves present the internal response distributions for the two stimulus categories with

different means and standard deviations. For an unbiased observer, the probability of making the correct choice

is equal to the area of the shaded region in the difference distribution (Panel D)—the distribution of a random

variable that is the difference between the two internal responses.
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ify the functional relationship between external stimuli and inter-

nal responses, as well as the decision process (e.g., SDT) in human

behavior (see Figure 2). On the basis of the internal processes and

intrinsic limitations of the observer, observer models provide the

theoretical basis for generalizing the results of a particular exper-

iment to predict the performance of the same observer in other

tasks.

Neurophysiology and functional imaging studies can in princi-

ple provide measures of the internal responses of the perceptual

and cognitive systems at various stages of processing. The brain

response to a certain stimulus is measured, but it must be further

determined which aspect and brain location of the measured re-

sponses are relevant to the behavioral choice. Behavioral ap-

proaches, including many psychological paradigms, have also

been developed to reveal the internal response distributions at the

overall system level. All these paradigms involve adding external

noise to the signal stimuli to externalize the internal responses.

These include various procedures related to critical band masking

(Fletcher, 1940), the equivalent input noise method (Barlow, 1956;

Burgess et al., 1981; Legge et al., 1987; Nagaraja, 1964; Pelli,

1981), the double-pass consistency test (Burgess & Colborne,

1988; Green, 1964), and the classification image method (Ahu-

mada & Lovell, 1971). Direct measurement of physiological re-

sponses and quantitative modeling of the observer properties ex-

pressed in behavioral responses are converging approaches to

understanding internal representations. As investigation of the

physiological responses advances, the identified responses should

have properties that are consistent with those identified through the

observer model characterizations.

The basic paradigms and models of the observer approach to

understanding system limitations have been developed and applied

mostly in the study of sensory and perceptual systems. Although

our focus in this article is on visual perception, we hope a system-

atic review of the various external noise methods and the observer

models will illustrate some important theoretical considerations

that may stimulate new theoretical developments and empirical

tests in other domains of research.

External Noise Methods

The basic principle of the external noise paradigms can be best

exemplified by the equivalent input noise method, originally de-

veloped by engineers to measure the response properties of elec-

tronic amplifiers (Friis, 1944; Mumford & Schelbe, 1968; North,

1942). Two response properties are important for electronic am-

plifiers: large amplification and low intrinsic noise (see Figure 3a).

Amplifiers with high intrinsic noise are undesirable because their

outputs are noisy. The equivalent input noise method used by

engineers to estimate the intrinsic noise of amplifiers is demon-

strated in Figure 3b: Mixtures of signal and external noise (both

generated and known by the engineer) of various combinations of

amplitudes are passed through the amplifier. Outputs of the am-

plifier are analyzed to extract the signal-to-noise ratio (the average

amplitude of the output over its standard deviation) in each signal

and external noise condition. There are two sources of variability

in the output of the amplifier, the known external noise and the

unknown intrinsic noise. When the external noise is much less than

the intrinsic noise, the variability in the output of the amplifier and

therefore the signal-to-noise ratio for a given signal condition are

mostly determined by intrinsic noise. A relatively constant amount

of signal is required to maintain a constant signal-to-noise ratio

across the external noise conditions. When the external noise is

much greater than the intrinsic noise, the variability in the output

of the amplifier and therefore the signal-to-noise ratio for a given

signal condition are mostly determined by external noise. Increas-

ing amounts of signal are required to maintain a constant signal-

to-noise ratio as external noise increases. At the transition point of

these two regimes, the elbow of the constant signal-to-noise ratio

contour in Figure 3c, the intrinsic and external noises are equally

damaging. Therefore, the intrinsic noise is equivalent to the input

external noise at the elbow of the contour.

Figure 3 (opposite). a: Model diagram of a linear electronic amplifier. b: The equivalent input noise procedure.

An internal noise sample is shown on the top. Signal sine waves with increasing amplitude are shown in the left

column; waveforms of external noise with increasing standard deviation are shown in the bottom row. The

waveforms in the rest of the panel are constructed by summing the signal in the corresponding row, an

independent sample of external noise with the same standard deviation in the corresponding column, and an

independent sample of internal noise. The numerical value above each waveform indicates the mean signal-to-

noise ratio. Signal-to-noise ratio values close to 1.0 are highlighted with a bold italic font. When connected, they

trace a contour of signal and external noise conditions with a constant signal-to-noise ratio of 1.0. c: A smoother

version of the constant signal-to-noise ratio contour with finer samples of the signal amplitudes and external

noise standard deviations. The abscissa of the elbow of the function provides an estimate of the intrinsic

noise—the equivalent input noise Neq.

External 

Stimulus

Perceptual 

Processing

Decision SDT

Internal Response

=f(Input, observer prop, state)

Physical Description

Figure 2. A complete observer model must include a perceptual module

that specifies the functional relationship between the internal responses and

the external stimuli (inputs) and a decision module that maps internal

responses to perceptual decisions (e.g., the signal detection theory [SDT]).

prop � property.
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Nagaraja (1964) first suggested that the equivalent input noise

method could be adopted to measure the internal noise of the

perceptual system. The approach was popularized by Pelli and

others in the 1980s (Burgess et al., 1981; Legge et al., 1987; Pelli,

1981). The basic idea is that the perceptual system of the observer

functions as the noisy amplifier. We must infer the signal-to-noise

ratio in response to the input stimulus from the behavioral re-

sponse. The behavioral detectability of the sine-wave grating is

determined by the signal-to-noise ratio at the decision stage. The

method is illustrated in Figure 4 in which a vertical signal sine-

wave grating with increasing contrast in the vertical direction is

combined with simulated internal noise with a constant standard

deviation and increasing amounts of external noise in the horizon-

tal direction.1 When the external noise is relatively low, the visi-

bility of the grating is not affected by the amount of external noise.

Relatively constant signal amplitude is sufficient for the grating to

be seen. When the external noise is relatively high, the visibility of

the grating is greatly affected by the amount of external noise. The

signal amplitudes required for the grating to be visible increase

with the amount of external noise. Similar to the situation with

electronic amplifiers, the transition point of the two regimes re-

veals the magnitude of the internal noise.

The external noise paradigms have been used to analyze human

sensitivity and reveal observer characteristics in a wide range of

auditory (Ahumada & Lovell, 1971; Bos & Deboer, 1966; Eijk-

man, Thijssen, & Vendrik, 1966; Hartmann & Pumplin, 1988;

Humes & Jesteadt, 1989; Moore, 1975; Osman, 1971; Richards,

Heller, & Green, 1991) and visual tasks (Ahumada, 1987; Ahu-

mada & Watson, 1985; Barlow, 1956; Burgess et al., 1981;

D’Zmura & Knoblauch, 1998; Gegenfurtner & Kiper, 1992;

Geisler, 1989; Hay & Chesters, 1972; Legge et al., 1987; Lu &

Dosher, 1999, 2001; Nagaraja, 1964; Pelli, 1981, 1990; Rose,

1948; Tanner & Birdsall, 1958; Tjan, Braje, Legge, & Kersten,

1995; Van Meeteren & Barlow, 1981). One important discovery is

that many observer characteristics are invariant across different

perceptual tasks within a modality (Pelli & Farell, 1999). The

paradigms have also been further developed to investigate mech-

anisms underlying the effects of various cognitive, developmental,

and disease states on the perceptual system (Lu & Dosher, 1998).

By combining the external noise paradigms with manipulations of

cognitive, developmental, or disease states of the observer, we can

estimate changes of the internal observer characteristics associated

with performance in those states. Domains of applications of the

general approach include attention (Dosher & Lu, 2000a, 2000b;

Lu & Dosher, 1998, 2000; Lu, Liu, & Dosher, 2000; Talgar, Pelli,

& Carrasco, 2004), perceptual learning (Chung, Levi, & Tjan,

2005; Dosher & Lu, 1998, 1999; Gold, Bennett, & Sekuler, 1999;

R. W. Li, Levi, & Klein, 2003; Lu, Chu, Dosher, & Lee, 2005; Lu

& Dosher, 2004), adaptation (Dao, Lu, & Dosher, 2006), ambly-

opia (Huang, Tao, Zhou, & Lu, 2007; Levi & Klein, 2003; Xu, Lu,

Qiu, & Zhou, 2006), perceptual interaction (Yu, Levi, & Klein,

2001), dyslexia (A. Sperling, Lu, Manis, & Seidenberg, 2005), and

visual memory (Gold, Murray, Sekuler, Bennett, & Sekuler, 2005).

In many cases, the approach found modifications of only one or

two of the observer characteristics in different cognitive, develop-

mental, or disease states and a striking invariance of other observer

characteristics across very different states and wide performance

ranges. Thus, the observer model, together with estimated param-

eters, provides a compact characterization of the observer that can

precisely predict performance in previously untested task and

stimulus conditions. By identifying the modified components of

the observer model associated with a change in the cognitive,

developmental, or disease state, the method provides insights into

the mechanisms underlying their effects on the perceptual system.

Observer Models

Several noisy observer models have been proposed to interpret

the empirical results from the external noise paradigms and model

the internal responses of the human observers (for parallel devel-

opments in pattern masking, see Foley & Chen, 1999). Because

human perception exhibits many inefficiencies due to various

sources of noise in the perceptual process, the observer models

specify the noises in the perceptual system in addition to other

noise-free computations in the perceptual process (G. Sperling,

1989). All the models are based on a number of component

processes derived from both sensory psychology and physiology,

1 Most visual phenomena related to detection and discrimination are

relatively independent of the absolute luminance level for an extremely

wide range of luminance (Hood & Finkelstein, 1986). Therefore, it is

convenient to define and discuss visual stimuli in terms of their contrast:

c(x, y) � (L(x, y) � L0)/L0, where L(x, y) is the luminance at point (x, y)

and L0 is the mean luminance of the display.

Signal

External 

   Noise

Figure 4. An illustration of the equivalent input noise method in vision.

The image is made from the superposition of three images—a vertical sine

wave (signal) with increasing contrast in the vertical direction, an external

noise image with increasing variance in the horizontal direction, and a

simulated internal noise image with a constant variance. To help the reader,

we have traced out an equal visibility contour of the signal grating. The

contour is flat in low-external-noise conditions and rises with external

noise in high-external-noise conditions. The amplitude of the external noise

at the elbow of the contour provides an estimate of the variance of the

internal noise.
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including a perceptual template, a nonlinear transducer, additive

noise, multiplicative noise, contrast-gain control, and a decision

process (Burgess et al., 1981; Eckstein, Ahumada, & Watson,

1997; Lu & Dosher, 1999; Pelli, 1981, 1985). Different models

include different subsets of these component processes. The goal

of these models is to predict the signal-to-noise ratio of behavioral

performance from the driving stimulus and estimated values of

several observer-specific properties.

The most prominent observer models include the linear ampli-

fier model (LAM; Pelli, 1981), the induced noise model (INM;

Burgess & Colborne, 1988), the linear amplifier model with deci-

sion uncertainty (LAUM; Pelli, 1985), the induced noise and

uncertainty model (INUM; Eckstein et al., 1997), and the percep-

tual template model (PTM; Lu & Dosher, 1999). Often, a partic-

ular observer model was developed to handle the results from a

particular experimental procedure and has not been tested with

data from other procedures (see below). It has become pressingly

important for the field as a whole to engage in a comprehensive

review and comparison of the various observer models, especially

in their ability to simultaneously account for results from all the

major external noise methods. This is also important for a concep-

tual understanding of which attributes of behavioral data constrain

model processes. That is the goal of this article.

We derive the predictions of the five major observer models in

relation to the three most general external noise paradigms: the

equivalent input noise method, the triple-threshold-versus-

external-noise-contrast (triple-TvC) method, and the double-pass

procedure. Although the properties of each particular model may

exist in the literature for one particular empirical test, here we

translate the various previous theoretical analyses into a common

formalism and derive predictions of each model for a common set

of behavioral tests. The predictions make it possible to evaluate

and compare these models against existing data in the literature as

well as their fit to the data in a new experiment later in the article.

As we show, the joint or convergent results from the three major

external noise methods provide very strong constraints on the

observer models while identifying key relationships in detection or

discrimination data. The choice of the observer model has signif-

icant implications for the interpretations of data from other exter-

nal noise paradigms, such as those involving critical band mask-

ing, as well as applications of the methods to the study of

mechanisms of cognitive, developmental, and disease processes.

The remaining external noise methods, that is, the various

methods related to critical band masking and classification images,

have been mostly used to characterize the detailed properties of the

perceptual templates such as sensitivity to spatial or temporal

frequencies or to the most diagnostic spatial regions. In critical

masking, the characteristics (spatial or temporal frequency) of the

external noise are varied to reveal the tuning properties of the

perceptual template—the stimulus evidence selected to support a

specific task or decision. Masking damages performance if the

mask has energy that is within the tuning of the template. The

classification image method typically compares the external noise

images between correct or incorrect trials to find the spatial re-

gions or temporal segments of external noise most correlated with

performance and therefore reveals spatial or temporal properties of

the perceptual template (see Abbey & Eckstein, 2006, for an

attempt to use the classification image method to investigate

nonlinearities in the perceptual system). We focus on those aspects

of the observer models that do not depend on these details of the

perceptual templates. The development of the observer model may

in turn be extended to refine the methods for the measurement of

templates (e.g., Lu & Dosher, 2001).

Overview

We first describe the three external noise paradigms and the

mathematical properties of the five observer models, focusing on

the 2AFC and two-alternative forced-identification tasks.2 We then

present existing empirical evidence and a new experiment to

compare the observer models. We conclude that the five-

component PTM, with a perceptual template, a nonlinear trans-

ducer function, internal additive noise, internal multiplicative

noise, and a decision structure, provides the best account of all the

existing data in visual tasks. The INUM,3 which substitutes the

nonlinear transducer function with decision uncertainty, has qual-

itatively similar properties but provides worse accounts of the data.

All the other observer models, essentially various reduced forms of

these two models, can be clearly rejected. The combination of the

triple-TvC and double-pass methods provides critical constraints

on the observer models. Finally, we discuss the implications of our

results for the study of other sensory modalities and the study of

observer state changes and high-level cognitive processes.

External Noise Paradigms

Equivalent Input Noise; Single TvC

The existence of an absolute threshold for every perceptual task

suggests that the perceptual system is limited by some form of

internal noise arising from intrinsic stimulus variability (Rose,

1948), receptor sampling errors (Geisler, 1989), randomness of

neural responses (Tolhurst, Movshon, & Dean, 1983), loss of

information during neural transmission (Barlow, 1957), and vari-

ation in absolute and comparative judgments as well as decision

criteria (Wickelgren, 1968). Sensory psychologists long ago

adapted the equivalent input noise method and the LAM to char-

acterize the internal noise in the perceptual system (Ahumada &

Lovell, 1971; Barlow, 1956; Bos & Deboer, 1966; Burgess et al.,

1981; Eijkman et al., 1966; Moore, 1975; Nagaraja, 1964; Osman,

1971; Pelli, 1981; Tanner & Birdsall, 1958). In a typical applica-

2 The choice to focus on 2AFC and two-alternative forced-identification

tasks is made to simplify the presentation. The single-interval two-

alternative forced-identification paradigm is equivalent to the 2AFC para-

digm if (a) the stimuli are so far apart that each excites a different detector

(or group of detectors) and (b) the outputs of the detectors are well enough

labeled (Graham, 1989). However, if the identification is based on the

output magnitudes instead of on detector identity, the single-interval iden-

tification paradigm is similar to a yes–no paradigm. The 2AFC identifica-

tion paradigm used in this article and many of our previous publications

(Dosher & Lu, 2000a, 2000b; Lu & Dosher, 1998, 1999, 2000) uses stimuli

that are far apart, and each excites a different labeled detector. They are

equivalent to 2AFC paradigms, not yes–no paradigms. The development

can be extended to cover other paradigms that require more extensive

treatment of the decision process.
3 The label induced noise is related to that of multiplicative noise; the

magnitudes of both induced and multiplicative noises depend upon the

stimulus. The differences in the precise formulation of the two forms are

addressed in the presentation of the PTM and the new experiment.

49CHARACTERIZING OBSERVERS



tion, contrast thresholds in a two-alternative forced-identification

task or two-interval forced-choice detection task—signal stimulus

energy required for an observer to maintain a predetermined per-

formance level—are measured in a range of external noise condi-

tions with either an adaptive procedure (e.g., the staircase proce-

dure) or the method of constant stimuli. The external noise images

in each external noise condition are made of pixels whose contrasts

are drawn from independent and identically distributed Gaussian

distributions with a particular standard deviation, which varies

across external noise conditions. The external noise images gen-

erated with independent and identically distributed pixel contrasts

are white, that is, with a flat power spectrum over a range of spatial

frequencies. White-noise images are preferred in estimating the

magnitude of internal noises because they have equal variance in

all the spatial (or temporal) frequencies and can therefore be used

to provide a good reference for the internal noise in all the

frequencies. Often, six to nine external noise conditions, indexed

by the variance of the contrast of the external noise images, are

used to sample the TvC functions (see Figure 5). As illustrated in

Figures 3 and 4, the elbow of the TvC function provides a direct

estimate of the amount of equivalent internal noise if the system

behaves like a linear electronic amplifier.4 The TvC functions are

normally graphed in log–log plots to facilitate viewing of data over

a large dynamic range (a factor of 10 to 100 in both signal and

external noise contrast) and to display thresholds with approxi-

mately equal error bars in log units.

Triple TvC

It has been well established that perceptual sensitivity (d�)

increases as a nonlinear function of signal contrast (Cohn, Thibos,

& Kleinstein, 1974; Foley & Legge, 1981; Leshowitz, Taub, &

Raab, 1968; Nachmias, 1981; Nachmias & Kocher, 1970; Nach-

mias & Sansbury, 1974; Stromeyer & Klein, 1974; Tanner, 1961).

Some researchers (e.g., Foley & Legge, 1981; Lu & Dosher, 1999;

Nachmias & Sansbury, 1974) have attributed the nonlinear relation

between d� and signal contrast to some form of nonlinear trans-

formation, or transducer function, acting on the stimulus strength;

others have attributed the nonlinearity to statistical uncertainty in

the decision process (Eckstein et al., 1997; Pelli, 1985). Regardless

of the theoretical interpretation, measurements of the nonlinear

properties of the perceptual system are essential for constructing

and constraining observer models.

We (Lu & Dosher, 1999) introduced and incorporated the triple-

TvC method into the equivalent input noise paradigm to measure

the nonlinear properties of the perceptual system. In this method,

TvC functions at three separate criterion performance levels (e.g.,

65%, 75%, and 85% correct in a two-alternative forced-

identification task) are measured for each observer (see Figure

6A).5 From the three TvC functions, two threshold ratios at each

external noise level can be obtained (see Figure 6B). Indicative of

observer nonlinearities in perceptual tasks (Pelli, 1985), these

ratios provide very strong empirical constraints on the nonlinear

components of the observer models. We (Lu & Dosher, 1999)

4 If the system is not a simple linear system, the interpretation is related

but may depend on other factors.
5 An alternative is to measure full psychometric function across all the

external noise conditions. Using three widely separated performance cri-

teria, the triple-TvC method provides an excellent proxy to the full psy-

chometric method (Lu & Dosher, 1999).

(c)

T
h

re
sh

o
ld

 S
ig

n
a

l C
o

n
tr

a
st

 (
C

τ)

Contrast of External Noise (Next)

1

1/4

1/16

1/64

0         1/32        1/16       1/8          1/4         1/2           1

N a

d' = 1.414

(a)

(b)

Figure 5. a: From left to right, eight external noise images with increasing contrast. b: A signal Gabor patch

embedded in increasing levels of external noise. c: The input signal amplitude required to maintain threshold

performance at a particular criterion level (d� � 1.414), as a function of the contrast (standard deviation) of

external noise.

50 LU AND DOSHER



showed that, mathematically, measuring TvC functions at three

performance criterion levels is necessary to fully constrain the

PTM. We found that three reasonably widely spaced TvC func-

tions provide sufficient constraints to solve for the necessary free

parameters and a good approximation to a set of full psychometric

functions over the same range of external noise conditions.

In Dosher and Lu (1998, 1999), TvC functions at two different

performance levels were measured throughout multiple days of

perceptual learning. The two TvCs were used to distinguish state-

dependent changes due to an improved template or reduction of

additive internal noise from changes in multiplicative noise or

nonlinearity. We found that threshold ratios remained constant

throughout training, despite large performance improvements from

practice. Strong regularities in these ratio properties have been

observed in a large set of experiments. These regularities rule out

certain models and help to disambiguate different kinds of changes

in behavior that result from changes of state in the observer.

Double-Pass Agreement

The Weber’s law-type behavior of difference thresholds in

perceptual tasks—that the just noticeable difference between two

stimuli is proportional to the amplitude of the comparison stimu-

lus—suggests that there is another noise source in the perceptual

system, a multiplicative noise, whose amplitude is a function of the

contrast energy of the input stimulus. In fact, there is ample

evidence both from psychophysics (Burbeck & Kelly, 1981; Bur-

gess & Colborne, 1988; Foley, 1994; Klein & Levi, 1985; Legge

& Foley, 1980; Lu & Sperling, 1996; G. Sperling, 1989; Stromeyer

& Klein, 1974; Watson & Solomon, 1997) and from neurophysi-

ology (e.g., Albrecht & Geisler, 1991; Albrecht & Hamilton, 1982;

Bonds, 1991; Derrington & Lennie, 1981; Heeger, 1993; Kaplan &

Shapley, 1982; Ohzawa, Sclar, & Freeman, 1982; Sclar, Maunsell,

& Lennie, 1990) that the perceptual system is limited by a form of

noise whose amplitude is directly related to the total amount of

contrast energy in the stimulus.

The double-pass procedure was developed to directly estimate

the total amount of internal noise, both additive and multiplicative,

relative to external noise, in the perceptual system for each stim-

ulus (signal and external noise) condition (Ahumada, 1967; Bur-

gess & Colborne, 1988; Gilkey, Frank, & Robinson, 1978, 1981;

Green, 1964; Spiegel & Green, 1981). In comparison, the equiv-

alent input noise method with a single-TvC function was devel-

oped to estimate the magnitude of a single fixed (additive) noise

source across all the external noise conditions. In the double-pass

procedure, the same sequence of stimulus trials (signal � external

noise) is repeated twice for each observer. Repeating each partic-

ular sample of external noise provides an assessment of the relative

influence of the external and internal noises. Both response accu-

racy and response consistency (whether the response is or is not

the same on the two identical tests) are measured across different

passes of the same stimulus condition. As summarized by Green

(1964, p. 397), “On an operational level, internal noise is equiv-

alent to the observation that the same physical stimulus may elicit

different responses. In a sense, then, internal noise is the limiting

factor in a trial-by-trial prediction of the subject’s response.”

The principle is illustrated in Figure 7a, where we show how

signal-to-noise ratio and probability of agreement depend on the

amplitudes of the input signal and internal noise for external noise at

a single level. Signals with increasing amplitudes are mixed with

external noise of a fixed standard deviation. Each pair of the wave-

forms is made of the same external noise sample, the same signal, and

independent samples of internal noise, mimicking the double-pass

procedure. When the internal noise is zero (the leftmost column), the

correlation between each pair of waveforms is 1.0, independent of the

signal-to-noise ratio (or percent correct in behavioral tests). When the

internal noise increases, it decreases the correlation between each pair

of waveforms at a given signal amplitude.

The percent-agreement results are traditionally (Burgess & Col-

borne, 1988) displayed for conditions of varying signal contrast and

measure probability correct (PC) as a function of the probability that
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the two responses to the two presentations of the same stimulus are in

agreement (PA), regardless of being right or wrong (see Figure 7b).

The double-pass method is designed to estimate the ratio, �, of the

standard deviations of the total internal noise and of the external noise.

� completely determines the shape of the PC versus PA function in

each external noise condition (see Appendix B). The functional form

of the relationship between PC and PA is derived by extending the

basic SDT equations to the double-pass procedure.

A family of PC versus PA functions for a range of internal-to-

external-noise ratio �s is illustrated in Figure 7b. When �3 0, PA3

1.0 (the curve approaches a vertical line), even though PC still goes

from 50% (chance) to 100% (perfect performance). This is because,

without any internal noise (�3 0), the performance of the observer

is completely determined by external noise. A particular external

noise sample may cause the observer to make a wrong response, yet

its impact on performance is the same in the two passes, and therefore,

the responses are consistent. As � increases, the observer is (rela-

tively) more affected by internal noise and becomes less consistent in

her or his response. Therefore, the PC versus PA curves become more

slanted.

In actual experiments, the ratio of the standard deviation of

internal-versus-external-noise � is estimated from the PC versus

PA function in each external noise condition (Burgess & Colborne,

1988). To provide a reliable estimate of � for a given external

noise contrast, the PC versus PA functions need to be measured

over a range of signal contrast levels such that the data can be fit

with the theoretical PC versus PA curves. The estimated standard

deviation of (the total) internal noise for a given external noise

condition is then �int � ��ext. So, through this method, the total

internal noise is benchmarked to a physical quantity that is con-

trolled by the experimenter. The total internal noise may include

both multiplicative and additive internal noises.

Mathematical Properties of the Observer Models

In this section, we introduce and present properties of the five most

prominent observer models. The components of the models are sum-

marized in Table 1. We start with the model that has the fewest

components and then gradually build up to models with more com-

ponents. The mathematical symbols used in the various models are

defined in Table 2. We seek to identify the simplest model(s) consis-

tent with the key properties of the behavioral data.

Linear Amplifier Model

The LAM of a human observer (see Figure 8a) is essentially a

direct analogue of the linear electronic amplifier model (see Fig-

ure 3a). The terminology is however rather different. The ampli-

fication in Figure 3a is replaced by a perceptual template (see

Figure 8a). The perceptual template is essentially a task-specific

filter tuned to the relevant signal stimulus, to which it responds

with a contrast gain of � to a signal stimulus of contrast 1. The

value c is the contrast of the signal stimulus. The additive noise,

Nadd, represents the impact of the aggregate of all the intrinsic

additive noise sources in the perceptual system. A decision stage is

also added to model the human decision process (Green & Swets,

1966; Macmillan & Creelman, 1991).

In the LAM, signal discriminability, d�, is determined by the

signal-to-noise ratio (see Appendix C for details):

d� �

TS

Ntotal1

�

TS

Ntotal2

�

�c

��ext
2

� �add
2

. (1)

For a 2AFC task, we can simply substitute d� in Equation A10 (see

Appendix A) with Equation 1:

PC � �
��

��

g(x � d�, 0, 1)G(x, 0, 1)dx

��
��

��

g�x �
�c

��ext
2

� �add
2

, 0, 1�G(x, 0, 1)dx. (2)
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Figure 7. a: An illustration of the principle behind the double-pass method.

Signals with increasing amplitudes are mixed with external noise of a fixed

standard deviation. Each pair of waveforms is made of the same external noise

sample, the same signal, and independent samples of internal noise. The pair

of numbers above each pair of waveforms denotes the signal-to-noise ratio in

the waveforms and their correlations. The standard deviation of the internal

noise is varied. When the internal noise is zero (the leftmost column), the

correlation between each pair of waveforms is 1.0, independent of the signal-

to-noise ratio, which determines percent correct. When the internal noise

increases, it decreases the correlation between each pair of waveforms at a

given signal amplitude. b: Probability correct (PC) versus probability consis-

tent (PA) for a range of internal-to-external-noise ratio �s.
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The probability that the observer responds to two passes of the

same stimulus consistently follows directly from Equation B3a

(see Appendix B) after substituting S with the template response to

the signal stimulus �c:

PA � �
��

��

g(x � �c, 0, �2�ext)	G2
x, 0, �2�add�

� �1 � G
x, 0, �2�add�
2�dx. (3)

By inverting Equation 1, we can express the threshold signal

contrast energy c�
2 required for the observer to maintain a given

performance criterion level, that is, a fixed PC or d�, as a function

of external noise contrast:

c�
2

� k
�ext
2

� �add
2 �, (4)

where k � (d�/�)2. This is the efficiency relation between thresh-

old and external noise in LAM. The parameter k has historically

been called calculation efficiency, thought to reflect the efficiency

of a human observer in utilizing the information in the stimulus

relative to an ideal observer who can make optimal use of all the

information in the stimulus in making a perceptual judgment (Pelli,

1981). Because k is proportional to d�2, it is obvious that it (and

thus observer efficiency) depends on the particular criterion per-

formance level at which the threshold is defined. That is, the

efficiency parameter k depends on the criterion performance level

(i.e., 75%) selected by the experimenter and is therefore not a

fundamental property of the human observer. The more fundamen-

tal parameter in this model is the gain of the perceptual template to

the signal stimulus �, which is independent of the performance

criterion.

The TvC relation expressed in Equation 4 is illustrated in

Figure 8b for a hypothetical LAM at three performance levels,

65%, 75%, and 85% correct. The TvC functions, typically shown

in log–log plots, have three distinct regions: (a) When �ext ��

�add, internal noise is the limiting factor of performance, threshold

contrast log(c�) is almost invariant to log(�ext), and the TvC

function is almost flat. (b) When �ext �� �add, external noise is the

limiting factor of performance, threshold contrast log(c�) increases

linearly with log(�ext), and the TvC function has a nearly constant

slope. (c) When �ext � �add, internal and external noises are both

important in determining performance level, there is a smooth

transition from Region 1 to Region 2 on the TvC function.

Empirically, to estimate �add and � for an LAM in a particular

experiment, a TvC function is obtained by measuring signal con-

trast thresholds at a single performance criterion level (e.g., 75%

correct) using an adaptive procedure (e.g., staircase) or the method

of constant stimuli over a range of external noise levels. The

optimal �add and � are then estimated from the TvC function using

Equation 4.

Although measurement of a single-TvC function is sufficient to

constrain the parameters of an LAM and is conventionally per-

formed in many empirical studies, the LAM does make a very

simple yet highly constraining prediction on the ratio between

thresholds at different performance criteria: In any given external

noise condition, the ratio between contrast thresholds at two cri-

terion performance levels is

c�1

c�2

�

d�1

d�2
. (5)

In other words, the LAM predicts that the contrast threshold

ratio between two criterion performance levels for a given external

noise contrast is equal to the ratio of the corresponding d�s. This

strong relationship holds at all external noise levels. As we discuss

Table 1

Components of the Five Most Prominent Observer Models

Model
Perceptual
template

Additive,
internal noise

Decision
process

Decision
uncertainty

Induced
noise

Multiplicative
noise

Nonlinear
transducer

LAM � � �
LAUM � � � �
INM � � � �
INUM � � � � �
PTM � � � � �

Note: LAM � linear amplifier model; LAUM � linear amplifier model with uncertainty; INM � induced noise model; INUM � induced noise with
uncertainty model; PTM � perceptual template model.

Table 2

Definitions of Common Symbols

Symbol Definition

� Mean of a distribution.
� Standard deviation of a distribution.
C Response criterion.
d� Sensitivity, often expressed as the ratio of signal and

noise.
U Number of hidden detectors.
PC Probability of correct response.
PA Probability two responses to the two passes of the

same input stimulus agree.
S Internal response to the signal stimulus.
� Gain of the perceptual template to the signal stimulus.
� The exponent of the nonlinear transducer function.
Next Internal response to an external noise stimulus.
Nmul Proportional constant of induced or multiplicative

noise.
g(x, �, �) Probability density function of a Gaussian random

variable x, with mean �, and standard deviation �.
G(x, �, �) Cumulative probability density function of a Gaussian

random variable x, with mean �, and standard
deviation �.

G�1 ( p, �, �) Inverse cumulative Gaussian probability density
function of probability p, with mean �, and
standard deviation �.
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in the next section, the prediction that the threshold contrast ratio

equals the d� ratio fails all tests to date. This failure is related to the

fact that, for the LAM, the parameters estimated from TvC curves

measured at different performance levels are inconsistent.

Linear Amplifier Model With Uncertainty

The ratio relationship between contrast thresholds and the cor-

responding d�s in the LAM (see Equation 5) implies a linear

relation between d� and signal contrast. However, it has been well

established in the visual domain that the observed d�obs increases as

a power function of signal contrast (Cohn et al., 1974; Foley &

Legge, 1981; Leshowitz et al., 1968; Nachmias, 1981; Nachmias

& Kocher, 1970; Nachmias & Sansbury, 1974; Stromeyer & Klein,

1974; Tanner, 1961). Pelli (1985) proposed that the nonlinear

relationship is due to statistical uncertainty in the decision process,

that is, the observer is uncertain about some aspects of the signal

and therefore makes decisions based not only on task-relevant

decision variables but also on task-irrelevant decision variables.

For example, perhaps the exact spatial frequencies or orientations

of the signal are sampled, but so too are inputs from other spatial

frequencies or orientations.

Within the SDT framework, decision under uncertainty is mod-

eled with task-irrelevant hidden detectors, which add sources of

false alarms to the decision process. In a 2AFC task, the observer

is presented with two input stimuli, one from each of two stimulus

categories. However, the observer uses the outputs of (U � 1)

detectors in determining the response. Only one of those detectors

is task relevant, but the observer cannot identify it and has to make

a decision based on the responses of all the detectors. The observer

therefore has to monitor a total of 2(U � 1) internal responses, of

which one is from the detector relevant to the stimulus from

Category 1, one is from the detector relevant to the stimulus from

Category 2, and 2U are from task-irrelevant detectors (see Appen-

dix A). The inability to identify the task-relevant detector in

making perceptual decisions is termed decision uncertainty.

We refer to the LAM augmented with decision uncertainty as

the LAUM (see Figure 9). This is typically implemented with a

maximum decision rule (see Appendix A) with U hidden detectors

(Eckstein et al., 1997). The maximum rule is not the optimal

Bayesian rule in decision uncertainty but approximates it in many

cases (Nolte & Jaarsma, 1967; G. Sperling & Dosher, 1986).

The basic d� function in the LAUM is the same as that of the

LAM (see Equation 1). We can simply substitute d� in the SDT

with the uncertainty equation (see Equation A12 in Appendix A)

with Equation 1 to compute PC:

PC � �
��

��

�g
x � d�, 0, 1�G2U�1
x, 0, 1�

� Ug
x, 0, 1�G2U
x, 0, 1�G
x � d�, 0, 1�dx

��
��

�� �g�x �

�c

��ext
2

� �add
2

, 0, 1�G2U�1(x, 0, 1)

� Ug
x, 0, 1�G2U
x, 0, 1�G�x �

�c

��ext
2

� �add
2

, 0, 1��dx. (6)
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Figure 8. a: The linear amplifier model of a human observer. b: Threshold contrasts required to maintain

performance at 65%, 75%, and 85% correct (corresponding to d� � 0.54, 0.95, and 1.47) as functions of the

contrast (standard deviation) of external noise. c: Probability correct (PC) versus probability consistent (PA)

functions for a range of external noise levels. d: Threshold ratios between different performance criterion levels:

75% and 65% correct (solid line) and 85% and 75% correct (dashed line).
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In the LAM, the internal response distributions at the decision

stage are Gaussian. In the LAUM with a maximum decision rule,

the relevant internal distributions are derived from the maximum

of the U � 1 internal responses generated by stimuli in the two

categories (see Appendix A). In Equation 6, d� is the signal-to-

noise ratio in the two task-relevant detectors. It must be clearly

distinguished from the observed d�obs, which is normally converted

from observed probability correct (PC) using a table that does not

consider decision uncertainty. The observed signal-to-noise ratio,

d�obs, is less than the underlying signal-to-noise ratio in the task-

relevant detectors, d�, because decision uncertainty, that is, includ-

ing the activities of the task-irrelevant detectors in the decision

process, increases the level of false alarms. We illustrate the

relationships between PC and d� and between d�obs and d� in Figure

10 for a range of Us. In the LAM, U � 0, and d�obs � d�. However,

in the LAUM, U � 0, and d�obs is a nonlinear function of d�.6

A number of properties of the LAUM are illustrated in Figure 9.

In Figure 9b, we plot TvC functions at 65%, 75% and 85% correct

for a 2AFC task with U � 2, corresponding to d�obs � 0.54, 0.95,

and 1.47, but d� � 0.90, 1.40, and 1.97 in the task-relevant

detectors. This is because, as stated above, d�obs is calculated from

percent correct assuming U � 0.

Similar to the LAM, the threshold ratios between different

performance levels in the LAUM are equal to the corresponding d�

ratios, independent of the external noise levels. Because d�obs and

d� are related nonlinearly, the threshold ratios are therefore non-

linear functions of the corresponding d�obss. This is why decision

uncertainty could be a potential explanation for nonlinear psycho-

metric functions. We plot two threshold ratios at each external

noise level for a 2AFC task with U � 2 in Figure 9b. The threshold

ratios for a range of Us, c75%(Next, U)/c65%(Next, U), and

c75%(Next, U)/c65%(Next, U), are plotted in Figure 11.

The derivation and the resulting analytic relationship between

probability correct and probability agreement for the LAUM are

too long to present here. Instead, we used a Monte Carlo simula-

tion procedure to compute the functions. As in the LAM, the

functional relationship between PC and PA is determined by the

ratio of (total) internal and external noise in the LAUM. The

MATLAB program used in the Monte Carlo simulation is pre-

sented in Appendix D. We illustrate PC as functions of PA for a

range of external noise conditions for a given LAUM with U � 2

in Figure 9c. The relationship between PC and PA is illustrated for

a range of Us in Figure 12. One important characteristic of these

functions is that the spread of the PC versus PA functions for

different �s increases with U. As we discuss later, relatively large

Us are required to account for the empirical threshold ratios

between multiple performance levels, yet the empirical PC versus

PA functions tend to collapse as external noise increases. The two

opposite demands on the value of U undermine the LAUM.

Induced Noise Model

In both the LAM and the LAUM, the internal noise consists of

a single fixed additive component that does not vary with stimulus

6 d� is determined by the signal-to-noise ratio in a detector, which is not

directly observed in an experiment. The ratio test in triple TvC is always

performed on d�obs, which is converted from measured percent correct.

+

Observer
(a)

Na

T
h

re
sh

o
ld

 R
a

tio
  

  
  

  
  

  
T

h
re

sh
o

ld
 S

ig
n

a
l C

o
n

tr
a

st
 (

C
τ)

Contrast of External Noise (Next)

1

1/4

1/16

1/64

0       1/32     1/16      1/8        1/4        1/2        1

85%

75%

65%

c75%/c65%

c85%/c75%

(b)

(d)

0.5 0.6 0.7 0.8 0.9 1

0.6

0.7

0.8

0.9

1

P
C

P
A

σint=0.0625

σext=.0625    .125      .25         1.

(c)

1.2

1.4

1.6

1.8

2.0

Figure 9. a: The linear amplifier with uncertainty model of a human observer (U � 2). b: Threshold contrasts

required to maintain performance at 65%, 75%, and 85% correct (corresponding to d� � 0.90, 1.40, and 1.97 and

d�obs � 0.54, 0.95, and 1.47) as functions of the contrast (standard deviation) of external noise. c: Probability

correct (PC) versus probability consistent (PA) functions for a range of external noise levels. d: Threshold ratios

between different performance criterion levels: 75% and 65% correct (solid line) and 85% and 75% correct

(dashed line).

55CHARACTERIZING OBSERVERS



conditions. Using the double-pass procedure, Burgess and Col-

borne (1988) concluded that the internal noise has two compo-

nents: one constant additive noise component and the other in-

duced noise component with a standard deviation proportional to

that of the external noise: �induced � Nmul�ext. The latter compo-

nent is necessary to account for the fact that the estimated ampli-

tude of the total internal noise is proportional to that of the external

noise once the external noise level exceeds a certain level. A

superset of the LAM can be made to incorporate the induced noise

by adding another noise term to Equation 1:

d� �

�c

��ext
2

� �induced
2

� �add
2

�

�c

� (1�N mul
2 ) �ext

2
� �add

2
.

(7)

The corresponding TvC function becomes

c�
2

� �d�

��
2

��ext
2

� �induced
2

� �add
2 

� �d�

��
2

�
1 � N mul
2 ��ext

2
� �add

2 . (8)

The INM is illustrated in Figure 13a. There is no decision

uncertainty in the INM: U � 0, d�obs � d�, and the noise and signal

distributions are both assumed to be Gaussian. The TvC functions

for an INM at three performance levels, 65%, 75%, and 85%

correct, are shown in Figure 13b.

For the INM, the probability correct in a 2AFC task is computed

by substituting d� (see Equation 7) into Equation A10 (see Appen-

dix A):

Pc � �
��

��

g
x � d�, 0, 1�G
x, 0, 1�dx

� �
��

��

g�x �

�c

�
1 � N mul
2 ��ext

2
� �add

2
, 0, 1�G
x, 0, 1�dx

(9)

Equation B3a (see Appendix B) is also elaborated to include the

induced noise in calculating probability agreement for the double-

pass procedure:

PA � �
��

��

g
x � �c, 0, �2�ext�	G2
x, 0, �2
�add
2

� N mul
2 �ext

2 �

� �1 � G
x, 0, �2
�add
2

� Nmul
2 �ext

2 �2�dx. (10)

In the INM, as �ext increases, the total amount of internal noise


�total � ��add
2

� N mul
2 �ext

2 ) is increasingly dominated by the in-

duced noise, that is, �total3 Nmul�ext; therefore, the ratio between

the amplitudes of the internal noise and external noise approaches

a constant, and the family of PC versus PA functions in all the

external noise conditions, determined by the ratio of (total) internal

and external noise, approaches a single curve. This point is illus-

trated in Figure 13c.
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Figure 10. A: A plot of the relationship between probability correct (PC) and the d� in the task-relevant

detector. B: A plot of the relationship between the observed d�obs and the d� in the task-relevant detector for a

two-alternative forced-choice decision for a range of number of hidden detectors (U).
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Following Equation 8, we show that the contrast threshold ratio

between two threshold performance levels in a given external

noise condition is equal to the ratio of the corresponding d�s in the

INM, independent of the contrast of the particular external noise

level (see Figure 13d):

c�1

c�2

�

d�
1

d�
2

. (11)

Thus, this model has the same failure as the LAM and is rejected

by the same failure of the contrast threshold ratio predictions. The

next two models address this shortcoming by reintroducing deci-

sion uncertainty (INUM) or, alternatively, a nonlinear transducer

function (PTM).

Induced Noise With Uncertainty Model

Eckstein et al. (1997) constructed another observer model by

adding decision uncertainty to the INM. They suggested that

induced noise is necessary to account for the component of internal

noise that increases with background contrast and that decision

uncertainty is necessary to account for the nonlinear d� psycho-

metric functions.7 We refer to the model proposed by Eckstein et

al. as the INUM.

The INUM (see Figure 14a) is an extension of the INM, with the

addition of decision uncertainty. As in the INM, Equations 7 and

8 (duplicated below) describe the signal-to-noise ratio and thresh-

old function in the INUM:

d� �

�c

��ext
2

� �induced
2

� �add
2

�

�c

�
1 � N mul
2 ��ext

2
� �add

2
, (7)

and

c�
2

� �d�

��
2

��ext
2

� �induced
2

� �add
2 

� �d�

��
2

�
1 � N mul
2 ��ext

2
� �add

2  . (8)

However, the d�s in Equations 7 and 8 represent the signal-to-

noise ratio in the task-relevant detectors. As is the case with the

LAUM, they must be clearly distinguished from the observed d�obs,

which is often converted from the observed percent correct (PC)

using a table that assumes no decision uncertainty (U � 0). In

Figure 14b, we plot TvC functions at 65%, 75% and 85% correct

for a 2AFC task with U � 2, corresponding to d�obs � 0.54, 0.95,

and 1.47, but d� � 0.90, 1.40, and 1.97 in task-relevant detectors.

A Monte Carlo simulation procedure was used to compute the

probability correct (PC) versus probability agreement (PA) func-

tions using the MATLAB program in Appendix D with �S � �N �

�N mul
2 �ext

2
� �add

2 . We illustrate PC as functions of PA for a range

of external noise conditions for the INUM described above (see

Figure 14c). Similar to the INM, as �ext increases, the total amount

of internal noise (�total � ��add
2

� N mul
2 �ext

2 ) is increasingly dom-

inated by the induced noise, that is, �total 3 Nmul�ext; the PC

versus PA functions approach a single curve.

Similar to the LAUM, the threshold ratios between different

performance levels in the INUM are equal to the corresponding

d� ratios, independent of the external noise levels. However,

because d�obs and d� are related nonlinearly, the threshold ratios

are therefore nonlinear functions of the corresponding d�obss.

This is why decision uncertainty could be a potential explana-

tion of nonlinear psychometric functions. We plot two threshold

ratios at each external noise level for a 2AFC task with U � 2

in Figure 14b.

Perceptual Template Model

The PTM was proposed to explicitly model nonlinear psy-

chometric functions and Weber’s law in perceptual tasks

7 Some applications of this model to data allow each condition to have

an independently estimated degree of uncertainty—allowing a special

adjustment for each condition (Eckstein et al., 1997). Our illustrations

impose a single value of uncertainty, U, across multiple conditions of a

basic task.
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Figure 12. Relationship between probability correct (PC) and probability agreement (PA) for a range of number

of hidden detectors (U) in the linear amplifier model with uncertainty.
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(Woodworth, 1938). Following the tradition in pattern vision

(Foley, 1994; Foley & Legge, 1981; Fredericksen & Hess,

1997; Gorea & Sagi, 2001; Klein & Levi, 1985; Kontsevich,

Chen, & Tyler, 2002; Legge & Foley, 1980; Nachmias &

Sansbury, 1974; Watson & Solomon, 1997), the PTM includes

a nonlinear transducer function instead of decision uncertainty

to model nonlinear d� psychometric functions. Two noise

sources, an additive noise and a multiplicative noise, produce

internal noise in the PTM. The multiplicative noise accounts for

Weber’s law in perceptual tasks. Unlike the induced noise in

INM and INUM, which is only related to external noise con-

trast, the magnitude of multiplicative noise in the PTM is

determined by the total amount of contrast energy in the in-

put stimulus, including contributions from both the signal stim-

ulus and external noise stimulus. It is necessary to include

signal contributions to the multiplicative noise to (a) induce the

classic Weber-like phenomena and (b) make the model equiv-

alent to contrast-gain control models. Dao et al. (2006) showed

that the PTM with multiplicative noise is mathematically equiv-

alent to a contrast-gain control model with two fixed noise

sources, one before and the other after the gain control. Addi-

tionally, excluding a signal contribution to the multiplicative

noise implies an ability to perfectly segregate signal from noise

in processing, which presupposes a solution to the signal–noise

problem.

In the PTM, input stimuli are processed in two pathways (see

Figure 15a and Appendix E). In the signal pathway, input

stimuli pass through a perceptual template with certain selec-

tivity for stimulus characteristics (e.g., color, spatial frequency,

orientation, temporal/spatial windowing). As in the LAM, the

gain of the template to white Gaussian external noise is 1.0

because the total gain of the template is normalized to 1.0. The

contrast gain of the template to the matched signal stimulus is

� and to the nonmatched signal stimulus is 0. A template

matching function might, however, be far more complex, for

example, templates for objects, faces, and so on. It is related to

the concept of matched filter in investigations of object recog-

nition (Burgess, 1985). The outputs of the perceptual template

are then processed by an expansive nonlinear transducer func-

t ion

(Output � sign
Input�Input�
1), typically used in the pat-

tern vision literature (Foley & Legge, 1981; Nachmias & Sans-

bury, 1974). In the gain-control pathway, input stimuli also pass

through a perceptual template, and the output of this pathway

determines the amplitude of the multiplicative noise. The tem-

plate in this pathway may or may not differ from the template

in the signal pathway; the response to the signal stimulus

through this template is �2c if the signal matches the template

and 0 if it does not. Similarly, the nonlinearity in this path is

parameterized by �2.

At the decision stage, using the standard formula (see Equa-

tion A10 in Appendix A) with the expanded definitions of

internal noise and nonlinearity, probability correct for a 2AFC

task is:
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Figure 13. a: The induced noise model of a human observer. b: Threshold contrasts required to maintain

performance at 65%, 75%, and 85% correct (corresponding to d� � 0.5449, 0.9539, and 1.4657) as functions of

the contrast (standard deviation) of external noise. c: Probability correct (PC) versus probability consistent (PA)

functions for a range of external noise levels. d: Threshold ratios between different performance criterion levels:

75% and 65% correct (solid line) and 85% and 75% correct (dashed line).
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PC ��
��

��

g
x � ��
1c�

1, 0,

� ��ext
2�

1 � N mul
2 ��ext

2�
2 � 
�2c�2�

2 � �add
2 �

� G
x, 0, ��ext
2�

1 � N mul
2 �ext

2�
2 � �add

2 �dx . (12)

The average signal-to-noise ratio (d�) in the PTM can be

calculated8:

d� �

�2S1

��total1
2

� �total2
2

�


�c)�
1

��ext
2�

1 � N mul
2 ��ext

2�
2 �


�2c�2�
2

2 � � �add
2

.

(13)

The special case � � �1 � �2 corresponds to the situation where

the rising portion of the TvC function in log–log plot has a slope

of 1.0; this property is consistent with many observed TvC func-

tions in the literature. If � � �1 � �2, we can obtain an analytical

relationship between threshold signal contrast c� and external noise

contrast �ext at a given performance criterion (i.e., d�)9:

c� � �d�2�
1 � N mul
2 ��ext

2�
� �add

2 

�2�
� N mul

2 �2
2�d�2/ 2 �

1

2�

. (14)

The functional relation between c� and �ext in Equation 14 is

illustrated in Figure 15b for a PTM at three performance levels:

65%, 75% and 85% correct (corresponding to d� � 0.54, 0.95, and

1.47).

When the same stimulus (signal � external noise) is

passed to the PTM twice, the probability that the two re-

sponses are consistent can be derived from Equation B3a (see

Appendix B):

8 When the variances of the signal and noise distributions are not equal,

the ROC curve in a yes–no paradigm is not symmetric about the diagonal

line. There are, however, several ways to define a d�. Our choice of the d�

definition is based on one important mathematical property of the ROC

curve in 2AFC, which is symmetric about the diagonal even when the

signal and noise distributions have unequal variance (Green & Swets,

1966; Macmillan & Creelman, 1991). Consistent with the difference rule in

2AFC, we define d� as the ratio of the mean and the standard deviation of

the difference distribution (the difference between the internal responses of

the two detectors); the variance of the difference distribution is equal to the

sum of the variances of the component distributions. In previous PTM

applications (Dosher & Lu, 1999; Lu & Dosher, 1999), we assumed that

the template in the gain-control pathway is broadly tuned; independent of

whether the signal stimulus matches the template in the signal pathway, the

response of the template in the gain-control pathway is �2c. Therefore, the

variance of the multiplicative noise is the same in the two detectors, one

matched to the stimulus and the other not matched to the stimulus,

eliminating the factor of 1/2 in Equation 13. Each is a reasonable approx-

imation given the ability of the data to constrain the model.
9 In the case where �1 � �2, the theoretical TvC functions of the PTM

can be numerically derived using iterative methods (see Lu & Dosher,

1998).
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Figure 14. a: The induced noise with uncertainty model of a human observer. b: Threshold contrasts required

to maintain performance at 65%, 75%, and 85% correct (corresponding to d� � 0.90, 1.40, and 1.97) as functions

of the contrast (standard deviation) of external noise. c: Probability correct (PC) versus probability consistent

(PA) functions for a range of external noise levels. d: Threshold ratios between different performance criterion

levels: 75% and 65% correct (solid line) and 85% and 75% correct (dashed line).
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�c��
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1 )

� 	G2
x, 0, �N mul
2 �2�ext

2�
2 � 
�2c�2�

2 � 2�add
2 �

��1�G
x, 0, �N mul
2 �2�ext

2�
2 � 
�2c�2�

2 � 2�add
2 �2�dx . (15)

We illustrate PC as functions of PA in a range of external noise

conditions for the PTM described above in Figure 15c. Similar to

the INM and INUM, as �ext increases, the total amount of internal

noise is increasingly dominated by multiplicative noise, and the PC

versus PA functions collapse into a single curve.

In all applications of the PTM to empirical data so far, we have

found that the PTM with � � �1 � �2 provides an excellent

description of the empirical data. In the rest of this article, we

restrict our discussion to this simplified set of PTMs. The same

logic could be followed to understand the properties of PTMs with

�1 � �2.

It follows directly from Equation 14 that, for any given external

noise contrast @Next, the threshold signal contrast ratio between

two performance criterion levels (corresponding to d�2 and d�1), is

c�
2

c�
1

� �d�2
2

d�1
2

�2�
� N mul

2 �2
2�d�1

2/ 2

�2�
� Nmul

2 �2
2�d�2

2/2 �
1

2�

. (16)

Thus, the PTM predicts that the threshold signal contrast ratio

between two performance criterion levels for any given external

noise contrast is a nonlinear function of the corresponding d�s,

independent of the particular external noise level (see Figure 15d).

Summary

In this section, we have derived theoretical predictions of the

five most prominent observer models for a set of behavioral tests

by translating them into a common formalism. The predictions of

the models for three behavioral tests, TvC functions, threshold

ratios, and double-pass agreement, are summarized in Table 3. The

models have a number of qualities in common but several critical

qualities that differ. All five models predict the same general shape

for TvC functions: a relatively flat portion when internal noise

dominates external noise and a rising portion when external noise

dominates internal noise. In addition, all five models predict that

the threshold ratio between any two performance criterion levels in

a given external noise condition is invariant across different ex-

ternal noise levels. The models differ qualitatively in two major

ways: (a) Models without decision uncertainty or a nonlinear

transducer, that is, the LAM and INM, predict that the threshold

ratio between two performance criterion levels in a given external

noise condition is equal to the ratio of the corresponding d�s, while

models with decision uncertainty or a nonlinear transducer, that is,

the LAUM, INUM, and PTM, predict that the threshold ratio

between two performance criterion levels in a given external noise

condition is a nonlinear function of the corresponding d�s. (b)

Models with induced noise or multiplicative noise, that is, the

INM, INUM, and PTM, predict that as external noise contrast
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Figure 15. a: The perceptual template model of a human observer. b: Threshold contrasts required to maintain

performance at 65%, 75%, and 85% correct (corresponding to d� � 0.54, 0.95, and 1.47) as functions of the

contrast (standard deviation) of external noise. c: Probability correct (PC) versus probability consistent (PA)

functions for a range of external noise levels. d: Threshold ratios between different performance criterion levels:

75% and 65% correct (solid line) and 85% and 75% correct (dashed line).
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increases, the total amount of internal noise is increasingly dom-

inated by multiplicative noise, and therefore, the family of prob-

ability correct (PC) versus probability agreement (PA) curves for

all the external noise conditions in the double-pass procedure

collapse into a single curve, with a constant internal-to-external-

noise ratio. Models without multiplicative noise, that is, the LAM

and LAUM, on the other hand, predict a much greater dispersion

of the probability correct versus probability agreement functions.

Empirical Tests of the Observer Models

In this section, we evaluate the theoretical predictions of the five

observer models described in the previous section against empir-

ical data. We focus on results from the triple-TvC and double-pass

experiments. These data provide evidence about threshold ratios

and performance agreement functions. As shown in the previous

section, all the models can provide a very good account of TvC

functions at a single performance criterion level. The model pre-

dictions differ significantly in the triple-TvC or the double-pass

consistency tests or in the joint application of both. We first

present some critical results in the literature that discriminate these

models. We then present a new data set that allowed us to statis-

tically compare these models. This literature review focuses on a

strong and interrelated set of data in the domain of visual tasks and

visual processes.

Existing Evidence

Triple TvC. By measuring TvC functions at three criterion

performance levels, the triple-TvC method allows us to derive two

sets of threshold ratios. Originally, we found that, in two-interval

forced-choice Gabor detection and 2AFC Gabor orientation iden-

tification, the threshold contrast ratios are indeed invariant to

external noise level (Lu & Dosher, 1999); Also, the threshold

ratios are significantly less than the corresponding d� ratios (Lu &

Dosher, 1999). Since the publication of the original studies, we

have conducted many more triple-TvC experiments using a wide

range of perceptual tasks, including pseudo-character identifica-

tion in peripheral vision with central cuing (Lu & Dosher, 2000)

and peripheral cuing (Lu & Dosher, 2000), Gabor orientation

identification in peripheral vision paired with central rapid serial

visual presentation character identification (Dosher & Lu, 1999),

first-order motion direction discrimination in peripheral vision (Lu

et al., 2000), second-order motion direction discrimination in pe-

ripheral vision (Lu et al., 2000), and Gabor orientation identifica-

tion in peripheral vision with both valid and invalid precuing

(Dosher & Lu, 2000b). In all these cases, we found that (a)

threshold contrast ratios are invariant across external noise levels,

(b) the threshold contrast ratios are compressed (less than, and

closer to, one another) relative to the corresponding d� ratios, and

(c) in all the 2AFC tasks (see Figures 16a, 16b, 16c, and 16d) we

have conducted so far, the threshold ratio between 75% correct and

65% correct is around 1.29, and the threshold ratio between 85%

and 75% correct is around 1.22. Figure 16 presents a summary of

the threshold ratios in some of the published data.

These results suggest that the threshold ratio between two per-

formance criterion levels in a given external noise condition is a

compressive nonlinear function of the corresponding d� ratio,

invariant to the external noise contrast.10 This is related to the

observation that d� increases as a nonlinear function of signal

contrast (Cohn et al., 1974; Foley & Legge, 1981; Leshowitz et al.,

1968; Nachmias, 1981; Nachmias & Kocher, 1970; Nachmias &

Sansbury, 1974; Stromeyer & Klein, 1974; Tanner, 1961). The

important finding here is that the threshold ratios are invariant in

many experiments. The invariance may place very strong con-

strains on the functional form of observer models (Iverson &

Pavel, 1981), suggesting that uncertainty and/or a nonlinear trans-

ducer function are necessary components of observer models.11

Double-pass consistency. In a classic study, Burgess and Col-

borne (1988) applied the double-pass method to estimate the

internal noise (�int) in a series of pattern discrimination or detec-

tion studies in a range of external noise conditions. The studies

used two-interval forced-choice sine-wave amplitude discrimina-

tion and detection with observer-controlled viewing time. The

signal stimuli were sine-wave gratings at two frequencies, 4.6

cycles/degree and 9.2 cycles/degree, in the two experiments. Prob-

ability correct versus probability agreement functions were mea-

sured over a range of external noise levels. As replotted in Figure

17, Burgess and Colborne found that most of the data points in the

PC versus PA scatterplot were on or nearly on a single theoretical

curve for a given ratio of internal noise and external noise standard

deviation, although a wide range of external noise levels were used

in the study. As shown in Figure 18, the standard deviation of

internal noise increased linearly with that of the external noise �ext

with a constant slope (� � 0.75 � 0.10), independent of the

external noise level once it exceeded a certain level. Burgess and

Colborne concluded that internal noise has two components: one

constant component (the additive noise in LAM) and the other

induced component, with a standard deviation that is directly

proportional to that of the external noise: �induced � Nmul�ext.

The double-pass method has been used to estimate internal noise

in both the auditory and the visual modalities. All the studies found

that the amplitude of (total) internal noise is proportional to that of

external noise. The typical ratio of internal to external noise

amplitudes is between 1.0 and 1.4 in auditory tests (Green, 1964;

Swets, Shipley, McKey, & Green, 1959), and between 0.65 and

1.00 in visual tests (Burgess & Colborne, 1988; Chung et al., 2005;

Gold et al., 1999; Levi & Klein, 2003). As discussed in Green

(1964), these estimates are lower bounds of the internal-to-

external-noise ratio because they have not explicitly considered

10 In a contrast discrimination task in external noise, Legge et al. (1987)

found that increment contrast threshold approached a linear function of d�

in high external noise. The apparent discrepancy from the compressive d�

ratios observed in detection and contrast discrimination is due to a task

difference. In fact, all five observer models predict a linear threshold and

d� relationship in high-external-noise conditions in a contrast discrimina-

tion task, consistent with the empirical results in Legge et al.: For a given

observer model, we can compute the internal responses to stimuli with

contrast c � �c and c (e.g., Equation 1) and their difference, involving

essentially a computation of the derivative of the internal response func-

tion. Discrimination threshold �c can be computed for a fixed difference of

internal response, which gives rise to a particular performance level.
11 The constancy of the ratios over drastic changes in accuracy of

performance due to attention or learning (Dosher & Lu, 1998, 1999, 2000a;

Lu & Dosher, 1999, 2000, 2004) indicates that these threshold ratios are a

core property of the system. This suggests that nonlinearity is the more

likely account. This point is treated in the discussion.
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response bias, which increases the agreement between two passes

and therefore reduces the estimated internal-to-external-noise ra-

tio. Two recent studies also showed that the ratio was invariant to

significant performance improvements following perceptual learn-

ing (Chung et al., 2005; Gold et al., 1999). All these results imply

that induced or multiplicative noise (or equivalently, contrast-gain

control) is a necessary component of observer models.

Summary. Only two observer models, the INUM and the

PTM, are qualitatively consistent with the combined results from

the double-pass and triple-TvC procedures because, among the

five observer models described in this article, only these two have

both induced or multiplicative noise and decision uncertainty or a

nonlinear transducer. The simple LAM is inadequate in that it has

neither multiplicative noise nor a mechanism to generate nonlin-

earity in the thresholds. The INM has multiplicative noise but lacks

a mechanism to generate nonlinearity. The LAUM uses uncer-

tainty to accommodate nonlinearity but lacks multiplicative noise.

We (Lu & Dosher, 1999) fit the PTM and the INUM to the data

from two experiments, one based on a two-interval forced-choice

Gabor detection task and the other based on a 2AFC Gabor

orientation identification task. In both data sets, full psychometric

functions (performance accuracy vs. signal contrast) were col-

lected over a range of external noise conditions. The double-pass

procedure was not used in these studies. The analysis found the

following: (a) The PTM and the INUM accounted for the data

almost equally well. (b) The best fitting INUM, however, had very

large Us, in the range of 20 to 200. (c) Not only were the estimated

Us outside of the range considered by Eckstein et al. (1997;

maximum U � 3), they also seem to be too large to be physio-

logically plausible. (d) The INUM did not sharply constrain the

estimate of U in all but the smallest U values. The availability of

the full psychometric functions in these experiments provided data

on multiple criterion levels and therefore incorporated the thresh-

old ratio constraints on the observer models. The analysis, consis-

tent with the prior research on the properties of nonlinearity and

multiplicative noise (identified separately), supports the models

that incorporate both components.

A New Experiment

We conducted a new experiment to directly compare the five

observer models using both triple-TvC and double-pass proce-

dures. To our knowledge, this is the first use of data from both

methods to jointly constrain and test observer models. Observers

judged the orientation (�45°) of a single Gabor patch in fovea.

Full psychometric functions, measuring identification accuracy as

a function of signal stimulus contrast, were collected, using the

method of constant stimuli over a range of external noise condi-
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Gabor detection in fovea (Lu & Dosher, 1999). b: Gabor orientation identification in fovea (Lu & Dosher, 1999).

c: First-order motion direction discrimination in peripheral vision, averaged across attended and unattended

conditions (Lu et al., 2000). d: Second-order motion direction discrimination in peripheral vision, averaged

across attended and unattended conditions (Lu et al., 2000). e: Pseudo–character identification in peripheral

vision with central cuing, averaged across pre- and simultaneous cuing conditions (Lu & Dosher, 2000). f: Same

as e except peripheral cues were used (Lu & Dosher, 2000). g: Gabor orientation identification in peripheral

vision, averaged across valid and invalid precuing conditions (Dosher & Lu, 2000b). h: Gabor orientation

identification in peripheral vision, averaged across the last 6 training days (Dosher & Lu, 1999).
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tions in a two-alternative forced-identification task. The entire

trial–stimulus sequence was repeated using the double-pass pro-

cedure. We fit eight observer models to the full data set and

statistically compared their ability to account for the data (see

Appendix F for detailed experimental methods), including the five

described in the previous section and three new models: a reduced

PTM with �2 � � (rPTM), an altered PTM with a linear transducer

and decision uncertainty (uPTM), and a fully saturated model that

consisted of a PTM with decision uncertainty (fullM). The addi-

tional models were included to complete a model lattice and to test

variants of the real contenders for a fully articulated observer

model.

PC versus PA functions. Probability correct (PC) is graphed as

a function of probability agreement (PA) for a range of external

noise levels for three observers in Figure 19. The best fitting

parameters of the eight observer models are listed in Table 4. The

fullM, which combines a PTM and decision uncertainty, is the

most saturated model. This includes all the major components of

the observer models, including nonlinearity and decision uncer-

tainty, as well as both forms of internal noise. �2 statistics (see

Equation F3 in Appendix F) were used to compare quality of the

fits of the seven reduced models with that of the most saturated

model. The chi-squares and the corresponding degrees of freedom

are listed in the last two columns of Table 4.

For all three observers, only the PTM provided equivalent fits to

the data ( p � 1.0) in comparison to the fullM. All the other models

provided significantly inferior fits to the data ( p � 0.000001).

These include uPTM, which replaced the transducer function in the

PTM with decision uncertainty, as well as the INUM, which had

previously been shown to be equivalent to the PTM in accounting

for multiple TvC functions (Lu & Dosher, 1999). The joint con-

straints of multiple criterion levels and the agreement data were,

however, a challenge for the INUM. Rejecting the uPTM suggests

that the inadequacy of the INUM is not solely due to the difference

between the induced noise in the INUM and the multiplicative

noise in the PTM. The predictions of the best fitting PTMs are

plotted in Figure 19 as smooth curves. The slight misfits in the two

lowest external noise conditions for observer SJ are due to effects

of bias in his responses, which tended to increase PA. The issue of
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Figure 17. Covariation of the percentage of correct responses (PC) and

the percentage of agreement (PA) of decisions made on two passes through

a set of images. The solid lines are loci for observers with various ratios of

internal noise/external standard deviation. Extremeness observers with no

internal noise and overwhelmingly large internal noise would have PA

values of 1.0 and 0.5, respectively, for the two passes through the image

set. The dotted ellipse around one data point represents the one-standard-

deviation region. Replotted from “Visual Signal Detection: IV. Observer

Inconsistency,” by A. E. Burgess and B. Colborne, 1988, p. 620, Figure 2.
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Figure 18. Observer internal noise standard deviations, �int, as a function

of external (image) noise standard deviation, �ext, in relative units. The

two-alternative forced-choice (2AFC) detection threshold (d� � 1) for the

external noise is about 60 on this scale. The data are for a 2AFC amplitude

discrimination of sine waves (4.6 and 9.2 cycles/degree). The circles

represent data for noise fields equal to the signal size, and the squares stand

for noise fields twice as large as the signal. The error bars represent �1

standard deviation. Two different measurement techniques have been used:

two passes through stored image sets and 2AFC trials with identical noise

fields. The points labeled low noise were done with low image-noise levels

and hence have poor accuracy, even after averaging over two observers.

The results for the two observers agree with experimental error. Replotted

from “Visual Signal Detection: IV. Observer Inconsistency,” by A. E.

Burgess and B. Colborne, 1988, p. 621, Figure 3. Copyright 1988 by the

Optical Society of America. Adapted with permission.
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bias in double-pass procedures was discussed in Green (1964) and

treated in Lu and Dosher (2007).

To summarize the quality of the joint fit, we computed r2s for

the best fitting PTM separately for probability correct and proba-

bility agreement. For the three observers, rC
2 � 0.9364, 0.9599,

0.9753, and rA
2 � 0.9439, 0.9165, 0.9459. The PTM and rPTM

(with �2 � �) provided good accounts of probability correct as a

function of contrast and external noise, with equivalent or nearly

equivalent fits and parameter estimates. This explains why we had

not previously required the full PTM with different � and �2 (e.g.,

Lu & Dosher, 1999) when we considered only multiple-TvC

functions without the double-pass procedure. The double-pass

procedure, combined with the multiple-TvC data, can be used to

provide stronger constraints that refine the exact form of multipli-

cative noise. That � � �2 in the best fitting model implies that the

perceptual template that controls the magnitude of multiplicative

noise (or, equivalently, the relative quantity for divisive gain

control) is different from the perceptual template in the signal
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Figure 19. Probability correct (PC) versus probability agreement (PA) function for a range of external noise

levels for three observers (CC, SJ, and WC). The smooth curves depict predictions of the best fitting perceptual

template model. Error bars indicate one standard deviation of the corresponding probability.

Table 4

Best Fitting Parameters of the Eight Observer Models

Obs Model K Nmul �add � �2 � U rC
2 rA

2 �2 df

CC LAM 2 0.000 0.1188 2.020 0.000 1.000 0 0.8308 0.7463 380.87 4
LAUM 3 0.000 0.0885 2.839 0.000 1.000 8 0.9127 0.8297 190.80 3
INM 3 1.356 0.1368 2.942 0.000 1.000 0 0.8389 0.9284 128.52 3
INUM 4 1.183 0.1269 4.025 0.000 1.000 4 0.9168 0.9280 62.69 2
rPTM 4 0.552 0.0043 1.634 1.634 2.277 0 0.9321 0.8587 90.99 2
PTM 5 1.228 0.0095 1.869 1.161 2.051 0 0.9364 0.9439 0.00 1
uPTM 5 1.050 0.1197 4.031 0.640 1.000 5 0.9175 0.9317 49.65 1
fullM 6 1.228 0.0095 1.869 1.161 2.051 0 0.9364 0.9439

SJ LAM 2 0.000 0.0929 2.167 0.000 1.000 0 0.8544 0.8238 318.55 4
LAUM 3 0.000 0.0754 3.256 0.000 1.000 8 0.9393 0.8737 147.71 3
INM 3 0.751 0.0942 2.520 0.000 1.000 0 0.8374 0.9187 184.94 3
INUM 4 0.598 0.0873 3.406 0.000 1.000 4 0.9270 0.9040 104.35 2
rPTM 4 0.456 0.0027 1.730 1.730 2.377 0 0.9605 0.8934 24.90 2
PTM 5 0.704 0.0038 1.791 1.431 2.269 0 0.9599 0.9165 0.00 1
uPTM 5 0.018 0.0807 3.604 50.441 1.000 7 0.9246 0.8967 96.57 1
fullM 6 0.704 0.0038 1.791 1.431 2.269 0 0.9599 0.9165

WC LAM 2 0.000 0.1728 1.726 0.000 1.000 0 0.8876 0.7278 495.71 4
LAUM 3 0.000 0.1234 2.335 0.000 1.000 8 0.9513 0.7928 377.23 3
INM 3 1.817 0.1729 2.308 0.000 1.000 0 0.8995 0.9203 172.60 3
INUM 4 1.502 0.1687 2.982 0.000 1.000 2 0.9442 0.9363 123.34 2
rPTM 4 0.572 0.0052 1.320 1.320 2.451 0 0.9735 0.7833 215.16 2
PTM 5 1.600 0.0078 1.485 0.908 2.357 0 0.9753 0.9459 0.16 1
uPTM 5 0.694 0.1135 2.925 1.138 1.000 5 0.8977 0.8896 56.94 1
fullM 6 1.482 0.0071 1.669 1.089 2.356 2 0.9680 0.9529

Note. K refers to the number of parameters in the model. Obs � observer; LAM � linear amplifier model; LAUM � linear amplifier model with
uncertainty; INM � induced noise model; INUM � induced noise with uncertainty model; rPTM � reduced perceptual template model; PTM � perceptual
template model; uPTM � altered perceptual template model; fullM � fully saturated model.
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pathway. The contributions to the contrast-gain pool are generally

thought to be rather broadly tuned (Cannon & Fullenkamp, 1991;

Solomon, Sperling, & Chubb, 1993).

TvC functions. The TvC functions of the three observers are

shown in Figure 20, along with the ratios between thresholds at

85% and 75% correct and at 75% and 65% correct. The smooth

curves in the upper row of Figure 20 depict the predictions of the

best fitting PTMs to the probability correct (PC) versus probability

agreement (PA) functions. The curves are not generated from

independent fits to the TvC functions. As expected from the

goodness of fit to the psychometric functions (which correspond to

more than three accuracy levels), the PTM provided excellent fits

to the TvC functions, accounting for 98.44%, 96.31%, and 97.70%

of the variance for the three observers, respectively.

We also computed the ratios between thresholds at 75% and

65% correct and at 85% and 75% correct. The ratios are 1.34 �

0.05, 1.33 � 0.05, and 1.33 � 0.06 between thresholds at 75% and

65% correct and 1.29 � 0.04, 1.28 � 0.04, and 1.28 � 0.5

between thresholds at 85% and 75% correct. As can be seen in the

lower row of Figure 20, the ratios are virtually the same across all

the external noise levels. These values are also generally consistent

with those observed in the many previous studies that have mea-

sured these ratios (see Figure 18).

Summary and discussion. The triple-TvC method emphasizes

the range of external noise and performance levels. The double-

pass method provides measures of the total amount of internal

noise in each signal and external noise condition. Taken together,

TvC functions across a range of performance levels (or equiva-

lently, psychometric functions in a range of external noise condi-

tions) along with the measure of total internal noise in all the

stimulus conditions from the double-pass method jointly provide

very strong constraints on observer models. Somewhat to our

surprise, the INUM and the rPTM provided inferior fits to the data

compared with the PTM, although we had previously shown that

INUM and rPTM are statistically equivalent in fitting multiple-

TvC functions alone. Decision uncertainty and transducer-based

models are not fully equivalent when both multiple-TvC and

double-pass agreement are jointly considered. The transducer

function provides a better fit to the relationship between the many

PC versus PA functions across different external noise conditions.

Importantly, it is necessary to apply the double-pass procedure

in a wide range of external noise and performance levels to

constrain the observer models. Applying the double-pass proce-

dure in a narrow range of signal and/or external noise conditions,

as is commonly done, is not sufficient to provide strong constrains

on observer models. To obtain strong constraints on models, it is

necessary to repeat triple-TvC measurements—or to jointly vary

external noise and signal contrast across good ranges—using the

double-pass procedure.

Discussion

Findings. The empirical study reported here used signal con-

trasts to span a wide range of performance across many levels of

external noise, together with the double-pass test. From the joint

constraints of this experiment, we have identified the transducer-
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based PTM as providing significantly better accounts of the data

than the decision-uncertainty-based models. At the same time,

adding decision uncertainty to the PTM does not improve the

model fits. Although the INUM and the PTM are both able to

account for the triple TvC (or, equivalently, full psychometric

functions at a range of external noise levels), theoretical reasons of

consistency with the effects in pattern masking lead us to prefer the

nonlinearity/PTM form. The experiment adds direct evidence from

converging methods to show that the nonlinear transducer does, in

fact, provide a better account of the observed regularities. The

uncertainty explanations are ruled out due to the overprediction of

separation between agreement functions for different external

noise levels, while the data and the PTM predict a convergence of

agreement functions for higher external noise levels.

Additional theoretical issues bearing on the selection of the

nonlinear form of the PTM are considered below.

Birdsall’s theorem. According to Birdsall’s theorem, when the

variance of any source of noise prior to the nonlinear transducer is

large enough so that other sources of noise in the experiment can

be neglected, the resulting d� psychometric function will be linear

(Lasley & Cohn, 1981). Because d� psychometric functions are

generally nonlinear in high external noise, the theorem has been

used to reject nonlinear transducer models in perception (Lasley &

Cohn, 1981). However, Birdsall’s theorem is based on three as-

sumptions: (a) The transducer function is monotonic, (b) sources

of noise other than the external noise can be neglected, and (c)

observers try their best to maximize their performance accuracy.

The second assumption is clearly violated in all experiments that

are impacted by a significant amount of induced/multiplicative

noise, as in Burgess and Colborne (1988), as well as in the

experiment reported in this section. For many experimental situa-

tions with noticeable multiplicative noise, the theorem does not

apply; for experimental situations with negligible multiplicative

and additive noises, Birdsall’s theorem may apply. We suggest that

the former situation is more common in typical detection and

discrimination tasks in the perceptual domain.

Nonlinear transducer. Nonlinear transducer function is one

key component of many successful observer models in visual

tasks. They are widely used in modeling pattern masking (Burbeck

& Kelly, 1981; Burgess & Colborne, 1988; Foley, 1994; Klein &

Levi, 1985; Legge & Foley, 1980; G. Sperling, 1989; Stromeyer &

Klein, 1974; Watson & Solomon, 1997). The concept of a nonlin-

ear transducer function is consistent with nonlinear properties of

visual neurons (Albrecht & Geisler, 1991; Albrecht & Hamilton,

1982; Bonds, 1991; Derrington & Lennie, 1981; Heeger, 1993;

Kaplan & Shapley, 1982; Ohzawa et al., 1982; Sclar et al., 1990).

In stimulus identification by well-practiced observers, previous

evidence suggests that stimulus uncertainty does not appear to play

a major role. In a perceptual learning experiment studying Gabor

orientation identification in peripheral vision, we (Dosher & Lu,

1999) demonstrated that the threshold ratio between two d� levels

at all the external noise levels for each observer was constant

across days, even though the thresholds themselves were improved

by a factor of almost three. In the LAUM and INUM, the threshold

ratio between two d� levels is a function of the number of hidden

detectors (or degree of decision uncertainty). The result indicates

that any hypothetical uncertainty effects, counter to expectations,

were unchanged over substantial improvements in performance. In

contrast, it is reasonable to assume that nonlinear transducer func-

tions (as in the PTM) may be unaffected by practice.

On the other hand, nonlinearity resulting from uncertainty has

not shown strong constancies, and the degree of estimated uncer-

tainty can be highly variable and large. For example, to account for

their data, Eckstein et al. (1997) had to vary the degree of uncer-

tainty for different external noise levels for the same observer in

the same experiment in nonsystematic ways. We (Lu & Dosher,

1999) also showed that the INUM fits are essentially equivalent in

a wide range of values of uncertainty, with 20 to 200 hidden

detectors in the best fitting model. Current models of early visual

system specify fewer visual channels.

More on uncertainty. Abbey and Eckstein (2006) considered

early (pretemplate) and late (posttemplate) nonlinearities, as well

as intrinsic target location uncertainty, in explaining the differ-

ences between classification images they obtained using stimuli

with the same relevant spatial profile in detection, contrast dis-

crimination, and identification tasks. Classification images esti-

mate the relevant spatial features in display images by averaging

the external noise samples from trials with a specific response

since external noise with contrast patches consistent with the

signal template will contribute to these responses. Abbey and

Eckstein found that none of the models they considered fully

explained the observed data and suggested a need for further

investigations of the combined effects of these and other forms of

nonlinearities on classification images.

The developments in this article, following most of the prior

literature (e.g., Eckstein et al., 1997), assume stochastically inde-

pendent detectors. Recently, uncertainty models that assume de-

tectors with correlated responses have been developed (Abbey &

Eckstein, 2006; Manjeshwar & Wilson, 2001; Zhang, Pham, &

Eckstein, 2006). Perhaps future developments that incorporate

uncertainty with correlated detectors might improve the

uncertainty-based observer models.

Additional Theoretical Notes on the Perceptual Template

Model

In this section, we summarize some additional technical and

theoretical considerations of the PTM.

Equivalence Between Multiplicative Noise and Contrast-

Gain Control

Multiplicative noise has been shown to be a necessary compo-

nent in observer models both in the current analyses and in related

earlier applications. Dao et al. (2006) showed that for TvC func-

tions, the multiplicative noise formulation of the PTM is mathe-

matically equivalent to a contrast-gain control formulation of the

PTM. Although most of the existing psychophysical data do not

distinguish these model forms, data in neurophysiology seem to

favor the contrast-gain control form. Reformulated as a contrast-

gain control model, the PTM is also completely consistent with the

notion of a constant noise after nonlinear transduction of the input

signal (Gorea & Sagi, 2001; Katkov, Tsodykd, & Sagi, 2006).

It is important to note that the mathematical equivalency be-

tween multiplicative noise and contrast-gain control versions of

the PTM depends critically on the functional form of the multi-

plicative noise. In the PTM, the magnitude of multiplicative noise
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is determined by the total amount of contrast energy in the input

stimuli, including both signal and external noise. Including a signal

contribution to the magnitude of multiplicative noise is necessary

to make the model equivalent to contrast-gain control models and

exhibit Weber’s law-like behavior. In the INM and INUM, the

amplitude of the induced noise is only related to external noise

contrast. These two models cannot be reformulated into a contrast-

gain control form and are not consistent with Weber’s law.

In the uPTM, we replaced the induced noise in the INUM with

the form of multiplicative noise used in the PTM. That the uPTM

provides inferior fits to the data compared to the PTM indicates

that the lack of a nonlinear transducer, rather than the form of

induced noise, is the source of the problem for the INUM.

Relationship to Models in Pattern Masking

There has been a significant parallel development of observer

models in visual pattern masking (Foley, 1994; Foley & Legge,

1981; Fredericksen & Hess, 1997; Gorea & Sagi, 2001; Klein &

Levi, 1985; Kontsevich et al., 2002; Legge & Foley, 1980; Nach-

mias & Sansbury, 1974; Watson & Solomon, 1997). In pattern

masking studies, instead of external noise, pattern masks (e.g., sine

waves of the same or different frequencies, orientations, etc.) are

used to probe the properties of the visual system. Pattern masking

models usually describe the internal response as a function of the

target and mask patterns (Foley, 1994):

R �

max 
0, 	
ij

cijSEij)
p

	
j


	
i

cijSIij�
q

� Z
, (17)

where i and j index orientation and spatial frequency, cij denotes the

contrast of grating ij, SEij and SIij denote the excitatory and inhibitory

sensitivities of the pattern detector to grating ij, p and q are exponents

of the nonlinear transducer functions in the excitatory and inhibitory

pathways, and Z is a constant that is stimulus independent. In this

model, the inhibitory terms corresponding to the same orientation i are

summed prior to being raised to power q.

Although they are developed in rather different experimental

domains with different focus on the properties of the visual system

(nonlinearity vs. internal noise), the functional forms of the

contrast-gain control formulation of the PTM and the pattern

masking models are very similar (Dao et al., 2006). They should be

consistent because they both describe the same visual system. The

other four observer models are not consistent with the pattern

masking models. The compatibility of the PTM and the pattern

masking models lends further support to the PTM.

Class of Equivalent Models

The PTM in Figure 14 shows additive noise following multi-

plicative noise and nonlinearities. Yet some forms of noise con-

sidered by earlier investigators, such as photon noise or sampling

noise (de Vries, 1943; Pelli, 1981; Rose, 1948), occur early in the

visual system, possibly preceding the perceptual template or filter.

Indeed, there are three locations in the model where additive noise

might be introduced (see Figure 21): (a) prior to the perceptual

template, (b) after the perceptual template but before nonlinearity

and multiplicative noise, or (c) after nonlinearity and multiplica-

tive noise. Although additive noise in these locations may be

related to distinct physiological processes, we (Dosher & Lu,

1999) showed that a complex model with additive noises in all

three locations, or any model with noise in any one or two of the

locations, can be reexpressed in terms of a model with a single

additive noise after multiplicative noise for the purpose of mod-

eling behavioral choice. Conversely, any model with additive

noise after multiplicative noise can also be reexpressed as a model

with noise in all three locations, although there is no unique

solution. The practical consequence is that it is impossible to rule

out the model where all the additive noise sources are after the

multiplicative noise (Location 3) and it is not possible on the basis

of whole-system behavior to uniquely partition additive noise into

these three sources, although certain patterns of condition differ-

ences may place constraints on the partition (e.g., Pelli, 1991). For

example, a number of attention effects have been shown to be

isolated to situations of high external noise and hence reflect

changes in sensitivity to external noise due to attention; the fact

that attention has no effect in the absence of external noise rules

out the existence of significant amounts of internal noise prior to

the template, which in turn restricts the plausible form to internal

additive noise that occurs following the template (Dosher & Lu,

2000a).
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Figure 21. A perceptual template model with additive noise at three potential locations.
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Cross Terms and Stochastic Simulations

All the observer models considered in this article are analytical

simplifications of the more natural stochastic observer models. In

approximating the stochastic models with the analytic models, we

have made two simplifications: (a) using the expectations of the

random variables in place of the random variables and (b) ignoring

all the cross products. We (Dosher & Lu, 2000a) showed that the

stochastic PTM exhibits all the key characteristics derived for the

(analytic) PTM. In general, the analytic PTM is a close approxi-

mation to the stochastic PTM and provides a good approach to

model testing: The (analytic) PTM fits all the data we have

collected very well. In the special case where � � 1.0, the

(analytic) PTM is identical to the stochastic PTM. In the two

extreme regions of the external noise manipulation, that is, when

internal additive noise dominates or when external noise domi-

nates, the (analytic) PTM approaches the stochastic model asymp-

totically (Dosher & Lu, 2000a). In the PTM development, we have

assumed that the internal response distributions in the decision

stage are Gaussian. If the noises are Gaussian, the assumption will

be a good approximation for the range of nonlinearities (� � 2 �

1) that we have encountered in all the empirical studies so far, so

long as we restrict ourselves to performance ranges less than 95%

correct.

Characterizing Perceptual Templates

In presenting the external noise methods, we have focused on

the use of white external noise. The primary manipulations are the

magnitude of the external noise and the contrast of the signal

stimulus. A number of related techniques have been developed that

involve manipulations of the characteristics of the external noise

(e.g., spatial or temporal frequency, spatial or temporal extent,

orientation, etc.) to estimate the corresponding characteristics, or

sensitivity, of the perceptual template. For example, the profile of

spatial frequency sensitivity of the perceptual template has been

measured for visual tasks through the use of external noise sys-

tematically varying in its band-pass characteristics (Lu & Dosher,

2001; Solomon & Pelli, 1994; Talgar et al., 2004). The classifica-

tion image method has also been widely used to infer the spatial

form of the perceptual templates, for example, those pixels of a

visual display that are the most influential in the selection of a

response (Ahumada, 2002; Ahumada & Lovell, 1971; Eckstein,

Shimozaki, & Abbey, 2002). Because all these methods depend on

the use of observer models, a better understanding of the observer

models is essential for the accurate and valid application of these

methods. The results of this review suggest that some techniques

based on the LAM need important modifications.

Extending Observer Models to Overlapping Perceptual

Templates

All the observer models presented here have been formulated

for experimental situations where any single signal stimulus plau-

sibly activates only one perceptual template (e.g., Gabors of

�45°), that is, the gain of the template to the matched signal

stimulus is � and to the nonmatched signal stimulus is 0. The

observer models must be extended to handle cases in which close,

more similar, to-be-discriminated stimuli that may activate more

than one perceptual template (e.g., Gabors of �3°) are tested. In

two-alternative identification tasks, for example, the observer must

identify a stimulus as one of two targets. Two templates are

involved. The gain of the matching template with the stronger

match to the stimulus is �, and the gain of the other template to the

same, nonmatching stimulus is ��. The observer models developed

here can be extended to situations where similar targets must be

discriminated by considering overlapping templates. For signal

stimuli that are quite distinct, �� � 0, and the response to external

noise will be approximately independent, as assumed in the de-

velopment here. For cases where overlap is significant, �� � 0, and

correlated responses to external noise must be considered. The

extended observer models can therefore provide an integrated

framework within which to understand the performance limitations

of the observer in two fundamental measurement regimes: contrast

thresholds holding stimulus differences constant and/or feature

thresholds holding contrast constant (Jeon, Lu, & Dosher, 2006).

General Discussion

In this article, we have reviewed three major external noise

methods and five observer models. The work has translated pre-

vious theoretical analyses into a common formalism and derived

systematic model predictions for a common set of behavioral tests

based on the three major external noise methods. The theoretical

development has enabled us to conduct a comprehensive evalua-

tion of the existing observer models against empirical data.

We have found that five component processes, a perceptual

template, a nonlinear transducer, both additive and multiplicative

noises, and a decision stage, are necessary to simultaneously

account for all the data from the three major external noise meth-

ods. As implemented in the PTM, these component processes map

the physical properties of the input stimulus into internal percep-

tual representations, providing the necessary internal response

distributions for the decision stage (see Figure 2). Although esti-

mated from empirical results based on particular tasks and input

stimuli, the components reflect the intrinsic characteristics and

limitations of the perceptual system and are independent of the

characteristics of the stimuli. Therefore, once all its components

are specified, the observer model provides a principled way to

predict observer performance in a range of related tasks from the

results in a particular experiment.

These findings have major implications for the application of

external noise methods in the literature. Often, these studies ex-

amine only single-TvC curves for assayed conditions. This in turn

leads to the use of the LAM as a description. However, we now

know that, as soon as multiple criteria or the slope of the psycho-

metric function or the double-pass method is used, the LAM will

be inconsistent with the larger ranging data set. This means that

measurement of single TvCs and use of the LAM will fail in

generalizing predictions to almost any other condition. Because the

parameters of the LAM depend on the particular criterion perfor-

mance level of the TvC function, the conclusions are at best

performance-level dependent and at worst misleading.

One important conclusion of the current review is that it is

necessary to measure TvC functions at multiple performance lev-

els with double-pass agreement to more fully constrain observer

models. Previous studies that measured only a single-TvC function

at one criterion performance level with and without measures of
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the double-pass agreement over a limited range of external noise

conditions provide insufficient constrains on the observer models

(e.g., Gold et al., 1999). If, however, a full analysis has specified

the PTM as the correct model in a particular domain, then the use

of triple-TvC or full psychometric functions over a range of

external noise conditions will be sufficient to constrain the most

important aspects of the model.

Key Findings in the Visual Domain

The empirical tests of the five observer models reported here

focus on simple visual detection or discrimination tasks. Widely

used in the study of human visual perceptual processes, these

methods are important tools for quantifying, describing, and test-

ing observer performance. Several quite consistent observations

have been made over a range of tasks and studies in the visual

domain: (a) The ratio of contrast thresholds at two performance

criterion levels in a given external noise condition is invariant to

the external noise condition; (b) in all the 2AFC tasks we have

conducted so far, the threshold ratio between 75% correct and 65%

correct is around 1.30, and the threshold ratio between 85% and

75% correct is around 1.23, which is equivalent to a transducer

nonlinearity close to a power function, consistent with most of the

observations in the visual domain; and (c) applications of the

double-pass method in the visual domain have found that the

amplitude ratio of internal and external noise is in the range of 0.65

to 1.00, suggesting 50% to 70% reliability in visual performance.

If observed more widely, these relatively consistent results

across tasks and studies may shed light on some fundamental

properties of the visual system. They may also place very strong

constraints on the functional form of, as well as the type and

degree of nonlinearity in, observer models (Iverson & Pavel,

1981). The internal-to-external-noise amplitude ratio also provides

an upper bound on the desired level of performance of any model

that attempts to simulate trial-to-trial behavior of human observers:

With an internal-to-external-noise amplitude ratio of 1.0, an ob-

server performs at a 70% consistency level, and therefore, the best

a model can do is to make correct trial-by-trial predictions 70% of

the time.

Extensions to Other Perceptual Domains

The external noise methods and the observer model approach

have obvious extensions to the study of auditory processes. Indeed,

the use of external noise or noise masking manipulations is wide-

spread in auditory studies (e.g., Ahumada & Lovell, 1971; Bos &

Deboer, 1966; Eijkman et al., 1966; Hartmann & Pumplin, 1988;

Humes & Jesteadt, 1989; Moore, 1975; Osman, 1971; Richards et

al., 1991). The double-pass method was originated in that context,

where the internal-to-external-noise amplitude ratio was found to

be between 1.0 and 1.4 (Green, 1964; Swets et al., 1959). Observer

models in the auditory domain have been largely focused on

theoretical questions other than the roles of nonlinearity, threshold

ratios, and multiplicative noise, such as the nature and interaction

of feature banks in the auditory system (Dau, Kollmeier, & Kohl-

rausch, 1997). However, extending the theoretical considerations

of observer models and external noise methods developed in this

article to the auditory domain is quite direct. Empirical methods

and theoretical developments parallel to those in the visual domain

could potentially have strong contributions to make in refining the

existing auditory observer models. For example, applications of

the external noise methods reviewed in this article could not only

provide additional tests of the existing auditory models but also

specify the various internal noises in those models.

In the tactile domain, the external noise methods and observer

models are less developed, although internal noise has been used

to explain human and animal behavior (Eijkman & Vendrick,

1963; Rollman, 1969; Wu et al., 1994). The systematic develop-

ment of the external noise methods and the observer models in

visual perception may serve as an example for applications in the

tactile domain.

Efficient TvC Measurements

One important result emphasized here is that repeated measure-

ments of TvC functions at multiple performance levels provide

strong constraints on observer models. Reliable measurement of

multiple TvC functions has been demanding in terms of the

amount of data collection (often 2,000 trials). Recently, Lesmes,

Jeon, Lu, and Dosher (2006) developed a novel Bayesian adaptive

procedure (the qTvC method) to ease data collection. Exploiting

the known regularities in empirical TvC functions, the qTvC

method generalizes a strategy, previously used to estimate psycho-

metric threshold and slope (Kontsevich & Tyler, 1999), to adap-

tively estimate three parameters: the threshold in low external

noise c0, the critical noise level Nc where external noise starts to

dominate performance (the joint of the TvC function), and the

common slope, �, of the psychometric functions across external

noise conditions. Using one-step-ahead search, the qTvC selects

the stimulus for each trial that minimizes the entropy of the

three-dimensional posterior probability distribution, p(Nc, c0, �).

Simulations showed that 300 trials were sufficient to reach TvC

estimates at three widely separated performance levels with less

than 1% bias and approximately 1 dB mean root-mean-square

error. Using an orientation discrimination task, Lesmes et al. found

excellent agreement between TvCs obtained with qTvC and the

method of constant stimuli, although the qTvC estimates were

based on only 12% of the data collection (240 vs. 1,920 trials).

The qTvC method can also be used in conjunction with the

double-pass procedure. In a recent study, Jeon et al. (2006) re-

corded the trial sequence and stimulus samples in a qTvC exper-

iment and asked the observers to rerun the experiment with the

recorded stimuli. A maximum-likelihood procedure has been de-

veloped to analyze the measured TvC functions and the double-

pass agreements (Jeon et al., 2006).

Implications for Mechanism Studies

Our original motivation for developing the PTM was to provide

a theoretical framework to characterize the changes of intrinsic

limitations of the perceptual system underlying apparent changes

in human performance due to attention (Lu & Dosher, 1998) or

perceptual learning (Dosher & Lu, 1998). In a typical study, TvC

functions at multiple performance levels are measured under joint

manipulations of external noise and observer state, such as atten-

tion or training. By analyzing how the intrinsic limitations of the

perceptual system vary as a function of the observer state, the PTM

provides a mathematical framework to distinguish three mecha-
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nisms of attention/perceptual learning: stimulus enhancement, ex-

ternal noise exclusion, and reduction of multiplicative noise.

As reviewed in the introduction, the idea of using external noise

to quantify changes of the limiting factors in perceptual sensitivity

and therefore identify the mechanisms underlying changed percep-

tual performance has been extended and applied to studies of a

wide range of cognitive, developmental, and disease processes. A

partial list includes studies of attention (Dosher & Lu, 2000a,

2000b; Lu & Dosher, 1998, 2000; Lu et al., 2000; Talgar et al.,

2004), perceptual learning (Chung et al., 2005; Dosher & Lu,

1998, 1999; Gold et al., 1999; R. W. Li, Levi, & Klein, 2003; Lu

& Dosher, 2004; Lu et al., 2005), adaptation (Dao et al., 2006),

amblyopia (Huang et al., 2007; Levi & Klein, 2003; Xu et al.,

2006), perceptual interaction (Yu et al., 2001), dyslexia (A. Sper-

ling et al., 2005), and visual memory (Gold et al., 2005).

All these mechanism studies used the equivalent input noise

method, with measurements of TvC functions at single or multiple

performance criterion levels. Some studies (Chung et al., 2005;

Gold et al., 1999, 2005) measured a TvC at a single criterion and

the double-pass agreement in a limited range of external noise

conditions and therefore did not assess a wide range of external

noise conditions, and many studies measured only TvC functions

at a single criterion performance level. None of the prior studies

jointly modeled the TvC functions at multiple criteria and the

double-pass agreement data. As discussed earlier, it is necessary to

measure TvC functions at multiple performance levels with

double-pass agreement to more fully constrain observer models.

However, many of these mechanism studies in the literature used

the LAM as a default without serious considerations of the ade-

quacy of the model. The current review of the literature shows that

the LAM does not provide an adequate characterization of the

perceptual system in a single state and therefore will be inadequate

or misleading as a basis for interpreting mechanisms.

The double-pass method has become a popular method for

measuring internal noise in different observer states. For example,

it has been used to answer the question whether internal noise

changes with perceptual learning (Gold et al., 1999). All these

studies found that the PC versus PA functions did not change as a

function of state. They concluded that the internal noise did not

change. As detailed in Appendix B, the PC versus PA function is

completely determined by the ratio of the standard deviation of

internal noise to the standard deviation of external noise. However,

what is widely unappreciated is that in these mechanism studies,

the standard deviation of the effective external noise depends on

whether the perceptual template changes as a function of state. If

perceptual learning retunes the perceptual template, then the ef-

fective external noise in the system is reduced. If the double-pass

agreement function and therefore the internal to external noise

ratio did not change, then this implies that the internal noise was

reduced approximately equivalently to the effective external noise.

Without a full analysis using full TvCs at multiple performance

levels (or full psychometric functions over a wide range of external

noise conditions) to investigate potential changes of the template

together with the PC versus PA functions, it is not possible to

interpret the restricted-test double-pass results in those experi-

ments. The conclusion that internal noise did not change should be

reevaluated in those studies, as it assumed that the template did not

change either—an assumption directly at odds with the primary

conclusions of those studies.

The current analysis indicates—at least in the visual domain—

that the PTM is the correct form of observer model and should be

the basis of analysis in studies that determine the mechanisms of

observer state changes. In those studies that measured TvC func-

tions at multiple performance levels (e.g., Dosher & Lu, 1999),

invariance across observer state changes of threshold ratio (be-

tween performance levels in a given external noise condition)

implied that the nonlinearity and multiplicative noise in the ob-

server model are invariant across different observer states. Obser-

vation of invariant threshold ratios reduced the importance of

double-pass agreement in those studies, especially when the func-

tional form of the observer model was known (e.g., the PTM). For

studies in a new task domain where the functional form of the

observer model is unknown or in investigations whose goal is the

identification of the form of multiplicative noise, the full triple

TvC with double-pass procedure is still recommended.

In addition to specifying the correct observer model for a

particular domain, the interest of the external noise plus observer

model approach is that it can provide new methods for understand-

ing and classifying performance changes between observer states

and/or different observer populations. Often, such as in the appli-

cations to attention, the external noise and observer model frame-

work provides new insights into the nature of cognitive effects and

can provide a means of classifying those effects. The results also

provide estimates of some fundamental properties of the observer

system and constraints on the representations. We suggest that

these insights may help to understand which aspects of brain

responses are most relevant to processing in the corresponding

tasks.

Perturbation of High-Level Cognitive Processes

Application of the empirical and modeling approach outside the

perceptual domains to the study of high-level perceptual and

cognitive processes, though the implementation of external noise is

less obvious, has the potential for addressing new questions in

these domains. The external noise paradigms belong to the general

class of perturbation methods that are widely used in many do-

mains of science. Indeed, the external noise manipulations were

directly inspired by methods in physics and engineering. As we

have shown in this article, by perturbing the input signal stimulus

with external noise and observing the behavior of the human

observer under these variations in the perceptual stimulus, the

external noise methods can generate very constraining data that

reveal essential observer properties. One of the key strengths of the

external noise methods is that internal properties are referenced to

external stimulus manipulations with known physical properties

and measures. The general perturbation approach may be extended

to study higher-level cognitive processes with an appropriate con-

struction of the dimensions of variation (see Ashby & O’Brien,

2005, for an example in category learning). The challenge is to

design and quantify perturbations in a property of the stimulus

representation relevant to the limiting processes or templates. Once

a good perturbation method is found, the empirical methods and

theoretical considerations reviewed in this article could inspire

new developments in these domains.

71CHARACTERIZING OBSERVERS



References

Abbey, C. K., & Eckstein, M. P. (2006). Classification images for detec-

tion, contrast discrimination, and identification tasks with a common

ideal observer. Journal of Vision, 6, 335–355.

Ahumada, A. J., Jr. (1967). Detection of tones masked by noise: A com-

parison of human observers with digital-computer-simulated energy

detectors of varying bandwidths. Doctoral dissertation, University of

California, Los Angeles.

Ahumada, A. J., Jr. (1987). Putting the visual system noise back in the

picture. Journal of the Optical Society of America, 4(A), 2372–2378.

Ahumada, A. J., Jr. (2002). Classification image weights and internal noise

level estimation. Journal of Vision, 2, 121–131.

Ahumada, A. J., Jr., & Lovell, J. (1971). Stimulus features in signal

detection. Journal of the Acoustical Society of America, 49, 1751–1756.

Ahumada, A. J., Jr., & Watson, A. B. (1985). Equivalent-noise model for

contrast detection and discrimination. Journal of the Optical Society of

America, 2(A), 1133–1139.

Albrecht, D. G., & Geisler, W. S. (1991). Motion selectivity and the

contrast-response function of simple cells in the visual cortex. Visual

Neuroscience, 7, 531–546.

Albrecht, D. G., & Hamilton, D. B. (1982). Striate cortex of monkey and

cat: Contrast response function. Journal of Neurophysiology, 48, 217–

237.

Ashby, F. G. (1992). Multidimensional models of perception and cognition.

Hillsdale, NJ: Erlbaum.

Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple

memory systems. Trends in Cognitive Sciences, 9, 83–89.

Barlow, H. B. (1956). Retinal noise and absolute threshold. Journal of the

Optical Society of America, 46, 634–639.

Barlow, H. B. (1957). Incremental thresholds at low intensities considered

as signal/noise discrimination. Journal of Physiology (London), 136,

469–488.

Bonds, A. B. (1991). Temporal dynamics of contrast gain in single cells of

the cat striate cortex. Visual Neuroscience, 6, 239–255.

Bos, C. E., & Deboer, E. (1966). Masking and discrimination. Journal of

the Acoustical Society of America, 39(A), 708–715.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10,

433–436.

Burbeck, C. A., & Kelly, D. H. (1981). Contrast gain measurements and

the transient/sustained dichotomy. Journal of the Optical Society of

America, 71, 1335–1342.

Burgess, A. E. (1985). Visual signal detection: III. On Bayesian use of

prior knowledge and cross correlation. Journal of the Optical Society of

America, 2(A), 1498–1507.

Burgess, A. E., & Colborne, B. (1988). Visual signal detection: IV.

Observer inconsistency. Journal of the Optical Society of America, 2(A),

617–627.

Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, H. B. (1981,

October 2). Efficiency of human visual signal discrimination. Science,

214, 93–94.

Cannon, M. W., & Fullenkamp, S. C. (1991). Spatial interactions in

apparent contrast-inhibitory effects among grating patterns of different

spatial frequencies, spatial positions and orientations. Vision Research,

31, 1985–1998.

Chung, S. T. L., Levi, D. M., & Tjan, B. (2005). Learning letter identifi-

cation in peripheral vision. Vision Research, 45, 1399–1412.

Cohn, T. E., Thibos, L. N., & Kleinstein, R. N. (1974). Detectability of a

luminance increment. Journal of the Optical Society of America, 64,

1321–1327.

Dao, D. Y., Lu, Z.-L., & Dosher, B. A. (2006). Adaptation to sine-wave

gratings selectively reduces the contrast gain of the adapted stimuli.

Journal of Vision, 6, 739–759.

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory

processing of amplitude modulation: 1. Detection and masking with

narrow-band carriers. Journal of the Acoustical Society of America, 102,

2892–2905.

Derrington, A. M., & Lennie, P. (1981). Spatial and temporal contrast

sensitivities of neurons in lateral geniculate nucleus of macaque. Journal

of Physiology (London), 357, 219–240.

de Vries, H. L. (1943). The quantum character of light and its bearing upon

threshold of vision, the differential sensitivity and visual acuity of the

eye. Physica, 10, 553–564.

Dosher, B. A., & Lu, Z.-L. (1998). Perceptual learning reflects external

noise filtering and internal noise reduction through channel reweighting.

Proceedings of the National Academy of Sciences, USA, 95, 13988–

13993.

Dosher, B. A., & Lu, Z.-L. (1999). Mechanisms of perceptual learning.

Vision Research, 39, 3197–3221.

Dosher, B. A., & Lu, Z.-L. (2000a). Mechanisms of perceptual attention in

precuing of location. Vision Research, 40, 1269–1292.

Dosher, B. A., & Lu, Z.-L. (2000b). Noise exclusion in spatial attention.

Psychological Science, 11, 139–146.

D’Zmura, M., & Knoblauch, K. (1998). Spectral bandwidths for the

detection of color. Vision Research, 38, 3117–3128.

Eckstein, M. P., Ahumada, A. J., Jr., & Watson, A. B. (1997). Visual signal

detection in structured backgrounds: II. Effects of contrast gain control,

background variations, and white noise. Journal of the Optical Society of

America, 14(A), 2406–2419.

Eckstein, M. P., Shimozaki, S. S., & Abbey, C. K. (2002). The footprints

of visual attention in the Posner cueing paradigm revealed by classifi-

cation images. Journal of Vision, 2, 25–45.

Eijkman, E., Thijssen, J. M., & Vendrik, A. J. (1966). Weber’s law, power

law, and internal noise. Journal of the Acoustical Society of America, 40,

1164–1173.

Eijkman, E., & Vendrick, A. J. H. (1963). Detection theory applied to

absolute sensitivity of sensory systems. Biophysical Journal, 3, 65–78.

Fletcher, H. (1940). Auditory patterns. Review of Modern Physics, 12,

47–65.

Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Mask-

ing experiments require a new model. Journal of the Optical Society of

America, 11(A), 1710–1719.

Foley, J. M., & Chen, C.-C. (1999). Pattern detection in the presence of

maskers that differ in spatial phase and temporal offset: Threshold

measurements and a model. Vision Research, 39, 3855–3872.

Foley, J. M., & Legge, G. E. (1981). Contrast detection and near-threshold

discrimination in human vision. Vision Research, 21, 1041–1053.

Fredericksen, R. E., & Hess, R. F. (1997). Temporal detection in human

vision: Dependence on stimulus energy. Journal of the Optical Society

of America, 14(A), 2557–2569.

Friis, H. T. (1944). Noise figures of radio receivers. Proceedings of the

IRE, 32, 419–422.

Gegenfurtner, K. R., & Kiper, D. C. (1992). Contrast detection in lumi-

nance and chromatic noise. Journal of the Optical Society of America,

9(A), 1880–1888.

Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discrim-

inations. Psychological Review, 96, 267–314.

Gilkey, R. H., Frank, A. S., & Robinson, D. E. (1978). Estimates of internal

noise. Journal of the Acoustical Society of America, 64, S36(A).

Gilkey, R. H., Frank, A. S., & Robinson, D. E. (1981). Estimates of the

ratio of external to internal noise obtained using repeatable samples of

noise. Journal of the Acoustical Society of America, 69, S23(A).

Gold, J., Bennett, P. J., & Sekuler, A. B. (1999, November 11). Signal but

not noise changes with perceptual learning. Nature, 402, 176–178.

Gold, J., Murray, R., Sekuler, A. B., Bennett, P. J., & Sekuler, R. (2005).

Visual memory decay is deterministic. Psychological Science, 16, 769–

774.

Gorea, A., & Sagi, D. (2001). Disentangling signal from noise in visual

contrast discrimination. Nature Neuroscience, 4, 1146–1150.

72 LU AND DOSHER



Graham, N. V. S. (1989). Visual pattern analyzers. New York: Oxford

University Press.

Green, D. M. (1964). Consistency of auditory detection judgments. Psy-

chological Review, 71, 392–407.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psycho-

physics. New York: Wiley.

Hartmann, W. M., & Pumplin, J. (1988). Noise power fluctuations and the

masking of sine signals. Journal of the Acoustical Society of America,

83, 2277–2289.

Hay, G. A., & Chesters, M. S. (1972). Signal-transfer functions in thresh-

old and suprathreshold vision. Journal of the Optical Society of America,

62, 990–998.

Hays, W. L. (1981). Statistics (3rd ed.). New York: Holt, Rinehart &

Winston.

Hays, W. L. (1988). Statistics (4th ed.). Fort Worth, TX: Holt, Rinehart &

Winston.

Heeger, D. J. (1993). Modeling simple-cell direction selectivity with nor-

malized, half-squared, linear operators. Journal of Neurophysiology, 70,

1885–1898.

Hood, D. C., & Finkelstein, M. A. (1986). Sensitivity to light. In K. R.

Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and

human performance: Vol. 1. Sensory processes and perception (pp.

5-1–5-66). New York: Wiley.

Huang, C. B., Tao, L. M., Zhou, Y. F., & Lu, Z.-L. (2007). Treated

amblyopes remain deficient in spatial vision: A contrast sensitivity and

external noise study. Vision Research, 47, 22–34.

Humes, L. E., & Jesteadt, W. (1989). Models of the additivity of masking.

Journal of the Acoustical Society of America, 85, 1285–1294.

Iverson, G. J., & Pavel, M. (1981). On the functional form of partial

masking functions in psychoacoustics. Journal of Mathematical Psy-

chology, 24, 1–20.

Jeon, S.-T., Lu, Z.-L., & Dosher, B. (2006). Extending observer models for

more difficult identification and discrimination. Journal of Vision, 6,

192.

Kaplan, E., & Shapley, R. M. (1982). X and Y cells in the lateral geniculate

nucleus of macaque monkeys. Journal of Physiology (London), 330,

125–143.

Katkov, M., Tsodyks, M., & Sagi, D. (2006). Singularities in the inverse

modeling of 2AFC contrast discrimination data. Vision Research, 46,

259–266.

Klein, S. A., & Levi, D. M. (1985). Hyperacuity thresholds of 1 sec:

Theoretical predictions and empirical validation. Journal of the Optical

Society of America, 2(A), 1170–1190.

Kontsevich, L. L., Chen, C. C., & Tyler, C. W. (2002). Separating the

effects of response nonlinearity and internal noise psychophysically.

Vision Research, 42, 1771–1784.

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of

psychometric slope and threshold. Vision Research, 39, 2729–2737.

Lasley, D. J., & Cohn, T. E. (1981). Why luminance discrimination may be

better than detection. Vision Research, 21, 273–278.

Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision.

Journal of the Optical Society of America, 70, 1458–1471.

Legge, G. E., Kersten, D., & Burgess, A. E. (1987). Contrast discrimination

in noise. Journal of the Optical Society of America, 4(A), 391–404.

Leshowitz, B., Taub, H. B., & Raab, D. H. (1968). Visual detection of

signals in the presence of continuous and pulsed backgrounds. Percep-

tion & Psychophysics, 4, 207–213.

Lesmes, L. A., Jeon, S.-T., Lu, Z.-L., & Dosher, B. A. (2006). Bayesian

adaptive estimation of threshold versus contrast external noise functions:

The quick TvC method. Vision Research, 46, 3160–3176.

Levi, D., & Klein, S. (2003). Noise provides some new signals about the

spatial vision of amblyopes. Journal of Neuroscience, 7, 2522–2526.

Li, R. W., Levi, D. M., & Klein, S. A. (2003). Perceptual learning improves

efficiency by re-tuning the “template” for position discrimination. Na-

ture Neuroscience, 7, 178–183.

Li, X., Lu, Z.-L., Xu, P., Jin, J., & Zhou, Y. (2003). Generating high

gray-level resolution monochrome displays with conventional computer

graphics cards and color monitors. Journal of Neuroscience Methods,

130, 9–18.

Logan, G. D. (2004). Cumulative progress in formal theories of attention.

Annual Review of Psychology, 55, 207–234.

Lu, Z.-L., Chu, W., Dosher, B. A., & Lee, S. (2005). Independent percep-

tual learning in monocular and binocular motion systems. Proceedings

of the National Academy of Sciences, USA, 102, 5624–5629.

Lu, Z.-L., & Dosher, B. A. (1998). External noise distinguishes attention

mechanisms. Vision Research, 38, 1183–1198.

Lu, Z.-L., & Dosher, B. A. (1999). Characterizing human perceptual

inefficiencies with equivalent internal noise. Journal of the Optical

Society of America, 16(A), 764–778.

Lu, Z.-L., & Dosher, B. A. (2000). Spatial attention: Different mechanisms

for central and peripheral temporal precues? Journal of Experimental

Psychology: Human Perception and Performance, 26, 1534–1548.

Lu, Z.-L., & Dosher, B. A. (2001). Characterizing the spatial-frequency

sensitivity of perceptual templates. Journal of the Optical Society of

America, 18(A), 2041–2053.

Lu, Z.-L., & Dosher, B. A. (2004). Perceptual learning retunes the percep-

tual template in foveal orientation identification. Journal of Vision, 4,

44–56.

Lu, Z.-L., & Dosher, B. A. (2007). Response bias in double-pass agree-

ment versus percent correct functions. Manuscript in preparation.

Lu, Z.-L., Liu, C. Q., & Dosher, B. A. (2000). Attention mechanisms for

multi-location first- and second-order motion perception. Vision Re-

search, 40, 173–186.

Lu, Z.-L., & Sperling, G. (1996). Contrast gain control in first- and

second-order motion perception. Journal of the Optical Society of Amer-

ica, 13(A), 2305–2318.

Macmillan, N. A., & Creelman, C. D. (1990). Response bias: Character-

istics of detection theory, threshold theory, and “nonparametric” in-

dexes. Psychological Bulletin, 107, 401–413.

Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s

guide. New York: Cambridge University Press.

Manjeshwar, R. M., & Wilson, D. L. (2001). Effect of inherent location

uncertainty on detection of stationary targets in noisy image sequences.

Journal of the Optical Society of America, 18(A), 78–85.

Moore, B. C. J. (1975). Mechanisms of masking. Journal of the Acoustical

Society of America, 57, 391–399.

Mumford, W. W., & Schelbe, E. H. (1968). Noise performance factors in

communication systems. Dedham, MA: Horizon House-Microwave.

Nachmias, J. (1981). On the psychometric function for contrast detection.

Vision Research, 21, 215–223.

Nachmias, J., & Kocher, E. C. (1970). Visual detection and discrimination

of luminance increments. Journal of the Optical Society of America, 60,

382–389.

Nachmias, J., & Sansbury, R. V. (1974). Grating contrast: Discrimination

may be better than detection. Vision Research, 14, 1039–1042.

Nagaraja, N. S. (1964). Effect of luminance noise on contrast thresholds.

Journal of the Optical Society of America, 54, 950–955.

Nolte, L. W., & Jaarsma, D. (1967). More on detection of one of M

orthogonal signals. Journal of the Acoustical Society of America, 41,

497–505.

North, D. O. (1942). The absolute sensitivity of radio receivers. RCA

Review, 6, 332–344.

Ohzawa, I., Sclar, G., & Freeman, R. D. (1982, July 15). Contrast gain

control in the cat visual cortex. Nature, 298, 266–268.

Osman, E. (1971). A correlation model of binaural masking level differ-

ences. Journal of the Acoustical Society of America, 50, 1494–1511.

73CHARACTERIZING OBSERVERS



Pelli, D. G. (1981). Effects of visual noise. Doctoral dissertation, Cam-

bridge University, Cambridge, England.

Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast

detection and discrimination. Journal of the Optical Society of America,

2(A), 1508–1532.

Pelli, D. G. (1990). The quantum efficiency of vision. In C. Blakemore

(Ed.), Vision: Coding and efficiency (pp. 3–24). Cambridge, England:

Cambridge University Press.

Pelli, D. G. (1991). Noise in the visual system may be early. In M. S. Landy

& J. A. Movshon (Eds.), Computational models of visual processing (pp.

147–151). Cambridge, MA: MIT Press.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics:

Transforming numbers into movies. Spatial Vision, 10, 437–442.

Pelli, D. G., & Farell, B. (1999). Why use noise? Journal of the Optical

Society of America, 16(A), 647–653.

Richards, V. M., Heller, L. M., & Green, D. M. (1991). The detection of

a tone added to a narrow band of noise: The energy model revisited.

Quarterly Journal of Experimental Psychology: Human Experimental

Psychology, 43(A), 481–501.

Rollman, G. B. (1969). Detection models: Experimental tests with electro-

cutaneous stimuli. Perception & Psychophysics, 5, 377–380.

Rose, A. (1948). The sensitivity performance of the human eye on an

absolute scale. Journal of the Optical Society of America, 38, 196–208.

Sclar, G., Maunsell, J. H., & Lennie, P. (1990). Coding of image contrast

in central visual pathways of the macaque monkey. Vision Research, 30,

1–10.

Solomon, J. A., & Pelli, D. G. (1994, June 2). The visual filter mediating

letter identification. Nature, 369, 395–397.

Solomon, J. A., Sperling, G., & Chubb, C. (1993). The lateral inhibition of

perceived contrast is indifferent to on-center off-center segregation, but

specific to orientation. Vision Research, 33, 2671–2683.

Sperling, A., Lu, Z.-L., Manis, F. R., & Seidenberg, M. (2005). Deficits in

perceptual noise exclusion in developmental dyslexia. Nature Neuro-

science, 8, 862–863.

Sperling, G. (1989). Three stages and two systems of visual processing.

Spatial Vision, 4, 183–207.

Sperling, G., & Dosher, B. A. (1986). Strategy and optimization in human

information processing. In K. Boff, L. Kaufman, & J. Thomas (Eds.),

Handbook of perception and performance (Vol. 1, pp. 1–85). New

York: Wiley.

Spiegel, M. F., & Green, D. M. (1981). Two procedures for estimating

internal noise. Journal of the Acoustical Society of America, 70, 69–73.

Stromeyer, C. F., & Klein, S. (1974). Spatial frequency channels in human

vision as asymmetric (edge) mechanisms. Vision Research, 14, 1409–

1420.

Swets, J. A. (1996). Signal detection theory and ROC analysis in psychol-

ogy and diagnostics: Collected papers. Hillsdale, NJ: Erlbaum.

Swets, J. A., Shipley, E. F., McKey, M. J., & Green, D. M. (1959).

Multiple observations of signals in noise. Journal of the Acoustical

Society of America, 31, 514–521.

Talgar, C. P., Pelli, D. G., & Carrasco, M. (2004). Covert attention

enhances letter identification without affecting channel tuning. Journal

of Vision, 4, 22–31.

Tanner, W. P., Jr. (1961). Physiological implications of psychophysical

data. Annals of the New York Academy of Sciences, 89, 752–765.

Tanner, W. P., Jr., & Birdsall, T. G. (1958). Definitions of d� and n as

psychophysical measures. Journal of the Acoustical Society of America,

30, 922–928.

Tjan, B. S., Braje, W. L., Legge, G. E., & Kersten, D. (1995). Human

efficiency for recognizing 3-D objects in luminance noise. Vision Re-

search, 35, 3053–3069.

Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical

reliability of signals in single neurons in cat and monkey visual cortex.

Vision Research, 23, 775–785.

Van Meeteren, A., & Barlow, H. B. (1981). The statistical efficiency for

detecting sinusoidal modulation of average dot density in random fig-

ures. Vision Research, 21, 765–777.

Watson, A. B., & Solomon, J. A. (1997). Model of visual contrast gain

control and pattern masking. Journal of the Optical Society of America,

14, 2379–2391.

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I.

Fitting, sampling and goodness of fit. Perception & Psychophysics, 63,

1293–1313.

Wickelgren, W. A. (1968). Unidimensional strength theory and component

analysis of noise in absolute and comparative judgments. Journal of

Mathematical Psychology, 5, 102–122.

Wilkens, T. D. (2002). Elementary signal detection theory. New York:

Oxford University Press.

Woodworth, R. S. (1938). Experimental psychology. New York: Holt.

Wu, J.-Y., Tsau, Y., Hopp, H.-P., Cohen, L. B., Tang, A. C., & Falk, C. X.

(1994). Consistency in nervous systems: Trial-to-trial and animal-to-

animal variations in the responses to repeated applications of a sensory

stimulus in Aplysia. Journal of Neuroscience, 14, 1366–1384.

Xu, P., Lu, Z.-L., Qiu, Z., & Zhou, Y. (2006). Identify mechanisms of

amblyopia in Gabor orientation identification with external noise. Vision

Research, 46, 3748–3760.

Yu, C., Levi, D., & Klein, S. (2001). Surround modulation of perceived

contrast and the role of brightness induction. Journal of Vision, 1,

18–31.

Zhang, Y., Pham, B. T., & Eckstein, M. P. (2006). The effect of nonlinear

human visual system components on performance of a channelized

Hotelling observer in structured backgrounds. IEEE Transactions on

Medical Imaging, 25, 1348–1362.

74 LU AND DOSHER



Appendix A

Some Basic SDT Equations

We first provide a brief standard treatment of the signal detec-

tion theory (SDT) because many SDT concepts and equations are

used in this article.

SDT in a Yes–No Task

There are two types of trials in a simple yes–no task, signal-

present and signal-absent trials. The SDT postulates that, in every

trial, the input stimulus generates an internal response x, which

could have been generated by a signal stimulus with a probability

density of g(x, �S, �) or a signal-absent stimulus with a probability

density of g(x, �N, �), where �S � �N (see Figure 1A in the main

text). To decide whether the signal is present (“yes”) or absent

(“no”) based on the single internal response x, the observer

chooses a subjective criterion response C. If x � C, the observer

responds with a “yes”; otherwise, she or he responds with a “no.”

For a given C, we can compute the probability of all four

possible outcomes of each trial, hit, miss, false alarm (FA), and

correct rejection (CR):

PHit
C� � 1 � �
��

C

g
x, �S, ��dx � �
��

C

1 � G
C, �S, ��

� 1 � G�C � �N

�
,

�S � �N

�
, 1� , (A1)

PMiss
C� � 1 � PHit � G�C � �N

�
,

�S � �N

�
, 1), (A2)

PFA
C� � 1 � �
��

C

g
x, �N, ��dx � 1 � G
C, �N, ��

� 1 � G�C � �N

�
, 0, 1� , (A3)

and

PCR
C� � 1 � PFA � G�C � �N

�
, 0, 1� . (A4)

One can solve Equation A3 to obtain the criterion response
C � �N

�
as a function of the false-alarm probability:

C � �N

�
� G�1
1 � PFA, 0, 1� . (A5)

Substituting Equation A5 into Equation A1 results in the func-

tional relationship between hit and false-alarm rates (the receiver

operating characteristics [ROCs]):

PHit � 1 � G�G�1
1 � PFA, 0, 1�,
�S � �N

�
, 1� . (A6)

With the definition d� �

�S � �N

�
, we can rewrite Equation A6

as

PHit � 1 � G(G�1(1 � PFA, 0, 1), d�, 1). (A7)

Therefore, the functional relationship between the hit and false-

alarm rates (the ROC curve; see Figure 1B in the main text) is

determined by the sensitivity of the observer, d�, the signal-to-

noise ratio in the internal response distribution. Conversely, the

sensitivity of the observer, d�, can be empirically observed by

measuring the ROC curve.

SDT in a 2AFC Task

In a two-alternative forced-choice (2AFC) task, an observer is

presented with two input stimuli, one from each of two stimulus

categories. The SDT postulates that there are two internal responses,

xA and xB, in each trial; the probability density that an internal

response x is generated by a stimulus in Category 1 is g(x, �1, �1) and

by a stimulus in Category 2 is g(x, �2, �2) where �2 � �1 (see Figure

1C in the main text). To decide whether xA is generated by a stimulus

in Category 1 (and therefore, xB is generated by a stimulus in Cate-

gory 2) or by a stimulus in Category 2 (and therefore, xB is generated

by a stimulus in Category 1), an unbiased observer compares xA and

xB. If xA � xB � 0, she or he concludes that xA is generated by a

stimulus in Category 2; otherwise, she or he concludes that xA is

generated by a stimulus in Category 1.A1

The probability that the observer makes a correct response PC

can be computed in two different but equivalent ways. In the first

way, PC is the probability that xA � xB � 0, given that xA is

generated by a stimulus in Category 2 and xB is generated by a

stimulus in Category 1:

Pc � P
xA � xB � 0xA � CA2 & xB � CAI�

� 1 � �
��

0

g
x, �2 � �1, ��1
2

� �2
2�dx

� 1 � G�0,
�2 � �1

��1
2

� �2
2
, 1� , (A8)

A1Although some may favor the maximum-likelihood decision rule, it is

not the optimal decision rule under some circumstances. In general, for

unequal presentation probabilities or asymmetric payoffs, maximizing like-

lihood is not equivalent to maximizing a posterior probability of payoffs

(Graham, 1989; Green & Swets, 1966). The maximum-likelihood decision

rule is equivalent to the max rule and the difference rule when the signal

and noise distributions have the same variance. On the other hand, in 2AFC

or more general classification experiments, in which the stimuli are all

simple stimuli, the max rule is plausible (Graham, 1989; Green & Swets,

1966; Macmillan & Creelman, 1991). The max rule is equivalent to the

difference rule when the simple stimuli are equally detectable and far apart

and each excites only one detector.
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where g(x, �2� �1, ��1
2

� �2
2) is the probability density function of

the difference between two Gaussian random variables with proba-

bility density functions g(x, �1, �1) and g(x, �2, �2). The equation is

illustrated by the shaded area in Figure 1D in the main text.

In the second way, PC is derived from a different kind of

reasoning. The probability density of obtaining an internal re-

sponse x from a stimulus in Category 2 is g(x, �2, �2). The

probability that the internal response x is greater than any random

sample from distribution g(x, �1, �1) is G(x, �1, �1). The proba-

bility that all possible internal responses from stimuli in Category

2 are greater than those from stimuli in Category 1 (PC) is the

product of the two probability functions integrated over all the

possible values of x:

Pc � �
��

�

g
x, �2, �2�G
x, �1, �1�dx

� �
��

�

g
x, �2, �2�G
x, �1, �1�dx. (A9)

Equations A8 and A9 are mathematically equivalent. Although

Equation A8 is more intuitive, Equation A9 is more readily ex-

tended to situations with decision uncertainty.

If �2 � �1 � �, we can define d��
�2 � �1

�
and simplify

Equation A9:

Pc � �
��

�

g
x � d�, 0, 1�G
x, 0, 1�dx. (A10)

SDT in 2AFC With Uncertainty

Although the observer is presented with two input stimuli, one

from each of two stimulus categories, in a 2AFC task, it is possible

that (U � 1) independent detectors respond to each stimulus. Only

one of those detectors is task relevant, but the observer cannot

identify it and has to make a decision based on the internal

responses of all the detectors. The observer therefore has to mon-

itor a total of 2(U � 1) internal responses of which one is

associated with the stimulus from Category 1, one is associated

with the stimulus from Category 2, and 2U are associated with

task-irrelevant detectors. Here, we consider the case in which (a)

the internal responses of all the 2(U � 1) detectors are independent

and Gaussian distributed, (b) the stimulus from Category 2 gen-

erates an internal response distribution with mean �S and standard

deviation �S in the task-relevant detector, and (c) the distributions

of the internal responses of all the other 2U � 1 detectors have

mean 0 and standard deviation �N. To decide which set of the (U �

1) internal responses is generated by a stimulus in Category 2 (and

therefore, the other set is generated by a stimulus in Category 1),

the observer could potentially use several different decision rules.

With the optimal summation rule, the observer sums the (U � 1)

internal responses from each of the two stimuli and decides that the set

with the larger sum is generated by a stimulus from Category 2. For

the sum of the (U � 1) random variables, the mean is equal to the sum

of the means; the variance is the sum of the variances. Equation A9

therefore describes performance accuracy with the mean and variance

of the sum of the (U � 1) internal responses.

Often, a maximum rule, or max rule, is used instead of the

summation rule. In many conditions, the max rule is a reasonable

approximation (Nolte & Jaarsma, 1967) and approximates the

optimal decision rule. With the maximum rule, the observer com-

pares all the 2(U � 1) internal responses and labels the interval or

sample corresponding to the maximum of all as generated by a

stimulus from Category 2. The observer could make a correct

response in two different ways: (a) The internal response of the

task-relevant detector to a stimulus in Category 2, x, is greater than

the other 2U � 1 internal responses, or (b) the internal response of

one of the task-irrelevant detectors to a stimulus in Category 2, x,

is greater than the other 2U � 1 internal responses, including the

one from the task-relevant detector, although the observer gener-

ates the correct response for the wrong reason. The two possibil-

ities are reflected in the two terms of the following equation:

Pc � �
��

��

�g
x � �S, 0, �S�G2U�1(x, 0, �N�

� Ug(x, 0, �N)G2U
x, 0, �N�G
x � �S, 0, �S�]dx. (A11)

The maximum rule can also be formulated in a different but

equivalent way. The observer could first extract the maximum of

the (U � 1) internal responses to each stimulus in a trial and decide

that the one that contains the greater maximum internal response is

generated by the stimulus in Category 2. For the (U � 1) internal

responses generated by a stimulus in Category 1, all with the same

probability density function g(x, 0, �N), the probability density

function of the maximum is

p1
xmax� � 
U � 1�g
x, 0, �N�GU
x, 0, �N�. (A12)

For the (U � 1) internal response generated by a stimulus in

Category 2, the probability density function of one of them is

g(x � �S, 0, �S); the probability density function of the other U of

them is g(x, 0, �N). The probability density function of the max-

imum internal response is

p2(x|max) � g(x � �S, 0, �S)G
U(x, 0, �N)

� Ug(x, 0, �N)GU�1(x, 0, �N)G(x � �S, 0, �S). (A13)

The probability of making a correct response is equal to the

probability that samples from p2(x|max) are greater than samples

from p1(x|max):

Pc � � p2
xmax�P1
xmax�dx

� �
��

��

�g
x � �S, 0, �S�G2U�1(x, 0, �N�

� Ug
x, 0, �N�G2U
x, 0, �N�G
x � �S, 0, �S�]dx. (A14)

If �S � �N � �, we can define d� �

�S

�
and simplify Equation

A11 to

Pc � �
��

��

�g
x � d�, 0, 1�G2U�1(x, 0, 1�

� Ug
x, 0, 1�G2U
x, 0, 1�G
x � d�, 0, 1�dx. (A15)
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Appendix B

Double-Pass Consistency

We illustrate the mathematical basis of the double-pass pro-

cedure in a two-alternative forced-choice (2AFC) paradigm.

Similar development can be found in Gilkey et al. (1978) and

Burgess and Colborne (1988). We assume that (a) two inde-

pendent perceptual detectors are used by the observer to per-

form the 2AFC task; (b) a given signal stimulus S generates a

fixed response S in Detector 1 and response 0 in Detector 2; (c)

a given external noise stimulus Next generates a response Next1

in Detector 1, and an independent response Next2 in Detector 2;

(d) for a given pair of signal S and external noise Next, S, Next1,

and Next2 are invariant over time, that is, they stay the same in

two passes of the same stimulus sequence; (e) the total internal

noise of the observer in a given (stimulus and external noise

magnitude) condition is a Gaussian random variable with mean

0 and standard deviation �int, the particular sample of internal

noise has a value of Nint1a in Detector 1 and Nint2a in Detector

2 when the observer processes S and Next in the first pass, and

the total amount of internal noise is Nint1b in Detector 1 and

Nint2b in Detector 2 when the observer processes S and Next in

the second pass; (f) the observer chooses response 1 if (S �

Next1 � Nint1) � (Next2 � Nint2) and vice versa; and (g) Next1,

Next2, Nint1a, Nint2a, Nint1b, and Nint2b are independent and

normally distributed:

p(Next1) � g(Next1, 0, �ext1), p(Next2) � g(Next2, 0, �ext2),

p(Nint1a) � g(Nint1a, 0, �int1), p(Nint2a) � g(Nint2a, 0, �int2),

p(Nint1b) � g(Nint1b, 0, �int1), p(Nint2b) � g(Nint2b, 0, �int2). (B1)

The probability that the observer makes a correct response is

Pc � 	P�
S � Next1 � Nint1a) � 
Next2 � Nint2a�

� P�
S � Next1 � Nint1b) � 
Next2 � Nint2b��/ 2.0

� � g(x � S, 0, ��ext1
2

� �int1
2 �G
x, 0, ��ext2

2
� �int2

2 �dx, (B2)

where G(x, 0, �) is the cumulative distribution of a Gaussian

random variable with mean 0 and standard deviation �. If we

assume that �ext1 � �ext2 � �ext, and �int1 � �int2 � �int � ��ext,

we have

Pc � � g
x � S, 0, �1 � �2�ext�G
x, 0, �1 � �2�ext�dx.

(B2a)

Therefore, for a given stimulus condition, that is, S and �ext, PC

depends only on the ratio of standard deviation of the internal and

external noise �.

When the same stimulus (signal � external noise) is passed to

the observer twice, the probability that the two responses are

consistent is

PA � P�
S � Next1 � Nint1a� � 
Next2 � Nint2a�P�
S � Next1

� Nint1b� � 
Next2 � Nint2b� � P�
S � Next1 � Nint1a�

� 
Next2 � Nint2a�P�
S � Next1 � Nint1b� � 
Next2 � Nint2b�

� P�
S � Next1 � Next2� � 
Nint1a � Nint2a� � 0

� P�
S � Next1 � Next2� � 
Nint1b � Nint2b� � 0

� P�
S � Next1 � Next2� � 
Nint1a � Nint2a� � 0

� P�
S � Next1 � Next2� � 
Nint1b � Nint2b� � 0

� �
��

��

g
x � S, 0, ��ext1
2

� �ext2
2 �	G2
x, 0, ��int1

2
� �int2

2 �

� �1 � G
Zx, 0, ��int1
2

� �int2
2 �2�dx. (B3)

Again, if we assume that �ext1 � �ext2 � �ext, and �int1 �

�int2 � �int � ��ext, we have

PA��
��

��

g
x � S, 0, �2�ext�	G2
x, 0, �2��ext�

� �1 � G
x, 0, �2��ext�
2�dx. (B3a)

Similar to PC, PA depends on the ratio of standard deviation of

the internal and external noise � for a given stimulus condition (S

and �ext).

Appendix C

Linear Amplifier Model

For a signal stimulus with root-mean-square contrast c su-

perimposed on white Gaussian noise images—images made of

pixels whose contrasts are drawn from jointly independent,

identically distributed Gaussian random variables with mean

zero and standard deviation Next—the signal can be expressed

as a function of space and time: S(x, y, t) � cS0(x, y, t) rescaled

such that ��� S0
2(x, y, t)dxdydt � 1.0. The external noise

can be expressed as N(x, y, t) � �extG(x, y, t) where the value

of G(x, y, t) at a particular point (x, y, t) is drawn from a

Gaussian distribution with mean 0 and standard deviation 1.0.

Again, we assume that two detectors, one matched to the signal

and another orthogonal to the signal stimulus, are involved.
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Matching the task-relevant template T(x, y, t) to a signal-valued

stimulus yields

TS � ��� T1
x, y, t�S
x, y, t�dxdydt

� c���� T1
x, y, t�S0
x, y, t�dxdydt; (C1)

matching the template to the external noise yields

TN1 � ��� T1(x, y, t)N
x, y, t�dxdydt � �ext

� ��� T1
x, y, t�G
x, y, t�dxdydt, (C2a)

and

TN2 � ��� T2
x, y, t�N
x, y, t�dxdydt � �ext

� ��� T2
x, y, t�G
x, y, t�dxdydt. (C2b)

For a fixed template and a fixed signal stimulus, TS0
���� T1
x, y, t�

S0
x, y, t�dxdydt is a constant; TG1 � ��� T1 
x, y, t�G
x, y, t�dxdydt

and TG2 � ���� T2
x, y, t�G
x, y, t� dxdydt are Gaussian random

variables with mean 0 and a fixed standard deviation �TG
. Because,

mathematically, TS0
and �TG

can only be known up to a constant,

without losing any generality, we set �TG
to 1.0. This essentially sets

the total gain of the perceptual template (integrated over space and

time) to 1.0. The other way to state the normalization is that we set the

gain of the perceptual template to � �

TS0

�TG

. The outputs from

template matching are

TS � �c, (C3)

TN1 � �extG̃1
0, 1�, (C4a)

and

TN2 � �extG̃2
0, 1�, (C4b)

where G̃1
0, 1� and G̃2
0, 1� are two samples from the standard

normal distribution.

At the decision stage, the total variance of the external and

internal (additive) noise is the sum of the variances of the external

and the internal noise in the two detectors:

N total1
2

� �ext
2

� �add
2 , (C5a)

and

N total2
2

� �ext
2

� �add
2 . (C5b)

Signal discriminability, d�, is determined by the signal-to-noise ratio:

d� �

TS

Ntotal1

�

TS

Ntotal2

�

�c

��ext
2

� �add
2

. (C6)

For a two-alternative forced-choice task, probability correct can

be expressed as a function of d� (Macmillan & Creelman, 1991):

Pc � �
��

��

g
x � �c, 0, ��ext
2

� �add
2 �G
x, 0, ��ext

2
� �add

2 �dx

� �
��

��

g
x � d�, 0, 1�G
x, 0, 1�dx, (C7)

where g(x, �, �) and G(x, �, �) are the probability density, and

cumulative density functions of a Gaussian distribution.

The probability that the observer responds to two passes of the

same stimuli sequence consistently can be derived from Equation

B3 (see Appendix B) by replacing S, �ext, and �int in the equation

with the constructs from the linear amplifier model (LAM):

PA � �
��

��

g
x � S, 0,��ext1
2

� �ext2
2 �	G2
x, 0, ��int1

2 ��int2
2 �

� �1 � G
x, 0, ��int1
2

� �int2
2 �2�dx

� �
��

��

g
x � �c, 0, �2�ext�	G2
x, 0,

�2�add� � �1 � G
x, 0, �2�add�
2�dx. (C8)

By inverting Equation C6, we can also express the threshold

signal contrast energy c�
2 required for the observer to maintain a

given performance criterion level, that is, a fixed percent correct or

fixed d�, as a function of external noise contrast:

c�
2

� �d�

��
2

��ext
2

� �add
2 . (C9a)

Defining k � �d�

��
2

, we can rewrite Equation C9a as

c�
2

� k
�ext
2

� �add
2 �. (C9b)

This is the efficiency relation between threshold and external

noise in the LAM. The parameter k is called observer efficiency.

Because k is proportional to d�2, it is obvious that it (and thus,

observer efficiency) depends on the particular criterion perfor-

mance level at which the threshold is defined. The more funda-

mental parameter in this model is the gain of the perceptual

template to the signal stimulus �, which is independent of the

performance criterion.

The LAM makes a very simple yet highly constraining predic-

tion on the ratio between thresholds at different performance

criteria. For any given external noise condition, �ext, the contrast

threshold c�1 at performance criterion level d�1 is

c�1 �

d�1

�
��ext

2
� �add

2 . (C10)

The contrast threshold c�2 at performance criterion level d�2 is

c�2 �

d�2

�
��ext

2
� �add

2 . (C11)

The ratio between the two thresholds for the particular external

noise condition is thus

c�1

c�2

�

d1
�

d2
� . (C12)
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Appendix D

MATLAB Code for Probability Correct and Agreement

function PC_PA� PC_PA(dS, N_ext, N_pre, N_abs, U, Trials)

%dS: Magnitude of the signal at the decision stage
%N_ext: Standard deviation of the external noise
%N_pre: Standard deviation of the internal noise in signal
% present detector
%N_abs: Standard deviation of the internal noise in signal
% absent detector
%U: Number of hidden detectors
%Trials: Number of trials in each pass

if U��0
N�sqrt(N_ext
2�(N_pre
2�N_abs
2)/2);
t�dS�(�10000:10000)/100*N;
PC�sum(0.01*(N)*normpdf(t,dS,N_pre).*normcdf(t,0,N_abs));

sX�N_ext*sqrt(2);
b�sqrt(N_pre
2�N_abs
2);
t�dS�(�10000:10000)/100*sX;
PA�sum(0.01*(sX)*normpdf(t,dS,sX)...

.*(normdcdf(t,0,b).
2�(1�normcdf(t,0,b)).
2));
PC_PA�[PC PA];

else
PC�0;
PA�0;

for i�1:Trials
n_ext1�randn(1,1�U)*N_ext;
n_ext2�randn(1,1�U)*N_ext;
n_int1�randn(1,1�U)*N_abs;
n_int2�randn(1,1�U)*N_abs;
n_int3�randn(1,1�U)*N_abs;
n_int4�randn(1,1�U)*N_abs;
n_ext1(1)�n_ext(1)�S;
n_int1(1)�randn(1)*N_pre;
n_int3(1)�randn(1)*N_pre;

%first pass
interval1�n_ext1�n_int1;
interval2�n_ext2�n_int2;
if (max(interval1) � max(interval2) )

rsp1�1;
PC�PC�1;

else
rsp1�2;

end
%second pass

interval1�n_ext1�n_int3;
interval2�n_ext2�n_int4;
if (max(interval1) � max(interval2) )

rsp2�1;
PC�PC�1;

else
rsp2�2;

end
if (rsp1��rsp2)

pA�pA�1;
end

end
PC�PC/(2*Trials);
PA�PA/Trials;
PC_PA�[PC PA];

end
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Appendix E

The Perceptual Template Model

In the perceptual template model (PTM; see Figure 15a in the

main text), input stimuli are processed in two pathways. In the

signal pathway, input stimuli pass through a perceptual template

with certain selectivity for stimulus characteristics (e.g., color,

spatial frequency, orientation, temporal/spatial windowing, etc.).

As in the linear amplifier model, the gain of the template to white

Gaussian noise is 1.0 because the total gain of the template is

normalized to 1.0. The gain of the template to the signal stimulus

is � (see Equation 10 in the main text). A template matching

function might, however, be far more complex, for example,

templates for objects, faces, and so on. It is related to the concept

of a matched filter in prior investigations of identification perfor-

mance (Burgess, 1985). The output of the perceptual template is

then processed by an expansive nonlinear transducer function


Output � sign(Input)Input�
1), chosen from the pattern vision

literature (Foley & Legge, 1981; Nachmias & Sansbury, 1974).

After the nonlinear transducer, the expected magnitude of the

response of the signal template to the signal stimulus is therefore

S1 � ��
1c�

1. (E1)

The expected standard deviations of external noise in the signal-

present and signal-absent detectors areE1

�� N1 � �ext
�

1 , (E2a)

and

�� N2 � �ext
�

1 . (E2b)

In the multiplicative internal noise pathway, the input passes

through a different perceptual template (gain to signal stimulus:

�2; gain to white external noise: 1.0) and a rectified, nonlinear

transducer function (Output � Input�
2). In computing multi-

plicative noise, stimulus energy over a broad range of space, time,

and features may be integrated.E2 The variance of multiplicative

noise is proportional to the total stimulus energy in each detector.

In the signal-present detector,

�mul1
2

� N mul
2 �N ext

2�
2 � 
�2c�2�

2. (E3a)

In the detector not matched to the input signal,

�mul2
2

� N mul
2 N ext

2�
2. (E3b)

At the decision stage, the signal is combined with external noise

from the signal path, the multiplicative noise, and the additive

internal noise. The details of the decision process depend on the

particular task, for example, detection versus identification. These

have been modeled elsewhere (Macmillan & Creelman, 1990).

Here, we summarize the total variance in the signal-present and

signal-absent detectors:

� total1
2

� �ext
2�

1 � N mul
2 ��ext

2�
2 � 
�2c�2�

2 � �add
2 , (E4a)

and

� total2
2

� �ext
2�

1 � N mul
2 �ext

2�
2��add

2 , (E4b)

In the PTM, probability correct for a two-alternative forced-

choice task is therefore

Pc � �
��

��

g
x � S1, 0, �total1�G
x, 0, �total2�dx

��
��

��

g
x � ��
1c�

1, 0, ��ext
2�

1 � N mul
2 ��ext

2�
2 � 
�2c�2�

2 � �add
2

� G
x, 0, ��ext
2�

1 � N mul
2 �ext

2�
2 � �add

2 �dx (E5)

The average signal-to-noise ratio (d�) in the PTM can be calcu-

lated:

d� �

S1

�(�total1
2

� �total2
2 )/ 2

�


�c)�
1

��ext
2�

1 � N mul
2 ��ext

2�
2 �


�2c�2�
2

2 � � �add
2

. (E6)

In the special case where � � �1 � �2, corresponding to the

situation where the rising portion of the threshold-versus-external-

noise-contrast function has a slope of 1.0, we can solve Equation

E6 to obtain threshold signal contrast c� as a function of external

noise contrast �ext at a given performance criterion (i.e., d�):

c� � �d�2�
1 � N mul
2 ��ext

2�
� �add

2 

�2�
� N mul

2 �2
2�d�2/ 2 � 1

2�. (E7)

When the same stimulus (signal � external noise) is passed to

the PTM twice, the probability that the two responses are consis-

tent can be derived from Equation B3 (see Appendix B):

PA � �
��

��

g
x � S, 0, ��ext1
2

� �ext2
2 �	G2
x, 0, ��int1

2
� �int2

� �1 � G
x, 0, ��int1
2

� �int2
2 �2�dx

E1 In the PTM development, the external noise in the stimulus had a

Gaussian distribution, corresponding to white external noise. After nonlin-

ear transduction, the distribution of the external noise might deviate from

the Gaussian distribution. However, spatial and temporal summation in the

perceptual system should reduce this deviation. When combined with

additive and multiplicative noises, both of which are Gaussian distributed,

we assume that the sum of the noises is approximately Gaussian. However,

we restrict ourselves to performance levels below 90% so as to avoid the

tails of the distribution. The Gaussian assumption is not central to the

development of the PTM outlined above, but it does simplify the applica-

tion to signal detection estimation—the Gaussian noise distribution allows

us to use the Gaussian form of signal detection calculations.
E2 The perceptual templates in the signal path and the gain-control path

could be identical, a form that we used in a number of earlier studies

(Dosher & Lu, 1998, 1999, 2000a, 2000b; Lu & Dosher, 1998, 1999, 2000,

2004), in which case � � �2. This more general form allows for the

possibility that the template for the signal may be relatively tightly tuned

to the signal stimulus, while the gain control may be more broadly driven.

This latter possibility relates to the observation from the physiology and

psychophysics that the normalization pools are very broadly tuned.
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� �
��

��

g
x � 
�c)�
1, 0, �2�ext

�
1 �

� 	G2
x, 0, �N mul
2 �2�ext

�2

� 
�2c)2�2 � 2�add
2 �

� �1 � G
x, 0, �N mul
2 �2�ext

2�2
� 
�2c)2�2 � 2�add

2 �2dx. (E8)

In all the applications of the PTM approach so far, we have

found that the PTM with � � �1 � �2 has provided adequate

description of the empirical data. In the rest of this article, we will

restrict our discussion to this reduced set of PTMs. The same logic

could be followed to understand the properties of PTMs with �1 �

�2. It follows directly from Equation E7 that, for any given

external noise contrast @Next, the threshold signal contrast ratio

between two performance criterion levels (corresponding to d�2 and

d�1) is

c�2

c�1

� �d2
�2

d1
�2

�2�
� N mul

2 �2
2�d1

�2/2

�2�
� N mul

2 �2
2�d�2

2/2
]

1

2�. (E9)

Thus, the PTM predicts that threshold signal contrast ratio between

two performance criterion levels for any given external noise

contrast is a nonlinear function of the corresponding d�s, indepen-

dent of the particular external noise level.

Appendix F

Experimental Methods

Apparatus

The experiment was conducted on a Macintosh Power G4 com-

puter running PsychToolbox extensions (Brainard, 1997; Pelli, 1997).

The stimuli were presented on a Hewlett Packard hp91 color monitor

with a 120-Hz refresh rate. A special circuit (X. Li, Lu, Xu, Jin, &

Zhou, 2003) was used to display monochromatic images on the

monitor with high grayscale resolution (�12.5 bits). A lookup table,

obtained with a psychophysical procedure and photometric measure-

ments, was used to linearize the luminance levels. Stimuli were

viewed binocularly with natural pupils at a viewing distance of

approximately 72 cm in dim light. Observers used a chinrest to

maintain head position and fixation throughout the experiment.

Observers

Three observers, CC, SJ, and WC, participated in the experi-

ment. All of them had corrected-to-normal vision and were expe-

rienced in psychophysical experiments but naı̈ve to the purpose of

the experiment.

Stimuli

The signal stimuli were Gaussian-windowed sinusoidal grat-

ings, oriented � � �45° from vertical. The luminance profile of

the Gabor stimulus is described by

L(x, y)

� L0�1.0 � c sin�2�f
xcos� � ysin� �exp�� x2�y2

2�2 �� , (F1)

where c is the signal contrast, � � 0.57° is the standard deviation

of the Gaussian window, and the background luminance L0 was set

in the middle of the dynamic range of the display (Lmin � 1 cd/m2;

Lmax � 55 cd/m2).

The signal stimuli were rendered on a 64 � 64 pixel grid,

extending 2.78° � 2.78° of visual angle. External noise images

were constructed using 2 � 2 pixel elements (0.087° � 0.087°).

Each noise element’s contrast level was drawn independently from

a Gaussian distribution with mean of 0 and standard deviation

ranging from 0.0 to 0.33. Because the maximum achievable con-

trast is �1.0 on the display, a noise sample with standard deviation

of 0.33 conforms reasonably well to a Gaussian distribution. In a

given trial, external noise images were made of elements with

jointly independent, identically distributed contrasts. Eight exter-

nal noise levels (0, 0.030, 0.045, 0.067, 0.100, 0.149, 0.223, and

0.332) were used in the experiment.

Design

The method of constant stimuli was used to measure psychometric

functions in each of the eight external noise conditions. In each

external noise condition, the psychometric function was sampled at

five different signal stimulus contrast levels, specified for each ob-

server based on pilot data to span the full range of performance levels.

Each observer completed 16 sessions of 480 trials. In each session,

all external noise and signal contrast conditions were randomly

mixed. Observers first ran four experimental sessions with different

random external noise images and trial sequences. The same stimuli

and trial sequences were used in the next four sessions (double-pass).

New stimuli and trial sequences were used in Sessions 9 to 12.

Sessions 13 to 16 repeated the stimuli from Sessions 9 to 12. An

experimental session lasted about 15 to 20 min.

Procedure

In the beginning of each trial, a fixation cross was presented in the

center of the screen for 250 ms. The subsequent stimulus sequence

consisted of three 8.3-ms frames: a noise frame, a signal frame, and

another (independent) noise frame. Observers were instructed to iden-

tify the orientation of the Gabor stimulus using the computer key-

board. A beep immediately followed each incorrect response. The

next trial started half a second after the feedback.

Data Analysis and Statistical Tests

The measured probability correct (PC) versus probability agree-

ment (PA) curves for each observer were fit with eight observer
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models using the maximum-likelihood procedure (Hays, 1988).

The eight observer models included the five described in the

section in the main text on observer models and three new models:

a reduced PTM with �2 � �, an altered PTM with a linear

transducer and decision uncertainty, and a fully saturated model

that consisted of a PTM with decision uncertainty. The additional

models were included to complete a model lattice and to test

variants of the models.

For each observer model, the probability correct (PCi) and

probability agreement (PAi) were computed from the model for

each signal contrast and external noise condition i. There were a

total of 40 conditions. Likelihood is defined as a function of the

total number of trials Ni, the number of correct trials KCi, and the

number of pairs of trials with the same response in the two passes

of the experiment KAi in each stimulus condition i:

likelihood � �
i�1

40
Ni!

KCi!
Ni � KCi�!
PCi

KCi
1 � PCi�
Ni�KCi�

i�1

40

�
(Ni/ 2)!

KAi!
Ni/ 2 � KAi�!
PAi

KAi
1 � PAi�
Ni/2�KAi. (F2)

A MATLAB function, fminsearch, was used to find the best fitting

parameters for each observer model that maximized log(likeli-

hood). Nested models were compared using a chi-square statistic:

�2
df� � 2.0 � log� max likelihoodfull

max likelihoodreduced
� , (F3)

where df � kfull � kreduced is the difference between the number of

parameters of the two models.

To derive threshold-versus-external-noise-contrast functions, a

Weibull function,

Pc � �max � 
max � 0.5� � 2�� c

��
�

 � 100%, (F4)

was fit to the psychometric functions (Wichmann & Hill, 2001)

using a maximum-likelihood procedure (Hays, 1981), where max,

c, �, and � denote the maximum fraction correct, signal contrast,

threshold, and the slope of the psychometric function, respectively.

For each observer, we constrained max to be the same across all

the external noise conditions. Statistical tests showed that impos-

ing the constraint did not significantly reduce the quality of the fits.

Threshold signal contrasts at 65%, 75%, and 85% correct were

calculated from the best fitting Weibull functions.
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Correction to Stout and Miller (2007)

The article “Sometimes-Competing Retrieval (SOCR): A Formalization of the Comparator Hypoth-

esis,” by Steven C. Stout and Ralph R. Miller (Psychological Review, Vol. 114, No. 3, pp. 759–783)

contained errors.

In the right column of Table 1, the first equation currently reads as follows:

�VX,O � �X * �O(�O¥ � Vj).

It should read as follows:

�VX,O � �X * �O(�O � ¥Vj).

In the right column of Table 1, the 11th equation currently reads as follows:

�OpX,j,O � X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.

It should read as follows:

�OpX,j,O � �X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.

Equation 6B currently reads as follows:

�OpX,j,O � X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.

It should read as follows:

�OpX,j,O � �X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.
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