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Abstract. We propose a technique to represent a pathological pattern
as a deviation from normality along a manifold structure. Each subject
is represented by a map of local motion abnormalities, obtained from a
statistical atlas of motion built from a healthy population. The algorithm
learns a manifold from a set of patients with varying degrees of the same
pathology. The approach extends recent manifold-learning techniques by
constraining the manifold to pass by a physiologically meaningful ori-
gin representing a normal motion pattern. Individuals are compared to
the manifold population through a distance that combines a mapping to
the manifold and the path along the manifold to reach its origin. The
method is applied in the context of cardiac resynchronization therapy
(CRT), focusing on a specific motion pattern of intra-ventricular dyssyn-
chrony called septal flash (SF). We estimate the manifold from 50 CRT
candidates with SF and test it on 38 CRT candidates and 21 healthy
volunteers. Experiments highlight the need of nonlinear techniques to
learn the studied data, and the relevance of the computed distance for
comparing individuals to a specific pathological pattern.

1 Introduction

By definition, a disease is an impairment of the normal condition of an organism.
Considering different grades of the same disease as progressive deviations from
normality addresses therefore the understanding of this disease and facilitates
its diagnosis in a given patient. This approach is particularly of interest for car-
diac resynchronization therapy (CRT), where the definition of relevant criteria
for selecting candidates likely to respond to the therapy is still a topic under
active debate [5]. The advantages of considering specific groups of mechanical
dyssynchrony in the selection process were recently discussed in [11]. Each of
these groups corresponded to one pathological pattern of myocardial motion
and deformation with different grades of abnormality with respect to a healthy
cardiac function. However, the approach lacks of reproducible tools for the grad-
ing of a given pathological pattern within a population and for the quantitative
comparison of individuals to each of these specific populations. The aim of this
paper is to demonstrate the relevance of describing each pathological pattern as
a deviation from normality along a manifold structure, allowing the computation
of an appropriate distance between individuals and each pathological pattern.
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Fig. 1. (a) Distance proposed in this paper, combining a mapping to the manifold and
the path along the manifold to reach its origin. (b) Interpolation of a 1D synthetic
dataset using inexact matching, before and after the addition of a constraint forcing
the curve to pass by the point indicated by the black arrow.

The definition of an optimal space for the comparison of different populations
was already addressed by dimensionality reduction techniques, such as principal
component analysis (PCA), Kernel-PCA [10], principal geodesic analysis (PGA)
[4], linear discriminant analysis [9] or multivariate statistics [14]. Nonetheless, the
flexibility of these techniques is limited when a new subject or a new popula-
tion is added to the existing dataset, as dimensionality reduction is applied to
the whole set of studied subjects. In addition, the dimensionality reduction could
be biased towards certain populations if they show higher variability. An alter-
native for moving beyond these limitations consists in separating the analysis for
each coherent group of subjects. Using PCA, Kernel-PCA or PGA within a given
population is of limited interest for our application, as we target the comparison
of individuals to the whole population and not just to its mean or centroid. The
comparison of an individual to its k-nearest neighbors (k-NN) does not take into
account the local topology of the dataset and assimilates all distances to Euclidean
distances [13] [7]. In contrast, manifold learning techniques intrinsically take into
account this geometry, and allow relevant comparison of individuals to the stud-
ied population through the use of a mapping distance. This mapping results from
the “pre-image problem,” used in the literature for denoising [10] [8], segmenta-
tion [3], face recognition [15] and regression [1]. A distance based on this mapping
mechanism was introduced in [6], but its use was limited to the estimation of re-
construction errors inherent to a reduction of dimensionality.

In this paper, we extend manifold-learning techniques to embed the definition
of a relevant origin within the manifold. We propose a distance for comparing
individuals to the manifold population, which combines a mapping to the mani-
fold and the path along the manifold to reach its origin (Fig. 1a). The originality
of our method resides in the use of motion abnormality maps as input, as intro-
duced in [2], which allows the gradation of the disease and the definition of a
physiologically meaningful origin within the manifold, representing a normal mo-
tion pattern. Each pathological pattern is therefore considered a deviation from
normality along a manifold structure. We present the application of the pro-
posed method to septal flash (SF), a specific motion pattern of intra-ventricular
dyssynchrony associated to a high response rate to CRT [11].
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2 Methods

The computation of a distance between individuals and a given population consid-
ered as a pathologic deviation from normality consists of two steps: the quantifica-
tion of abnormality for each subject in the dataset, and the estimation of amanifold
for this population, constrained to pass by an origin representing normality.

2.1 Atlas-Based Maps of Motion Abnormalities

The inputs for our method consist of 2D spatiotemporal maps of myocardial
motion abnormalities, obtained from a statistical atlas of motion built from
healthy volunteers [2]. Each map corresponds to one subject in the dataset, and
is used as a 2D image in which the horizontal dimension is time (systole) and
the vertical one is the position along the septum. Each pixel value corresponds
to a p-value index used to locally encode abnormality, in a logarithmic scale,
multiplied by the sign of the radial velocity. This choice was made to highlight
the inward and outward events of SF, when present (Fig.2a). The color-code
associates blue and red color to highly abnormal inward and outward motion
of the septum, respectively. According to these conventions, the origin used to
constrain the manifold (Sec. 2.2) is defined as an image having 0 value at each
pixel, representing a normal motion pattern.

2.2 Manifold-Based Distances to a Population

All the images considered in this paper belong to an ambient spaceA. Let’s denote
I = {I0, ..., IN} ⊂ A the dataset of N + 1 images used for the manifold estima-
tion. The image I0 corresponds to the manifold origin for normality. This image
is added to the original dataset {I1, ..., IN} before any computation, so that every
image Ii, i > 0 is connected to I0 through the isomap graph resulting from the
computations described below. This amounts to considering every element of I as
a deviation from the origin along a specific path on the manifold structure.

The space of manifold coordinates is denoted C ⊂ R
m, m being the dimension-

ality of the manifold, while f : A → C and g : C → A stand for the correspondence
functions between A and C. The computation of these functions is based on inter-
polation techniques adapted from [1] and explained in the following paragraphs.
We denote d : A → R the metric used to compare elements of A.

Manifold estimation. The isomap algorithm [13] is used to estimate the
manifold. First, a graph is built for the dataset I, based on the k-NN algo-
rithm, connecting all the images among themselves according to the metric d.
Then, Euclidean embedding of the manifold data provides a set of coordinates
X = {x0, ...,xN} ⊂ C.

From ambient space to manifold coordinates. The estimation of f : A → C
can be formulated as an exact matching problem on a reproducible kernel Hilbert
space V [12] of functions A → C, namely:

argmin
f∈V

(1
2
‖f‖2

V
)

under the constraint f(Ii) = xi, ∀i ∈ [0, N ] (1)
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with solution: f(I) =
∑N

i=0 Kf(I, Ii) · ai with aI := K−1
f · xI ,

where Kf is the matrix
(
Kf(Ii, Ij)

)
(i,j)∈[0,N ]2

, Kf being chosen of the exponen-
tial form Kf(I,J) := exp

( − d(I,J)2/σ2
f

)
, (I,J) ∈ A2, σf being its bandwidth,

and aI and xI the vectors
(
ai

)
i∈[0,N ]

and
(
xi

)
i∈[0,N ]

, respectively.

Back from manifold coordinates to the ambient space. The estimation
of g : C → A is a variant of the previous computation, formulated as an inexact
matching problem on a reproducible kernel Hilbert space W [12] of functions
C → A, with a constraint to force the manifold to pass by the origin image I0:

argmin
g∈W

(1
2
‖g‖2

W +
γ

2

N∑
i=1

d
(
g(xi), Ii

))
under the constraint g(x0) = I0 (2)

with solution: g(x) =
∑N

i=0 Kg(x,xi) · bi with bI :=
(
Kg + 1

γ M
)−1 · II ,

where Kg is the matrix
(
Kg(xi,xj)

)
(i,j)∈[0,N ]2

, Kg being chosen of the exponen-

tial form Kg(x,y) := exp
(−‖x−y‖2/σ2

g

)
, (x,y) ∈ C2, σg being its bandwidth,

M is the matrix
(
Mi,j

)
(i,j)∈[0,N ]2

, with Mi,i = 1 ∀i �= 0 and 0 otherwise, and bI
and II the vectors

(
bi

)
i∈[0,N ]

and
(
Ii

)
i∈[0,N ]

, respectively.
The addition of such a constraint is illustrated in Fig. 1b, which displays the

interpolated curve obtained from a 1D synthetic dataset using inexact matching
before and after forcing the curve to pass by one point, as described in Eq. 2.

Mapping to the manifold and induced distance. Any image I ∈ A can be
associated to an element of the manifold Î by means of the composition of the
above-defined functions, using Î = g

(
f(I)

)
. This composition allows defining a

distance between any image I ∈ A and the manifold [6], namely: dmapping(I) =
d(Î, I). This distance is complemented by a second one, which compares indi-
viduals to normality along the manifold structure: dmanifold(I) = ‖f(I) − x0‖2.
Total distance to normality is then written as

√
(dmapping)2 + (dmanifold)2.

3 Experiments and Results

Patient population and processed data. Using the method presented in
Sec. 2.2, a manifold was estimated from a population of 50 CRT candidates with
SF. This manifold is expected to represent pathologic deviations from normal-
ity, each point of the manifold being a SF pattern. A second dataset was used
for testing the distances proposed in Sec. 2.2. This population was made of 38
CRT candidates (7 having SF and 31 without SF) and 21 healthy volunteers.
All patient data was acquired before the implantation of the CRT device. The
presence of SF was assessed by two experienced cardiologists, from the visual
inspection of echocardiographic M-mode images, as described in [11].
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Fig. 2. (a) Map of septal motion abnormalities for one CRT candidate with SF. The
color-scale encodes abnormality (p-value) in a logarithmic scale, multiplied by the sign
of the radial velocity vρ to highlight SF (Sec. 2.1). (b) Two-dimensional embedding of
the manifold of SF p-value maps (output of isomap) according to its two first dimen-
sions. The blue-framed map corresponds to the image used to constrain the manifold,
representing a normal motion pattern.

A 2D spatiotemporal map of myocardial motion abnormalities obtained from
a statistical atlas of motion [2] was associated to each subject, as explained in
Sec. 2.1. The atlas was built from the set of 21 healthy volunteers. The ab-
normality maps had a size of 31 × 20 pixels, corresponding to the sampling of
the systolic period (horizontal dimension) and the septum along its medial line
(vertical dimension), respectively.

The sum of squared differences was used for the metric d : A → R. The number
of neighbors for the k-NN computations was set to k = 5, which guaranteed that
all the images from the manifold dataset were connected among themselves, as
tested experimentally. A two-dimensional embedding of the computed manifold
(output of isomap) is represented in Fig. 2b, showing the link between each
image and its k-NN. The bandwidths for the kernels Kf and Kg introduced in
Sec. 2.2 were set to the average k-NN distances over the manifold population and
its corresponding set of coordinates X , respectively. The value of γ involved in
the inexact matching problem (Eq. 2) was set to 10, representing a compromise
between the smoothness of the manifold and its closeness to the data.

Manifold accuracy. The influence of the manifold dimensionality on the recon-
struction error was estimated by computing the average and standard deviation
of dmapping over the manifold population, as shown in Fig. 3a. The curve reaches
95% of its final value when the manifold dimensionality is higher than 10, which
is the value we chose for the rest of the paper. The reconstruction error obtained
with a linear approximation of the manifold dataset (using PCA) is higher, as
visible in this figure, justifying the choice of nonlinear techniques to characterize
the population of CRT candidates with SF.
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Fig. 3. (a) Evolution of the reconstruction error against the number of dimensions used.
Comparison between PCA (dashed blue) and isomap (black). Values correspond to the
average ± standard deviation over the manifold dataset I. (b) Variations around the
average map along the two first principal directions of the manifold dataset I, obtained
using either PCA or isomap. Arrows indicate the inward and outward events of SF,
when this pattern is present on the map.

The limitations of PCA on the studied dataset, compared to isomap, are also
visible on Fig. 3b. This figure represents the variations around the average map
along the two first principal directions of the manifold dataset I, obtained using
either PCA or isomap. As indicated by the black arrows, PCA does not guarantee
that the computed maps still correspond to a SF, while this pattern is preserved
by the use of manifold-learning.

Distance to the manifold. Figure 4 represents the distance between all the
subjects involved in this study and the manifold. We separated the analysis be-
tween dmapping and dmanifold for interpretation purposes. The patients from the
manifold dataset have low dmapping , which corresponds to the reconstruction er-
ror plotted in Fig. 3a. As the manifold is built from this population, they largely
span the space associated to dmanifold. There is no SF patient from the manifold
dataset close to the origin according to dmanifold, while almost all the healthy vol-
unteers have lower values (vertical lines indicate the median and 1st/3rd quartiles
of dmanifold for the healthy subjects). This provides an estimation of the thresh-
old above which SF can be detected, as being a deterioration from normality. This
threshold may come from the accuracy of the patient selection process using M-
mode images [11], and from the minimum accuracy of the abnormality maps [2].
Among the testing subjects, patients having SF are closer to the manifold than pa-
tients without SF, according to dmapping . Higher values of dmanifold are observed
in the subjects having higher SF abnormalities on the maps. A larger bandwidth
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Fig. 4. (a) Subject ordering according to dmanifold and dmapping , used as horizontal
and vertical axis, respectively. Vertical orange lines indicate the median and 1st/3rd

quartiles of dmanifold for the healthy subjects. (b) Patient ordering according to the
amount of total abnormality and the proposed distance

√
(dmapping)2 + (dmanifold)2.

for the kernels Kf and Kg would bring the testing patients with SF closer to the
manifold, but would also increase the reconstruction error.

As the 2D maps processed in this study locally contain a measure of abnor-
mality, it is also of interest to compare the total abnormality of each map against
the distances introduced in Sec. 2.2. This comparison is shown in Fig. 4b. Total
abnormality was computed for each subject using the L2 norm of its abnormal-
ity map. Linear regression over the plotted data led to R2 coefficients of 0.91
(manifold data only, dashed red line) and 0.81 (whole data, black line). This
suggests that the dimensionality reduction inherent to the manifold estimation
preserves the concept of abnormality embedded in the processed maps.

4 Conclusion

We have proposed a method for modeling a specific pathological motion pattern
as a manifold. This manifold represents pathological motion as a deviation from
normality, being by construction the manifold origin. The method was used
to compute a distance between individuals and a given pathological pattern.
Experiments demonstrate the need of nonlinear embedding of the learning data,
and the relevance of the proposed method for grading different stages of motion
abnormality. In the context of CRT, the method can improve the selection of
responders to the therapy, allowing reproducible comparison of a new candidate
to specific patterns of mechanical dyssynchrony that condition CRT outcome.
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