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A critical question for the field of quantum computing in the near future is whether quantum
devices without error correction can perform a well-defined computational task beyond the capabil-
ities of state-of-the-art classical computers, achieving so-called quantum supremacy. We study the
task of sampling from the output distributions of (pseudo-)random quantum circuits, a natural task
for benchmarking quantum computers. Crucially, sampling this distribution classically requires a
direct numerical simulation of the circuit, with computational cost exponential in the number of
qubits. This requirement is typical of chaotic systems. We extend previous results in computational
complexity to argue more formally that this sampling task must take exponential time in a classical
computer. We study the convergence to the chaotic regime using extensive supercomputer simula-
tions, modeling circuits with up to 42 qubits - the largest quantum circuits simulated to date for
a computational task that approaches quantum supremacy. We argue that while chaotic states are
extremely sensitive to errors, quantum supremacy can be achieved in the near-term with approxi-
mately fifty superconducting qubits. We introduce cross entropy as a useful benchmark of quantum
circuits which approximates the circuit fidelity. We show that the cross entropy can be efficiently
measured when circuit simulations are available. Beyond the classically tractable regime, the cross
entropy can be extrapolated and compared with theoretical estimates of circuit fidelity to define a
practical quantum supremacy test.

I. INTRODUCTION

Despite a century of research, there is no known
method for efficiently simulating arbitrary quantum dy-
namics using classical computation. In practice, we are
unable to directly simulate even modest depth quan-
tum circuits acting on approximately fifty qubits. This
strongly suggests that the controlled evolution of ideal
quantum systems offers computational resources more
powerful than classical computers [1, 2]. In this paper
we build on existing results in quantum chaos [3–19] and
computational complexity theory [20–30] to propose an
experiment for characterizing “quantum supremacy” [31]
in the presence of errors. We study the computational
task of sampling from the output distribution of ran-
dom quantum circuits composed from a universal gate
set, a natural task for benchmarking quantum comput-
ers. We propose the cross entropy difference as a measure
of correspondence between experimentally obtained sam-
ples and the output distribution of the ideal circuit. Fi-
nally, we discuss a robust set of conditions which should
be met in order to be sufficiently confident that an ex-
perimental demonstration has actually achieved quantum
supremacy. Quantum supremacy is achieved when a for-
mal computational task is performed with an existing
quantum device which cannot be performed using any
known algorithm running on an existing classical super-

computer in a reasonable amount of time.

In this paper we show how to estimate the cross en-
tropy between an experimental implementation of a ran-
dom quantum circuit and the ideal output distribution
simulated by a supercomputer. We study numerically
the convergence of the output distribution to the Porter-
Thomas distribution, characteristic of quantum chaos.
We find a good convergence for the first ten moments
and the entropy at depth 25 with circuits of up to 7× 6
qubits in a 2D lattice. Using chaos theory, the properties
of the Porter-Thomas distribution, and numerical simu-
lations, we argue that the cross entropy is closely related
to the circuit fidelity. State-of-the-art supercomputers
cannot simulate universal random circuits of sufficient
depth in a 2D lattice of approximately 7× 7 qubits with
any known algorithm and significant fidelity.

Time accurate simulations of classical dynamical sys-
tems with chaotic behavior are among the hardest numer-
ical tasks. Examples include turbulence and population
dynamics, essential for the study of meteorology, biology,
finance, etc. In all these cases, a direct numerical simu-
lation is required in order to get an accurate description
of the system state after a finite time. A signature of
chaotic systems is that small changes in the model spec-
ification lead to large divergences in system trajectories.
This phenomenon is described by Lyapunov exponents
and generally requires computational resources that grow
exponentially in time.
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FIG. 1. Example of a random quantum circuit in a 1D array
of qubits. Vertical lines correspond to controlled-phase (CZ)
gates (see Sec. IV).

While we do not provide a formal definition of quan-
tum chaos here, we review several well known charac-
teristics of quantum chaos to argue that sampling the
output distribution of a random quantum circuit is a
hard computational task. In analogy with classical Lya-
punov exponents, a signature of quantum chaos is the
decrease of the overlap | 〈ψt|ψǫ

t 〉 |2 of the quantum state
|ψt〉 with the state |ψǫ

t 〉 resulting from a small perturba-
tion ǫ to the Hamiltonian that evolves |ψt〉 [4, 5, 8, 9].
The overlap decreases exponentially in the evolution time
t and ǫ because chaotic evolutions give rise to delocaliza-
tion of quantum states [6, 7]. Such states are closely
related to ensembles of random unitary matrices studied
in random matrix theory [6, 32], they possess no sym-
metries, and are spread over Hilbert space. Therefore,
as in the case of classical chaos, obtaining a description
of |ψt〉 requires a high fidelity classical simulation. This
challenge is compounded by the exponential growth of
Hilbert space N = 2n with the qubit dimension n.
It follows that unless a classical algorithm uses re-

sources that grow exponentially in n, its output would
be almost statistically uncorrelated with the output dis-
tribution corresponding to general global measurements
of the chaotic quantum state.1 Indeed, it has been
argued that classically solving related sampling prob-
lems requires computational resources with asymptotic
exponential scaling [20–30]. Examples include Boson-
Sampling [24] and approximate simulation of commuting
quantum computations [23, 29].
Random quantum circuits with gates sampled from a

universal gate set are examples of quantum chaotic evo-
lutions that naturally lend themselves to the quantum
computational framework [7, 10–12, 14, 16]. A circuit,
corresponding to a unitary transformation U , is a se-
quence of d clock cycles of one- and two-qubit gates,
with gates applied to different qubits in the same cy-
cle, see Fig. 1. With realistic superconducting hardware

1 A classical algorithm that uses time and space resources that
grow exponentially in n can reconstruct all measurements of the
chaotic quantum state exactly.

constraints [33, 34], gates act in parallel on distinct sets
of qubits restricted to a 1D or 2D lattice.

In this paper we study the computational task of sam-
pling bit-strings from the distribution defined by the out-
put state |ψ〉 of a (pseudo-)random quantum circuit U of
size polynomial in n. We will compare the sampling out-
put of U to a generic classical sampling algorithm that
takes a specification of U as input and samples a bit-
string with computational time cost also polynomial in
n. We will show that a bit-string sampled from U is typ-
ically e times more likely than a bit-string sampled by
the classical algorithm. A quantum sample S of m mea-
surement outcomes x ∈ {0, 1}n in a local qubit basis has
probability Πx∈S | 〈x|ψ〉 |2. Denote by Spcl a sample of m
bit-strings from the polynomial classical algorithm. We
argued above standard assumptions in chaos theory that
in this case Spcl is expected to be almost uncorrelated
with the distribution defined by |ψ〉. We will substantiate
this numerically and theoretically in later sections. The
sample Spcl is assigned a probability Πx∈Spcl

| 〈x|ψ〉 |2 by
the distribution defined by |ψ〉. As we show in this paper,
the ratio of these probabilities for a sufficiently large cir-
cuit in the typical case is, within logarithmic equivalence,
Πx∈S | 〈x|ψ〉 |2/Πx∈Spcl

| 〈x|ψ〉 |2 ∼ em (see Eq. (9)). We
will also show that for a typical sample Sexp produced by
an experimental implementation of U this ratio is, within
logarithmic equivalence,

Πx∈Sexp
| 〈x|ψ〉 |2

Πx∈Spcl
| 〈x|ψ〉 |2 ∼ eme−rg ≫ 1 , (1)

where the parameter r provides an estimate of the effec-
tive per-gate error rate, and g ∝ nd is the total num-
ber of gates (see Eqs. (14) and (18)). Note the double
exponential structure in Eq. (1) with two large param-
eters m, g ≫ 1. Therefore, the ratio of probabilities in
Eq. (1), an experimentally observable quantity, is enor-
mously sensitive to the effective per-gate error rate r.
The parameter r can serve as an extremely accurate char-
acterization of the degree of correlation of Sexp with the
distribution defined by U , and provides a novel tool for
benchmarking complex multiqubit quantum circuits. We
will argue that r can be estimated theoretically and com-
pared with experiments to define a quantum supremacy
test.

We now give the main outline of the paper. In Sec. II
we obtain Eq. (1) from the cross entropy between the two
distributions and we explain how it can be measured in
an experiment. In Sec. III we explain theoretically and
numerically why the cross entropy is closely related to
the overall circuit fidelity. We also introduce an effective
error model for the overall circuit, and compare it with
numerical simulations of the circuit with digital errors.
In Sec. IV we study numerically the convergence of the
circuit output to the Porter-Thomas distribution, char-
acteristic of quantum chaos. In Sec. V we use complexity
theory to argue that this sampling problem is computa-
tional hard.
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FIG. 2. Distribution function of rescaled probabilities Np to
observe individual bit-strings as an output of a typical ran-
dom circuit. Blue curve (r = 0) shows the distribution of
{NpU (xj)} obtained from numerical simulations of the ideal
random circuit (see Sec. IV) . This distribution is very close
to the Porter-Thomas form Pr(Np) = e−Np shown with blue
dots. Curves with different colors show the distributions of
probabilities obtained for different Pauli error rates r. The
dashed line at Np = 1 corresponds to the uniform distribu-
tion δ(p − 1/N). These numerics are obtained from simula-
tions of a planar circuit with 5 × 4 qubits and gate depth of
40 (n = 20 and N = 220).

II. CHARACTERIZING QUANTUM

SUPREMACY

A. Ideal circuit vs. polynomial classical algorithm

Consider a state |ψd〉 produced by a random quantum
circuit. Due to delocalization, the real and imaginary
parts of the amplitudes 〈xj |ψd〉 in any local qubit ba-
sis {xj}Nj=1, xj ∈ {0, 1}n are approximately uniformly

distributed in a 2N = 2n+1 dimensional sphere (Hilbert
space) subject to the normalization constraint. This im-
plies that their distribution is an unbiased Gaussian with
variance ∝ 1/N , up to finite moments [35]. This distribu-
tion is a signature of delocalization due to quantum corre-
lations manifested as level repulsion in systems with sta-
tionary Hamiltonians. The distribution of measurement
probabilities p(xj) = | 〈xj |ψd〉 |2 approaches the exponen-
tial form Ne−Np, known as Porter-Thomas [3], see Fig. 2.
The probability vectors thus obtained are uniformly dis-
tributed over the probability simplex (i.e., according to
the symmetric Dirichlet distribution).

The circuit depth or time to approach the Porter-
Thomas regime is expected to correspond to the ballistic
spread of entanglement across Hilbert space in chaotic
systems [18, 19]. This timescale grows as n1/D where
D is the dimension of the qubit lattice. In particular,

D = 1 for a linear array [36, 37], D = 2 for a square
lattice [17], and D goes to infinity for a fully connected
architecture [14, 15, 17] (see Sec. IV).
The output probability p(xj) of each bit-string from

a random quantum circuit is of order 1/N = 2−n, see
Fig. 2. Therefore, each bit-string in a sample of size poly-
nomial in n will be unique. In other words, the output of
a random quantum circuit can not be distinguished from
a uniform sampler over {xj} unless we pre-compute the
specific output probabilities p(xj) [38–41].

2

Nevertheless, the Porter-Thomas distribution Ne−Np

has substantial support on values Np < 1, see Fig. 2.
This will allow us to clearly distinguish it from the uni-
form distribution over {xj}, which has a form given by
a delta function δ(p− 1/N), after computing p(xj) with
a powerful enough classical computer. Circuit specific
global measurements can be sensitive to time-accurate
simulations of chaotic quantum state evolutions.3 There-
fore, such observables will be extremely hard to simulate
classically.
Let |ψ〉 = U |ψ0〉 be the output of a given random

circuit U . Consider a sample S = {x1, . . . , xm} of bit-
strings xj obtained from m global measurements of every
qubit in the computational basis {|xj〉} (or any other ba-
sis obtained from local operations). The joint probabil-
ity of the set of outcomes S is PrU (S) =

∏

xj∈S pU (xj)

where pU (x) ≡ | 〈x|ψ〉 |2. For a typical sample S, the
central limit theorem implies that

log PrU (S) =
∑

xj∈S

log pU (xj)

= −mH(pU ) +O(m1/2) , (2)

where H(pU ) ≡ −∑N
j=1 pU (xj) log pU (xj) is the entropy

of the output of U . Because pU (x) are approximately
i.i.d. distributed according to the Porter-Thomas distri-
bution, if follows that

H(pU ) = −
∫ ∞

0

pN2e−Np log p dp

= logN − 1 + γ , (3)

where γ ≈ 0.577 is the Euler constant.
Let Apcl(U) be a classical algorithm with computa-

tional time cost polynomial in n that takes a specifi-
cation of the random circuit U as input and outputs

2 In the case of BosonSampling, generic observables sensitive to
Boson statistics can be used to distinguish the output distribu-
tion from uniform [42, 43]. Nevertheless, it is also unlikely that
a Bosonsampler can be distinguished from classically efficient
simulations unless we use exponential resources [24, 42].

3 Specifically, the ℓ1 norm distance between the Porter-Thomas
distribution and the uniform distribution over {xj} is 2/e, in-
dependent of n. Therefore, information theoretically, a constant
small number of measurements are sufficient to distinguish these
distributions.
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a bit-string x with probability distribution ppcl(x|U).

Consider a typical sample Spcl = {xpcl1 , . . . , xpclm } ob-
tained from Apcl(U). We now focus on the probability

PrU (Spcl) =
∏

xpcl

j ∈Spcl
pU (x

pcl
j ) that this sample Spcl is

observed from the output |ψ〉 of the circuit U . The cen-
tral limit theorem implies that

log PrU (Spcl) = −mH(ppcl, pU ) +O(m1/2) , (4)

where

H(ppcl, pU ) ≡ −
N
∑

j=1

ppcl(xj |U) log pU (xj) (5)

is the cross entropy between ppcl(x|U) and pU (x). Note
that if the cross entropy H(ppcl, pU ) is larger than the
entropy H(pU ), this implies that ppcl(x|U) is sampling
bit-strings that have lower probability of being observed
by the circuit U .

We are interested in the average quality of the classical
algorithm. Therefore, we average the cross entropy over
an ensemble {U} of random circuits

EU [H(ppcl, pU )] = EU





N
∑

j=1

ppcl(xj |U) log
1

pU (xj)



 . (6)

We will give numerical evidence in Secs. III (see also
Apps. A and H), and computational complexity the-
ory arguments in Sec. V, that a direct numerical simu-
lation of the evolution is required in order to get an ac-
curate description of the system state after a finite time.
Therefore, consistent with aforementioned insights from
quantum chaos, we assume that the output of a classi-
cal algorithm with polynomial cost is almost statistically
uncorrelated with pU (x). In particular, as we will show
numerically in Secs. III and IV, and in App. H, a direct
numerical simulation of the evolution is required in order
to get an accurate description of the system state after a
finite time.

Thus, averaging over the ensemble {U} can be done
independently for the output of the polynomial classical
algorithm ppcl(x|U) and log pU (x). The distribution of
universal random quantum circuits converges to the uni-
form (Haar) measure with increasing depth [7, 14, 44].
For fixed xj , the distribution of values {pU (xj)} when
unitaries are sampled from the Haar measure also has
the Porter-Thomas form. Therefore, we assume that we
use random circuits of sufficient depth such that

−EU [log pU (xj)] ≈ −
∫ ∞

0

Ne−Np log p dp

= logN + γ . (7)

Note that this equation is similar to Eq. (3), except that
the integrand here is missing a factor of Np. Then using

∑N
j=1 ppcl(xj |U) = 1 we get

EU [H(ppcl, pU )] = logN + γ . (8)

From Eqs. (2-3) and (4-8) we obtain

EU [log PrU (S)− log PrU (Spcl)] ≃ m . (9)

Equation (9) reveals the remarkable property that a typ-
ical sample S from a random circuit U represents a signa-
ture of that circuit. Note that the l.h.s. is the expectation
value of the log of Πx∈S | 〈x|ψ〉 |2/Πxpcl∈Spcl

| 〈xpcl|ψ〉 |2.
The numerator is dominated by measurement outcomes
x that have high measurement probabilities | 〈x|ψ〉 |2 >
1/N . Conversely, the values of xpcl in the denominator
are essentially uncorrelated with the output distribution
of U . Therefore, they are dominated by the support of
the Porter-Thomas distribution with p < 1/N .

B. Cross entropy difference

We note that the result in Eq. (8) also corresponds to
the cross entropy H0 = logN + γ of an algorithm which
picks bit-strings uniformly at random, p0(x) = 1/N .
This leads to a proposal for a test of quantum supremacy.
We will measure the quality of an algorithm A for a given
number of qubits n as the difference between its cross
entropy and the cross entropy of a uniform classical sam-
pler. The algorithm A can be an experimental quantum
implementation, or a classical algorithm implementation
with polynomial or exponential cost as long as it is actu-
ally executed on an existing classical computer. We call
this quantity the cross entropy difference:

∆H(pA) ≡ H0 −H(pA, pU )

=
∑

j

(

1

N
− pA(xj |U)

)

log
1

pU (xj)
. (10)

The cross entropy difference measures how well algorithm
A(U) can predict the output of a (typical) quantum ran-
dom circuit U . This quantity is unity for the ideal ran-
dom circuit if the entropy of the output distribution
is equal to the entropy of the Porter-Thomas distribu-
tion, and zero for the uniform distribution, see Eqs. (3)
and (8).

In an experimental setting we describe the evolution
of the density matrix

ρK = KU (|ψ0〉〈ψ0|) (11)

with a superoperator KU which corresponds to the cir-
cuit U and takes into account initialization, measurement
and gate errors. We refer to the experimental implemen-
tation as Aexp(U) and associate with it the probability
distribution pexp(xj |U) = 〈xj | ρK |xj〉 and sample Sexp.
Consistent with Eq. (1), the experimental cross entropy
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difference is

α ≡ EU [∆H(pexp)] .

Quantum supremacy is achieved, in practice, when

1 ≥ α > C , (12)

where a lower bound for C (see also discussion below) is
given by the performance of the best classical algorithm
A∗ known executed on an existing classical computer,

C = EU [∆H(p∗)] . (13)

Here p∗ is the output distribution of A∗.
The space and time complexity of simulating a ran-

dom circuit by using tensor contractions is exponential
in the treewidth of the quantum circuit, which is propor-
tional to min(d, n) in a 1D lattice, and min(d

√
n, n) in

a 2D lattice [45, 46]. For large depth d, algorithms are
limited by the memory required to store the wavefunc-
tion in random-access memory, which in single precision
is 2n × 2 × 4 bytes. For n = 48 qubits this requires at
least 2.252 Petabytes, which is approximately the limit of
what can be done on todays large-scale supercomputers.4

For circuits of small depth or less than approximately 48
qubits, direct simulation is viable so C = 1 and quan-
tum supremacy is impossible. Beyond this regime we are
limited to an estimation of the Feynman path integral
corresponding to the unitary transformation U . In this
regime, the lower bound for C decreases exponentially
with the number of gates g ≫ n, see App. H.

We now address the question of how the cross entropy
difference α can be estimated from an experimental sam-
ple of bit-strings Sexp obtained by measuring the output
of Aexp(U) after m realizations of the circuit. For a typ-
ical sample Sexp, the central limit theorem applied to
Eq. (10) implies that

α ≃ H0 −
1

m

m
∑

j=1

log
1

pU (x
exp
j )

, (14)

where H0 is defined after Eq. (8). The statistical error in
this equation, from the central limit theorem, goes like
κ/

√
m, with κ ≃ 1. The experimental estimation would

proceed as follows:

1. Select a random circuit U by sampling from an
available universal set of one and two-qubit gates,
subject to experimental layout constraints.

2. Take a sufficiently large sample Sexp =
{xexp1 , . . . , xexpm } of bit-strings x in the com-
putational basis (m ∼ 103 − 106).

4 Trinity, the sixth fastest supercomputer in TOP500 [47], has ∼ 2
Petabytes of main memory - one of the largest among existing
supercomputers today.

1 N

Bit-string index j (p(xj)-ordered)

0

2

4

6

8

10

12

14

N
p

One Pauli error (averaged)

No errors

FIG. 3. The blue line shows the probabilities pU (xj) of bit-
strings xj sorted in ascending order. The red line shows the
corresponding probabilities after adding a Pauli error (X or
Z) in a single location in the circuit, using the same ordering.
The circuit used has 5× 4 qubits and depth 40 (see Sec. IV).
We average over all possible error locations. The average
over errors gives almost the uniform distribution. The small
residual correlation (slight upper curvature seen in the red
line) is analyzed numerically in App. A.

3. Compute the quantities log 1/pU (x
exp
j ) with the aid

of a sufficiently powerful classical computer.

4. Estimate α using Eq. (14).

For large enough circuits, the quantity pU (x
exp
j ) can no

longer be obtained numerically. At this point, C ≃ 0, and
supremacy can be achieved. Unfortunately, this also im-
plies that α can no longer be measured directly. We argue
that the observation of a close correspondence between
experiment, numerics and theory would provide a reli-
able foundation from which to extrapolate α. The value
of α can be extrapolated from circuits that can be sim-
ulated because they have either less qubits (direct simu-
lation), mostly Clifford gates (stabilizer simulations) [48]
or smaller depth (tensor contraction simulations) [45, 46].

In practice, the necessary value of α in Eq. (12) to
claim quantum supremacy will be limited not only by
the lower bound on C in Eq. (13), but also by the num-
ber of measurements necessary to estimate α with high
precision in Eq. (14), possible experimental biases among
the different circuit types used to extrapolate α, and the
precision in the agreement between theory and experi-
ment. Next, we present a theoretical error model for KU

(see Eq. (11)) and the corresponding estimate of α that
can be compared with experiments.
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III. FIDELITY ANALYSIS

The output ρK of the experimental realization KU of
a random circuit U is

ρK = α̃KU |ψ0〉〈ψ0|U† + (1− α̃K)σK , (15)

where 〈ψ0|U †σKU |ψ0〉 = 0, α̃K is the circuit fidelity,
and we assume incoherent errors. The density matrix σK
represents the effect of errors. The corresponding average
cross entropy difference is

α = EU [H0 +
∑

j

〈xj | ρK |xj〉 log pU (xj)] (16)

= α̃+ (1− α̃)H0 (17)

+ EU



(1− α̃K)
∑

j

〈xj |σK |xj〉 log pU (xj)



 ,

where α̃ = EU [α̃K] is the average fidelity over random
circuits and we used Eq. (3).
Because U is a random circuit implementing a chaotic

evolution, we see in numerical simulations (see Fig. 3
and App. A) that the probabilities pU (x) and 〈x|σK |x〉
are almost uncorrelated. Under this ansatz, by the same
arguments leading to Eq. (8), we obtain that the circuit
fidelity α̃K is approximately equal to the average cross
entropy difference α

α = EU [∆H(pexp)] ≈ α̃ . (18)

Estimating the circuit fidelity by directly measuring the
cross entropy (see Eq. (14)) is a fundamentally new way
to characterize complex quantum circuits. A similar re-
sult is obtained with coherent errors, although they will
result in larger fluctuations around the mean.
The standard approach to studying circuit fidelity is

the digital error model where each quantum gate is fol-
lowed by an error channel [49, 50]. Within this model,
the circuit fidelity can be estimated as [49, 51]

α ≈ exp(−r1g1 − r2g2 − rinitn− rmesn) , (19)

where r1, r2 ≪ 1 are the Pauli error rates for one and
two-qubit gates, rinit, rmes ≪ 1 are the initialization and
measurement error rates, and g1, g2 ≫ 1 are the numbers
of one and two-qubit gates respectively.
We have performed numerical simulations of random

circuits in the presence of errors by introducing a depo-
larizing channel after each gate [33, 34, 49, 50, 52–55]
(see Sec. IV for details about the circuits design). Errors
in the depolarizing channel after each two-qubit gate are
emulated by applying one of the 15 possible combinations
of products of two Pauli operators (excluding the iden-
tity) with an equal probability of r2/15. Similarly, we
apply a randomly selected single Pauli matrix after each
one-qubit gate with an equal probability of r1/3. Initial-
ization and measurement errors are simulated by apply-

15 20 25 30 35 40 45 50

Number of qubits

0.0

0.2

0.4

0.6

0.8

1.0

α

Supremacy frontier

r=0.0005

r=0.001

r=0.002

r=0.005

r=0

FIG. 4. The circuit fidelity α as a function of the number
of qubits. Different colors correspond to different Pauli er-
ror rates r2 = rinit = rmes = r and r1 = r/10. Circular
markers correspond to the numerically simulated fidelities,
Eq. (19). Square markers correspond to the average cross en-
tropy difference among 10 instances, Eq. (10). The circuit
depth in these simulations is 40 (see Sec. IV). The red line, at
48 qubits, is a reasonable estimate of the largest size that can
be simulated with state-of-the-art classical supercomputers in
practice. Using state-of-the-art superconducting circuits we
expect α & 0.1 (blue line) for a 7 × 7 circuit. Error bars
correspond to the standard deviation among instances.

ing a bit-flip with probability rinit and rmes respectively.
Figure 4 shows the cross entropy difference, Eq. (10), ob-
tained from these simulations, and the estimated fidelity,
Eq. (19). We observe a good agreement between these
two quantities. The small difference between the cross
entropy difference and the estimated fidelity is due to
residual correlations analyzed numerically in App. A.
Note that the cross entropy difference of the ideal cir-

cuit (r = 0 in the figure) is almost exactly one, indicating
that at this depth all sizes studied are in the Porter-
Thomas regime. Details of the optimizations employed
for the simulation of the larger circuits, of up to 42 qubits,
are given in App. B. These are the largest quantum cir-
cuits simulated to-date for a computational task that ap-
proaches quantum supremacy.
Because chaotic states are maximally entangled [13,

18, 19, 56], even one Pauli error completely destroys the
state [57], as seen in numerical data in Fig. 3. More for-
mally, consider a sequence of arbitrary quantum channels
interleaved with unitaries randomly chosen from a group
that is also a 2-design. This is equivalent to a sequence of
channels with the same average fidelity in which all the
channels (except the last one) are transformed into depo-
larizing channels [53, 55]. Although individual two-qubit
gates are not a 2-design for n qubits, a large part of the
evolution of a typical random circuit takes place in the
Porter-Thomas regime. We therefore make the following
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FIG. 5. Probability distribution of log(NpU (x)) where bit-
strings x are sampled from a circuit of fidelity α. The con-
tinuous step histograms are obtained from numerical simula-
tions with different Pauli error rates r2 = rinit = rmes = r
and r1 = r/10. The values of r are r = 0 for α = 1 (blue),
r = 0.005 for α = 0.43 (red), r = 0.01 for α = 0.18 (green)
and uniform sampling of bit-strings for α = 0. The value of α
is estimated using Eq. (19). The superimposed dashed lines
correspond to the theoretical distribution of Eq. (21). We
chose a circuit of 5× 4 qubits and depth 40 (see Sec. IV).

ansatz for the output state ρK

ρK = α |ψd〉 〈ψd|+ (1− α)
11

N
. (20)

As seen in Fig. 2, errors alter the shape of the Porter-
Thomas distribution, approaching the uniform distribu-
tion as α→ 0.
The cross entropy difference ∆H defined in Eq. (10) is

given by the probability distribution of log(pU (x)) where
the bit-strings x are sampled from the output ρK of a
circuit implementation with fidelity α. Using Eq. (20)
and the Porter-Thomas distribution for pU (x) we obtain

Prα(z) = ez−ez (1 + α (ez − 1)) , (21)

where z = log(Np). If bit-strings are sampled uniformly,
− log pU (x) has a Gumbel distribution. We find a good
fit between this expression and numerical simulations,
see Fig. 5. The value of α corresponding to a given Pauli
error rate per gate can be estimated using Eq. (19).

IV. CONVERGENCE TO PORTER-THOMAS

In this section we report the results of numerical simu-
lations on the required depth to approximate the Porter-
Thomas distribution using planar quantum circuits that
would be feasible to implement using state-of-the-art su-

1 2 3 4

5 6 7 8

FIG. 6. Layouts of CZ gates in a 6 × 6 qubit lattice. It is
currently not possible to perform two CZ gates simultaneously
in two neighboring superconducting qubits [33, 34, 49, 52]. We
iterate over these arrangements sequentially, from 1 to 8.

perconducting qubit platforms [33, 34, 49, 52]. The
following circuits were chosen through numerical opti-
mizations to minimize the convergence time to Porter-
Thomas.

1. Start with a cycle of Hadamard gates (0 clock cy-
cle).

2. Repeat for d clock cycles:

(a) Place controlled-phase (CZ) gates alternating
between eight configurations similar to Fig. 6.

(b) Place single-qubit gates chosen at random
from the set {X1/2,Y1/2,T} at all qubits that
are not occupied by the CZ gates at the same
cycle (subject to the restrictions below). The
gate X1/2 (Y1/2) is a π/2 rotation around
the X (Y ) axis of the Bloch sphere, and the
non-Clifford T gate is the diagonal matrix
{0, eiπ/4}.

In addition, single-qubit gates are placed subject to the
following rules:

• Place a gate at qubit q only if this qubit is occupied
by a CZ gate in the previous cycle.

• Place a T gate at qubit q if there are no single-
qubit gates in the previous cycles at qubit q except
for the initial cycle of Hadamard gates.

• Any gate at qubit q should be different from the
gate at qubit q in the previous cycle.

In the numerical study we calculate statistics corre-
sponding to measurements in the computational (or Z)
basis after each cycle. Because the CZ gates are diagonal
in this basis, some gates before the measurement could be
simplified away. The circuit would be harder to simplify
if a cycle of Hadamards is applied before measuring in
the Z basis. We did not apply a final cycle of Hadamards
in the numerical study because it would double the com-
putational run time, as the cycle of Hadamards would
have to be undone after collecting statistics at cycle t
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FIG. 7. Mean entropy of the output distribution as a func-
tion of depth. The main figure pertains to circuits with
7 × 6 qubits, and the inset pertains to circuits with 6 × 6
qubits. The black dashed lines correspond to the entropy of
the Porter-Thomas distribution. Error bars are standard de-
viations among different circuit instances.

before moving to cycle t+ 1. We argue that the Porter-
Thomas form of the output distribution, characteristic of
chaotic systems, makes it unlikely that these circuits can
be simplified substantially (see also Secs. I and V).
Random circuits approximate a pseudo-random distri-

bution [7, 58] with logarithmic depth in a fully connected
architecture [14, 15, 17]. These circuits can be embedded
with depth proportional to

√
n, up to polylogarithmic

factors in n, in a 2D lattice [59]. Consistent with our ear-
lier discussion, we study how the entropy of the circuit
output converges to the entropy of the Porter-Thomas
distribution, Eq. (3). Figure 4 (r = 0 line) shows that for
all sizes of circuits up to 7×6 qubits, constructed accord-
ing to the restrictions given above, our simulations reveal
that the output distribution has the same entropy as the
Porter-Thomas distribution. Figure 7 shows the output
distribution entropy as a function of circuit depth. Cir-
cuits approach the Porter-Thomas regime with approx-
imately ten cycles. Note that the initial entropy corre-
sponds to the uniform distribution due to the first layer
of Hadamards. Gates in the first cycles are diagonal and
do not change the output entropy.
To develop intuition about the chaotic evolution of the

wavefunction, we focus on the degree of delocalization
of the distribution pU (xj). The degree of delocalization

is captured by the inverse participation ratios IPR
(k)
t =

∑

j | 〈xj |ψt〉 |2k [60, 61], related to the moments of the
distribution. If the wavefunction has support over ξtN

local basis vectors, then IPR
(k)
t ∝ N−k+1ξ−k

t . As t in-
creases, ξt → 1 and the wavefunction becomes a pseudo-
random vector sampled uniformly from Hilbert space. At
that point, finite moments of the distribution converge to
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FIG. 8. Mean normalized inverse participation ratios k ∈
[2, .., 10] of the output distribution (IPR(k) ≃ N 〈pk〉) as a
function of depth for circuits with 7 × 6 qubits. The black
dashed line at the bottom corresponds to the Porter-Thomas
distribution. Error bars correspond to the standard deviation
between different circuit instances.
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FIG. 9. First cycle in a random circuit instance such that the
entropy remains within 4-sigma of the Porter-Thomas entropy
during all the following cycles. Markers show the mean among
instances and error bars correspond to the standard deviation
among circuit instances.

Porter-Thomas, IPR
(k)
t → N−k+1k! [12, 14, 16]. Impor-

tantly, we find numerically that convergence is achieved
for small order moments at a similar depth. This is evi-
denced in Fig. 8 for moments up to k = 10 with circuits
consisting of 7× 6 qubits.
We also studied the expected convergence to Porter-

Thomas with depth proportional to
√
n using a stronger

criterion. The standard deviation of the entropy between



9

different quantum states drawn from the Porter-Thomas
distribution scales as ≈ 0.75·2−n/2. In Fig. 9 we show the
first cycle of each random circuit instance for which the
entropy remains within 4-sigma of the Porter-Thomas
entropy during all the following cycles. These data in-
dicates that the required depth to achieve this criteria
grows sublinearly in n. We show a similar plot for cir-
cuits with denser layouts of CZ gates, which can be more
appropriate for other qubit implementations, in App. E.
We note that a sublinear convergence to the second

moment of the Porter-Thomas distribution is still faster
than rigorously proven bounds for random circuits, such
as Ref. [37]. Interestingly, sparse IQP circuits achieve a
similar property (so-called anticoncentration) with depth
proportional to

√
n, up to polylogarithmic factors in n, in

a 2D lattice [62]. We have numerically verified that the
output distribution of these circuits has the same entropy
(up to small statistical fluctuations of order 2−n/2) as the
Porter-Thomas distribution.

V. COMPUTATIONAL HARDNESS OF THE

CLASSICAL SAMPLING PROBLEM

The distribution pU (x) ∝ 1/2n is highly delocalized in
the computational basis and in any basis obtained from
local rotations of the computational basis. Therefore,
it is impossible to estimate pU (x) for any x, even us-
ing a quantum computer, as doing so would require an
exponential number of measurements. Nevertheless, the
distribution pU (x) can be sampled efficiently by perform-
ing measurements on the state produced by the shallow
random circuit U on a quantum computer. In contrast,
as we argued above from numerical simulations and the
chaotic nature of the evolution, a classical algorithm can
only sample from the distribution pU (x) if it can compute
this function explicitly. This requires resources which
grow exponentially in n, making the problem intractable
even for modest sized random quantum circuits.
This intuitive argument can be made more rigorous

in the asymptotic limit using computational complexity
theory. Previous studies have introduced related sam-
pling problems that a quantum computer can solve with-
out having the ability to estimate pU (x) [20–24, 26–30].
In this section we will extend the method used to show
the computational hardness of sampling commuting ran-
dom circuits (IQP) [23, 29] to the general case of universal
random circuits.
We will first describe the computational complexity

class of estimating a probability ppcl(x) of a polyno-
mial classical sampling algorithm. This is based on the
fact that a random classical algorithm uses random bits,
which is very different from the intrinsic randomness of
quantum mechanics. We will then argue that approxi-
mating pU (x) belongs to a much harder complexity class,
which implies that there does not exist an efficient clas-
sical sampling algorithm.
A stronger recent conjecture states directly that no

polynomial classical algorithm can estimate if pU (x) is
above the median with bias better than ∼ 2−n [46].

A. General overview of the computational

complexity argument

A classical sampling algorithm corresponds to the eval-
uation of a function

f(w, y) = x . (22)

Here the bit-string w = {w1, . . . , wk} encodes the prob-
lem instance, y is a vector of random bits y = {y1, . . . , yℓ}
chosen uniformly and x is the output bit-string. For fixed
w and x, the numberWx of solution vectors y of Eq. (22)
defines the probability q(x) = Wx/2

ℓ of getting a sam-
ple x. Assume that evaluating the function f can be
done in a time which scales polynomially in the number
of input bits k + ℓ, with ℓ polynomial in k. Then, the
problem of determining if there is a solution vector y to
Eq. (22) with fixed w and x belongs to the complexity
class NP. A complexity theory abstraction that solves
this general problem is called an NP-oracle. An impor-
tant result in computer science, the so-called Stockmeyer
Counting Theorem [63], states that probabilistically ap-
proximating the number of solutions Wx, and therefore
q(x), to within a multiplicative factor, can also be per-
formed with an NP oracle, see App. F.

A classical sampling algorithm simulating a quantum
random circuit U must output bit-strings x with prob-
ability q(x) approximating pU (x). The input vector w
to the corresponding function f(w, y) is a description
of the circuit U , which is polynomial in the number of
qubits n. It has been shown that, in the case of com-
muting quantum circuits, the function pU (x) = | 〈x|ψ〉 |2
encodes the partition function of a random complex Ising
model [23, 29]

〈x|ψ〉 = λ
∑

s

eiθHx(s) , Hx(s) = hx ·s+ s·Ĵ ·s , (23)

where Hx(s) is a classical energy, s is a vector of classical

spins ±1, hx is a vector of local fields, Ĵ is the coupling
matrix, iθ is the inverse imaginary temperature and λ
is a scaling constant. The partition function can also
be written as

∑

j Mje
iθEj where Mj is the number of

solutions s to the equation Hx(s) = Ej . In general, the
Mj ’s grow exponentially in the number of classical spins.

The partition function at low real-valued temperatures
T (with θ = i/T ) is hard to approximate only because
the sum in Eq. (23) is dominated by low energy states.
The Stockmeyer Counting Theorem implies that proba-
bilistically approximating the corresponding Mj within
a multiplicative error can be done with an NP-oracle,
because for any given s the energy Hx(s) can be cal-
culated efficiently. This results in a multiplicative er-
ror estimation of the partition function. In contrast, for



10

purely imaginary temperatures i/θ, the sum
∑

j Mje
iθEj

is determined by the intricate cancellations between in-
dividual terms, each exponentially large in magnitude.
A discussion of this cancellation for the case of random
circuits is given in the next subsection. An approxima-
tion of Mj with multiplicative error is not sufficient to
estimate the partition function. Therefore, the case with
purely imaginary temperatures is much harder than the
real-valued case.

These intuitive arguments are supported by the
strongly held conjecture in computational complexity
theory that probabilistically approximating partition
functions with purely imaginary temperatures is much
harder, in the worst case, than any problem which can
be solved NP oracle [23, 25, 64]. Reference [29] argues
that because random instances of Ising models have no
structure making them easier, the same conjecture ap-
plies to any sufficiently large fraction of partition func-
tions of random complex Ising models.

Assume now that there exists an approximate classical
sampling algorithm for the distribution pU with asymp-
totic complexity polynomial in n and small distance in
the ℓ1 norm. From the convergence of the second moment
of pU to the Porter-Thomas distribution found numeri-
cally, it would then follow from the proof in Ref. [29]
that a fraction of these probabilities could be probabilis-
tically approximated with multiplicative error using an
NP-oracle, see App. G. As argued above, this is implau-
sible for a complex partition function with the general
form of Eq. (23). We will show in the next section that
pU (x) can be mapped directly to the partition function
of a quasi three-dimensional random Ising model, with
no apparent structure that makes it easier to approxi-
mate than a random instance. If we conjecture that a
sufficient large fraction of these instances is as hard to
approximate as the worst case, we must conclude that
such an efficient classical sampling cannot be achieved.

B. The partition function for random circuits

While our approach for mapping circuits to partition
functions can be applied to any circuit, we focus here on
the particular case of a quantum circuit U as described in
Sec. IV. Known algorithms for mapping universal quan-
tum circuits to partition functions of complex Ising mod-
els use polynomial reductions to a universal gate set [65–
67]. Here we provide a direct construction, which allows
us to define a random ensemble of Ising models without
apparent structure. We represent the circuit by a prod-
uct of unitary matrices U (t) corresponding to different
clock cycles t, with the 0-th cycle formed by Hadamard
gates. We introduce the following notation for the am-
plitude of a particular bit-string after the final cycle of

the circuit,

〈x|ψd〉 =
∑

{σt}

d
∏

t=0

〈σt|U (t) |σt−1〉 , |σd〉 = |x〉 . (24)

Here |σt〉 = ⊗n
j=1 |σt

j〉 and the assignments σt
j = ±1 cor-

respond to the states |0〉 and |1〉 of the j-th qubit, respec-
tively. The expression (24) can be viewed as a Feynman
path integral with individual paths {σ−1, σ0, . . . , σd}
formed by a sequence of the computational basis states of
the n-qubit system. The initial condition for each path
corresponds to σ−1

j = 0 for all qubits and the final point

corresponds to |σd〉 = |x〉.
Assuming that a T gate is applied to qubit j at the

cycle t, the indices of the matrix 〈σt|U (t) |σt−1〉 will be
equal to each other, i.e. σt

j = σt−1
j . A similar property

applies to the CZ gate as well. The state of a qubit can
only flip under the action of the gates H, X1/2 or Y1/2.
We refer to these as two-sparse gates as they contain
two nonzero elements in each row and column (unlike T
and CZ). This observation allows us to rewrite the path
integral representation in a more economic fashion.

Through the circuit, each qubit j has a sequence of
two-sparse gates applied to it. We denote the length of
this sequence as d(j) + 1 (this includes the 0-th cycle
formed by a layer of Hadamard gates applied to each
qubit). In a given path the qubit j goes through the

sequence of spin states {skj }
d(j)
k=0, where, as before, we have

skj = ±1. The value of skj in the sequence determines the
state of the qubit immediately after the action of the k-
th two-sparse gate. The last element in the sequence is
fixed by the assignment of bits in the bit-string x,

s
d(j)
j = x(j) , j ∈ [1 . . n] . (25)

Therefore, an individual path in the path integral can
be encoded by the set of G =

∑n
j=1 d(j) binary variables

s = {skj } with j ∈ [1 . . n] and k ∈ [0 . . d(j)−1]. One can
easily see from the explicit form of the two-sparse gates
that the absolute values of the probability amplitudes
associated with different paths are all the same and equal
to 2−G/2. Using this fact we write the path integral (24)
in the following form

〈x|ψd〉 = 2−G/2
∑

s

exp

(

iπ

4
Hs(x)

)

. (26)

Here exp(iπHs(x)/4) is a phase factor associated with
each path that depends explicitly on the end-point con-
dition (25).

The value of the phase πHs/4 is accumulated as a sum
of discrete phase changes that are associated with indi-
vidual gates. For the k-th two-sparse gate applied to
qubit j we introduce the coefficient αk

j such that αk
j = 1

if the gate is X1/2 and αk
j = 0 if the gate is Y1/2. Thus,

the total phase change accumulated from the application
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of X1/2 and Y1/2 gates equals

iπ

4
HX1/2

s (x) =
iπ

2

n
∑

j=1

d(j)
∑

k=0

αk
j

1 + sk−1
j skj
2

, (27)

iπ

4
HY1/2

s (x) = iπ

n
∑

j=1

d(j)
∑

k=0

(1− αk
j )

1− sk−1
j

2

1 + skj
2

.

As mentioned above, the dependence on x arises due to
the boundary condition (25). Note that we have omitted
constant phase terms that do not depend on the path s.
We now describe the phase change from the action of

gates T and CZ. We introduce coefficients d(j, t) equal
to the number of two-sparse gates applied to qubit j over
the first t cycles (including the 0-th cycle of Hadamard
gates). We also introduce coefficients τ tj such that τ tj = 1

if a T gate is applied at cycle t to qubit j and τ tj = 0
otherwise. Then the total phase accumulated from the
action of the T gates equals

iπ

4
HT

s (x) =
iπ

4

n
∑

j=1

d
∑

t=0

τ tj
1− s

d(j,t)
j

2
. (28)

For a given pair of qubits (i, j), we introduce coefficients
ztij such that ztij = 1 if a CZ gate is applied to the qubit

pair during cycle t and ztij = 0 otherwise. The total phase
accumulated from the action of the CZ gates equals

iπ

4
HCZ

s (x)

= iπ

n
∑

i=1

i−1
∑

j=1

d
∑

t=0

ztij
1− s

d(i,t)
i

2

1− s
d(j,t)
j

2
. (29)

One can see from comparing (26) with (27)-(29) that
the wavefunction amplitudes 〈x|ψd〉 take the form of a
partition function of a classical Ising model with energy
Hs for a state s and purely imaginary inverse tempera-
ture iπ/4. The total phase for each path takes 8 distinct
values (mod 2π) equal to [0, π/4 . . 7π/4]. The function
Hs(x) can be written as a sum of three different types of
terms

Hs(x) = H(0)
s +H(1)

s +H(2) . (30)

Here

H(0)
s =

n
∑

i=1

d(i)−1
∑

k=1

hisi

+

n
∑

i=1

i−1
∑

j=1

d(i)−1
∑

k=1

d(j)−1
∑

l=1

J kl
ij s

k
i s

l
j . (31)

is the energy term quadratic in spin variables and ex-
pressed in terms of the Ising coupling coefficients J kl

ij

and local fields hki to be given below. It does not de-

pend on the spin configuration x of the final point on the

paths. H
(1)
s is a bilinear function of Ising spin variables

s and x

H(1)
s (x) =

n
∑

i=1

n
∑

j=1

d(i)−1
∑

k=1

bkijs
k
i x

(j) . (32)

The term H(2)(x) depends on x but not s. For brevity,
we do not provide its explicit form.

The local fields hj are computed as

hki = αk+1
i − αk

i − 1

2
Jk
i −

n
∑

j=1

d(j)
∑

l=1

Jk l
ij (33)

and the coupling constants J kl
ij equal

J kl
ij = Jkl

ij +
1

2
δi,j(δk−1,l+δk,l−1)

(

2α
(k+l+1)/2
i − 1

)

(34)

where

Jkl
ij =

d
∑

t=1

δk,d(i,t)δl,d(j,t)z
t
ij , (35)

and

Jk
i =

d
∑

t=1

δk,d(i,t)τ
t
i . (36)

The coupling coefficients bkij in (32) equal

bkij = δk,d(i)−1δij(2α
d(j)
j − 1) + J

kd(j)
ij . (37)

The Ising coupling for spin s
d(j)
j = x(j) induces an addi-

tional local field
∑n

j=1

∑d(i)−1
k=1 bkijx

(j) on spin ski as shown

in (31).

To understand the structure of the graph defined by
the Ising couplings (34) we study the statistical ensem-
ble of J kl

ij . For simplicity, we will analyze circuits com-
posed of d layers, each layer consisting of a cycle of single-
qubit gates followed by a cycle of two-qubit CZ gates (see
App. E). We also assume here that the layout of the two-
qubit CZ gates is random, and that in the single-qubit
gate cycles the gates X1/2, Y 1/2, and T are applied to a
qubit with equal probabilities.

To describe the evolution of qubit states under the ac-
tion of the gates we need to introduce a third dimension
to describe the graph of the Ising couplings, Eq. (34).
For each qubit j we introduce a “worldline” with a grid
of points enumerated by t ∈ [1 . . d], each correspond-
ing to a layer. We denote the layer numbers where the
function d(j, t) increases from k− 1 to k by a two-sparse
gate applied to qubit j as tkj . We associate Ising spins

{skj }
d(j)−1
k=0 to vertices of the graph located at the grid

points {tkj } along the worldline j.
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Consider a pair of vertices corresponding to spins ski
and slj associated with the two adjacent qubits i and j.

Then the coefficient Jkl
ij equals to the number of applied

CZ gates that couple qubits i an j during the sequence
of layers [max(tki , t

l
j) . . (min(tk+1

i , tl+1
j )− 1)]. The distri-

bution of Jkl
ij can be written in the following form

Pr[Jkl
ij = r] ≡ P (r) =

∞
∑

q=0

p(r|q)p(q) , (38)

Here p(q) = 8
9

(

1
3

)2q
is the probability of having no two-

sparse gates applied to qubits i and j for q layers and
then having a two-sparse gate applied to at least one of
them in the (q + 1)st layer. Also p(r|q) =

(

q+1
r

)

prCZ(1 −
pCZ)

q+1−r is the probability of having r CZ gates over
q + 1 layers applied between a given pair of neighboring
qubits. Finally, we have for P (r)

P (r) =















1− pCZ

1 + pCZ/8
, r = 0

9

1 + pCZ/8

(

pCZ/8

1 + pCZ/8

)r

r > 0 .

(39)

For a square grid of qubits pCZ ≃ 1/4. One can see from
(39) that for r ≥ 1 the distribution Pr[Jkl

ij = r] decays
exponentially with r and P (r+1)/P (r) ≃ pCZ/8 ≃ 1/32.
Therefore, the most likely values of Jkl

ij are 0, correspond-
ing to the probability P (0) ≃ 1−pCZ, and 1, correspond-
ing to the probability P (1) ≃ 9pCZ/8. The high proba-
bility of having no traversal couplings between qubits re-
lates to the comparatively slow growth of the treewidth,
see App. C.
For fixed qubit indexes (i, j), it is of interest to derive

the conditional distribution p(l|k) for spin ski to couple
to spin slj . To obtain it we first introduce the probability

pk(t) corresponding to the condition tki = t of having
the k-th vertex located exactly at the layer t of a given
worldline. Not too close to the end of the circuit (d−t≫√
d) we have

pk(t) =

(

t− 1

k − 1

)(

1

3

)t−k (
2

3

)k

,

∞
∑

t=k

pk(t) = 1, (40)

Similarly, the probability pt(l) of having exactly l vertices
located within t layers of a given worldline (tlj ≤ t) equals

p
t(l) =

(

t

l

)(

1

3

)t−l (
2

3

)l

,

t
∑

l=0

p
t(l) = 1 . (41)

The above conditional distribution p(l|k) of the values of
l given k equals

p(l|k) =
∑

t

p
t(l)pk(t) . (42)

Approximating the binomial coefficients with the Stirling

formula we obtain

p(l|k) ≃
√

3

2π(k + l)
exp

(

−3(k − l)2

2(k + l)

)

. (43)

The above equation is asymptotically correct for k, l not
to close to the start and end points of the circuit, and
|k − l| ≪ d.
In summary, the coupling graph corresponding to

the coefficients J kl
ij represents a quasi three-dimensional

structure formed by worldline corresponding to qubits lo-
cated on a 2D lattice. According to (34), in the same
worldline only neighboring vertices are coupled. The
strength of the coupling is ±1/2 depending on the type of
the two-sparse gate. In general, each vertex can be “later-
ally” coupled to other vertices located on the neighboring
worldlines. The probability distribution of the coupling
coefficients has exponential form, Eq. (39). Differences
between the vertex indices that are involved in the lateral
couplings obey a local Gaussian distribution, Eq. (43).
Finally, note that Eq. (26) can be written in the form

〈x|ψd〉 = 2−G/2Z, where Z =
∑7

j=0Mje
i 2π

8
Ej is a parti-

tion function, the Ej ’s are different energies of the Ising
model (mod 8) and Mj ∼ 2G. Furthermore, for a de-

localized state | 〈x|ψ〉 | ∼ 2−n/2. Therefore, the parti-
tion function |Z| ∼ 2(G−n)/2 is exponentially smaller in
G than the individual terms Mj in its sum. This very
strong cancellation prevents any efficient algorithm from
being able to accurately estimate the quantity 〈x|ψ〉 (see
also App. H).
Note that if a quantum circuit uses only Clifford gates

(not T gates), the total phase for each spin configura-
tion in the partition function (mod 2π) is restricted to
[0, π/2, π, 3π/2]. In these case, the corresponding parti-
tion function can be calculated efficiently [25, 64, 68].

VI. CONCLUSION

In the near future, quantum computers without error
correction will be able to approximately sample the out-
put of random quantum circuits which state-of-the-art
classical computers cannot simulate [20–30]. We have
introduced a well-defined metric for this computational
task. If an experimental quantum device achieves a cross
entropy difference surpassing the performance of the
state-of-the-art classical competition, this will be a first
demonstration of quantum supremacy [31]. The cross
entropy can be measured up to the quantum supremacy
frontier with the help of supercomputers. After that
point it can be extrapolated by varying the number of
qubits, the number of non Clifford gates [48], and/or the
circuit depth [45, 46]. Furthermore, the cross entropy can
be approximated independently from estimates of the cir-
cuit fidelity. Quantum supremacy can be claimed if the
theoretical estimates are in good agreement with the ex-
perimental extrapolations.
A crucial aspect of a near-term quantum supremacy
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proposal is that the computational task can only be per-
formed classically through a direct simulation with cost
exponential in the number of qubits. Direct simulations
are required for chaotic systems, such as random quan-
tum circuits [5, 7, 8]. A simulation can be done in sev-
eral ways: evolving the full wavefunction; calculating ma-
trix elements of the circuit unitary with tensor contrac-
tions [45, 46]; using the stabilizer formalism [48]; or sum-
ming a significant fraction of the corresponding Feynman
paths in the partition function of an Ising model with
imaginary temperature, see App. H. We study the cost of
all these algorithms and conclude that, with state-of-the-
art supercomputers, they fail for universal random cir-
cuits with more than approximately 48 qubits and depth
∼ 40.

We related the computational hardness of this prob-
lem, originating from the chaotic evolution of the wave-
function, to the sign problem emerging from the cancella-
tion of exponentially large terms in a partition function of
an Ising model with imaginary temperature. This find-
ing is made more rigorous by results in computational
complexity theory [23, 25, 29, 64]. Following previous
works [24, 29, 69–71], we argue that, under certain as-
sumptions, there does not exist an efficient classical algo-
rithm which can sample the output of a random quantum
circuit with a constant error (in the ℓ1 norm) in the limit
of a large number of qubits n (see Eq. (G2)). Unfortu-
nately, achieving a constant error in the limit of large n
requires a fault tolerant quantum computer, which will
not be available in the near term [69, 70, 72]. Nonethe-
less, it has been argued, also using computational com-
plexity theory, that the exact output distribution of cer-
tain quantum circuits with a constant probability of error
per gate is also asymptotically hard to simulate classi-
cally [73].

A specific figure of merit for a well defined computa-
tional task, naturally related to fidelity, as well as an
accurate error model, are equally crucial for establish-
ing quantum supremacy in the near-term. This is absent
from previous experimental results with quantum sys-
tems which can not be simulated directly [74–80]. With-
out this, it is not clear if divergences between the experi-
mental data and classical numerical methods [74, 78] are
due to the effect of noise or other unaccounted sources.
Furthermore, we note that the numerical simulation and
experimental curves in Ref. [74] are reasonably well fit-
ted by a rescaled cosine. Therefore, these curves can be
approximately extrapolated efficiently classically.

Finally, the problem of sampling from the output dis-
tribution defined by a random quantum circuit is a gen-
eral, well known, computational task. A device which
qualitatively outperforms state-of-the-art classical com-
puters in this task is clearly not simply a device ‘simu-
lating itself’.

The evaluation of effective error models for large
scale universal quantum circuits is a difficult theoreti-
cal and experimental problem due to their complex na-
ture. Therefore, existing proposals involve an expensive

additional unitary transformation to the initial state [53]
or are restricted to non-universal circuits [81]. Our pro-
posal based on experimental measurements of the cross
entropy, represents a novel way of characterizing and val-
idating digital error models, and open quantum system
theory in general. The method introduced here can also
be applied to other systems, such as continuous chaotic
Hamiltonian evolutions.
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Appendix A: Residual correlations after discrete

errors

In this appendix we analyze numerically the residual
correlations between the output of an ideal circuit and
the output when a single X error (bit-flip) or Z error
(phase-flip) is applied to one of the qubits. This residual
correlation is responsible for the slight upper curvature
seen in the red line in Fig. 3. It is also principally respon-
sible for the small disparity between the cross entropy
difference and the estimated fidelity seen in Fig. 4.
Figure. 10 shows the residual correlation for a single

Z error (phase-flip) applied at different depths. We see
that a phase-flip does not affect the output distribution
if it is applied close to the end of the circuit. The reason
is that we measure in the computational basis, which is
insensitive to phase errors. Furthermore, the two-qubit
CZ gates used in the circuit commute with Z errors.
Figure. 11 shows the residual correlation for a single

X error (bit-flip). Bit-flip errors do not have any effect
after the cycle of Hadamards at the beginning of the cir-
cuit (see Sec. IV), which rotate the initial state (in the
computational basis) to the x basis. Some bit-flip errors
towards the end of the circuit also do not affect corre-
lations because the corresponding X error can get acted
upon by a Hadamard-like gate, such as Y1/2. This ro-
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FIG. 10. Two-dimensional histogram of residual correlations
after a single Z error (phase-flip) is applied at different depths.
We calculate numerically the correlation between the output
of the circuit of Fig. 3, with 5× 4 qubits and total depth 40,
and the output when a phase flip is applied to one of the 20
qubits.
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FIG. 11. Two-dimensional histogram of residual correlations
for a single X error (bit-flip) applied at different depths. Same
circuit as in Fig. 3 and Fig. 11.

tates the X error into the z basis, in which the state is
measured.

Appendix B: Quantum Simulation Details

In this appendix we summarize the implementation,
optimization and performance of our high-performance
gate-level quantum simulator. Additional details are
available in [82, 83]. This simulation was used for all

the circuits with 6 × 6 and 7 × 6 qubits. Simulations
of smaller circuits, including all the simulations with er-
rors, were performed with a different simulator running
in local workstations.
In order to simulate quantum circuits on a classical

computer, we implement a distributed high-performance
quantum simulator that can simulate general single-qubit
gates and two-qubit controlled gates. We perform a num-
ber of single- and multi-node optimizations, including
vectorization, multi-threading, cache blocking, as well as
gate specialization to avoid communication. Using Edi-
son, distributed Cray XC30 system at National Energy
Research Scientific Computing Center (NERSC), we sim-
ulate random quantum circuits of up to 42 qubits, with
an average time per gate of 1.72 seconds. These are the
largest quantum circuits simulated to-date for a compu-
tational task that approaches quantum supremacy.

1. Background

Given n qubits, our simulator evolves a 2n state vector,
using single-qubit as well as two-qubit controlled gates.
Let Usq be a 2×2 unitary matrix that represents a single-
qubit gate operation:

Usq =

(

u11 u12
u21 u22

)

.

To perform gate Usq on qubit k of the n-qubit quantum
register, we apply Usq to the pairs of amplitudes whose
indices differ in the k-th bits of their binary index:

α′
∗...∗0k∗...∗

= u11 · α∗...∗0k∗...∗ + u12 · α∗...∗1k∗...∗

α′
∗...∗1k∗...∗

= u21 · α∗...∗0k∗...∗ + u22 · α∗...∗1k∗...∗

(B1)

A generalized two-qubit controlled-U gate, with a con-
trol qubit c and a target qubit t, works similarly to a
single-qubit gate, except that only the pairs of amplitudes
for which c is set are affected, while all other amplitudes
are left unmodified.

2. Implementation and Optimization

The implementation of single- and two-qubit controlled
gates follows directly Eq. B1. For example, to apply a
single-qubit gate to qubit k, we iterate over consecutive
groups of amplitudes of length 2k+1, applying Usq to ev-
ery pair of amplitudes that are 2k elements apart. To
achieve high performance, we perform the following op-
timizations.
Vectorization: Exploring data parallelism is funda-

mental to the high performance and energy efficiency
of modern architectures. Modern Intel CPUs support
data parallelism in the form of SIMD (Single Instruction
Multiple Data) instructions, such as AVX2 [84]. These
instructions perform four double-precision operations si-
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multaneously on four elements of the input registers. Our
implementation maps every two pairs of complex ampli-
tudes into four-wide SIMD instructions; each pair, which
operates on real and imaginary parts, uses half of the
SIMD register.5

Multithreading: Modern multi- and many-core CPUs
support execution of many concurrent hardware threads.
We parallelize single- and two-qubit controlled gate op-
erations on these threads using OpenMP 4.0 [85]. We
adaptively exploit thread-level parallelism either across
groups or within a single group. Namely, we first try
to divide groups of amplitudes evenly among all threads.
When there are not enough groups to use all available
threads, we explore thread parallelism within a group.
Cache Blocking: Single and controlled qubit operations

perform a small amount of computation, and, as a result,
their performance is limited by memory bandwidth. To
increase arithmetic intensity of the quantum simulator,
one can form larger gate matrices as a tensor product of
several parallel gates. As a result, subsets of amplitudes
are reused over matrix columns, but at the expense of
redundant computation, which grows exponentially with
the number of combined gates. Our approach identifies
and operates on groups of consecutive gates which update
a small portion of the state vector, common to all the
gates, that also fits into Last Level Cache (LLC). LLC
offers much higher bandwidth than main memory, which
improves the performance of the simulator. LLC also
has much smaller capacity, which limits this optimization
only to the gates that operate on lower-order qubits [82].
Multi-node Implementation: Single node quantum

simulation is limited by the size of the physical mem-
ory of the compute node.6 To simulate larger numbers of
qubits requires a distributed implementation. Our dis-
tributed simulation partitions a state vector of 2n ampli-
tudes (2n+4 bytes) among 2p nodes, such that each node
stores a local state of 2n−p amplitudes. Given single- or
controlled two-qubit gate operations on the target qubit
k, if k < n − p, the operation is fully contained within
a node; otherwise it requires inter-node communication.
Our communication scheme follows [86], where two nodes
exchange half of their state vectors into each other’s tem-
porary storage, compute on exchanged halves, followed
by another pair-wise exchange. In contrast to [86] which
requires large temporary space to hold exchanged halves,
our implementation requires very small temporary stor-
age and is thus much more memory efficient.
Gate Specialization [83, 87]. To further reduce the

run-time of the simulator, we take advantage of the spe-
cialized structure of each gate matrix. For example, the

5 Intel recently announced that the second generation Intel R© Xeon

Phi
TM

architecture will also support eight-wide AVX512. This
will allow simultaneous operations on four pairs of amplitudes,
and will enable additional performance benefits.

6 While is conceivable to hold the state on the secondary storage
device, the latter is significantly slower than main memory, thus
rendering most interesting quantum simulations unpractical.

entries of a Hadamard matrix are real, which reduces the
extra overhead of complex arithmetic. This is particu-
larly helpful when combined with cache blocking which
makes the simulation more compute bound. Recognizing
diagonal gates, such as T gates, allows one to avoid inter-
node communication, while recognizing an entry equal to
1.0 on the main diagonal of the diagonal gates (as in Z
or T gates), reduces memory bandwidth requirements by
2×, and results in commensurate performance improve-
ments.

3. Performance

We performed quantum simulations on Edison super-
computer [88]. Edison is a distributed Cray XC30 sys-
tem at National Energy Research Scientific Computing
Center (NERSC), ranks # 39 in the latest TOP500 list,
and consists of 5,576 compute nodes. Each node is a
dual-socket Intel R©Xeon E5 2695-V2 processor with 12
cores per socket, each running at 2.4GHz. Each core is
a superscalar, out-of-order core that supports 2-way hy-
perthreading and offers AVX support. All 12 cores share
a 30MB L3 last level cache and a memory controller con-
nected to four DDR3-1600 DIMMs that together pro-
vide 64GB of memory per node (32GB per socket). The
nodes are connected via Cray Aries with Dragonfly topol-
ogy. We use OpenMP 4.0 [85] to parallelize computation

among threads. We also use Intel R© Compiler v15.0.1

and Intel R© Cray MPI 7.3.1 library.
The time to simulate an n-qubit quantum circuit on

2p nodes is proportionate to

f
G2n−p

Bmem
+ (1− f)

(

G2n−p

Bmem
+
G2n−p

Bnet

)

.

Here, G is the total number of gates, Bmem is achiev-
able memory bandwidth, Bnet is achievable bidirectional
network bandwidth, and f is the fraction of gates which
do not require communication. The first term gives the
time to simulate gates that do not require communica-
tion, while the second term gives the time to simulate
gates that communicate. Thus we expect gate opera-
tions which require communication to be 1+Bmem/Bnet

slower than gates which communicate. On Edison, the
highest achievable memory bandwidth is 50 GB/s per
socket, while the highest achievable bidirectional network
bandwidth is 7 GB/s per socket [89]. Thus the expected
slowdown of gates that require communication, compared
to gates that do not, is ∼ 8×.
Figure 12 reports benchmarks of the performance

of a single-qubit Hadamard gate on 16, 256, and
4,096 sockets, simulating 34, 38, and 42 qubits, re-
spectively, while keeping the problem size per socket
constant (i.e., 230 double complex amplitudes, or 234

bytes). Gates performed on qubits 0 − 30 require no
inter-socket communication and take ∼0.82 seconds per
gate. This corresponds to 42 GB/s memory bandwidth
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FIG. 12. Gate benchmarking results on multiple nodes (sock-
ets) for the single-qubit Hadamard gate. The x-axis is the
position of the qubit where the gate is applied. Operations
on qubits in position 30 and above require network communi-
cation. The magnitude of the jump in the time per gate after
position 30 is commensurate with the ratio between network
and memory bandwidth. Numbers in the labels show achieved
bandwidth for the higher ordered qubits.

(2 [accesses (read/write)] ·234 [bytes]/0.82 [seconds]), or
84% of highest achievable bandwidth.

Gates applied to higher-order qubits, 30 and above, re-
quire communication, which increases the time per gate.
For example, for a 36-qubit system simulated on 16 sock-
ets, the time per gate increases to 7.6 seconds, which
corresponds to 4.8 GB/s network bandwidth. The 9×
increase compared to the no-communication case is con-
sistent with our expectation, discussed earlier. As we
increase the number of sockets, the time per gate fur-
ther increases for higher order qubits. For example, for
a 42-qubit system on 4,096 sockets, the time to apply a
Hadamard gate to qubit 41 is 29 seconds – a nearly three-
fold increase compared to applying a Hadamard gate to
qubit 31. This corresponds to 1.18 GB/s network band-
width, which is almost a 6× drop, compared to the best
achievable bandwidth of 7 GB/s. This drop is consistent
with the detailed bandwidth analysis of Aries intercon-
nect in Ref. [89]. Intuitively, the drop is due to the fact
that higher-order qubits result in a larger distance be-
tween communicating sockets, which, in turn, results in
increased volume of communication over global links and
thus strains the bi-section bandwidth of the system.

Table I compares simulator performance characteris-
tics of five random circuits with different lattice dimen-
sions and number of qubits. The table is broken into
five sections, one for each circuit. For each circuit, we
show the characteristics for three levels of optimization:
without specialization, with specialization, and with both

specialization and cache blocking (cb) enabled. Circuits
with 20, 24 and 30 qubits are simulated on a single socket,
while circuits with 36 and 42 qubits are simulated on 64
and 4,096 sockets, respectively.

Specializing the gates reduces run-time of a 20-qubit
circuit by 1.46×, compared to 1.26× run-time reduction
for 24- and 30-qubit circuits, as shown in the first three
sections of the table. As mentioned in Section B 2, spe-
cializing gates, such as T and CZ, reduces memory traf-
fic by 2×. This reduces the simulation time of these
gates on 24- and 30- qubit systems, whose state does not
fit into Last Level Cache (LLC), making their perfor-
mance bounded by memory bandwidth. In addition to
2× reduction in memory traffic, gate specialization also
reduces compute requirements by as much as 4×: for ex-
ample, without specialization, applying a T gate results
in four complex multiply-adds per pair of state elements,
while with specialization applying a T gate results in only
one complex multiply-add. This reduces the simulation
time of a 20-qubit system, whose 17 MB state fits into
the 30 MB of the Last Level Cache (LLC), making its
performance compute-bound. Thus gate specialization
results in higher run-time reduction for a 20-qubit circuit
than for 24- and 30-qubit circuits. Another consequence
of the fact that the state of a 20-qubit circuit fits into
LLC is that cache blocking optimization does not take
effect. Furthermore, for 24- and 30-qubit circuits, cache
blocking reduces the average time per gate by 2.1× and
1.6×, respectively. A 30-qubit circuit benefits less from
cache blocking, compared to a 24-qubit circuit, because
it has fewer gates that can be fused, as shown in the fifth
column.

The last two sections of the table show performance
statistics for a 36- and a 42-qubit circuits, which are sim-
ulated on 64 and 4,096 sockets, respectively. As Fig-
ure 12 shows, for a 36-qubit simulation the time per gate
varies between 0.8 seconds (when there is no communi-
cation) and 8 seconds (when communication is required).
Note that only 16% of the gates require communication,
as shown in the second column. As a result, we mea-
sure an average time of 1.5 seconds per gate, as shown
in the fourth column of the table. Gate specialization
more than halves the number of gates that require com-
munication. This results in 1.08 seconds per gate: 1.4×
reduction of average time per gate, compared to no spe-
cialization. Combining cache blocking optimization with
specialization reduces the time per gate down to 0.76
seconds: an additional 1.4× reduction compared to spe-
cialization only. As shown in the fourth column, for a
36-qubit circuit, we are able to fuse over five consecu-
tive gates, on average. Overall, both gate specialization
and cache blocking reduce the average time per gate as
well as the total run-time of a circuit with depth 25 (last
column) by nearly 2×.

The last row shows the simulator performance on a
42-qubit random circuit when both gate specialization
and cache blocking are used. Compared to a 36-qubit
random circuit, the number of gates per level on a 42-
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Optimization % of # of # of Avg. time Time per

Level comm sockets fused per gate (sec) Depth-25 (sec)

5× 4 circuit : 20 qubits, 10.3 gates per level, 17 MB of memory

no spec 0.0% 1 n/a 0.00022 0.057

spec 0.0% 1 n/a 0.00015 0.039

spec+cb 0.0% 1 0.00 0.00015 0.039

6× 4 circuit : 24 qubits, 12.5 gates per level, 268 MB of memory

no spec 0.0% 1 n/a 0.0111 3.466

spec 0.0% 1 n/a 0.0088 2.741

spec+cb 0.0% 1 7.01 0.0041 1.294

6× 5 circuit : 30 qubits, 16.2 gates per level, 17 GB of memory

no spec 0.0% 1 n/a 0.721 292.2

spec 0.0% 1 n/a 0.572 231.8

spec+cb 0.0% 1 5.64 0.349 141.3

6× 6 circuit : 36 qubits, 19.5 gates per level, 1 TB of memory

no spec 15.9% 32 n/a 1.51 735.1

spec 6.2% 32 n/a 1.08 526.7

spec+cb 6.2% 64 5.40 0.76 369.0

7× 6 circuit : 42 qubits, 23.0 gates per level, 70 TB of memory

spec+cb 11.2% 4,096 5.54 1.72 989.0

TABLE I. Simulator performance comparison of five random circuits: 5× 4, 6× 4, 6× 5, 6× 6, and 7× 6 . First column lists
three levels of optimizations, for each circuit. Second column shows the fraction of gates which require communication (1− f).
Third and fourth columns show the number of sockets used, and average number of fused gates to enable cache blocking (cb)
optimization, respectively (see Sec. B 2). The last two columns show average time per gate and time per circuit with depth 25,
respectively.

qubit random circuit has increased by almost 20%. In
addition, as the second column shows, the fraction of
gates that requires communication has increased by al-
most 2×, while the time per gate has also increased, as
shown in Figure 12. As a result, the average time per
gate on a 42-qubit simulation is 1.72 seconds; a 2.3×
increase compared to a 36-qubit simulation. Overall, it
took 1,589 seconds to simulate a 42-qubit circuit with
the depth of 25: 989 seconds (1.72 seconds per gate ×
23.0 gates per level× 25 levels) to simulate all the gates,
and 600 seconds to compute statistics, such as entropy,
the cross entropy with the uniform distribution and prob-
ability moments.

An improved implementation of a quantum circuit sim-
ulator was recently reported in Ref. [90] after this paper
appeared in the arXiv. Ref. [90] obtains an order of mag-
nitude speedup against the benchmarking reported here
for circuits with 42 qubits, and reports simulations of cir-
cuits with 45 qubits. Nevertheless, if as done in Figs. 7
and Fig. 8, we want to obtain statistics of the final state
at each cycle of the quantum circuit for scientific pur-
poses, the relative speedup will be substantially dimin-
ished.

Appendix C: Numerical estimation of the treewidth

of the Ising model

For a circuit in a 2D lattice of qubits with two-qubit
gates restricted to nearest neighbors, the treewidth of the
corresponding Ising model (see Sec. V) is proportional to
min(d

√
n, n). Figure 13 shows numerical upper bounds

for the treewidth as a function of depth for the circuits
in Sec. IV. The upper bounds were obtained by running
the QuickBB algorithm [91].

Appendix D: Non-Clifford gates

Clifford circuits (circuits which only contain Clifford
gates) can be simulated efficiently [68]. Furthermore, this
method can be extended to simulate circuits which are
dominated by Clifford gates [48]. The only non-Clifford
gate employed on the circuits we have used, as defined in
Sec. IV, is the T gate. Figure 14 plots the number of T
gates. On the one hand, the number of T gates is likely
too big for this simulation method to work for circuits
with 7 × 7 qubits and depth 40. This number can also
be easily increased. On the other hand, the number of T
gates can be decreased at will, which will allow for the
verification of circuits with even 7 × 7 qubits, when a
direct simulation is likely no longer possible.
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FIG. 13. Numerical upper bound for the treewidth of the
interaction graph of the Ising model corresponding to circuits
with 6× 6, 7× 6, and 7× 7 qubits as a function of the circuit
depth (see Sec. VB).
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FIG. 14. Number of non-Clifford T gates as a function of
depth for circuits with 6×6, 7×6, and 7×7 qubits. Error bars
are the standard deviations among random circuit instances.

Appendix E: Depth to reach Porter-Thomas for

denser 2D circuits

It is currently not possible to perform two CZ
gates simultaneously in two neighboring superconducting
qubits [33, 34, 49, 52]. This restriction was used for the
circuits of the main text, see Fig. 6. In this appendix we
report simulations of circuits in a 2D lattice where, ignor-
ing this particular restriction, a two-qubit gate is applied
to every qubit in each cycle of CZ gates. In order to get
a smoother scaling for circuits of different sizes, we use
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FIG. 15. First cycle in a random circuit instance such that the
entropy remains within 4-sigma of the Porter-Thomas entropy
during all the following cycles. Markers show the mean among
instances and error bars correspond to the standard deviation
among circuit instances. Depth is measured in layers, and
each layer is a cycle of random single-qubit followed by a
cycle of CZ gates.

periodic boundary conditions for the layout of two-qubit
gates. We find numerically a good convergence to the
Porter-Thomas distribution for the following circuits.
We use the same single-qubit gates as in the main text,

{X1/2,Y1/2,T}. In addition we use two-qubit CZ gates.
The circuits are:

1. Initialize in the state |0〉⊗n
.

2. Apply a Hadamard gate to each qubit.

3. Apply a random circuit with a stack of depth d,
where each layer has the following two clock cycles:

(a) Apply a clock cycle of random single-qubit
gates to all qubits.

(b) Apply a clock cycle of two-qubit CZ gates.

We follow the same restrictions for the placement of
single-qubit gates as in Sec. IV. For the cycle of two-
qubit gates, we follow a similar sequence to the layouts
of Fig. 6, but now every qubit participates in exactly
one CZ gate. In addition, as mentioned above, we use
periodic boundary conditions.
Figure 15 shows the first layer of each random circuit

instance for which the entropy remains within 4-sigma of
the Porter-Thomas entropy during all the following layers
(similar to Fig. 9). Note that we now measure the depth
in layers, and each layer consists of a cycle of single-qubit
gates and a cycle of two-qubit gates. Physically, though,
cycles of single-qubit gates are normally faster than cycles
of two-qubit gates.
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Appendix F: Outline of Stockmeyer Counting

Theorem

In this section we outline the main ideas behind the
Stockmeyer Counting Theorem [63, 92, 93]. As discussed
in Sec. VA an NP-oracle is a computational complexity
theory construct that determines if a given equation

f(z) = x (F1)

has any solutions, see for example Eq. (22). The function
f maps bit-strings to bit-strings and can be evaluated in
polynomial time in the input size n. The Stockmeyer
Counting Theorem states that an NP-oracle also suffices
to determine, with high probability, an approximation
q̃(x) to the number of solutions q(x) of Eq. (F1)

|q̃(x)− q(x)| < q(x)/poly(n) (F2)

where poly(n) denotes any chosen polynomial in n. The
main ingredient is the use of so-called hash functions,
described below, to estimate if there are at least 2k solu-
tions. The result then follows by trying different values
of k ≤ n.

A hash function hn,m maps an n-bit-string to an m-
bit-string with n > m. Let’s consider the subset Th of
bit-strings which are mapped to 0 by h. Let Hn,m be a
sufficiently random family of hash functions (a pairwise
independent family). Let S be a subset of n-bit-strings
of size |S| sufficiently larger than 2m. Because a random
hn,m ∈ Hn,m selects a random Th, the size of the sub-
set S ∩ Th is concentrated around its expectation value
|S|/2m [94].

Consider now the set S ≡ {z : f(z) = x} of solutions z
to Eq. (F1). We can use a random family of hash func-
tions to construct an algorithm that with finite probabil-
ity of success, 3/4 for example, can distinguish between
|S| > 2k and |S| ≤ 2k, where k = m + 5. This is done
using a single NP-oracle call to check if there are a finite
number of elements S mapped to 0, 48 for example, by
a random hash function from Hn,m. The probability of
success can be amplified to 1−1/(4κ) with κ invocations
of the NP-oracle.

Appendix G: Multiplicative approximation to |Z|2

from the Porter-Thomas distribution

We recall from the discussion in Sec. VB that each
output probability of a random quantum circuit pU (x)
is proportional to the partition function of a complex
Ising model. In this appendix we review why approx-
imate sampling with constant variational distance from
the output of random circuits implies a probabilistic mul-
tiplicative error approximation to such partition func-
tions with an NP-oracle [24, 29]. We follow the proof
from Ref. [29], but use the Porter-Thomas distribution,
instead of their anti-concentration bound.

Let q(x) denote the output probability of a classical
sampling algorithm for a bit-string x of our choice, and
q̃(x) an approximation obtained using the Stockmeyer
Counting Theorem. From Eq. (F2) and the triangle in-
equality we obtain

|q̃(x)− p(x)| ≤ (1 + 1/poly(n)) |q(x)− p(x)|
+ p(x)/poly(n) . (G1)

Let us suppose what we want to disprove: a classical
sampling algorithm Apcl(U) with probabilities q(x) and
polynomial computational time in n which achieves an ǫ
approximation in the variational distance to the output
of any given quantum random circuit

∑

x

|q(x)− pU (x)| < ǫ . (G2)

We will show that then pU (x) can be approximated using
Stockmeyer Counting Theorem, which is conjectured to
be impossible.

From Markov’s inequality we have, for any 0 < δ < 1,

Prx

(

|q(x)− pU (x)| ≥
ǫ

2nδ

)

≤ δ (G3)

where x is picked uniformly at random. Setting δ = 4ǫ
we obtain

Prx

(

|q(x)− pU (x)| ≤
1

2n+2

)

≥ 1− 4ǫ . (G4)

Therefore, with probability 1− 4ǫ, we have

|q̃(x)− pU (x)| ≤
1 + 1/poly(n)

2n+2
+ pU (x)/poly(n) .

(G5)

Set, for example, ǫ = (8e)−1 ≈ 0.046. If, as found
numerically in Sec. IV, we assume that the output of U
has Porter-Thomas distribution, then

Pr
(

pU (x) > 2−n
)

= 1/e . (G6)

Eqs. (G5) and (G6) imply that q̃(x) approximates pU (x)
up to a multiplicative error 1/4 + o(1) with probability
at least 1/e−4ǫ = (2e)−1. A similar bound can be found
using only the second moment of the Porter-Thomas dis-
tribution [29].

From Sec. VB we have that pU (x) = λ|Z|2 where λ is a
positive known constant and Z is the partition function of
a complex Ising model. Therefore, if q̃(x) approximates
pU (x) up to a multiplicative error 1/4+o(1), then q̃(x)/λ
approximates |Z|2 up to the same multiplicative error.
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Appendix H: Bayesian estimation of output

probabilities

In this appendix we study a polynomial classical algo-
rithm for approximately sampling the output distribution
of a circuit U . The sampling follows from on an approx-
imation to the output probability pU (x) of a bit-string
x. As has been discussed in Sec. VB, the amplitudes of
the output state of a random quantum circuit U can be
written in the form of a Feynman path integral where
each path is encoded in the assignment of the vector s
of Ising spins, and the phase associated with the path
is given by the energy of an Ising model Hx(s). The
approximation algorithm considered here is a Bayesian
estimation of the output probability of a given bit-string
after randomly sampling a large number Feynman paths.
The output amplitudes of a random circuit are propor-

tional to the partition function of a random Ising model
Hx(s) at complex temperature,

Ψ = 〈x|ψd〉 =
1√
L

K−1
∑

k=0

Mke
i 2π
K k (H1)

where the k’s are different energies of the Ising model
(mod K), L = 2G, Mk ∼ 2G, and G is the number

of two-sparse gates. The prefactor is 1/
√
L given the

explicit choice of two-sparse gates, see Eq. (26).
We can always attempt to approximate the amplitude

Ψ for circuits of any size by sampling a large number Q
of spins configurations s in the partition function. We
start by counting the number of configurations Qk for
each phase k ∈ [0 . . K − 1] using the Ising model Hx(s).
We can assume that 1 ≪ Qk ≪ L. For example, the
number of spins configurations is L ∼ 2250 for circuits
with 7 × 6 qubits and depth 25. We will use the prior
distribution from Porter-Thomas to derive the posterior
distribution Pr(Ψ|{Qk}). We will see that the result is
equivalent to a circuit fidelity ∼ Q2/(NL). For instance,
even if we sample Q = 1018 spin configurations this will
give a fidelity of approximately ∼ 10−52 for a circuit with
7× 6 qubits and depth 25.
Define the probabilities of the different paths as pk =

Mk/L. The prior probability of an amplitude from the
Porter-Thomas distribution is

Pr(Ψ) ∝ exp(−NΨΨ∗) (H2)

= exp

(

−NL
K−1
∑

k1=0

K−1
∑

k2=0

pk1
pk2

cos
2π

K
(k1 − k2)

)

.

We want to write the probabilities pk in a basis vα that
diagonalizes the kernel cos 2π

K (k1 − k2),

K−1
∑

j=0

cos

(

2π

K
(m− j)

)

vαj = λαv
α
m (H3)

for α ∈ [0 . . K − 1]. The components vαj of the eigenvec-

tors of the kernel are

v0j =
1√
K

(H4)

vαj =

√

2

K
cos

(

2π

K
αj

)

, α ∈ [1 . . K/2− 1] (H5)

v
K/2
j =

(−1)j√
K

(H6)

and

vαj =

√

2

K
sin

(

2π

K
(K − α)j

)

, α ∈ [K/2 + 1 . . K − 1] .

The eigenvalues are

λα =
K

2
(δα,1 + δα,K−1) . (H7)

Let c′j be the components of the vector of probabilities
pk in the basis vα. We renormalize them to cj = c′j for

j /∈ {1,K − 1} and c{1,K−1} =
√

NLK/2 c′{1,K−1} to

write

Pr(Ψ) ∝ exp(−(c21 + c2K−1)) (H8)

and

pj =
2

K

√

1

LN

(

c1 cos

(

2π

K
j

)

+ cK−1 sin

(

2π

K
j

))

+
1

K
+

K−2
∑

α=2

cαv
α
j . (H9)

We define

ρk ≡
K−2
∑

α=2

cαv
α
k . (H10)

With this definition, the numbers ρk obey the following
constraints

0 =

K−1
∑

k=0

ρk cos

(

2π

K
k

)

=

K−1
∑

k=0

ρk sin

(

2π

K
k

)

=

K−1
∑

k=0

ρk , (H11)

which will be used later to simplify the posterior proba-
bility.
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The posterior probability for Ψ is

Pr(Ψ|{Qk}) ∝ Q!

K−1
∏

k=0

pQk

k

Qk!
Pr(Ψ) (H12)

∝ exp

(

K−1
∑

k=0

Qk log pk

)

exp
(

−
(

c21 + c2K−1

))

.

The log posterior for c1, cK−1 is

log Pr (c1, cK−1, {ρj}|{Qk})

∝
K−1
∑

j=0

Qj log (pj)−
(

c21 + c2K−1

)

. (H13)

We are interested in the posterior probability p = |Ψ|2.
Note that Np = c21+c

2
K−1, as seen in the Porter-Thomas

form of Eq. (H8). Therefore

Pr(p, {ρj}|{Q}) =
∫ ∞

−∞

∫ ∞

−∞

Pr (c1, cK−1, ρ|Q)

δ

(

c21 + c2K−1

N
− p

)

dc1dc2 . (H14)

After a change of variables c1 = r cosφ, cK−1 = r sinφ
we obtain

Pr(p, {ρj}|{Qj}) =
N

2

∫ 2π

0

Pr
(

√

Np cosφ,
√

Np sinφ, ρ|{Q}
)

dφ . (H15)

Using Eq. (H9) in Eq. (H13) we write the Taylor series
for the log posterior for c1, cK−1 as

log Pr
(

√

Np cosφ,
√

Np sinφ, {ρj}|{Qk}
)

∝
∞
∑

q=1

(−1)q+1

qLq/2
pq/2

K−1
∑

j=0

Qj

(

2 cos
(

2π
K j − φ

)

Kρj + 1

)q

+

K−1
∑

j=0

Qj log

(

ρj +
1

K

)

−Np . (H16)

We keep only the first term in Q/L (using 1 ≪ Q≪ L),
which is

log Pr
(

√

Np cosφ,
√

Np sinφ, {ρj}|{Qk}
)

∝
√

p

L

K−1
∑

j=0

Qj

2 cos
(

2π
K j − φ

)

Kρj + 1

+

K−1
∑

j=0

Qj log

(

ρj +
1

K

)

−Np . (H17)

Exponentiating we get the posterior distribution

Pr
(

√

Np cosφ,
√

Np sinφ, {ρj}|{Qk}
)

∝

e−Npexp





K−1
∑

j=0

Qj log

(

ρj +
1

K

)





(

1 +

√

p

L

K−1
∑

j=0

Qj

2 cos
(

2π
K j − φ

)

Kρj + 1

+
2p

L





K−1
∑

j=0

Qj

cos
(

2π
K j − φ

)

Kρj + 1





2
)

. (H18)

Note that we keep the second term when exponentiating,
which is order Q2/L, but we drop the second term in
Eq. (H16), which is of order Q/L3/2.

We can carry out a further simplification by noticing
that ρj , which is defined in Eq. (H10) from the vector of
probabilities pj , obeys ρj ≪ Q. Therefore, from the form
of Eq. (H18), we see that Pr(p|{Qk}) ≃ Pr(p, {ρ̄j}|{Qk}),
where ρ̄j is the expectation value of ρj consistent with
{Qk}. This value can be obtained maximizing the pos-
terior Eq. (H13) subject to the constraints given in
Eq. (H11).

We now insert Eq. (H18) into Eq. (H15) and carry out
the integration to obtain

Pr(p|{Qk}) = Ce−Npexp





K−1
∑

j=0

Qj log

(

ρ̄j +
1

K

)





(

1 +
p

L

K−1
∑

j1,j2=0

Qj1Qj2

cos
(

2π(j1−j2)
K

)

(Kρ̄j1 + 1) (Kρ̄j2 + 1)

)

. (H19)

Equation (H19) is the posterior probability Pr(p|{Qk})
for an approximation of the output probability p = pU (x)
of a bit-string x after sampling a large number Q of spin
configurations or Feynman paths in the expression for Ψ.
We see that the probability p enters explicitly in the last
term, which is of the order Q2/L. Next, we interpret this
equation more formally.

We argued in the text that the output state ρK of an
implementation with fidelity α of a quantum circuit U
can be modeled with Eq. (20)

ρK = α |ψd〉 〈ψd|+ (1− α)
11

N
. (H20)

Then, the probability pU (x) for bit-strings x sampled
from an implementation with fidelity α has a distribu-
tion

Prα(pU (x)) = N2e−Np

(

αp+
1− α

N

)

, (H21)

see also Eq. (21). We can compare the posterior distri-
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bution, given by Eq. (H19), with Eq. (H21) to obtain an
equivalent “fidelity” α for the Bayesian classical approx-
imate sampling algorithm, Pr(p|{Qk}) = Prα(pU (x)).
First we obtain an expression for the normalization

constant C from the p-independent equation

C exp





K−1
∑

j=0

Qj log

(

ρ̄j +
1

K

)



 = (1− α)N . (H22)

The equation linear in p gives

N2α = C exp





K−1
∑

j=0

Qj log

(

ρ̄j +
1

K

)





1

L

K−1
∑

j1,j2=0

Qj1Qj2

cos
(

2π(j1−j2)
K

)

(Kρ̄j1 + 1) (Kρ̄j2 + 1)
. (H23)

Solving for α we obtain

α =
1

NL

K−1
∑

j1,j2=0

Qj1Qj2

cos
(

2π(j1−j2)
K

)

(Kρ̄j1 + 1) (Kρ̄j2 + 1)
. (H24)

This is the final result, which shows that the equivalent
circuit fidelity of the approximate sampling algorithm is
α ∼ Q2/NL, as promised.
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Phys. Rep. 435, 33 (2006).
[10] O. C. Dahlsten, R. Oliveira, and M. B. Plenio, J. Phys.

A 40, 8081 (2007).
[11] A. Ambainis and J. Emerson, in CCC’07 (IEEE, 2007)

pp. 129–140.
[12] L. Arnaud and D. Braun, Phys. Rev. A 78, 062329

(2008).
[13] C. M. Trail, V. Madhok, and I. H. Deutsch, Phys. Rev.

E 78 (2008).
[14] A. W. Harrow and R. A. Low, Comm. Math. Phys. 291,

257 (2009).
[15] Y. S. Weinstein, W. G. Brown, and L. Viola, Phys. Rev.

A 78 (2008).
[16] W. G. Brown and L. Viola, Phys. Rev. Lett. 104, 250501

(2010).
[17] W. Brown and O. Fawzi, arXiv:1210.6644 (2012).
[18] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205

(2013).
[19] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida,

arXiv:1511.04021 (2015).
[20] S. Aaronson, QIC 3, 165 (2003).
[21] B. M. Terhal and D. P. DiVincenzo, QIC 4, 134 (2004).
[22] S. Aaronson, in Proc. Roy. Soc. London Ser. A, Vol. 461

(2005) pp. 3473–3482.
[23] M. J. Bremner, R. Jozsa, and D. J. Shepherd, Proc. Roy.

Soc. London Ser. A 467, 459 (2011).
[24] S. Aaronson and A. Arkhipov, in STOC (ACM, 2011)

pp. 333–342.
[25] K. Fujii and T. Morimae, New Journal of Physics 19,

033003 (2017).
[26] S. Aaronson, TOCS 55, 281 (2014).
[27] K. Fujii, H. Kobayashi, T. Morimae, H. Nishimura, S. Ta-

mate, and S. Tani, arXiv:1409.6777 (2014).
[28] R. Jozsa and M. Van Den Nest, QIC 14, 633 (2014).
[29] M. J. Bremner, A. Montanaro, and D. J. Shepherd, Phys.

Rev. Lett. 117, 080501 (2016).
[30] E. Farhi and A. W. Harrow, arXiv:1602.07674 (2016).
[31] J. Preskill, (2012), 25th Solvay Conf.
[32] M. L. Mehta, Random matrices, Vol. 142 (Academic

press, 2004).
[33] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank,

E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler,
B. Campbell, and others, Nature 508, 500 (2014).

[34] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, and others, Nature 519, 66 (2015).

[35] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M.
Caves, J. Math. Phys. 45, 2171 (2004).

[36] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki,
arXiv:1208.0692 (2012).

[37] Y. Nakata, C. Hirche, M. Koashi, and A. Winter,
arXiv:1609.07021 (2016).

[38] S. Lloyd, arXiv:1307.0378 (2013).
[39] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2,

754 (2006).
[40] C. Gogolin, M. Kliesch, L. Aolita, and J. Eisert,

arXiv:1306.3995 (2013).
[41] C. Ududec, N. Wiebe, and J. Emerson, Phys. Rev. Lett.

111, 080403 (2013).
[42] S. Aaronson and A. Arkhipov, QIC 14, 1383 (2014).
[43] M. Walschaers, J. Kuipers, J.-D. Urbina, K. Mayer, M. C.

Tichy, K. Richter, and A. Buchleitner, New J. Phys. 18,
032001 (2016).

[44] J. Emerson, E. Livine, and S. Lloyd, Phys. Rev. A 72,
060302 (2005).

[45] I. L. Markov and Y. Shi, SICOMP 38, 963 (2008).

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.30.1610
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVP-4M7V9YY-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ca989800927d6861b0517640d1319766
http://arxiv.org/abs/0808.3758
http://arxiv.org/abs/0808.3758
http://arxiv.org/abs/1210.6644
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://dx.doi.org/10.1103/PhysRevLett.111.127205
http://rspa.royalsocietypublishing.org/content/467/2126/459
http://rspa.royalsocietypublishing.org/content/467/2126/459
http://dx.doi.org/10.1088/1367-2630/aa5fdb
http://dx.doi.org/10.1088/1367-2630/aa5fdb
http://dl.acm.org/citation.cfm?id=2638689
http://arxiv.org/abs/1602.07674
http://www.nature.com/nature/journal/v508/n7497/abs/nature13171.html
http://www.nature.com/nature/journal/v519/n7541/abs/nature14270.html
http://arxiv.org/abs/quant-ph/0310075
http://arxiv.org/abs/1208.0692
http://arxiv.org/abs/1306.3995
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.080403
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.080403
http://dx.doi.org/10.1137/050644756


23

[46] S. Aaronson and L. Chen, arXiv:1612.05903 (2016).
[47] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon,

(2015).
[48] S. Bravyi and D. Gosset, arXiv:1601.07601 (2016).
[49] R. Barends, L. Lamata, J. Kelly, L. Garca-lvarez, A. G.

Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. OMalley,
C. Quintana, P. Roushan, A. Vainsencher, J. Wenner,
E. Solano, and J. M. Martinis, Nat. Comm. 6, 7654
(2015).

[50] E. Knill, D. Leibfried, R. Reichle, J. Britton,
R. Blakestad, J. Jost, C. Langer, R. Ozeri, S. Seidelin,
and D. Wineland, Phys. Rev. A 77, 012307 (2008).

[51] G. G. Carlo, G. Benenti, G. Casati, and C. Mejia-
Monasterio, Phys. Rev. A 69, 062317 (2004).

[52] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezza-
capo, U. Las Heras, R. Babbush, A. Fowler, B. Campbell,
Y. Chen, et al., Nature 534, 222 (2016).

[53] J. Emerson, R. Alicki, and K. Zyczkowski, J. Opt B 7,
S347 (2005).

[54] E. Magesan, J. M. Gambetta, and J. Emerson, Phys.
Rev. Lett. 106 (2011).

[55] E. Magesan, J. M. Gambetta, and J. Emerson, Phys.
Rev. A 85 (2012).

[56] A. Nahum, J. Ruhman, S. Vijay, and J. Haah,
arXiv:1608.06950.

[57] S. Boixo and A. Monras, Phys. Rev. Lett. 100, 100503
(2008).

[58] R. Oliveira, O. C. O. Dahlsten, and M. B. Plenio, Phys.
Rev. Lett. 98 (2007).

[59] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin,
N. Linden, D. Shepherd, and M. Stather, in Proc. Roy.

Soc. London Ser. A, Vol. 469 (2013) p. 20120686.
[60] W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola,

Phys. Rev. E 77, 021106 (2008).
[61] A. De Luca and A. Scardicchio, EPL 101, 37003 (2013).
[62] M. J. Bremner, A. Montanaro, and D. J. Shepherd,

arXiv:1610.01808 (2016).
[63] L. Stockmeyer, in STOC (ACM, 1983) pp. 118–126.
[64] L. A. Goldberg and H. Guo, arXiv:1409.5627 (2014).
[65] D. A. Lidar, New J. Phys 6, 167 (2004).
[66] J. Geraci and D. A. Lidar, New J. Phys 12, 075026

(2010).
[67] G. De las Cuevas, M. Van den Nest, M. Martin-Delgado,

et al., New J. Phys. 13, 093021 (2011).
[68] D. Gottesman, arXiv:quant-ph/9807006 (1998).
[69] G. Kalai and G. Kindler, arXiv:1409.3093 (2014).
[70] A. Arkhipov, Phys. Rev. A 92, 062326 (2015).
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