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Abstract

In many distributed computing environments, collections of applications need

to be processed using a set of heterogeneous computing (HC) resources to

maximize some performance goal. An important research problem in these en­

vironments is how to assign resources to applications (matching) and order

the execution of the applications (scheduling) so as to maximize some perfor­

mance criterion without violating any constraints. This process of matching and

scheduling is called mapping.

1Howard Jay Siegel holds a joint appointment in the Computer Science Department as well.

2Albert I. Reuther is currently with MIT Lincoln Laboratory, Lexington, MA.
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To make meaningful comparisons among mapping heuristics, a system de­

signer needs to understand the assumptions made by the heuristics for (1) the

model used for the application and communication tasks, (2) the model used for

system platforms, and (3) the attributes of the mapping heuristics. This chapter

presents a three-part classification scheme (3PCS) for HC systems. The 3PCS is

useful for researchers who want to (a) understand a mapper given in the litera­

ture, (b) describe their design of a mapper more thoroughly by using a common

standard, and (c) select a mapper to match a given real-world environment.
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In today's interconnected world, many industry, laboratory, and military sites each

use a shared set of networked computers of different types and ages. In such envi­

ronments, there are large applications or collections of applications to be processed.

The workload can be distributed over the set of heterogeneous computing resources

to maximize some performance goal. To accomplish this, the system administrator

or designer must include some method for determining which application tasks to as­

sign to different machines in the network to exploit effectively the heterogeneity of

the system platform. Such methods are applicable to the allocation of resources for

many different types of computing and communication tasks in many types of envi­

ronments, including parallel, distributed, cluster, grid, Internet, embedded, wireless,

and reconfigurable systems.

The system designer may go to the literature to find information about tech­

niques for assigning and scheduling (collectively referred to as "mapping") tasks

in a network of heterogeneous machines. For example, in the literature, the system

designer may find a technique A that is claimed to be better than another technique

B. However, further investigation may show that A can only map independent (non­

communicating) tasks while B can map both independent tasks and communicating
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subtasks within tasks. Thus, A may not be appropriate for the designer's system if

the tasks therein include communicating subtasks (a workload model issue).

The system designer may find a third technique C that also handles communicating

subtasks and is claimed to be better than B. It may be the case that C can incorporate

information about both network contention and network link bandwidths to estimate

communication times, whereas B (probably unreasonably) assumes a "fully con­

nected" network, and is thus unable to use any contention information to estimate

communication times. If a simulation study compares Band C for a system plat­

form that is fully connected (i.e., no contention), it may tum out that B generates

better mappings. However, if Band C are compared for a system platform that is not

fully connected, we may find that B is not better than C, probably because B is not

accounting for the network contention (a platform model issue).

Another important issue is the performance metric that the mapper tries to max­

imize. If both C and a fourth mapping technique D are appropriate for a particular

HC environment, then different criteria may be used to determine which technique

is "better." For example, if the performance metric is minimizing the average task

execution time (not including the time waiting to begin execution), we might choose

the technique (say D) which tries to select the fastest machine for each task. How­

ever, if the performance metric is minimization of the overall completion time of the

workload, we may be more interested in selecting the technique (say C) that, for a

given task, will choose an alternate machine if the fastest machine has a large queue

of tasks waiting to execute (a mapping strategy issue).

Figure I is an illustration of the procedure used above to select a mapping heuris­

tic based on information about the workload model, platform model, and mapping

strategy. The figure uses the heuristics A, B, C, and D mentioned above.

From the above discussion, we observe that to make meaningful comparisons

among mapping heuristics, a system designer needs to understand (a) the model

used for workload, i.e., applications, (b) the model used for system platforms, and (c)

the attributes of the mapping strategies. To accomplish this, we present a three-part

classification scheme (3PCS) for heterogeneous computing systems (Figure 2). The

3PCS builds on the previous work done in [24,29,30,44,50,51,62,66,75,80]. All three

parts of the 3PCS are needed to determine which resource allocation heuristics would

be most appropriate for a given environment, and also to facilitate fair comparisons

among different heuristics. We now describe some terms related to heterogeneous

computing systems to set the stage for describing the 3PCS.

Performing computing and communication tasks on parallel and distributed het­

erogeneous computing (HC) systems involves the coordinated use of different types

of machines, networks, interfaces, and other resources (e.g., [5,31,36,72]). An HC

system may be used to perform a variety of different tasks that have diverse compu­

tational requirements. The resources should be allocated to the tasks in a way that
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FIG. 1. The choice of a mapping technique for a given system depends on the characteristics of the

workload model, the characteristics of the platform model, and the mapping strategy. In this example, A,

B, C, and D are four different mapping techniques discussed in the text.

workload model platform model

mapping strategy

FIG. 2. The three parts of the 3PCS: workload model, platform model, and the mapping strategy.

exploits the heterogeneity to maximize some system performance measure. A cluster

composed of machines of different ages and types is an example of an HC system.

Alternatively, a cluster could be treated as a single machine in an HC suite. An HC

system could also be part of a larger computational grid [34].
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FIG. 3. The workload for a system consists of applications. Applications may be decomposed into

tasks. Tasks may, in tum, be decomposed into two or more communicating subtasks. Some tasks may not

have any subtasks.

The workload to be processed on an HC system consists of one or more ap­

plications (Figure 3). An application is assumed to be composed of one or more

independent (i.e., non-communicating) tasks. It is also assumed that some tasks may

be further decomposed into two or more communicating subtasks. The subtasks have

data dependencies among them, but can be assigned to different machines for execu­

tion. If there are communicating subtasks within an application, inter-machine data

transfers need to be performed when such subtasks are assigned to different ma­

chines.

A key factor in achieving the best possible performance from HC environments

is the ability to effectively and efficiently match (assign) the applications to the ma­

chines and schedule (order the execution of) the applications on each machine (as

well as ordering any inter-machine communications). The matching and scheduling

of applications is defined as mapping. The mapping problem is also called resource

management (or resource allocation) and a mapper is also called a resource manage­

ment system.

The problem of mapping applications and communications onto multiple ma­

chines and networks in an HC environment has been shown, in general, to be NP-
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complete [33], requiring the development of near-optimal heuristic techniques. In

recent years, numerous studies have been conducted on the mapping problem and

mapping heuristics (e.g., [1,9,10,12-14,16,17,19,20,31,37,49,59,63,65,81,84,87]).

A mapper can be used in different ways. For example, we can use it to optimize

a performance metric given a particular configuration of the system (i.e., particular

sets of machines, networks, and protocols). Conversely, we can also use a mapper

to optimize the operational cost of the system that is needed to reach a target value

of performance. For example, a mapper could be used to select particular sets of

machines, networks, and protocols that meet a certain level of performance while

minimizing the dollar cost of the system (e.g., [27,64]).

The 3PCS for HC systems is useful for understanding a mapper. We propose that

when one studies a mapper given in the literature, one should try to "check" the

mapper in the context of the 3PCS. One should ask the questions raised in the 3PCS

regarding the characteristics of the workload model, the platform model, and the

mapping strategy.

The 3PCS is also useful for researchers who want to describe their mapper more

thoroughly by using a common standard. When describing a mapper, one should in­

dicate the appropriate values for all features in the three parts of the 3PCS. In this

regard, the 3PCS may also help researchers see design and environment alternatives

that they might not have otherwise considered during the development of new heuris­

tics.

Additionally, the 3PCS is useful when one wants to select a mapper to match a

given real-world environment. One can use the 3PCS to characterize the environment

in terms of the platform model, workload model, and the mapping strategy. Then one

can characterize different available mappers using the 3PCS, and select one that is

most appropriate for the given environment (possibly with some modification).

Lastly, in the future, the 3PCS for HC systems could focus research towards

the development of a standard set of benchmarks for evaluating resource allocation

heuristics for HC environments. Classes for benchmarks could be defined based on

specified workload, platform, and mapping strategy characteristics.

The work in this chapter was supported in part by the DARPA Quorum Program

project MSHN (Management System for Heterogeneous Networks), by the DARPA

AleE (Agile Information Control Environment) Program, and by the DARPA BADD

(Battlefield Awareness and Data Dissemination) Program. One technical objective

of the MSHN project was to design, prototype, and refine a mapping system as part

of a distributed resource management system that leverages the heterogeneity of re­

sources and workload to deliver the requested qualities of service [20,59]. One aspect

of the AICE and BADD programs involved designing a scheduling system for for­

warding data items prior to their use as inputs to a local application in a wide area

network distributed computing environment [79,78]. The AICE, BADD, and MSHN
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environments are similar in that, in some situations, not all applications or commu­

nication requests can be completed with their most preferred qualities of service by

their deadlines. Thus, the goal of the mapper in these environments is to satisfy a set

of application tasks or communication requests in a way that has the greatest col­

lective perceived value. The 3PCS pertains to both the task environment in MSHN,

and the communication request environment in BADD and AlCE. In some cases, an

application mentioned in this chapter may also refer to a communication request in

the AlCE and BADD context.

The rest of the chapter is organized as follows. Section 2 describes the 3PCS. Sec­

tion 3 characterizes six heuristics from the literature in terms of the 3PCS. Section 4

gives an overview of some related taxonomy studies. A summary of the chapter is

presented in Section 5.

2. Proposed Characterization Scheme

2.1 Overview

A "mixed-machine" HC system is composed of different machines, with possibly

multiple execution models (as in the MEMM classification [30]). Such a system is

defined to be heterogeneous if any features vary among machines enough to result

in different execution performance among those machines. Such features could be

processor type, processor speed, mode of computation, memory size, cache structure,

number of processors (within parallel machines), inter-processor network (within

parallel machines), etc.

The proposed 3PCS for describing mapping heuristics for mixed-machine HC sys­

tems is defined by three major components: (1) workload model, (2) platform model,

and (3) mapping strategy. To properly analyze and compare mapping heuristics for

current and future HC environments, information about all three parts is needed.

The 3PCS attempts to qualitatively define aspects of the environment that can

affect mapping decisions and performance. (Doing this quantitatively in a thorough,

rigorous, complete, and uniform manner is a long term goal of the HC field.) The

3PCS design was based on the existing mapping heuristic literature, as well as our

group's previous research and experience in the field of He. Each part of the scheme

can, of course, be investigated in more detail.

2.2 Workload Model Characterization

The first category of the 3PCS defines the model used for the workload character­

ization. In our context, workload characterization is limited to defining application
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computational and communication characteristics that may impact mapping deci­

sions and relative mapper performance. This workload characterization defines a

model for the applications to be executed on the HC system, and for the communica­

tions to be scheduled on the inter-machine network. Furthermore, the 3PCS includes

application traits that may not be realistic, but do correspond to assumptions a given

researcher may have made when designing and analyzing mapping heuristics in the

literature. Typically, such assumptions are made to simplify the mapping problem in

some way. For example, many researchers assume a given subtask must receive all

of its input data from other subtasks before it can begin executing, when in reality the

subtask may be able to begin with only a subset of data. As another example, some

researchers may assume that the workload is divisible into arbitrary size portions that

could be allocated to different machines [81]. The goal of the 3PCS is to reflect the

environment assumed by the mapping heuristic, so that the workload model can cap­

ture any assumptions made (even if they are unrealistic). The defining traits of such

an application model are explained below and illustrated in the organization chart

given in Figure 4.

workload composition: Does the workload consist of any communicating entities,

or, in other words, do the tasks within a given application have (communicat­

ing) subtasks? A workload that consists of (non-communicating) tasks only is

sometimes termed as a "bag-of-tasks" or "meta-task" (e.g., Braun et al. [20],

Maheswaran et al. [59]) and has a less complicated mapping problem associated

with it.

Are the applications continuously executing, as in some real-time systems (e.g.,

[6,7])? Continuously executing applications are different from "one-shot" appli­

cations that process just one data set and then stop executing in that the former

are usually part of a sensor-fed computing system. For example, the system in

[6] consists of heterogeneous sets of sensors, subtasks, machines, and actua­

tors. Each sensor produces data periodically at a certain rate, and the resulting

data streams are input into subtasks. The subtasks process the data and send

the output to other subtasks or to actuators (see Figure 5). Some of the items

mentioned later in this characterization scheme apply only to the case where

the workload contains communicating subtasks (whether continuously executing

or "one-shot"). Such items will be indicated with the letter "S" written next to

them.

Note that the mapping problem for a system that consists entirely of continuously

executing subtasks often reduces to a problem of allocating subtasks to machines,

i.e., scheduling is not involved. For example, in [6], each machine is capable of

multi-tasking, executing the applications assigned to it in a round robin fashion.

Similarly, a given network link is multi-tasked among all data transfers using that

link.
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workload model

code and data

location and

retrieval/storage

times

QoS
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workload
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execution time
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of execution times
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FIG. 4. The different features of the workload model. The items "communication patterns" and "data

provision and utilization times" are shown under "workload composition" because these items are ap­

plicable only if the workload is composed of communicating subtasks.

communication patterns (8): Does the application have any particular data com­

munication pattern with respect to the source and destination subtasks for each

data item to be transferred? Can the workload be represented as a directed acyclic

graph, or a graph with loops, possibly including a set of inter-communicating co­

routines? For example, assume that for a given application with n subtasks, n - 1

subtasks communicate only with a "master" subtask, and otherwise do not com-
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FIG. 5. The subtasks (denoted by "circles") in this system are continuously executing to process the

data streams being generated by the sensors (denoted by "diamonds"). The output from subtasks is used

to control the actuators (denoted by "rectangles").

municate with each other. Then, the communication times among subtasks can

be reduced much more by mapping this application on a parallel machine with a

"star" network topology than a machine with a hypercube network topology.

data provision and utilization times (8): Can a source subtask release data to con­

sumer subtasks before it completes? Can a consumer subtask begin execution

before receiving all of its input data? For example, the clustering non-uniform

directed graph heuristic [32] assumes that a consumer subtask has to wait for the

completion of the parent subtask if there is data dependency. The time at which in­

put data needed by a subtask or output data generated by a subtask can be utilized

may vary in relation to subtask start and finish times, and can help the mapper

overlap the execution of inter-dependent subtasks.

code and data location and retrieval/storage times: Do tasks require data from

special servers? Are data retrieval and storage times considered? Is the time re­

quired to fetch task code and initial data, as well as storing the final results of a

task, considered part of the task execution time?

workload size: If a mapping heuristic was evaluated by simulation or experimenta­

tion, what size workload was used? The workload size is quantified by

(a) the number of "mappable" entities (tasks and subtasks) present in the work­

load (often considered relatively to the number of machines in the HC suite),

(b) the average size of "service demand," e.g., average machine utilization re­

quired by the mappable entities, average computation time, and

(c) the rate of arrival, i.e., the rate at which the mappable entities become avail-

able for assignment.

The workload size for which a given heuristic is evaluated can impact the relative

performance of different heuristics for a given metric. For example, research in

[59] shows that a certain class of mapping heuristics performs increasingly bet-
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ter than another class for larger workload sizes. Another example is given in the

discussion for workload heterogeneity below.

workload dynamism: Is the complete workload to be mapped known a priori

(static workload), or do the applications arrive in a real-time, non-deterministic

manner (dynamic workload), or is it a combination of the two? Depending on this

classification of the workload, we may need a "static" or a "dynamic" mapping

strategy (defined in the mapping strategy characterization).

arrival times: Are arrival times for applications taken from a real system, or gen­

erated artificially for simulation studies? When taken from a real system, arrival

times will be known exactly. For simulation studies, arrival times can be sampled

from an anticipated probability distribution.

deadlines: Do the applications have deadlines? This property could be further

refined into soft and hard deadlines, if required (e.g., [23,48]). Applications com­

pleted by a soft deadline provide the most valuable results. An application that

completes after a soft deadline but before a hard deadline is still able to provide

some useful data. After a hard deadline has passed, the output from the application

is useless. The "worth" of the execution of a task may decrease as its completion

time increases from the soft to hard deadline.

priorities: Do the applications have priorities (e.g., [48])? Environments that would

require priorities include military systems and machines where time-sharing must

be enforced. Priorities are generally assigned by the user (within some allowed

range), but the relative weights given to each priority are usually determined by

another party (e.g., a system administrator). Priorities and their relative weights are

especially important if the mapping strategy is preemptive (defined in the mapping

strategy characterization).

multiple versions: Do the applications have multiple versions, with different re­

source requirements, that could be executed (e.g., [23,70])? If yes, what are the

relative "values" to the user of the different versions? Many applications have dif­

ferent versions. For example, an application that requires a Fast Fourier Transform

might be able to·perform the Fast Fourier Transform with either of two different

procedures that have different precisions, different execution times, and different

resource requirements.

QoS requirements: Do any applications specify any Quality of Service (QoS) re­

quirements (other than deadlines and priorities mentioned above)? Most QoS

requirements, like security, can affect mapping decisions (e.g., not mapping a

particular application onto a machine of the wrong security classification).

interactivity: Are applications user-interactive (i.e., do they depend on real-time

user input)? Such applications must be executed on machines for which the user

has access or clearance.
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workload heterogeneity: For each machine in the HC suite, how greatly and with

what properties (e.g., probability distribution (e.g., [11])) do the execution times

of the different tasks (or subtasks) vary for any given machine? For subtasks, the

above question applies to message sizes as well.

Workload heterogeneity can affect the failure rate of a heuristic (failure rate is de­

fined in the mapping strategy characterization). It has been shown in [4] that, for a

particular system where the goal was to design static resource allocation heuristics

that balance the utilization of the computation and network resources, an increase

in workload heterogeneity increased the difference in failure rates among some of

the heuristics being considered.

Workload heterogeneity also can impact the suitability of a performance metric

for a given system. For example, the research in [4] shows that the need to mea­

sure system robustness increases as the system "complexity" increases. Based on

[57,58,67,76], system complexity is a function of the system heterogeneity and the

size. Figure 6 shows how the graph of robustness against slack changes in appear­

ance as the system complexity increases. Slack is a proxy measure of robustness,

and is simpler to calculate than the robustness measure introduced in [4]. The un­

derlying systems for the first two graphs (from the left) are identical in size but

different in workload heterogeneity. The third system (right-most) has the same

heterogeneity as the second system but is bigger in size. It can be seen that for the

first system, robustness is tightly correlated with slack. For this system, there is

almost no need to calculate robustness values because the slack values can be used

to approximate robustness. For the second system, however, the need to measure

robustness explicitly increases. For the third system, the need is even more acute.

execution time representation: How are the estimated execution times of tasks and

subtasks on each of the different machines in the HC suite determined? Most map­

ping techniques require an estimate of the execution time of each task and subtask

on each machine (e.g., [53,85,86]).

The two choices most commonly used for making these estimates from historic

or direct information are deterministic and distribution modeling. Deterministic

modeling uses a fixed (or expected) value (e.g., [35]), e.g., the average of ten

previous executions of a task or subtask. Alternatively, the application developer

or the application user could specify the estimated execution time of the appli­

cations' tasks and subtasks on each machine in the suite. Distribution modeling

statistically processes historic knowledge to arrive at a probability distribution for

task or subtask execution times. This probability distribution is then used to make

mapping decisions (e.g., [12,55]).

The execution time for a given application may be determined by task profiling.

Task profiling specifies the types of computations present in an application based

on the code for the task (or subtask) and the data to be processed (e.g., [38,60]).
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FIG. 6. The need to measure the system robustness increases as the system complexity increases. For

the system with small heterogeneity, the robustness and slack are tightly coupled, thereby suggesting that

robustness measurements are not needed if slack is known. As the system heterogeneity increases, the

robustness and slack become less correlated, indicating that the robustness measurements can be used

to distinguish between mappings that are similar in terms of the slack. As the system size increases, the

correlation between the slack and the robustness decreases even further.

This information may be used by the mapping heuristic, in conjunction with ana­

lytical benchmarking (defined in the platform model characterization), to estimate

task or subtask execution time.

In simulation studies, estimated execution times can be derived from probability

distributions with a given mean and a given degree of heterogeneity (e.g., Ali et al.

[11]).

The same issues apply to subtask communications (e.g., [79]).

data dependence of execution times: Is the execution time of a given application

on a given machine independent of the data content of the application inputs (e.g.,

in image smoothing) or is it data dependent (e.g., in object recognition) (e.g.,

[73])?

2.3 Platform Model Characterization

The second category of the 3PCS defines the models used for target platforms

available within HC systems. The target platform traits listed are those that may

impact mapping decisions and relative mapper performance. The target platform

is defined by the hardware, network properties, and software that constitute the
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HC suite. Several existing heuristics make simplifying (but unrealistic) assumptions

about their target platforms (e.g., assuming that an infinite number of machines are

available [74]). Therefore, the 3PCS is not limited to a set of realistic target plat­

forms. Instead, a framework for classifying the models used for target platforms is

provided. Such a framework allows the 3PCS to reflect the environment assumed by

a mapping heuristic (even if the environment is unrealistic). The defining traits of the

platform model are explained below and illustrated in the organization chart given in

Figure 7.

number of machines: Is the number of machines finite or infinite? Is the number of

machines fixed or variable (e.g., new machines can come on-line)? Furthermore,

a given heuristic may treat a finite, fixed number of machines as a parameter that

can be changed from one mapping to another, e.g., when trying to find a minimum

dollar-cost set of machines to meet a performance requirement (e.g., [27,64]).

system control: Does the mapping strategy control and allocate all resources in the

environment (dedicated), or are external users also consuming resources (shared)?

application compatibility: Is each machine in the environment able to perform

each application, or, for some applications, are there any special capabilities that

are only available on certain machines? These capabilities could involve issues

such as database software, I/O devices, memory space, and security.

machine heterogeneity and architecture: For each task or subtask, how greatly

and with what properties (e.g., probability distribution (e.g., [11])) do the exe­

cution times vary across different machines in the HC suite? For subtasks, the

above question applies to communication link speeds as well. For each machine,

various architectural features that can impact performance must be considered,

e.g., processor type, processor speed, external I/O bandwidth, mode of computa­

tion (e.g., shared memory, distributed shared memory, NUMA, UMA), memory

size, number of processors (within parallel machines), and inter-processor net­

work (within parallel machines). The machines in the HC suite may be evaluated

on analytical benchmarks to aid in later estimating task or subtask execution times.

Analytical benchmarking provides a measure of how well each available machine

in the HC platform performs on each given type of computation [60]. This infor­

mation may be used by the mapping heuristic, in conjunction with task profiling,

to estimate task or subtask execution times. Machine heterogeneity may affect the

performance of a mapping heuristic in some cases. For example, it is shown in

[39] that a particular algorithm, CDA, is outperformed by another algorithm, PSP,

when resource heterogeneity is increased.

code and data access and storage times: How long will it take each machine to

access the code and input data it needs to execute a given task or subtask? How

long will it take each machine to store any resulting output data for a given task or
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FIG. 7. The different features of the platform modeL The items marked with an "5" next to them are

only applicable when the workload contains communicating subtasks.

subtask? For subtasks, the above questions do not apply to communication activity

to/from another subtask.

interconnection network: What are the various properties of the inter-machine net­

work? Many network characteristics can affect mapping decisions and system

performance, including bandwidth, latency, switching control, and topology. Most

of these network properties are also functions of the source and destination ma-
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chines. Volumes of literature (e.g., [26,28,56,71]) already exist on the topic of

interconnection networks, therefore, interconnection networks are not classified

here.

number of connections: How many connections does each machine have to the in­

terconnection network structure or directly to other machines?

concurrent send/receive (8): Can each machine perform concurrent sends and re­

ceives of data to other machines (assuming enough network connections)?

overlapped computation/communication (8): Can machines overlap computation

and inter-machine communication?

energy consumption: How is consumption of energy in battery-based systems cal­

culated? At what rate is energy consumed when performing computation, sending

data, receiving data, or when system is idle (e.g., [41,46,69,70])? Does the system

allow conservation of energy by reducing the clock speed (e.g., [46])? How many

different voltage levels are allowed and how does each level impact clock rate and

energy consumption (e.g., [83])? These questions are especially relevant for ad hoc

grid computing systems, where some of the devices are mobile, battery-based, and

use wireless communications (e.g., [61,69]).

multitasking of machines and communication links: Does the system allow ma­

chines and communications links to be multi-tasked (e.g., [1O])? If so, how does

the multitasking impact the execution time of tasks and subtasks, and the commu­

nication time of subtasks?

migration of workload: Do the machines support the migration of applications,

tasks, or subtasks? Migration may be used by a "dynamic" mapping strategy (ex­

plained in the mapping strategy characterization) to re-map an application (or a

task or a subtask) from a machine that has failed or is overloaded to some other

suitable machine. Migration affects the communication patterns among subtasks,

and may reduce the advantage of any mapping decision based on pre-migration

communication patterns.

resource failure: Is the failure of machines, links, storage devices, and other re­

sources modeled?

2.4 Mapping Strategy Characterization

The third category of the 3PCS defines the characteristics used to describe map­

ping strategies. Because the general HC mapping problem is NP-complete, it is

assumed that the mapping strategies being classified are heuristics that attempt to

produce near-optimal mappings. The different features of the mapping strategy char­

acterization are explained below and illustrated in the organization chart given in

Figure 8.
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FIG. 8. The different features of the mapping strategy characterization. The items marked with an

"S" next to them are only applicable when the workload contains communicating subtasks. The items in

dotted boxes under "mapper dynamism" are only applicable for a dynamic or on-line mapping strategy.

support for the workload model: Can the mapping strategy use information about

a given trait of the application (as modeled in the section on workload model

characterization)? For example, a mapping strategy that cannot make use of the

fact that a given task has multiple versions may be outperformed by one that does

use this information in making mapping decisions.
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support for the platform model: Can the mapping strategy use information about

a given trait of the platform (as modeled in the section on platform model charac­

terization)? For example, can the mapping strategy take advantage of any support

that the platform provides for the migration of subtasks or tasks?

control location: Is the mapping strategy centralized or distributed? Distributed

strategies can further be classified as cooperative or non-cooperative (indepen­

dent) approaches.

execution location: Can a machine within the suite be used to execute the mapping

strategy, or is an external machine required?

fault tolerance: Is fault tolerance considered by the mapping strategy? This may

take several forms, such as assigning applications to machines that can perform

checkpointing, or executing multiple, redundant copies of an application [1].

objective function: What quantity is the mapping strategy trying to optimize? Are

there associated QoS constraints, e.g., minimizing average energy used by a mo­

bile device while still completing the application in a given time (e.g., [69])? This

varies widely among strategies, and can make some approaches inappropriate in

some situations. The objective function, i.e., performance metric, can be as sim­

ple as the total execution time for the workload, or a more complex function that

includes priorities, deadlines, QoS, etc. [47].

failure rate: What is the failure rate for the mapping heuristic? Before a mapping

heuristic is employed in a real system, one would often evaluate its performance

using simulations. In such a case, an important property of a mapping heuristic

is its failure rate. A mapping heuristic failure occurs if the heuristic cannot find

a mapping that allows the system to meet its QoS constraints (e.g., fails to find

a resource allocation that completes a set of applications within a requested time

constraint). One way of determining the failure rate is to repeat the simulation

for a number of trials, where each trial uses the same probability distributions for

simulation parameters (but re-samples execution times, arrival times, data sizes,

etc.). The failure rate is then given by the ratio of the number of trials in which the

heuristic could not find a mapping to the total number of trials. It has been shown in

[10] that some heuristics may produce mappings that perform very similarly with

respect to a given performance metric, but these heuristics differ very significantly

in their failure rates.

robustness: For a given mapping, what is the smallest departure from the assumed

conditions of system operation that will cause the objective function to degrade

below some acceptable threshold? That is, what is the robustness of the mapping

[9]. Parallel and distributed systems may operate in an environment where certain

system performance features degrade due to unpredictable circumstances, such

as sudden machine failures, higher than expected system load, or inaccuracies
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in the estimation of system parameters (e.g., [18,19,40,42,43,54,68]). Therefore,

designing heuristics that produce robust mappings is an important design issue.

mapper performance evaluation: How is the mapper being evaluated? This issue

is different from the evaluation of a mapping, which is done using the objective

function. The mapper evaluation is performed before the mapper is employed in a

real system, and is an attempt to find how close to optimal is the mapping found

by the mapper. Because all non-trivial mapping problems are likely to be NP-hard,

the mapper evaluation is as hard as finding the optimal mapping! One frequent ap­

proach is to determine an upper bound on performance. Of course the upper bound

should be as tight as possible (being equal to optimal in the tightest case). Another

approach is to simulate a system where a particular artificial condition makes it

easy to find either the optimal performance or a tight upper bound. In yet another

approach, the mapper is simply compared with another well-known mapper from

literature. As a special case of the last approach, an on-line mapper may be eval­

uated against a static mapper with full a priori knowledge of the information not

available to the on-line mapper. As another special case, a fault tolerant mapper

may be evaluated against an otherwise identical fault intolerant mapper [1]. The

relative amount of time it takes different mappers to generate mappings also may

be a consideration.

application execution time: How are execution times determined by the mapper,

e.g., are they estimated or produced from a probability distribution? (This was

discussed in workload model and platform model characterizations.)

mapper dynamism: Is the mapping technique dynamic or static? Dynamic map­

ping techniques operate in real-time (as workload arrives for immediate exe­

cution), and make use of real-time information (e.g., [25,59,84,87]). Dynamic

techniques require inputs from the environment, and may not have a definite

end. For example, dynamic techniques may not know the entire workload to be

mapped when the technique begins executing; new applications may arrive at

unpredictable intervals. Similarly, new machines may be added to the suite. If a

dynamic technique has feedback, the application executing on a machine may be

reassigned because of the loss of the machine. Similarly, the applications waiting

to be executed on a machine may be reassigned because of the currently execut­

ing applications on various machines taking significantly longer or shorter than

expected.

In contrast, static mapping techniques take a fixed set of applications, a fixed set

of machines, and a fixed set of application and machine attributes as inputs and

generate a single, fixed mapping (e.g., [10,15,20,22]). These heuristics typically

can use more time to determine a mapping because it is being done off-line, e.g.,

for production environments; but these heuristics must then use estimated values

of some parameters such as when a machine will be available. Static mapping
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techniques have a well-defined beginning and end, and each resulting mapping is

not modified due to changes in the HC environment or feedback. These techniques

may be used to plan the execution of a set of tasks for a future time period (e.g.,

the production tasks to execute on the following day). Static mapping also is used

in "what-if" predictive studies. For example, a system administrator might want

to know the benefits of adding a new machine to the HC suite before purchasing

it. By generating a static mapping (using estimated execution times for tasks and

subtasks on the proposed new machines), and then deriving the estimated system

performance for the set of applications, the impact of the new machine can be

approximated. Static mapping also can be used to do a post-mortem analysis of

dynamic mappers, to see how well they are performing. Dynamic mappers must

be able to process applications as they arrive into the system, without knowledge

of what applications will arrive next. When performing a post-mortem analysis, a

static mapper can have the knowledge of all of the applications that had arrived

over an interval of time (e.g., the previous day). Also static mappers derive map­

pings off-line, and thus can take much more time to determine a mapping than

a dynamic mapper can. Therefore, the system performance for a static mapping

should provide a good way to evaluate the system performance for a dynamic

mapping of the same applications.

Some of the items mentioned later in this section apply only to dynamic mapping.

They will be indicated with the letter "D" written next to them.

dynamic re-mapping (D): Can the mapping heuristic re-map an initial mapping?

What event triggers the re-mapping? For example, a dynamic heuristic with feed­

back can re-map a previous mapping. The previous mapping could be a static or

a dynamic mapping. Re-mapping is usually needed when the state of the system

has changed enough so that the mapping found initially performs unacceptably

low under the changed scenario. The trigger in this case could be the performance

metric falling below a pre-declared threshold. Re-mapping can involve dynami­

cally deriving a new mapping or selecting from previously stored mappings that

were determined statically for different situations [52].

mapping trigger (D): What event triggers the dynamic mapping heuristic? Does

it map a task as soon as it arrives (immediate mode dynamic mapping) or does

it collect arriving tasks into a small batch and then perform the mapping (batch

mode dynamic mapping)? Batch mode and immediate mode dynamic mapping

techniques perform differently under different conditions (e.g., task arrival rate

[59]). The mapping trigger could also depend on the status of the system, e.g.,

when the workload input queue of any machine falls below a certain threshold.

preemptive (D): What assumptions does the mapping strategy make about preemp­

tion of applications (e.g., can applications be interrupted and restarted)? Preemp­

tive mapping strategies can interrupt applications that have already begun exe-
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cution to free resources for more important applications. Applications that were

interrupted may be reassigned (i.e., migrated), or may resume execution upon

completion of the more important application. Preemptive techniques must be dy­

namic by definition. Application "importance" must be specified by some priority

assignment and weighting scheme, as already discussed in the section on workload

model characterization.

feedback (D): Does the mapping strategy incorporate real-time feedback from the

platform (e.g., machine availability times) or applications (e.g., actual task execu­

tion times of completed tasks) into its decisions? Ifyes, how is the state estimated

in a distributed system? In other words, as given in Rotithor [66], is state estima­

tion:

(1) Centralized or decentralized? That is, which machines are responsible for

collecting state information and constructing an estimate of the system

state?

(2) Complete or partial? That is, during any state information exchange, how

many machines are involved?

(3) Voluntary or involuntary? That is, how does a machine choose to dissemi­

nate state information?

(4) Periodic or aperiodic? That is, at what instant does a machine choose to

initiate information dissemination.

data forwarding (8): Is data forwarding considered during mapping? That is, could

a subtask executing on a given machine receive data from an intermediate machine

sooner than from the original source (e.g., [77,82])? For example, assume that

subtasks A, B, and C are mapped on machines X, Y, and Z, respectively, and that

A needs to send the same data item to Band C. Further assume that this data item

from subtask A on machine X has already been sent to subtask B on machine Y.

For subtask C to receive the data item on machine Z, it may choose to receive the

data item from machine X (the original source) or intermediate machine Y (the

forwarder).

replication (8): Can a given subtask be duplicated and executed on multiple ma­

chines to reduce communication overhead? In a replication-based mapping, a

subtask may be redundantly executed on more than one processor so as to elim­

inate the communication time [2,63]. Note that replication also can be used for

fault tolerance, and as such has been covered under "fault tolerance" in the map­

ping strategy characterization.

predictability of time to generate a mapping: Is the time taken by the mapping

strategy to generate a mapping predictable? For some heuristics, the mapping gen­

eration time can be accurately predicted. For example, in the greedy approaches

in [10], the mapping heuristics perform a fixed, predetermined number of steps
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with a known amount of computation in each step before arriving at a mapping

decision. In contrast, some heuristics are iterative in the sense that the mapping is

continually refined until some stopping criterion is met, resulting in a number of

steps that is not known a priori, or in a known number of steps with an unknown

amount of work in each step (e.g., genetic algorithms [74,82]). The mapping gen­

eration times of different mapping strategies vary greatly, and are an important

property during the comparison or selection of mapping techniques. For exam­

ple, the choice between two mapping heuristics whose performance is comparable

may be made based on the heuristics' mapping generation time [7,20].

3. Example Mapper Evaluations

This section characterizes six heuristics from the literature in terms of the 3PCS.

The characterizations are presented in Tables I through IX. Each table contains two

heuristics. The selection of heuristics to pair in each table was based on a desire to

TABLE I

WORKLOAD MODEL EXAMINATION FOR DFTS [1] AND THE BOTTOMS UP HEURISTIC [69]

Characteristic I DFTS I Bottoms up

workload composition set of applications one task with communicating

decomposable into tasks subtasks

communication patterns (S) N/A directed acyclic graph

data provision and utilization N/A N/S

times (S)

data retrieval/storage N/S N/C

workload size on-line load specified with 1024 subtasks with specified

arrival and resource demand resource demand distribution

distributions

workload dynamism dynamic static

arrival times simulated N/A

deadlines N/C N/C

priorities N/C N/C

multiple versions N/C N/C

QoS requirements N/C task must be completed within

a given time constraint

interactivity N/C N/C

workload heterogeneity hyper-exponential distribution Gamma distribution

execution time representation distribution derived assumed distribution

empirically

data dependence of execution N/C N/C

times
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TABLE II

PLATFORM MODEL EXAMINATION FOR DFT8 [1] AND THEBOTTOMS UP HEURISTIC [69]

Characteristic I DFf8 I Bottoms up

number of machines 64 8

system control shared dedicated

application compatibility no restrictions no restrictions

machine heterogeneity and N/8 modeled

architecture

code and data access and N/A assumed zero

storage times

interconnection network (8) N/A wireless

number of connections (8) N/A N/A

concurrent send/receives (8) N/A 1 send/receive

overlapped computation! N/A yes

communication (8)

energy consumption N/C modeled

multitasking of machines and yes N/C

communication links

migration of workload N/C N/C

resource failure considered N/C

show contrasting characteristics. The heuristics have been examined with respect to

each of the three parts of the 3PCS, i.e., the workload model, platform model, and

mapping strategy characterization. Readers should see the references for detailed

descriptions of the heuristics themselves. The following notation is used in Tables I

through IX. A field is marked "N/N.' if that particular feature is not applicable to

the heuristic being examined. A field is marked "N/S" if that particular feature is

applicable to the heuristic but its value is not specified in the paper. Finally, "N/C"

stands for "not considered," and refers to a feature that has not been considered in

the given paper.

4. Related Work

Taxonomies related in various degrees to this work have appeared in the literature.

In this section, overviews of some related taxonomy studies are given.

Ahmad et al. [3] survey algorithms that allocate a parallel program represented by

an edge-weighted directed acyclic graph (DAG) to a set of homogeneous processors,

with the objective of minimizing the completion time. They propose a taxonomy of

scheduling with four groups. The first group includes algorithms that schedule the

DAG to a bounded number of processors directly. These algorithms are called the
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TABLEIII

MAPPING STRATEGY EXAMINATION FOR DFTS [1] ANDTHE BOTTOMS UP HEURISTIC [69]

Characteristic I DFTS I Bottoms up

support for the workload yes yes

model

support for the platform model yes yes

control location centralized centralized

execution location N/S N/S

fault tolerance yes, through task replication N/C

objective function mean response time energy consumption

failure rate N/C N/C

robustness N/C N/C

mapper performance comparison with a fault comparison with a lower

evaluation intolerant heuristic bound

dynamism on-line static

dynamic re-mapping (D) triggered when number of N/A

healthy replicas falls below a

threshold

mapping trigger (D) task arrival N/A

preemptive (D) yes N/A

feedback (D) yes N/A

data forwarding (S) N/A N/C

replication yes N/C

time to generate a mapping predictable predictable

bounded number of processors scheduling algorithms. The algorithms in the second

group "cluster" the subtasks, where a cluster is a set of subtasks formed to reduce or

eliminate communication times. Because the number of clusters can be unbounded,

these algorithms are called the unbounded number of clusters scheduling algorithms.

The algorithms in the third group schedule the DAG using task duplication and are

called the task duplication based scheduling algorithms. The algorithms in the fourth

group perform allocation and mapping on arbitrary processor network topologies.

These algorithms are called the arbitrary processor network scheduling algorithms.

The authors discuss the design philosophies and principles behind these algorithms

classes, and then analyze and classify 21 scheduling algorithms.

A scheme for classifying static scheduling techniques used in general-purpose

distributed computing systems is presented in [24]. The classification of workload

and platform was outside the scope of this study. The taxonomy in [24] does com­

bine well-defined hierarchical characteristics with more general fiat characteristics

to differentiate a wide range of scheduling techniques. Several examples of differ­

ent scheduling techniques from the published literature are also given, with each

classified by the taxonomy. In He systems, however, scheduling is only half of the
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TABLEIV

WORKLOAD MODEL EXAMINATION FOR THE OASS ALGORITHM [45] ANDTHE HRA MAX-MIN

HEURISTIC [8]

I Characteristic I OASS I HRA max-min

workload composition communicating subtasks communicating subtasks,

continuously executing

communication patterns (S) undirected graph DAG

data provision and utilization N/S N/S

times (S)

data retrieval/storage N/S N/S

workload size 28 subtasks, resource demands 40 subtasks, resource demands

calculated with a devised sampled from a Gamma

procedure distribution

workload dynamism static static

arrival times N/A N/A

deadlines N/C N/C

priorities N/C N/C

multiple versions N/C N/C

QoS requirements N/C N/C

interactivity N/C N/C

workload heterogeneity N/S Gamma distribution

execution time representation N/S assumed distribution

data dependence of execution NlC N/C

times

mapping problem. The matching of tasks to machines also greatly affects execution

schedules and system performance. Therefore, the 3PCS also includes categories for

platform and workload models, both of which influence matching (and scheduling)

decisions.

Several different taxonomies are presented in [30]. The first is the EM3 taxon­

omy, which classifies all computer systems into one of four categories, based on

execution mode and machine model [30]. The 3PCS proposed here assumes hetero­

geneous systems from either the SEMM (single execution mode, multiple machine

models) or the MEMM (multiple execution modes, multiple machine models) cate­

gories. A "modestly extended" version of the taxonomy from [24] is also presented

in [30]. The modified taxonomy introduces new descriptors and is applied to hetero­

geneous resource allocation techniques. Aside from considering different parallelism

characteristics of applications, [30] did not explicitly consider workload model char­

acterization and platform model characterization.

A taxonomy for comparing heterogeneous subtask matching methodologies is in­

cluded in [44]. The taxonomy focuses on static subtask matching approaches, and

classifies several specific examples of optimal and sub-optimal techniques. This is a



CHARACTERIZING RESOURCE ALLOCATION HEURISTICS 117

TABLE V

PLATFORM MODELEXAMINATION FORTHE OASS ALGORITHM [45] AND THE HRA MAX-MIN

HEURISTIC [8]

I Characteristic I OASS I HRA max-min

number of machines finite, fixed finite, fixed

system control N/S shared

application compatibility no restrictions restricted

machine heterogeneity and N/S modeled

architecture

code and data access and N/C N/C

storage times

interconnection network (S) point-to-point non-blocking switched

network

number of connections (S) 1 1

concurrent send/receives (S) N/S N/S

overlapped computation! yes yes

communication (S)

energy consumption N/C N/C

multitasking of machines and N/S N/S

communication links

migration of workload N/C N/C

resource failure N/C N/C

single taxonomy, without the three distinct parts of the 3PCS. However, the "optimal­

restricted" classification in [44] includes algorithms that place restrictions on the

underlying program and/or multicomputer system.

Krauter et al. [50] give a taxonomy and a survey of grid resource management

systems. Their taxonomy covers resource and resource manager models. For exam­

ple, they include classifications like resource discovery (query based or agent based),

resource dissemination (periodic or on-demand), QoS support (soft, hard, or none),

scheduler organization (centralized, decentralized, or hierarchical), and rescheduling

(periodic or even driven). The 3PCS includes the workload model in addition to the

models discussed in [50]. Furthermore, the platform model and mapping strategy

characterizations in the 3PCS include parameters not included in [50].

Kwok and Ahmad [51] provide a taxonomy for classifying various scheduling al­

gorithms into different categories according to their assumptions and functionalities.

They also propose a set of benchmarks to allow a comprehensive performance evalu­

ation and comparison of these algorithms. With very much the same motivation as the

study given in this chapter, Kwok and Ahmad [51] argue that while many schedul­

ing heuristics proposed in literature are individually reported to be efficient, it is not

clear how effective they are and how well they compare against each other, partially

because these scheduling algorithms are based upon radically different assumptions.
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TABLE VI

MAPPING STRATEGY EXAMINATION FOR THE OASS ALGORITHM [45] AND THE HRA MAX-MIN

HEURISTIC [8]

I Characteristic I OASS I HRA max-min

support for the workload yes yes

model

support for the platform model yes yes

control location centralized centralized

execution location N/S N/S

fault tolerance N/C N/C

objective function makespan load balancing

failure rate N/C considered

robustness N/C N/C

mapper performance comparison with an existing comparison with a lower

evaluation heuristic bound

dynamism static static

dynamic re-mapping (D) N/A N/A

mapping trigger (0) N/A N/A

preemptive (D) N/A N/A

feedback (D) N/A N/A

data forwarding (S) N/A N/A

replication N/C N/C

time to generate a mapping predictable predictable

Kwok and Ahmad [51] evaluate 15 scheduling algorithms, and compare them

using the proposed benchmarks. They interpret the results and discuss why some

algorithms perform better than the others. However, the taxonomy in [51] is based

on the problem of scheduling a vyeighted directed acyclic graph to a set of homo­

geneous processors, whereas the 3PCS is for heterogeneous systems with a broader

range of application types.

Noronha and Sarma [62] survey several existing intelligent planning and schedul­

ing systems for providing a guide to the main artificial intelligence techniques. They

give a taxonomy of planning and scheduling problems in an attempt to reconcile the

differences in usage of the terms planning and scheduling between the AI and oper­

ations research communities. Some of the more successful planning and scheduling

systems are surveyed, and their features are highlighted, e.g., deterministic ver­

sus stochastic, algorithm complexity (polynomial versus NP-hard), dynamism of

the scheduler (on-line versus off-line), precedence constraints, resource constraints,

objective function, scheduler type (optimizing versus feasible, i.e., satisfying the

problem requirements).

Rotithor [66] presents a taxonomy of dynamic task scheduling schemes in distrib­

uted computing systems. The author argues that system state estimation and decision



CHARACTERIZING RESOURCE ALLOCATION HEURISTICS

TABLE VII

WORKLOAD MODEL EXAMINATION FOR THE KPB HEURISTIC [59] AND THE MIN-MIN

HEURISTIC [21]
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Characteristic I KPB I Min-min

workload composition independent tasks communicating subtasks

communication patterns (8) N/A DAG

data provision and utilization N/A consumer subtask must wait

times (8) until all input data has been

received

data retrieval/storage N/C N/C

workload size 2000 tasks, resource demands 1000 tasks and 1000 subtasks,

sampled from a truncated resource demands sampled

Gaussian distribution from a Gamma distribution

workload dynamism dynamic static

arrival times Poisson distribution N/8

deadlines N/C hard deadline on each task and

subtask

priorities N/C tasks and subtasks classified in

four priority classes

multiple versions N/C three versions per task

Qo8 requirements N/C N/C

interactivity N/C N/C

workload heterogeneity truncated Gaussian distribution Gamma distribution

execution time representation assumed distribution assumed distribution

data dependence of execution N/C N/C

times

making are the two major components of dynamic task scheduling in a distributed

computing system, and that the combinations of solutions to each individual com­

ponent constitute solutions to the dynamic task scheduling problem. Based on this

argument, the author presents a taxonomy of dynamic task scheduling schemes that

is synthesized by treating state estimation and decision making as orthogonal prob­

lems. Solutions to estimation and decision making are analyzed and the resulting

solution space of dynamic task scheduling is shown. The author shows the applica­

bility of the proposed taxonomy by means of examples that encompass solutions

proposed in the literature. The state estimation classification scheme sits under the

"feedback" box in Figure 8, and is incorporated in our discussion of "feedback" in

the mapping strategy characterization section.

Stankovic et al. [75] give an excellent discussion of a set of real-time scheduling

results. The paper presents a simple classification scheme for the real-time schedul­

ing theory, which it divides in two groups based on the platform model: uniprocessor

and multiprocessor. For the uniprocessor scheduling, the authors further differentiate
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TABLE VIII

PLATFORM MODEL EXAMINATION FOR THE KPB HEURISTIC [59] AND THE MIN-MIN

HEURISTIC [21]

Characteristic I KPB I Min-min

number of machines finite, variable finite, fixed

system control dedicated dedicated

application compatibility no restrictions no restrictions

machine heterogeneity and modeled modeled

architecture

code and data access and N/C N/C

storage times

interconnection network (S) N/A N/S

number of connections (S) N/A N/S

concurrent send/receives (S) N/A N/S

overlapped computation! N/A N/S

communication (S)

energy consumption N/C N/C

multitasking of machines and N/C N/C

communication links

migration of workload N/C N/C

resource failure N/C N/C

TABLE IX

MAPPING STRATEGY EXAMINATION FOR THE KPB HEURISTIC [59] AND THE MIN-MIN

HEURISTIC [21]

Characteristic I KPB I Min-min

support for the workload yes yes

model

support for the platform model yes yes

control location centralized centralized

execution location external N/S

fault tolerance N/C N/C

objective function makespan makespan

failure rate N/C N/C

robustness N/C N/C

mapper performance comparison with an existing comparison with a lower

evaluation heuristic bound

dynamism dynamic static

dynamic re-mapping (D) yes N/A

mapping trigger (D) task arrival N/A

preemptive (D) no N/A

feedback (D) yes NlA

data forwarding (S) N/A N/S

replication N/C N/C

time to generate a mapping predictable predictable
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between dedicated and shared resources. For the multiprocessor schedulers, the au­

thors differentiate between static and dynamic techniques, and further examine each

kind for preemptive and non-preemptive techniques. The focus of the effort in [75]

is on real-time systems.

T'kindt and Billaut [80] present a survey of multi-criteria scheduling, and dis­

cuss some basic results of multi-criteria optimization literature. One of their aims

is to contextualize the performance evaluation of a given multi-criteria scheduling

scheme to be able to answer questions like: Are trade-offs among criteria allowed?

Is it possible to associate a weight to each criterion? Is it possible to associate a par­

ticular goal value to each criterion? Does an upper bound exist for each criterion?

In some of these respects, their work is similar to ours, but is intended for job shop

community.

The 3PCS uses these studies as a foundation, and extends their concepts. Rele­

vant ideas from these studies are incorporated into the unique structure of the 3PCS,

allowing for more detailed classifications of HC mapping heuristics.

5. Summary

Heterogeneous computing (He) is the coordinated use of different types of ma­

chines, networks, and interfaces to meet the requirements of widely varying applica­

tion mixtures and to maximize the overall system performance or cost-effectiveness.

An important research problem in HC is mapping, i.e., how to assign resources to ap­

plications, and schedule the applications on a given machine, so as to maximize some

performance criterion without violating any quality of service constraints. This chap­

ter proposes a three-part classification scheme (3PCS) for understanding, describing,

and selecting a mapper for HC systems. The 3PCS allows for fair comparison of

different heuristics.

The 3PCS for HC systems can help researchers who want to understand a map­

per by giving them a "check list" of various characteristics of the workload model,

platform model, and strategy attributes of the mapper. As such, it can help extend

existing mapping work, and recognize important areas of research by facilitating un­

derstanding of the relationships that exist among previous efforts. The 3PCS also is

useful for researchers who want to describe their mapper more thoroughly by using a

common standard. In this regard, the 3PCS also may help researchers see the design

and environment alternatives that they might not have otherwise considered during

the development of new heuristics. Additionally, the 3PCS is useful when one wants

to select a mapper to match a given real-world environment. All three parts of the

3PCS are needed to determine which heuristics would be appropriate for a given

environment, and also to facilitate fair comparison of different heuristics.
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