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ABSTRACT

Multiple entities in the smartphone ecosystem employ various
methods to provide better web browsing experience. In this paper,
we take a first comprehensive examination of the resource usage
of mobile web browsing by focusing on two important types of
resources: bandwidth and energy. Using a novel traffic collection
and analysis tool, we examine a wide spectrum of important factors
including protocol overhead, TCP connection management, web
page content, traffic timing dynamics, caching efficiency, and com-
pression usage, for the most popular 500 websites. Our findings
suggest that that all above factors at different layers can affect
resource utilization for web browsing, as they often poorly interact
with the underlying cellular networks. Based on our findings,
we developed novel recommendations and detailed best practice
suggestions for mobile web content, browser, network protocol,
and smartphone OS design, to make mobile web browsing more
resource efficient.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols – Applications; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design – Wireless Communication; C.4
[Performance of Systems]: Measurement Techniques

Keywords

Mobile Web; HTTP; SSL; SPDY; Energy Consumption; Cellular
Networks; Smartphones

1. INTRODUCTION
Web browsing is one of the key applications on mobile devices.

Cellular traffic volume of browser-based web browsing surpasses
that of any other application except for multimedia streaming [26].
Multiple entities in the smartphone ecosystem employ various
methods to provide better web browsing experience. Content
providers publish mobile versions of their websites. Based on our
examination of the Alexa top 500 websites in February 2013, 327
out of the 500 websites have mobile versions that are specifically
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designed for smartphone/tablet users (§3). Mobile carriers deploy
middleboxes in their networks to specifically optimize web traffic.
Mobile browsers also introduce a wide range of techniques to make
web browsing on handheld devices easier, safer, and faster (e.g.,

through the SPDY protocol [9] or a compression proxy).
In this paper, we take a first comprehensive examination of

the resource usage of mobile web browsing by focusing on two
important types of resources: bandwidth and energy. Our study is
driven by two facts. (i) Bandwidth and energy are the key resource
bottlenecks for mobile users. (ii) Web developers are often unaware
of cellular-specific characteristics. Although mobile websites have
tailored their appearances for mobile device screens, it is unclear
how well their design fits cellular networks operating under severe
resource constraints compared to Wi-Fi and wired networks.

Bandwidth is a vital resource for cellular customers who pay for
their traffic. A recent white paper from Mobidia [15] suggests that
in UK most smartphone customers (e.g., 70% for Vodafone) use
a monthly data plan of no more than 500 MB (less than 16.7 MB
per day on average). For all carriers, data roaming is even much
more expensive. Therefore under the constraints of delivering
necessary contents and providing good user experiences, mobile
web browsing should consume as less bandwidth as possible.

Battery Life is another critical bottleneck. We focus on the
power consumed by the handset radio interface. When the radio
is on, it contributes to 1/3 to 1/2 of the total handset power
usage [28]. It is well known that in cellular networks, the radio
energy consumption highly depends on network traffic patterns,
and it is always more energy-efficient to batch all transfers in one
traffic burst than to transfer them intermittently in separate bursts.
This is because in 3G/4G networks, there exists a timeout, called
tail time, for turning off the radio interface after a data transfer.
The tail time (Ttail) ranges between several seconds to more than
10 seconds depending on the carrier settings [28, 22]. Therefore, if
two data bursts are transferred separately, then within the timing
gap between the two bursts, the radio interface is still on (and
consuming power) for up to Ttail seconds, leading to waste of the
radio energy.

To understand the resource consumption of mobile web brows-
ing, we collected network traces and browser events for landing
pages of the top 500 websites on smartphone, and conducted in-
depth analysis on their bandwidth consumption and their energy
efficiency. A landing page is loaded after a user enters the website
URL and hits the “Go” button. The importance of landing pages
is well recognized: they are the first and the most frequently
viewed pages of websites. A high-quality landing page is one of
the key factors of online marketing [11]. Therefore, developers
usually put a lot of effort on optimizing this important resource.
However, our findings suggest that many of them are far from



resource-efficient. Further, web pages are also directly fetched
by many smartphone apps that contain programmable browsers
(e.g., WebView in Android), so making web pages more resource-
efficient can benefit many mobile apps as well. We have made the
following methodological contributions and new observations.

1. The UbiDump Tool (§2). HTTPS and SPDY are becoming
increasingly popular (e.g., Google Chrome for Android already
supports tunneling all browsing traffic to SPDY proxies [2]). We
thus built a measurement tool called UbiDump, which runs on a
mobile device and precisely reconstructs all web transfers carried
by HTTP, HTTPS, and SPDY [9] from captured tcpdump traces. It
supports on-device SSL decryption without requiring servers’ pri-
vate keys or a man-in-the-middle (MITM) proxy. The decryption is
realized by instrumenting the SSL Library and intercepting session
keys during SSL handshakes. UbiDump provides a complete view
of today’s web traffic, and enables cross-layer analysis that cannot
be performed by a browser-based data collection approach.

2. Protocol Bandwidth Overhead (§4.2). We performed a first
analysis of the bandwidth impact of HTTPS and SPDY protocols
based on real smartphone web browsing traffic, and discovered
surprisingly high protocol bandwidth overheads. The overall pro-
tocol efficiency rate, defined as the size of HTTPS/SPDY payload
divided by the total size of data transferred in the network (except
for TCP retransmissions), is only 66% to 73% for cold-cache
(i.e., empty cache) load. For warm-cache (i.e., non-empty cache)
load, the efficiency can be as low as 11%. Such low efficiency
is primarily caused by a tendency to open new TCP connections
rather than to reuse existing ones. Each new TCP connection incurs
high bandwidth overhead due to SSL handshake.

3. New Insights on Mobile Web Contents (§4.4). We examined
causes of large websites, objects, and images. We also conduct in-
depth analysis on hosts that are accessed by multiple websites, and
found that they provide third-party services such as user tracking,
and their functionalities are usually not related to the main content
of the website (exceptions exist though). Removing them saves
at least 39% (20%) of bandwidth for 20% of mobile websites in
warm-cache (cold-cache) load.

4. Energy and Root-cause Analysis for Network Idleness

(§4.5, §4.6). We perform novel analysis to identify network idle
periods during a page load. The idle periods, during which the
radio may still be on and be consuming power, can be caused by
a few reasons such as delayed transfers triggered by Javascript.
Surprisingly, reducing such idle time gaps brings a median radio
energy saving of up to 59% across all mobile websites.

5. New Findings of Caching and Compression (§4.7, §4.8).

We found that caching is poorly utilized for many mobile sites.
26% of the top mobile sites (e.g., m.bing.com) mark their main
HTML files as non-storable, leading to potential bandwidth waste.
About 23% of objects in mobile sites are cacheable but have
freshness lifetime of less than 1 hour. Within them, more than
70% of the objects are images, fonts, CSS, and Javascript whose
contents are not likely to change within such a short time period of
1 hour. We investigate compression opportunities for HTTP, SSL,
and SPDY, and found SSL stream-level compression outperforms
the traditional HTTP object-level compression.

Overall, we found that factors at different layers can affect re-
source utilization in mobile web browsing, including web contents,
HTTP, SSL, and even TCP. In particular, although many mobile
websites have tailored their appearances for smartphone screens,
many of the adjustments are very superficial, and the resulting sites
are often poorly interacting with the cellular network. We observe
very little difference between mobile and non-mobile websites in
many aspects such as caching aggressiveness and object sizes.

IP TCP HTTP user

IP TCP SSL HTTP user

IP TCP SSL SPDY user

(a) HTTP
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Figure 1: Web protocols supported by UbiDump.

And for some metrics such as the number of redirections, mobile
websites are even worse. Based on our findings, we developed
novel recommendations and detailed best practice suggestions for
mobile web content, browser, protocol, and smartphone OS design,
to make mobile website access more resource efficient.

The remainder of this paper is organized as follows. §2 and §3
describe the UbiDump tool and our methodology for collecting
top 500 landing pages, respectively. §4 details the measurement
findings, based on which we provide our recommendations in §5.
We present related work in §6 before concluding the paper in §7.

2. THE UbiDump TOOL
The first step towards analyzing mobile web browsing is data

collection. This can be obtained directly from a browser (e.g., a
browser extension), from a server, from a middlebox (e.g., a proxy
server), or from network traces. We adopt the last method by
building a measurement tool called UbiDump. It runs on a mobile
device, and precisely reconstructs all web transfers from tcpdump

traces captured on the handset, thus requiring no change to the
existing browser, server, or middlebox. Further, since tcpdump

runs below the application layer, UbiDump allows capturing traffic
across all applications (not only browsers). Another advantage of
UbiDump is it also captures protocol headers at lower layers such
as TCP, IP, and SSL. This enables cross-layer analysis (e.g., §4.2)
that cannot be performed by using the browser-based approach.

Handling SSL. SSL is becoming increasingly popular. Previous
work handle the decryption of SSL traffic in tcpdump traces
in three different ways. (i) Simply ignore the content of SSL
traffic [26, 23, 37]. (ii) Some tools such as Wireshark [13]
and ssldump [12] require servers’ private keys for decryption.
However obtaining private keys of commercial servers is usually
impossible. (iii) Redirect traffic to a man-in-the-middle (MITM)
SSL proxy such as mitmproxy [8] and Stanford MITM proxy [10].
HTTPS requests are then terminated by the proxy and resent to the
remote web server in a new TCP connection. The certificate of
the proxy needs to be installed on the client. To decrypt the SSL
traffic, one can provide Wireshark or ssldump with the private
key of the proxy. This MITM approach however has limitations:
it requires additional infrastructures and may change traffic pattern
and content, as will be shown in §2.2.

A key contribution of UbiDump is it supports on-device SSL de-

cryption without requiring servers’ private keys or a proxy. Through-
out this paper, “SSL” will be used to refer to SSL v2, SSL v3, and
TLS v1, all supported by UbiDump. Our key observation is that,
unlike a private key that is only known to the server, a session key

is derived independently by both the client and the server when
an SSL session is established. Symmetric encryption is used in
subsequent data transfers where data is encrypted and decrypted
using this session key. Therefore, UbiDump realizes on-device
decryption using an instrumented SSL library, which dumps SSL
session keys during SSL handshakes. The session keys are then
combined with tcpdump traces to derive the decrypted data.

Protocol Analyzers. Today’s web traffic is carried by three
application-layer protocols: HTTP, HTTPS, and SPDY, with the



latter two becoming increasingly popular. UbiDump thus contains
analyzers for all three protocols shown in Figure 1, plus DNS.
SPDY [9] is developed primarily at Google for transporting web
content. It provides an HTTP interface to applications but dif-
fers from HTTP mainly in three ways. (i) In SPDY, concurrent
transfers of multiple web objects belonging to the same domain
can be multiplexed in a single TCP connection. (ii) SPDY can
prioritize some object loads over others. (iii) Request and response
headers embedded in SPDY headers are always compressed using
a customized dictionary.

2.1 System Implementation
UbiDump is a handy traffic capture and analysis tool supporting

on-device SSL decryption and web content analysis. We describe
the implementation of UbiDump on Android1. The system consists
of the following three components.

1. A tcpdump program running on the handset. It records all
network traffic in pcap format with negligible runtime overhead
incurred.

2. An instrumented Android SSL library (libssl.so). Dur-
ing an SSL handshake, it dumps a premaster secret p, and a 48-byte
master secret m to the Android debugging log. They will be used
for SSL decryption to be explained soon.

3. Protocol analyzers. They parse the tcpdump trace from
IP to application layers and extract all web transfers over HTTP,
HTTPS, and SPDY. The analyses can be performed in an on-
line manner although they are currently offline. We leveraged
the existing PCAP/HTTP analyzer implementation in the ARO
tool [28], and wrote 4K lines of C++ code for SSL, SPDY, and
DNS analyzers. Additionally, we leveraged several cryptographic
functions in openssl and Linux WPA Supplicant [7] projects.

SSL Decryption is performed as follows. During an SSL
handshake, the handset generates a premaster secret p, encrypts p
using server’s public key into pe, and then sends pe to server, which
decrypts pe using its private key. Both sides then independently
compute the master secret m:

m = Θ(p, rc, rs) (1)

where Θ is a publicly known function, rc and rs are random strings
generated by client and server, respectively, at the beginning of
the handshake. They are exchanged in plain text. Let there be
multiple SSL sessions captured by tcpdump, which outputs a list
of (rc, rs, D) triples where D is the traffic data to be decrypted
in an SSL session. Meanwhile we obtain from the modified SSL
library a list of (p,m) pairs. Equation 1 bridges the two lists so
that we can associate each (p,m) pair with its corresponding D.
The final session key for decrypting D is derived from m, rc, and
rs using another publicly known function.

2.2 Discussions
Limitations. We describe cases where UbiDump cannot decrypt

SSL traffic from the packet trace. First, if the capture starts in
the middle of an SSL session, it is impossible for UbiDump to
decrypt that session since the key is not captured. One solution is
to instrument all places in the SSL library where decrypted bytes
are delivered to upper layers.

Second, the current SSL protocol analyzer only implements the
most popular RSA key exchange algorithm. We therefore restrict
the set of supported key exchange algorithms in the handshake
message sent from the handset by adding one line of code to
libssl.so. We are working on making our analyzer support

1An Android device needs to be rooted to run UbiDump.

other key exchange algorithms such as Diffie-Hellman. UbiDump

supports all symmetric encryption (AES, 3DES, RC4) and MAC
algorithms (SHA, MD5) used by the original Android SSL library.

Third, the entire decryption mechanism can be bypassed if a
smartphone app implements its own SSL logic, or if the SSL
library is statically linked into the app binary. We examined
several popular built-in and third-party apps on Android such as
the browser, the Google Map, and banking apps. SSL traffic of the
vast majority of those apps can be decrypted by UbiDump. For
completeness, UbiDump can also read private keys from files and
use them to decrypt SSL. Note none of the above limitations affects
the SSL decryption in our measurement study.

Comparing with the MITM-Proxy-based Approach. We
perform a case study to show the potential impact of an MITM
proxy on the traffic. We collected two traces A and B for the
same website (https://www.chase.com). The mobile handset
(Samsung Galaxy S III running Android 4.0.4), the network (Wi-
Fi), the collection time and location are all same for the two traces.
Trace A is collected using the MITM-Proxy-based approach (we
use mitmproxy [8] due to its popularity) and Trace B is collected
by UbiDump without a proxy.

By comparing the two traces, we found the following differ-
ences. (i) In Trace A, the phone issues an HTTP CONNECT request
to the proxy before establishing the SSL session while in Trace
B, the SSL session is established without that additional round
trip. (ii) Their TCP connections are closed in different ways. This
affects handset energy consumption in cellular networks (§4.3).
(iii) Some objects in Trace B are transferred in SPDY that is never
used in Trace A. This is because the proxy does not support SPDY
so the handset has to fall back to HTTPS. The above observations
indicate that an MITM proxy may change the traffic pattern and
content compared to the case where the phone directly connects to
the original server.

3. COLLECTING TOP 500 LANDING PAGES
We describe how we use UbiDump to collect landing pages of

the top 500 websites to be characterized in §4.
We obtained a list of top 500 U.S. websites from Alexa in

February 2013. According to Alexa, the sites are ordered by their
one-month traffic ranks, which are calculated “using a combination
of average daily visitors and page views over the past month”.
Although the ranks are derived from the usage of all Internet users,
we expect they are also popular among just mobile users.

Automated Testbed. We installed UbiDump on a Samsung
Galaxy S III smartphone running Android 4.0.4. We wrote another
Android program that loads the website URLs in a WebView in an
automated manner. A WebView is the programmable version of the
default Android browser.

Our testbed leverages UbiDump to collect two types of traces:
a cold-cache load where all caches (DNS/SSL/web content cache
caches) are cleared before loading, and a warm-cache load right
after the cold-cache load without clearing any cache. For each
website, we repeat the cold and warm load pair for three times in
a row, obtaining six traces. We collected all websites using both
a 3G HSPA+ network and a corporate Wi-Fi network, resulting in
two datasets which we call DS1 and DS2, respectively. Both DS1

and DS2 were collected at late nights in spring 2013 at good signal
strength levels, to minimize the impact of network congestion, as
well as to provide a best case for radio energy consumption. All
collected SSL sessions were successfully decrypted by UbiDump.

Completion of Page Load (so that we stop the data collection)
is determined by a timeout of 30 seconds (i.e., when no request
has been made for 30 seconds). To validate that the load is indeed



successful, we let the testbed take a picture of the entire rendered
page and examine the screenshot manually to check failures such
as any unrendered part due to network timeout. For each website,
we collect all its six traces again if any of them is found to be
problematic. We also impose a limit of 90-second data collection
duration for pages that continuously load new data (e.g., due to
periodic user tracking).

Landing Pages. Each collected page is a landing page that is
loaded if a user enters the URL (e.g., cnn.com) and hits the “Go”
button. The importance of landing pages is well recognized: they
are the first and often the most frequently viewed pages of websites.
A high-quality landing page is one of the key factors of online
marketing as it can keep visitors at the website by capturing their
short attention span of 2 to 3 seconds [11]. Therefore, developers
usually put a lot of effort on optimizing this important resource.
However, we found many of them are far from resource efficient.

Identifying Mobile and Non-mobile Sites. For each website,
we manually label it as either mobile version or non-mobile (desk-
top) version. For most landing pages, this is straightforward to
tell from the screenshot. Another obvious clue is that for many
mobile websites, their redirected landing page URLs begin with
m.xyz.com or xyz.com/mobile. For a small number of websites,
we label them by comparing between the rendering result on the
phone and that on a desktop. Among the top 500 websites, 327
(65.4%) are found to be mobile versions designed specifically for
mobile handsets. 143 (28.6%) are non-mobile versions i.e., mobile
users are served with the same contents as desktop users are. The
remaining 30 (6%) websites could not be loaded on either a mobile
or a desktop browser, and are therefore excluded from our analysis.
Many of such failed websites are “helper” domain names such as
googleusercontent.com not providing a web interface.

3.1 Discussions
Mobile Apps vs. Websites. About 1/4 of our measured websites

provide official apps in Android market (in Feb 2013). Although
we do not have the statistics, we do believe many users prefer using
the apps to access the content providers, in particular for those pop-
ular ones (e.g., top 100). However, lessons and recommendations
derived from this study are generally applicable to any mobile web
page. Also, web pages are often directly fetched by many smart-
phone apps containing programmable browsers (e.g., WebView in
Android), so making web pages more resource efficient can benefit
those apps as well. Conducting detailed comparisons between
mobile apps and websites is our future work.

Web Page Complexity. It is possible that our analysis underes-
timates the complexity of today’s mobile web pages since landing
pages can be simple (e.g., Facebook login page). However, it is
difficult to identify “simple” web pages due to a lack of objective
criteria. Further, we observe many cases where a visually simple
landing page contains complex Javascript and CSS scripts, as well
as involves large data transfers when being loaded. We thus include
all loadable websites in subsequent analyses. Also, for many sites,
their landing pages may not be the pages on which users spends
most of their time. But we still believe they are worthy of being
studied due to the importance of landing pages described early.

Popularity of HTML5. HTML5 provides new features, such as
web sockets, enhanced multimedia, and offline caching, to enhance
web browsing experience. We found HTML5 is still not widely
used for mobile websites (as of Feb 2013). For example, only eight
mobile sites leverage the offline caching feature to enhance the user
experience when the device is offline. Studying HTML5 is our
future work as it will eventually become popular on mobile devices.

Table 1: Usage of HTTPS and SPDY across landing pages of all

websites (the DS1 Dataset).

Protocol
Mobile Sites Non-mobile Sites

Cold Warm Cold Warm

HTTPS 58.7% 48.6% 93.7% 68.5%
SPDY 22.3% 21.4% 42.7% 39.2%

The Connection Split Proxy. Mobile carriers deploy in-network
middleboxes or proxies for various purposes. In particular, the
carrier from which we collected the DS1 dataset deploys a proxy
in the cellular core network for HTTP traffic (server port 80/8080).
It transparently splits an end-to-end TCP connection into two, one
between a handset and the proxy, and the other between the proxy
and the remote server. Although splitting connection can improve
TCP performance in certain circumstances [19], it has negligible
impact on our measurement results in §4 except for the TCP
connection management part, on which the impact is also small.
We revisit this in §4.3 and §4.6.

4. MEASUREMENT RESULTS
We next examine various aspects that can affect resource con-

sumption of mobile web browsing: protocol bandwidth overhead
(§4.2), TCP connection management (§4.3), page content (§4.4),
network idle time during page loading period (§4.5, §4.6), caching
semantics (§4.7), and compression usage (§4.8). As will be shown,
improving the resource efficiency of mobile web browsing requires
joint efforts of multiple entities in the smartphone ecosystem.

From this point on, a website refers to its landing page unless
otherwise noted. An object refers to a URL fetched by the hand-
set. The transfer of an object includes both sending the request
and receiving the response. Each figure or table can present a
distribution across websites, TCP connections, or objects, which
are clearly stated2. Also, the analysis results of DS1 and DS2 are
qualitatively similar unless otherwise noted. So we usually only
present the results of DS1. We do not find anything distinguishing
Wi-Fi and 3G in request headers.

4.1 Protocol Prevalence
Table 1 shows the prevalence of HTTPS and SPDY across

websites, for both cold-cache load (“Cold”) and warm-cache load
(“Warm”). We say a website (i.e., its landing page) uses SSL
(SPDY) if we observe at least one TCP flow that carries an SSL
(SPDY) session, which is therefore counted by Table 1. Table 1
indicates many top websites use SSL. In DS1, we observed SSL
sessions are established to 300 distinct content providers identified
by their host names. We also found from the datasets that as of
today, SPDY is only employed by a few content providers including
Google, YouTube, Facebook, Twitter, and AdMob, etc. However,
other websites often embed their services (e.g., Facebook feeds,
see §4.4). This explains why Table 1 still indicates SPDY is
reasonably prevalent among the top websites.

Regarding to traffic volume and object count, HTTP still domi-
nates the web usage in both metrics. For DS1, HTTPS and SPDY
together account for around 10% and 6% of the total bytes for
mobile sites and non-mobile sites, respectively (similar case for
object count). However, SSL and SPDY are becoming increasingly
popular. In 2010, Gmail and Twitter made HTTPS the default

2Each dataset contains 470*3 cold-load traces and 470*3 warm-
load traces. All are used in our analysis unless otherwise noted.
Therefore, for example, a CDF plot of a certain distribution across
all cold-load websites contains 470*3 data points.



Table 2: Protocol byte breakdown for DS1.

Protocol Category tcpip_ctl udp_usr ssl_ctl
ssl_usr_enc – http_ctl or http_usr or
ssl_usr_dec spdy_ctl spdy_usr

Cold, Mobile sites 9.0% 0.2% 0 0 6.9% 83.9%

HTTP
Cold, Non-mobile 9.2% 0.2% 0 0 8.6% 81.9%
Warm, Mobile sites 13.2% 0.3% 0 0 21.5% 65.0%
Warm, Non-mobile 13.6% 0.5% 0 0 25.3% 60.6%

Cold, Mobile sites 8.6% 0.1% 11.6% 0.0% 6.2% 73.4%

HTTPS
Cold, Non-mobile 9.7% 0.3% 17.0% 0.3% 7.0% 65.8%
Warm, Mobile sites 12.3% 0.1% 33.9% 0.3% 17.1% 36.2%
Warm, Non-mobile 13.6% 0.3% 44.5% -0.4% 16.3% 25.6%

Cold, Mobile sites 9.7% 0.4% 10.5% 1.6% 5.2% 72.6%

SPDY
Cold, Non-mobile 10.8% 0.4% 12.1% 1.9% 5.2% 69.5%
Warm, Mobile sites 15.7% 0.3% 24.9% 2.0% 12.0% 45.1%
Warm, Non-mobile 22.9% 0.5% 44.0% 3.1% 18.3% 11.2%
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Figure 2: SSL handshake overhead across TCP flows.

for all users [4]. Facebook started to support HTTPS in 2011,
and moved all users to HTTPS in 2012 [4]. Google Chrome for
Android already supports tunneling all browsing traffic to SPDY
proxies [2]. Understanding the resource impact of SPDY and
HTTPS is therefore critical.

4.2 Bandwidth Impact of Protocols
The additional protocol layers introduced by HTTPS and SPDY

may incur additional overheads. Previous studies mostly focus on
their security implications and CPU overhead. Here our emphasis
is to understand the bandwidth impact of diverse protocols for
mobile web browsing.

Our analysis goes from lower layer to higher layer. The raw
bytes captured by UbiDump on the wire consist of four compo-
nents: TCP/UDP/IP headers (tcpip_ctl), UDP payload carrying
DNS traffic (udp_usr), TCP payload (tcp_usr), and retransmitted
TCP packets (tcp_rt).

raw = tcpip_ctl + udp_usr + tcp_usr + tcp_rt (2)

For HTTP, the TCP payload contains HTTP headers (http_ctl) and
HTTP payloads (http_usr) in plain text.

tcp_usr = http_ctl + http_usr (3)

HTTPS and SPDY use SSL. Therefore the TCP payload consists
of SSL header and control data (ssl_ctl), as well as the encrypted
SSL payload (ssl_usr_enc).

tcp_usr = ssl_ctl + ssl_usr_enc (4)

Let the decrypted SSL payload be ssl_usr_dec. For HTTPS, it
is comprised of HTTP headers and payloads. SPDY is similar to
HTTPS but we use different symbols for SPDY headers/control
data (spdy_ctl) and SPDY payloads (spdy_usr). Note http_usr

and spdy_usr might be encoded by server (e.g., compressed or
transferred in HTTP chunked mode).

ssl_usr_dec = http_ctl + http_usr (5)

ssl_usr_dec = spdy_ctl + spdy_usr (6)

Since UbiDump captures all traffic at the network interface, it
can precisely calculate all values in Equations 2 to 6. Table 2
shows the breakdown for DS1. We classify all TCP flows (a TCP
flow may include DNS lookup(s) before the flow starts) into 12
categories based on the combinations of (app protocol, cold/warm
loads, mobile/non-mobile sites). Also Table 2 excludes all TCP
retransmissions which are network-dependent. In other words, we
compute the fractions of aforementioned traffic components within
(raw − tcp_rt). Numbers in each row add up to 100%.

We describe the findings regarding to Table 2 as follows. (i)

Byte contributions of TCP/IP headers and HTTP/SPDY headers are
non-trivial, especially for warm-cache loads whose website pay-
load sizes (Figure 4), object payload sizes (Figure 5), and packet
payload sizes are all statistically smaller than those of cold-cache
loads. (ii) The ssl_usr_enc− ssl_usr_dec column quantifies the
overhead due to symmetric encryption. Usually it is positive due to
the MAC (Message Authentication Code) or paddings (for blocked
ciphers) introduced in the encryption process. However, SSL
supports stream-level compression that compresses the entire SSL
stream before encrypting it. If that option is used, ssl_usr_enc
refers to the compressed and encrypted bytes appearing on the wire,
and ssl_usr_dec denotes the decrypted and decompressed bytes
delivered to the upper layer. In that case, ssl_usr_enc can be
smaller than ssl_usr_dec. We found that only a few HTTPS flows
use this compression option but none of the SPDY flows uses it
(§4.8). This explains why ssl_usr_enc−ssl_usr_dec for HTTPS
is much smaller than that of SPDY. (iii) DNS (udp_usr) accounts
for negligible traffic.

Why is SSL Overhead so High? Table 2 indicates that SSL
header and control traffic (ssl_ctl) is responsible for the highest
protocol overhead among all eight non-HTTP categories e.g., as
high as 45% for warm-cache load using HTTPS/SPDY. This is
explained as follows. (i) We found that most such overhead
comes from the SSL handshake phase. Figure 2 plots the distri-
bution of the number of bytes incurred by the handshakes across
all SSL sessions, for both datasets. The overhead ranging from
0.5 KB to 8 KB (mean: 4.2 KB, median: 4.4 KB) depends on
several factors including the certificate size, whether a full or



Table 3: What-if analysis of changing protocols. The numbers

shown are the overall protocol efficiency rates (DS1).

What-if Scenario
Mobile Sites Non-mobile Sites

Cold Warm Cold Warm

Original 83.0% 62.3% 81.0% 58.1%
HTTP→ HTTPS 71.1% 42.7% 68.2% 38.6%
Plus GTP 78.2% 57.1% 76.2% 53.1%
HTTP→HTTPS + GTP 66.7% 39.1% 63.9% 35.4%

GTP IP ... userIP UDP

Figure 3: A common configuration of GTP. The user packet is

surrounded by dashed line.

an abbreviated handshake is performed, etc.3 (In contrast, the
overhead of a TCP handshake is only around 100 bytes). In the
SSL data transfer phase, each encrypted data block only has a 5-
byte header, and the overhead introduced by symmetric encryption
(ssl_usr_enc − ssl_usr_dec) is also small as shown in Table 2
so the SSL overhead in data transfer phase is negligible. (ii)

TCP connections are not effectively reused. We will detail the
connection reuse issue in §4.3. (iii) As will be shown in Figure 5
(§4.4), most objects are small in payload size. By putting together
the above three observations, we found the high overhead of SSL
is caused by inefficient reuse of TCP connections, each incurring
high SSL handshake overhead compared to the small payload it
carries. Warm-cache loads incur higher SSL overhead than cold-
cache loads do because for warm loads, their object payload sizes
are smaller (Figure 5) and their connections are more poorly reused.

The Overall Protocol Efficiency Rate is defined to be the
fraction of http_usr or spdy_usr shown in the rightmost column
in Table 2. It quantifies the fraction of data (i.e., the HTTP/SPDY
payload) ultimately consumed by the user. HTTP significantly out-
performs HTTPS and SPDY, and cold-cache load is more efficient
than warm-cache load. Warm-cache load for HTTPS and SPDY
always yields efficiency rates less than 50%, and sometime as low
as 11%. The reasons have been detailed above.

What if All HTTP is Replaced by HTTPS? We consider a
“what-if” scenario where all HTTP flows in the dataset switch
to HTTPS. This is possible in the near future given the rapid
deployment of HTTPS and SPDY. We construct the what-if sce-
nario by adding to TCP flows carrying HTTP objects dummy
SSL handshakes whose sizes conform to the distribution shown in
Figure 2. The overhead in the SSL data transfer phase is ignored.
Also existing HTTPS and SPDY flows are not changed in the what-
if scenario. The “Original” row in Table 3 lists the overall protocol
efficiency rates of the original DS1 trace, considering all three
protocols. The “HTTP→HTTPS” row corresponds to the what-if
scenario. The results indicate that switching to HTTPS will reduce
the overall protocol efficiency rates by at least 12% to 20%.

What if Transferred in Cellular Core Network? When pass-
ing through the 3G/LTE cellular core network, user packets will be
tunneled by the GPRS Tunneling Protocol (GTP) [5]. As shown
in Figure 3, when tunneled, a user packet (surrounded by dashed
line) is encapsulated by an IP header (20 bytes), a UDP header (8
bytes), and a GTP header (at least 8 bytes). In LTE, when a base

3The implementation limitation where only RSA key exchange
is used by the modified SSL library of UbiDump has negligible
impact on the handshake overhead, based on our local experiments.

Table 4: TCP reuse status across objects.

Data
Protocol∗ Reused First

Connection Not Reused
Set Closed Busy Other

DS1
HTTP(S) 35.5% 28.6% 4.5% 13.5% 18.0%

SPDY 47.4% 52.6% 0 0 0

DS2
HTTP(S) 37.2% 28.4% 10.6% 7.3% 16.5%

SPDY 47.4% 52.6% 0 0 0
∗ HTTP(S) means HTTP or HTTPS.

station receives a user packet over air interface, it will perform the
encapsulation and forward the packet towards the serving gateway
(SGW). The GTP header contains the tunnel information, and
the outer IP header contains the base station IP as the source
address and the SGW IP as the destination address. UMTS uses
a conceptually similar scheme for tunneling.

The “Plus GTP” row in Table 3 indicates that under the afore-
mentioned configuration, the overall protocol efficiency rates will
decrease by at least 5% due to the additional IP/UDP/GTP headers.
If the above two what-if scenarios are combined, the reduction will
be up to 23% as shown in the last row of Table 3.

4.3 TCP Connection Management
We study two aspects of TCP connection management policy:

connection reuse and connection closure.
Reusing TCP Connection for multiple objects helps reduce the

resource utilization in two ways. (i) It reduces overheads such as
TCP handshake, slow start, and SSL handshake, leading to fewer
round trips. In cellular networks with high latency, this means
lower radio energy consumption since usually the radio is not
turned off during the entire page loading period due to the long
tail time explained in §1. (ii) Reusing connections also helps lower
the bandwidth utilization caused by SSL handshake (§4.2).

To understand whether TCP connections are properly reused, we
start by measuring the number of distinct server IPs the handset
contacts during loading a website. In DS1, the median values
for (mobile sites, cold-cache load), (mobile, warm), (non-mobile,
cold), (non-mobile, warm) are 8, 5, 10, and 7, respectively. How-
ever, complex sites may involve up to 100 distinct IPs. The number
of distinct IP addresses is clearly the lower bound of the number
of required TCP connections, which we found to be much higher:
the median values of the total number of actual established TCP
connections of a website are 22, 7, 37, and 12, respectively, for the
aforementioned four schemes.

Why are TCP Connections not Reused? To answer this, we
classify each object into the following five categories shown in
Table 44. (i) The object is transferred by reusing an existing TCP
connection (“Reused”). (ii) Reusing a connection is inherently
impossible because it is the first time that the client connects to
that server (“First”). (iii) No connection is reused because all
existing connections are closed or marked as Connection:close
(“Closed”). (iv) All existing connections are busy transferring user
data, and (probably because of this) the client opens a new connec-
tion (“Busy”). (v) There is at least one reusable idle connection,
but the client still opens a new connection (“Other”).

Table 4 indicates striking differences between HTTP(S) and
SPDY in the “Connection Not Reused” categories. (i) In HTTP(S),
a connection may not be reusable if it closes too soon or if

4Usually a browser does not reuse a single connection for multiple
host names, even if they resolve to the same IP address. Our
analysis follows this practice although the results are qualitatively
similar between IP-based and host-based reuse.
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Connection:close is used. SPDY addresses this problem by
using a much longer timeout (describe soon) and by forbidding
to use the Connection header field (i.e., SPDY always assumes
a persistent connection). (ii) In HTTP(S), a busy connection may
block a new request to the same server but this does not happen
in SPDY, which allows multiplexing transfers of multiple objects
of the same domain in a single connection. SPDY’s approach
can potentially create head-of-line blocking at the transport layer,
whose negative effects can somewhat be mitigated by prioritizing
object loads [9]. (iii) The “Other” category indicates that for
HTTP(S), often the client should have reused the connection but
it did not, probably due to an implementation issue. Overall, we
found SPDY outperforms HTTP(S) in reusing TCP connections,
leading to the benefits described at the beginning of this subsection.

Connection Closure: HTTP vs SPDY. When an HTTP(S) data
transfer finishes, a client or a server usually waits for a while before
sending a FIN, to increase the chance of the TCP connection being
reused [27]. Our measurement shows that for HTTP(S), most of
their TCP connections are closed by the handset using TCP FIN,
and the remaining are usually terminated by FIN initiated by the
server, or by the connection split proxy in the studied cellular
network for server port 80/8080 (§3.1). Negligible fraction of
connections are terminated by TCP RST. The closure delay (i.e.,

the delay between the last data packet and the FIN/RST) usually
ranges between 0 and 10 seconds.

On the other hand, most TCP connections carrying SPDY traffic
are not terminated when the data collection terminates. They are
kept open for a long time i.e., longer than the 30-second timeout
used to determine the completion of a page load (§3). This is
because SPDY recommends “clients do not close open connections
until the user navigates away from all web pages referencing a
connection, or until the server closes the connection”. Servers are
also encouraged to “leave connections open for as long as possible,
but can terminate idle connections if necessary” [9]. This creates
more opportunities for reusing TCP connections (Table 4). Note
HTTPS/SPDY traffic does not traverse the connection split proxy.

Silent Connection Closure. As mentioned before, it is useful to
reuse TCP connections to amortize overheads such as TCP and SSL
handshakes. In cellular networks, delayed FIN/RST packets can
cause significant radio energy drainage, due to their incurred tail
times. To address such a dilemma between connection reuse and
delayed connection closure overhead, recent work [27] proposes a
TCP extension called Silent TCP connection Closure (STC). The
key idea is that both sides close the connection silently without
performing FIN handshake based on a negotiated keep-alive timer.
It allows both sides to delay connection closure using the negotiated
timer (and thus reuse connections). In the meanwhile it eliminates
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Figure 5: Payload sizes across objects (DS1).

Table 5: Mobile websites with the largest payload sizes (DS1).

Website (Cold) Type # Objs Avg Size Height∗

deadspin.com Blog 71 6.5 MB 25.3
pinterest.com OSN 128 5.4 MB 47.2
disney.go.com Entertain 99 5.3 MB 6.5
salon.com News 279 5.2 MB 15.2

Website (Warm) Type # Objs Avg Size Height∗

disney.go.com Entertain 26 1.4 MB 6.5
perezhilton.com Blog 54 1.1 MB 5.9
cbs.com TV & Video 61 1.0 MB 2.4
yahoo.com News 62 0.7 MB 14.0
∗ The unit is the screen height in portrait orientation.

the tail time incurred by the FIN/RST packets that usually appear
as separate traffic bursts. STC is generally applicable to any
mobile application. It is lightweight, incrementally deployable, and
backward compatible. All its introduced changes can be confined
within cellular networks, which STC is specifically designed for, by
upgrading the mobile device and cellular proxy software. In §4.6,
we show STC is particularly useful for web browsing.

4.4 Web Page Content
We now shift our focus to the web page content. Figure 4 plots

the distribution of the payload sizes of the top websites (i.e., their
landing pages). The “payload size” refers to the size of http_usr
or spdy_usr in Table 2. The payload may be compressed if the
server does so. As expected, non-mobile sites are usually larger
than mobile sites, and cold-cache loads transfer more bytes than
warm-cache loads do.

Large Websites. Figure 4 indicates that for cold-cache load,
20% of mobile sites and more than 40% of non-mobile sites have
more than 1 MB of payload. Table 5 lists the largest mobile sites (in
terms of the total payload size) for cold and warm load. We found
that statistically, large mobile sites tend to be much “taller” in their
appearances than small mobile sites do5. We measure the height of
a website from the captured screenshot in which the width of the
page already automatically aligns with the handset screen width in
portrait orientation. The “Height” column in Table 5 thus shows the
page height in multiples of the handset screen height. The heights
are usually far greater than 1 for large mobile sites. In contrast,
mobile sites with small sizes are much more likely to have heights
of exact one unit. We discuss solutions for reducing sizes of “tall”
websites in §5.

5A few sites may do “infinite scrolling”: when the user scrolls
to the bottom of a tall page, the browser will load more contents,
which are not captured by our automated testbed.
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Table 6: Breakdown of large objects (mobile websites in DS1).

Type % bytes (objs) Large images (subset of large objects)

Images 64.5% (60.2%) Cause % bytes (objs)
JS 22.8% (25.5%) High Res. JPG/PNG 78.5% (78.1%)

Html 4.4% (5.4%) Sprite JPG/PNG 6.7% (7.4%)
Fonts 4.0% (4.7%) Animated JPG/PNG 4.1% (2.8%)
CSS 3.8% (3.9%) Animated GIF 6.2% (3.7%)
Json 0.5% (0.3%) Vector SVG images 4.6% (8.0%)

Large Objects. We now look at individual web objects. As
shown in Figure 5, the object payload size (including both request
and response, but dominated by response payload) follows a heavy-
tail distribution similar to that in Figure 4, except that the difference
between mobile and non-mobile object sizes is much smaller. We
next study the largest 2,632 objects of mobile websites in DS1 since
they are the most bandwidth-consuming. They account of 2.4%
of all mobile site objects while their payload size contribution is
50.0%. Their content type breakdown is shown on the left-hand
side of Table 6. Images dominate the large objects in terms of both
the bytes and the object count.

The right part of Table 6 investigates why the images belonging
to the largest 2,632 objects have large sizes based on our visual
inspection of more than 1,500 images. 78% of them are single
images with (often unnecessarily) high resolutions, while about
10% of the large images consist of multiple sub-images whose
resolutions are not high. Those sub-images can be animation
frames. Unlike GIF, neither JPEG nor PNG has built-in support for
animation so the animation will be “played” by quickly rolling over
each sub-image using Javascript. Another usage of such an image
slicing technique is called “Sprite Image” i.e., to transfer multiple
small images in one large image to save round-trip delays. A
potential issue with this approach is the reduced caching efficiency,
as the entire sprite image needs to be transferred if any sub-image
changes. So sprite image better works with small sub-images.

Hosts Shared by Multiple Websites Providing Third-Party

Services. We obtained from both datasets about 3,200 (2,200)
unique host names for cold (warm) cache loads. Figure 6 ranks
the host names by the number of websites they appear in (i.e., the
“frequency” on Y Axis). We found that although most hosts are
only associated with one single website, there are a small amount
of hosts that are accessed by a large number of websites. The top
host name appears in 245 distinct websites. Table 7 describes the
top shared hosts for DS1 (cold load for both mobile and non-mobile
websites). We also manually verified host names appearing in at
least 10 distinct websites in DS1 for both cold and warm load.
All those hosts seem to provide third-party “add-on” features such
as user tracking, usage measurement, advertisements, and social
network feeds for the websites they are embedded in.
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Figure 7: What-if analysis with shared hosts removed (DS1).

Table 7: Top hosts accessed by multiple websites (DS1, cold).

Host name # Websites Description

www.google-analytics.com 245 User tracking & stats
b.scorecardresearch.com 156 User tracking & stats
www.facebook.com 91 Facebook
ad.doubleclick.net 81 Advertisements
pixel.quantserve.com 81 User tracking & stats

What if Shared Hosts are Eliminated? We consider a what-if
scenario where the above third-party hosts are eliminated. Specif-
ically, we remove traffic from/to hosts appearing in at least 10
distinct websites since they are verified to be not related to the
main content of the website6. Doing so reduces both the band-
width consumption and the radio energy utilization for the mobile
handset. We consider the bandwidth saving here and quantify
the energy benefits in §4.6. Figure 7 plots the CDF of traffic
volume (HTTP/HTTPS/SPDY header and payload) savings across
websites in the what-if scenario. For 20% of websites (y = 0.8),
the bytes reduction achieves at least 20%, 39%, 30%, and 48%
for (mobile sites, cold-cache load), (mobile, warm), (non-mobile,
cold), and (non-mobile, warm), respectively. The 95-percentiles
are even as high as 43%, 75%, 49%, and 73% for the four scenarios,
respectively. Note these are the lower bounds of bandwidth savings
since hosts shared by less than 10 distinct websites can also provide
third-party services. The results indicate that for many websites,
compared to their main contents, the embedded third-party services
impose high bandwidth overhead, and optimizing them can lead to
non-trivial or even significant bandwidth savings.

Redirections. Table 8 lists the distribution of the number of
redirections (HTTP 301 or 302) before the main html file is trans-
ferred, for cold-cache load of each website7. To our surprise, 57.8%
of the mobile sites take at least two redirections while 90% non-
mobile sites require no more than one redirection. We found that
some popular mobile sites have as many as 5 redirections before the
phone can fetch the main html file, such as msn.com, wsj.com, and
bankofamerica.com. Excessive redirections hurt in particular
user experience in cellular networks with high latency by bringing
in additional round trips. For example, loading the mobile version
of live.com, the Microsoft online service gateway, on cellular
network takes five redirections, with four having DNS lookup and
three being transferred in HTTPS. All redirections take about 6.7

6We do handle a few exceptions in our analysis e.g., we do not
remove the facebook.com host from the Facebook website itself.
7For most sites, loading www.xyz.com instead of xyz.com can
reduce the number of redirections by one.
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Table 8: Number of redirections (DS1, cold load).

# Redirections Mobile Non-mobile

0 7.3% 24.7%
1 34.9% 65.3%
2 42.5% 6.3%
3 9.9% 2.3%
4 3.6% 0.7%
5 1.8% 0.7%

seconds (median) in total, leading to significant user experience
degradation and radio energy waste.

4.5 Timing Dynamics
In this subsection, we begin by measuring website load time

and rendering time. Although performance is not our focus in this
study, it is correlated with the radio energy utilization in cellular
networks since usually the radio is on during the entire page loading
period due to the long tail times. They also lead us to examine a key
metric called inter-object idle time, which causes many websites
to have very long load time, significantly hurting the resource
efficiency.

Website Load Time (WLT) is defined to be the duration from
the client sending the first byte of the web/DNS request to the
client receiving the last data packet from the web server. Note
that control data such as TCP FIN can go beyond WLT. Figure 8
plots its distributions for DS1. As expected, mobile sites usually
have shorter WLT values than non-mobile sites do, and warm-
cache loading outperforms cold-cache loading. Websites in DS2

are loaded faster than DS1 due to lower latency in Wi-Fi networks
(figure not shown).

Website Rendering Time (WRT) is defined to be the duration
from the client sending the first byte to the moment when the page
is fully rendered. It is measured by WebView.PictureListener.
onNewPicture(), a callback function triggered at each time when
the rendering results of the WebView changes. One issue of
this method is that, for some pages containing animated elements
(e.g., an animated ad banner), the callback is being continuously
triggered till the end of the data collection. We therefore eliminate
from our rendering time analysis such websites (account for about
30% of all websites) whose WRT cannot be accurately determined.
We plan to use more accurate metrics (e.g., Speed Index [14]) to
quantify WRT in future work.

WRT can be regarded as the user-perceived page loading time.
Figure 9 plots the distributions of the proportion of rendering time
within the total transfer time (i.e., WRT/WLT) across websites for
DS1. For 40% of the websites, their page rendering finishes before
the data transfer finishes. DS2 exhibits a similar distribution.
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Figure 10: An example illustrating IIT. Each box corresponds

to a web object transfer including both request and response.

We are interested in the origins of objects that are transferred
after the page is fully rendered. We found that some of them belong
to shared hosts providing “add-on” features such as user tracking
(Table 7). But many more of them correspond to objects whose
transfers are not necessary, such as duplicate contents and not
consumed data. For example, a single load of usmagazine.com
transfers about 650KB of advertisement images that are never
displayed on the page, leading to waste of bandwidth utilization.

Figure 8 indicates the WLT can last for more than 60 seconds,
because often there are long idle periods among object transfers.
Such idle periods can cause energy inefficiencies due to the tail
effect. Recall that a tail time (Ttail) is the timeout period before the
radio is turned off (§1). As an example, in Figure 10, after Transfer
A, if d1 ≥ Ttail, the radio will be on for Ttail seconds, then be turned
off, and then be switched on by Transfer B. If d1 < Ttail, the radio
will be always on from A to D (D incurs another tail). The tail can
be triggered by any data burst and Ttail can last for more than 10
seconds. Our subsequent analysis aims at understanding the root
causes of idle periods like d1 in Figure 10.

Inter-object Idle Time (IIT) depicts the idle time period when
no object transfer is in progress. Recall a transfer includes both the
request and the response of an object. For a transfer W starting at
time t, the IIT before W is defined to be IIT(W ) = max{0, t−tL}
where tL is the latest transfer ending time for all other objects
whose transfers start before t. Therefore the network is idle from
time t − IIT(W ) to t waiting for request (but the radio might
still be on). For example, in Figure 10 consisting four transfers,
IIT(B) = d1 but IIT(D) = 0 instead of d2 since B partially
overlaps with D. IIT is a conservative estimation of the part of
the website load time (WLT) that can be reduced without violating
the dependencies among objects. Eliminating IIT reduces WLT and
saves radio energy.

Origins of Long IIT. Figure 11 plots across all websites the
distribution of the maximum IIT for each mobile website load. DS1
and DS2 exhibit very similar distributions, because IIT does not
consider the idle time within a transfer that is usually caused by
the network or server latency. Instead, IIT is always caused by the
delay introduced by the handset. Figure 11 indicates that for more
than 20% of the mobile websites, their maximum IITs are longer
than 1 second. Some IITs can be as long as 30 seconds.
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We are interested in the long IITs that lengthen the WLT and
therefore increase the radio energy consumption. By sampling
a few long IITs, we classify their root causes as follows. (i)

Periodic transfers triggered by Javascript. For example, ChartBeat
(http://chartbeat.com), a popular user tracking service used
by more than 30 different websites, sends a beacon to ping.chart
beat.net periodically (the periodicity depends on the level of user
interaction). (ii) Delayed transfers controlled by Javascript. The
object is only transferred once instead of periodically. For example,
a few mobile sites (e.g., m.sprint.com) use the TeaLeaf Customer
Experience Management framework (http://www.tealeaf.com/),
which sends some measurement data 30 seconds after the main
page is loaded. (iii) Client computation delay such as parsing
complex Javascript and CSS files. This usually happens for IITs
less than 1 seconds during which the CPU usage is 100% (our
testbed logs the CPU usage). (iv) Other delays not caused by the
CPU bottleneck. For example, some sites use the Google Location
Service (https://www.google.com/loc/m/api) for mapping a
GPS coordinate to a street address. There is usually some network
idle period (from hundreds of milliseconds to several seconds)
before the request is sent out because the handset is obtaining its
location as indicated by the GPS icon displayed on the status bar.

Among the above causes, periodic transfers impose the highest
impact on the radio energy utilization. We found that compared
with those generated by mobile apps [28], periodic transfers in web
pages are more aggressively involving much smaller periodicities
(e.g., 5 seconds), which can keep the radio always on as long as the
user stays on the page. We show examples of identified periodic
transfers in Table 9.

4.6 Energy Impact of Timing Dynamics
We quantify the radio energy impact of three previously de-

scribed issues: delayed connection closure (§4.3), the shared hosts
(§4.4), and the inter-object idle time (IIT, §4.5). All of them can
inject network idle time and therefore cause more radio energy
consumption due to the tail effect. Our analysis methodology is
as follows. For each website, we feed the original trace into a radio
energy model and get the energy consumption denoted as E0. We
then construct a what-if scenario (e.g., removing all shared hosts)
by modifying the trace. The energy model then computes the radio
energy of the modified trace as E1. The resultant radio energy
saving in the what-if scenario is (E0 − E1)/E0. We next describe
three what-if scenarios S1, S2, and S3.

S1: Silent Connection Closure. As mentioned in §4.3, most
FIN/RST packets are delayed, incurring radio energy overhead. In
S1, we assume silent TCP connection closure (STC) is used by
eliminating FIN handshakes8. Similar analysis was performed in
the original STC proposal [27] by applying STC to packet traces

8We conservatively do not remove any RST packets.

Table 9: Periodic transfer examples (DS1).

Website Periodicity

ChartBeat (30+ sites) ≥ 15 sec
m.espn.go.com 15 sec
comcast.net 10 sec
m.staple.com 5 sec
boston.com 1,2,4,8,... sec

collected from a cellular carrier in an application-agnostic manner.
Here we investigate whether STC is useful for web browsing.

S2: No Third-Party Services from Shared Hosts. We remove
TCP connections containing host names appearing in at least 10
distinct websites. The method and parameters are justified in the
what-if analysis of the bandwidth impact of the shared hosts (§4.4).

S3: Reducing Inter-object Idle Time (IIT). We reduce an IIT
to δ if it is longer than δ, otherwise we do not modify it. For
example, in Figure 10, B, C, and D will be shifted backward
by d1 − δ if d1 > δ. The threshold δ specifies the maximum
processing delay of each object. We conservatively choose δ =
0.5s which we believe is achievable if websites are well optimized
for smartphones. Changing δ to 0.3s or 0.7s does not affect the
results qualitatively.

In fact, to reduce IIT properly without impacting the function-
alities, we need IITs’ app-level semantics, which however are
difficult to infer in an automated manner. We therefore consider
the aforementioned upper bound of energy saving by reducing all
long IITs to δ. In many cases, objects with long IITs are delay-

tolerant (e.g., periodic advertisement update and user tracking).
Wisely scheduling their transfers using prefetching, batching, or
piggyback [16] can eliminate IITs without impacting functionality.
Also, even when there are legitimate reasons to use high-energy-
overhead features such as periodic transfers, it is a good practice to
provide options for users to disable them. We thus believe S3 has
practical relevance.

The What-if Analysis Results are shown in Figure 12 and 13
for warm loads of DS1 and DS2, respectively (results for cold
loads are similar). We leverage two smartphone radio energy
models: the UMTS/HSPA model [28] and the LTE model [22].
Both models9 take as input a packet trace and compute the radio
energy consumption by simulating the Radio Resource Control
(RRC) state machine used by the handset to manage the radio
interface. We found both models yield very similar results in terms
of relative radio energy savings so we present the results using the
UMTS model. In each figure, each curve plots the CDF of energy
savings across all websites. For example, a point at (0.2, 0.4) means
the energy savings are at least 20% for 60% of the websites.

We describe our findings. (i) For 60% to 80% of the websites,
S2 brings no saving. This is because although shared-hosts are
popular (Table 7), their transfers often temporally coexist with
other objects. Therefore removing them does not help turn the radio
off. The energy savings brought by S3 is also insignificant, because
many websites do not have a long IIT of more than 0.5 second
(Figure 11). (ii) For some websites, S2 or S3 brings considerable
energy savings. Fixing their resource-inefficient traffic patterns by
removing the third-party objects or reducing the IIT helps save
the radio energy by up to 80%. For example, by removing the
ChartBeat traffic (Table 9), the overall radio energy saving for
bloomberg.com (warm-cache load) is 66%. Note the S2 curve

9UMTS/HSPA model: Google Nexus One handset, DCH→FACH
timer 5s, FACH→IDLE timer 12s; LTE model: HTC Thunderbolt
handset, CONNECTED→IDLE timer 11.6s.
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Table 10: Cache status across objects (cold load in DS1).

Cacheability Category
Mobile Sites Non-mobile Sites

Objs Bytes Objs Bytes

C1: Cacheable w/ explicit lifetime 51.2% 71.3% 48.3% 67.6%
C2: Cacheable w/o explicit lifetime 23.2% 19.7% 24.6% 22.2%
C3: no-store due to server 10.8% 2.4% 11.9% 3.0%
C4: no-cache due to server 12.5% 6.2% 13.8% 7.0%
C5: HTTP POST objects 0.6% 0.1% 0.7% 0.1%
C6: Other 1.7% 0.3% 0.7% 0.1%

underestimates the savings because hosts shared by less than 10
distinct websites can also provide third-party services but we do
not remove them. (iii) For S1, it brings the highest radio energy
savings, indicating STC is particularly effective for mobile web
browsing. The median radio energy saving is 25% for DS1 and
45% for DS2. In contrast, as measured in [27], applying STC to
all mobile traffic patterns yields a saving of only 11%, since many
long-lived connections (e.g., video streaming) cannot benefit much
from STC. Also, the connection split proxy (§3.1) has small impact
on the S1 savings for DS1 (Figure 12), because (i) the vast majority
of connections in both datasets are closed by handsets instead of
the proxy or remote servers, and (ii) the S1 curves for both datasets
exhibit qualitatively similar patterns as shown in Figure 12 and 13.

The “All” curve represents a what-if scenario where S1, S2, and
S3 are jointly applied. In that scenario, the median radio energy
savings in Figure 12 and 13 are 32.5% and 58.7%, respectively.
DS2 achieves higher savings than DS1 does, because for the same
website, its overall load time (WLT) in DS2 is shorter than that in
DS1, while the absolute durations of eliminated timing gaps are
similar for both datasets. Therefore the removed fraction of radio-
on time is higher in DS2 than in DS1.

The “Opt” curve refers to a what-if scenario same as that of the
“All” curve, plus that all inter-packet time (IPT) longer than δ (0.5s)
is reduced to δ. IPT is different from IIT in that IPT further includes
timing gaps within a transfer. The “Opt” curve depicts the upper
bound of the radio energy saving for each website. For DS2, the
“All” and “Opt” curves are almost identical, indicating the timing
gaps optimized by S1, S2, and S3 contribute to almost all idle time
periods except for those caused by the high network latency (i.e.,

high IPT), which seldom exist in DS2 but often appear in DS1 (so
the “All” and ”Opt” curves differ a lot in DS1).

4.7 Caching Semantics
Caching effectively reduces network bandwidth consumption

and decreases user-perceived latency. In mobile networks, caching
on user devices is particularly important because it can poten-
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tially eliminate any network-related overhead. Efficient caching
relies on two factors: good caching implementation and semantics.
The former requires a browser to strictly conform to the HTTP
caching protocol [20], while the latter means proper configuration
of caching parameters such as cacheability and expiration time, as
the entire caching mechanism will be bypassed if, for example, the
server marks all object as no-store.

Web caching implementation on mobile devices has been ex-
tensively investigated by previous work [26] so here we study
the caching semantics. We have verified using the techniques
introduced in [26] that our testbed (using WebView on Android
4.0.4) does follow the HTTP/1.1 caching protocol except that it
does not cache byte-range responses that are not observed in the
datasets. The total cache size and the size limit of a single cache
entry of the WebView are measured to be 20 MB and 2.62 MB,
respectively. These are greater than the maximum landing page
and object sizes, respectively, in our datasets. Also note HTTP,
HTTPS, and SPDY use the same caching protocol.

Object Cacheability is summarized in Table 10, which classifies
each object in a cold-cache load into one of the six categories C1
to C6. C1 and C2 are cacheable objects. They differ in that C1
objects have freshness lifetime10 explicitly set by the server using
Expires and/or Cache-Control:max-age header fields, while
C2 objects are without such explicit lifetime. For C2, a client is
allowed to use a heuristic lifetime whose value completely depends
on the implementation. C3 refers to objects that are not cacheable,

10The freshness lifetime is used to keep the consistency between a
local copy and server’s copy. Within the lifetime of an object, a
client just uses the local (cached) copy. Otherwise the client needs
to contact the server to revalidate the freshness of the object.



Table 11: Caching across main HTML pages (cold load, DS1).

Cacheability Category Mobile Sites Non-mobile Sites

C1: Cacheable w/ explicit lifetime 16.5% 15.4%
C2: Cacheable w/o explicit lifetime 33.6% 42.7%
C3: no-store due to server 26.0% 18.2%
C4: no-cache due to server 23.9% 23.8%

as indicated by the no-store cache control directive. C4 cor-
responds to must-revalidate objects that are tagged by no-cache

or must-revalidate cache control directives. Such objects are
cacheable, but a client must always revalidate with the origin
server before serving them (i.e., their lifetime is zero). C5 consists
of objects requested using HTTP POST (usually not cacheable).
Remaining objects are classified as C6.

We describe our findings in Table 10. (i) About 23% to 25%
of the objects belong to C2, and their lifetimes are determined by
heuristic values that vary across diverse HTTP client implemen-
tations: a short heuristic lifetime (e.g., 30 minutes used by the
HttpResponseCache library [26]) can cause unnecessary reval-
idation requests, while a long lifetime (e.g., 48 hours adopted by
the Safari browser) may lead to out-of-date local copies. (ii) 11%
to 12% of the objects (C3) are tagged by the no-store directive
so they cannot enjoy any benefit of caching. The situation is
improved for those 12% to 14% of the must-revalidate objects (C4),
since if the object content does not change, the server only needs
to reply a small 304 Not Modified response header instead of
transferring the entire object. However, revalidation requests can
still incur additional network round trips and potentially additional
resource consumption. In Table 10, 23% of all mobile sites’
objects fall into C3 or C4, meaning that every request for any
of these objects will involve a request to the remote server and
therefore incur at least one round trip. Also recall that in cellular
networks, even transferring such small amount of data can turn
on the radio and keep it on for Ttail seconds when no concurrent
transfer is in progress. (iii) Both mobile and non-mobile sites share
similar distributions in Table 10, implying caching semantics are
not specifically optimized for mobile websites that are delivered
in a more resource-constrained environment compared to their
desktop counterparts.

Cacheability of Main HTML Pages is listed in Table 11. 26%
(18%) of mobile (non-mobile) websites mark their main HTML
pages as no-store, causing bandwidth waste for warm-cache
load, as such main HTML pages are frequently accessed and their
sizes are often not small. For example, the main HTML pages of
m.bing.com and mobile.twitter.com are non-storable, with
sizes (after compression) of 65KB and 85KB, respectively.

Freshness Lifetime. We examine the server-specified lifetime
for objects belonging to Category C1 in Table 10. As shown in
Figure 14, overall about 75% of the C1 objects have common
lifetime values such as one hour, one day, and one month. For
objects in mobile websites, their lifetime settings are statistically
even shorter than those in non-mobile websites. We found many
short lifetime values tend to be aggressive. For example, about
20% of the C1 objects in mobile websites have lifetime shorter than
1 hour. Within such objects, 35.7% are images and fonts, 34.3%
are Javascripts, and 7.8% are CSS scripts. It is unlikely that their
contents can change within such a short period of 1 hour or less.
Given the resource-constrained environments of cellular networks,
it is important for web developers to ensure that objects are not
assigned too short freshness lifetimes.

Table 12: Compression what-if analysis (DS1).

What-if Mobile Sites Non-mobile Sites
Scenario Cold Warm Cold Warm

T1 10.8% 11.9% 11.3% 13.1%
T2 3.1% 10.3% 4.1% 13.0%
T3 13.9% 22.2% 15.4% 26.1%
T4 14.4% 24.5% 16.4% 29.0%

4.8 Data Compression
Compression is widely used to reduce bandwidth consumption.

Previous work (e.g., [25]) characterized the effectiveness of com-
pression on today’s smartphone HTTP traffic. Our analysis goes
beyond previous studies by further considering compression at the
SSL and SPDY layers.

Compression support provided by HTTP, HTTPS, and SPDY
are different. (i) For HTTP, the server can choose to compress an
individual HTTP response payload (i.e., object-level compression)
if the client offers this option in an HTTP request. (ii) For SSL,
the server can choose to compress the entire SSL stream before
encrypting it based on the compression option negotiated during
the handshake. (iii) In SPDY, web request and response headers are
embedded in a particular type of SPDY header, and are mandatorily
compressed using a customized dictionary. HTTP, by contrast,
never compresses headers.

How Often is Compression Utilized? We summarize our
finding for DS1 (DS2 yields similar results). (i) For HTTP, com-
pression is always offered by WebView while only 31.8% of HTTP
200(OK) responses are actually compressed by the server. We
found that most of the under-utilization is associated with images
that are already in compact formats. They account for 82.6%
of non-compressed HTTP 200 responses. But as will be shown
in Table 12, there still exist non-trivial amount of uncompressed
contents compressing which can achieve additional bandwidth sav-
ings of up to 11% (13%) for cold (warm) load. (ii) In almost
all SSL sessions, the client offers the stream-level compression
option. But the option is adopted by server in only 8.4% of all SSL
sessions. There can be multiple causes for such significant under-
utilization e.g., due to unawareness or performance concerns. Note
that in fact, the gzip compression scheme used by HTTP, SSL, and
SPDY is quite efficient. A single core of a commodity server can
achieve throughput of 100+ Mbps [25]. Decompressing data on a
commodity smartphone is even faster. So performance concerns
should not prevent the use of SSL compression.

What-if Analysis. We study the following what-if scenar-
ios T1 to T4 to understand how compression can be further im-
proved to help reduce the bandwidth consumption. T1 corresponds
to the scenario where object-level compression is fully used in
HTTP/HTTPS/SPDY response payload. T2 is the hypothetical case
where SPDY header compression is also employed in HTTP(S)
headers. T3 combines T1 and T2 by compressing both payload
and headers separately. In T4, SSL stream-level compression is
fully used in HTTPS and SPDY, and it is also ported to HTTP i.e.,

the entire TCP connection payload carrying HTTP transfers will be
compressed as a whole. For each what-if scenario, we first perform
the corresponding compression to get a more compact dataset, and
then compare it with the original dataset to compute the relative
saving of all HTTP/HTTPS/SPDY header and payload bytes.

Table 12 shows the what-if analysis results. (i) Full usage of
object-level compression for response payload (T1) yields addi-

tional bandwidth savings of 11% to 13%. Such benefits mainly
come from compressing Html/Javascript/CSS/XML objects that



Table 13: A summary of identified resource inefficiencies.

Layer Description §

TCP Inefficient connection reuse §4.3
SSL Bandwidth impact of SSL §4.2
HTTP Impact of delayed connection closure §4.6
HTTP Inefficient caching semantics §4.7
SSL/HTTP Inefficient object/stream compression §4.8
Content Root causes of large contents §4.4
Content Impact of third-party services §4.4, §4.6
Content Excessive redirections §4.4
Content Unnecessary post-render objects §4.5
Content Causes & impact of in-load timing gaps §4.5, §4.6

are not compressed in the original trace. (ii) For T2, surprisingly,
just compressing headers brings non-trivial savings (3% to 4%) for
cold-cache load. For warm load, the savings are even much higher
(10% to 13%), almost as high as those of T1. This is because
today’s HTTP headers are not as small as one might think. For
the entire DS1 dataset, the ratio between total payload size and
header size is 12:1 and 3:1 for cold and warm load of mobile
sites, respectively. Since HTTP and HTTPS never compress their
headers, compressing them reduces the overall header size by more
than 40%. (iii) The savings achieved by T3 is always the sum
of those of T1 and T2. (iv) If always used, the stream-level
compression (T4) can achieve more savings than T3 does, because
it further eliminates redundancies across multiple objects within
the same TCP connection. In contrast, T1, T2, and T3 handle
each object separately. With SSL compression, HTTP header and
payload traffic can be further reduced by 14% and 25% for cold
and warm load, respectively, for mobile websites.

5. RECOMMENDATION
We provide detailed recommendations for improving the discov-

ered inefficiencies summarized in Table 13.
1. High SSL Bandwidth Overhead. Mobile OS venders can

use the following approaches to mitigate the overhead. (i) Perform
lightweight SSL handshakes. Specifically, Session Identifier [17]
and Session Ticket [29] can be used to resuming previously termi-
nated SSL sessions with low handshake overheads (UbiDump can
analyze both of them). Session ticket is preferred because the SSL
state is stored at the client side. (ii) Reuse TCP connections so that
multiple HTTPS/SPDY objects can share the same TCP connection
and therefore SSL session.

2. TCP Connection Management. Reuse TCP connections
amortizes overheads such as TCP handshake, SSL handshake, and
TCP slow start. SPDY outperforms HTTP(S) in connection reuse.
Also, delaying closing TCP connections can cause severe radio
energy drainage. Such overhead can be eliminated by the silent
connection closure scheme, which works particularly well for web
browsing.

3. Large Websites and Objects. Under the constraints of de-
livering necessary contents and providing good user experiences, a
mobile website should consume as less bandwidth as possible. The
content provider should carefully determine the proper resolution
of an image, keeping in mind both the context of the image, and the
display capability of the requesting device. Apply “sprite images”
only to small sub-images. Double check transfers after the page
is fully rendered, as they are often unnecessary (e.g., duplicate or
not-consumed objects).

4. Image Lazy-loading Consumes More Energy. One way
to mitigate the high bandwidth consumption of the “tall” pages

(Table 5) is to lazily load images i.e., deferring the loading of
images until they appear in the client’s viewport. This optimiza-
tion is already implemented by Google modpagespeed [6] using
Javascript tricks. In cellular networks, however, doing so can cause
intermittent data transfers leading to high radio energy overhead
due to the tail effect. In the worst case, the radio can be on as long
as the user is scrolling. A better solution might be to split a tall
page into several subpages based on content semantics.

5. Excessive Redirections (HTTP 301 and 302) should be
minimized as they incur additional round trips especially in cellular
networks with high latency.

6. Third-party Services (e.g., ads and user tracking) providers
should carefully examine traffic patterns of their data transfers.
Javascript-triggered delayed or periodic transfers are particularly
energy inefficient in cellular networks. In many cases, transfers
incurring long inter-object idle time (IITs) are delay-tolerant or can
be prefetched. Wisely scheduling their transfers using prefetching,
batching, or piggybacking can minimize IITs without impacting the
functionality.

7. Caching Semantics. Content providers should determine
carefully if an object should really be marked as no-store. For
those non-storable large HTML pages (e.g., mobile.twitter.com,
85KB), one possible improvement is to separate the html into two
parts: a static part and a (usually small) varying part. The static
part can have a long lifetime while the varying one can be dynamic
content or be marked as no-cache. Also, for cacheable objects,
good practices are to (i) provide explicit freshness lifetimes, and
(ii) avoid using unnecessarily short lifetimes.

8. Compression. The server should compress large HTML/XML/
CSS/Javascript objects. For HTTPS/SPDY, performing compres-
sion at the SSL layer saves more bandwidth than using HTTP
object-based compression.

6. RELATED WORK
We describe related work in three categories below.
Analyzing SSL Traffic. As described in §2, most previous stud-

ies simply ignore the content of SSL traffic [26, 23, 37]. Existing
tools such as Wireshark [13] and ssldump [12] require servers’ pri-
vate keys for decryption. The Man-in-the-Middle (MITM) Proxy
approach [8, 10] also has limitations as they may change traffic
patterns and contents (§2.2). Previous work [30] leverages cor-
relations across protocols and time for classifying HTTPS-based
webmail traffic. But the technique does not decrypt the HTTPS
traffic. The contribution of the UbiDump tool is it supports on-
device SSL decryption without requiring private key or an MITM
proxy. Further, previous analysis of SSL usually focuses on its
security implications and CPU overhead. We instead study the
bandwidth overhead in §4.2.

Mobile Web Measurement and Optimization. Huang et al.

measured mobile web browsing performance early in 2009 [24].
Gember et al. compared web contents consumed by handheld and
non-handheld devices [21]. Akamai Mobitest [1] is an online tool
measuring performance for web pages loaded on mobile devices.
Thiagarajan et al. presented a system for measuring the energy
consumed by a mobile browser and applied it to diverse web-
sites [32]. The authors provided recommendations such as shrink-
ing Javascript and using energy-efficient image formats. Wang et

al. studied how client-based caching, prefetching, and speculative
loading help improve mobile browser performance [36]. Erman et

al. examined the interplay between SPDY and the cellular radio
layer [18]. Sivakumar et al. investigated cloud-based mobile web
browsing and revealed that it does not provide clear benefits over
the non-cloud-based approach in many cases [31].



Compared with the above work, our study provides new insights
on resource efficiency of mobile browsing, considering the content,
the browser, the smartphone OS design, and lower-layer protocols.
The delayed FIN issue was identified by [28] and was addressed
by the recent silent connection closure (STC) proposal [27]. Here
we conduct a comprehensive measurement of the benefits of STC
on a large number of popular websites. Vallina-Rodriguez et

al. characterized mobile advertisement traffic [33]. We focus
on a broader category of “add-on” services by examining shared
hosts and quantifying their energy and bandwidth impact for top
websites. Recent work [26] studied implementation issues of
HTTP caching on smartphones. Study [25] investigated applying
other redundancy elimination (RE) techniques such as object-level
compression and delta encoding on smartphone traffic. We com-
plement them by looking at caching semantics and by examining
RE techniques used by SSL and SPDY.

General Web Optimization (not mobile-specific) has been a hot
area towards which numerous efforts have been made. Recently
there are new protocols and optimization frameworks such as
Google SPDY [9, 35], QUIC [3], Google modpagespeed [6], and
WProf [34] from both industry and academia. We believe our
findings will provide them with new insights in the context of
mobile devices and cellular networks.

7. CONCLUDING REMARKS
Using the UbiDump tool, we examine a wide spectrum of

factors including protocol overhead, TCP connection management,
web page content, traffic timing dynamics, caching efficiency, and
compression usage, for the landing pages of the most popular 500
websites. As summarized in Table 13, we found that all above
factors at different layers can affect resource utilization (i.e., radio
energy and/or bandwidth consumption) for mobile web browsing.
Our findings and recommendations will assist web developers,
browser developers, OS vendors, and protocol designers in mak-
ing mobile web browsing more resource efficient. In our future
work, we plan to thoroughly evaluate the cellular-friendliness of
other web optimization approaches (e.g., modpagespeed [6]) and
to explore specific optimization techniques for LTE networks.
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