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ABSTRACT
This paper investigates the roles of front-end (proxy) servers
in improving user-perceived performance of dynamic con-
tent distribution. Using Bing and Google search services
as two case studies, we perform extensive network measure-
ment and analysis to understand several key factors that
affect the overall user-perceived performance. In particu-
lar, we develop a simple model-based inference framework
to indirectly measure and quantify the (directly unobserv-
able) “frontend-to-backend fetching time” comprised of the
query processing time at back-end data centers and the de-
livery time between the back-end data centers and front-end
servers. We show that this fetching time plays a critical role
in the end-to-end performance of dynamic content delivery.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes

General Terms
Measurement, Performance

Keywords
Dynamic content distribution, Search service, TCP-splitting

1. INTRODUCTION
More and more content on the Internet is now stored at

powerful, large-scale data centers in the cloud. A signifi-
cant portion of this content is dynamic in that in response
to a user’s request for content, the content returned to her
is generated dynamically and sometimes personalized. Web
search is one common example of such dynamic content gen-
eration. With the emergence of cloud computing and cloud-
based services, we expect that more data will be stored in
the cloud, and more dynamic content will be generated on
the fly in response to user requests. Because of the sheer
scale and cost of building and operating large-scale powerful
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data centers, their number is few and far between. Hence
they are generally far away from a large majority of users.

One way to mitigate this effect and improve the user-
perceived performance (e.g., the overall response time) is
to deploy “proxy” servers – hereafter we refer to them as
front-end (FE) servers – closer to users. The usefulness of
such an approach for static content distribution (e.g., video)
is obvious because of content caching. FE servers can also
be exploited to improve the user-perceived performance of
dynamic content distribution due to the following two key
aspects [9,11]: i) a portion of the (dynamic) content may be
static; thus can be cached and delivered immediately from
the FE servers; and more importantly, ii) via split TCP con-
nections, a FE server can establish a persistent TCP con-
nection with the data center which not only eliminates the
effect of TCP slow-start congestion window ramp-up on the
throughput of the TCP connection between the FE server
and the back-end (BE) data center, but also mitigates such
effect on the throughput of the TCP connection between the
user and the FE server (due to the reduced RTT). Nonethe-
less, the overall user-perceived end-to-end performance likely
depends on a confluence of various factors such as RTT, loss
rate and throughput of the connections between users and
FE servers and between FE servers and BE data centers, the
load on FE servers, the processing time at BE data centers
to generate user-requested dynamic content, and so forth.

To investigate the roles of FE servers in improving user-
perceived end-to-end performance of dynamic content distri-
bution, we conduct an active measurement-based compara-
tive study of Google and Microsoft Bing web search services.
Both services utilize a number of FE servers that are placed
closer to users to assist dynamic content (i.e., search results)
distribution: Google deploys a set of its own FE servers,
whereas Bing relies on Akamai’s content distribution net-
work (CDN). Using the PlanetLab nodes, we perform ex-
tensive measurements of Google and Bing search services
by emulating and generating a variety of keyword search
queries of varying popularity, granularity and complexity,
and collect a large amount of dynamically generated content
and application-layer measurement data. Through content
analysis and temporal clustering of packet-level events, we
confirm that both Bing and Google search results contain
a static portion, such as the HTTP header, HTML header,
etc., which is cached and delivered immediately by the FE
servers upon receiving a user request. As the effect of the
aforementioned second key aspect cannot be directly mea-
sured, we develop a novel model-based inference framework:
we classify and separate the content (i.e., search results) into
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two parts – the static portion that is cached and directly de-
livered by FE servers, and the dynamic portion that is gen-
erated by the BE data centers and then passed onto the FE
servers for delivery. We define several directly measurable
parameters to characterize and predict the delivery perfor-
mances of static and dynamic portions. These predictions
are indeed borne out by our measurement data, and thus en-
able us to deduce that despite that one utilizes a third-party
CDN (as FE servers) and the other does not, both Bing and
Google employ FE servers in a similar fashion.

Furthermore, our inference framework allows us to bound
the FE-BE fetch time (Tfetch) of dynamic content – namely,
the overall time it takes for a FE server to forward user
query to a BE data center, for the data center to dynam-
ically generate the user-requested content and deliver it to
the FE server – we note that this time cannot be directly
observed and measured at the end systems. Comparing Bing
and Google search services, we find that the fetch time be-
tween Google FE servers and BE data centers tends to be
smaller and more stable for Google; in contrast, the fetch
time between the Akamai FE servers and Bing data centers
tends to be larger and shows higher variability. Hence, de-
spite Akamai FE servers are generally placed closer to users
(and their number is larger than that of Google FE servers),
user-perceived performance of the Bing search service tends
to vary significantly from queries to queries. While it is
known that placing FE servers closer to users can generally
improve the user-perceived performance (e.g. [9]), our study
demonstrates a critical trade-off between placement of FE
servers and the FE-BE fetch time which limits this improve-
ment: there is a distance threshold within which placing FE
servers further closer to users is no longer helpful; instead,
the end-to-end performance is now determined solely by the
FE-BE fetch time. Thus, to improve the end-to-end perfor-
mance, it is also crucial to optimize the FE-BE fetch time.
Lastly, we develop heuristics to factor the FE-BE fetch time
so as to estimate the back-end processing time (Tproc) and
the BE-FE round-trip delivery time (RTTbe) separately.
Related Work. Most prior works in this area focus on un-
derstanding the distribution of static content. For instance,
in [5], authors study the assignment of clients to the CDN
edge servers, in order to maximize the performance for each
user. Similarly, several other studies such as [4,6,7] develop
techniques to use a peer-to-peer based model to distribute
the content, which is assumed to be static. In [10] authors
study the various caching mechanisms used by CDN net-
works. Besides, a recent OSN study [12] show that placing
more proxy servers can enhance the content distribution for
Facebook users sharing similar interests. However, the fo-
cus of the study was to exploit the redundancy in the data
accessed by users in a given geography, and reduced the
user-perceived delay by caching the content at nearby proxy
servers. A study [9] that is more closely related to our work
compares the performance of cloud service with and with-
out tcp-splitting, and therefore dealt with only the indis-
pensability of TCP-splitting. On the other hand, in this
paper, by reverse engineering the strategies used by Google
and Bing to distribute the dynamic content, we shed light
on the trade-offs among different underlying factors in de-
signing TCP-splitting for dynamic content distribution.

2. PROBLEM SETTING & A SIMPLE MODEL
In this section, we describe the basic infrastructure with

FE servers for dynamic content distribution, and present a
simple abstract model to capture the interactions between
users and FE servers and between FE servers and BE data
centers. This model will guide us in the measurement and
analysis of dynamically generated search results from Bing
and Google.

Figure 1: Content distribution infrastructure.

Figure 2: Modeling search query timeline.
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Figure 3: Tstatic and Tdynamic for different keywords.

Figure 1 depicts a typical infrastructure set-up for dy-
namic content delivery consisting of FE servers that are
deployed at the “edge of the cloud” (thus relatively closer
to users) and BE data centers “deep in the cloud”. When
serving static content, FE servers often function as caches.
When serving dynamic content, FE servers can play two
key roles: i) they can cache certain portion of static content
that is common to all dynamically generated content, and
deliver it immediately upon receiving a user’s request; ii) by
splitting the end-to-end TCP connection, FE servers can es-
tablish persistent TCP connections with BE data center to
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speed up the delivery of the dynamically generated content
between them.

Unlike the static content distribution, there are several key
factors affecting the user-perceived performance of dynamic
content distribution: the latency or round-trip time (RTT ),
available bandwidth and loss rate between a user and a FE
server, the load on a FE server, the latency or round-trip
time, available bandwidth and loss rate between a FE server
and the BE data center, the processing time at the data
center to generate dynamic content in response to a user’s
request, the load on servers at the data centers, and so forth.
Unfortunately most of these latter factors cannot be directly
observed and measured at the end hosts. To address this,
we develop a novel inference framework which allows us to
indirectly measure and quantify the overall (search query)
processing and delivery time between the data center and a
FE server.

As shown in Figure 2, we model the packet-level genera-
tion and reception process and define several (measurable)
parameters to capture the events of the static and dynamic
portions of the content distribution. The process starts at
tb with a TCP three-way handshake1. At time t1, a user
(client) sends an HTTP GET request, and receives the ACK
packet from the FE server after one RTT at t2. At t3 the
client receives the first packet containing the static portion
of the content, and at t4 receives the last packet containing
the static content. At time t5, the first packet containing dy-
namic content is received, and at time te, the final packet of
the entire content is received. The correctness of the model
is validated in later sections, and is also quite consistent with
the descriptions given in [8,9,11].

In our model, the time when the first and last packets
of the static content portion are received should, by defini-
tion, hinge on the factors involving only the FE server and
client, namely, they are independent of the BE data cen-
ter. We define Tstatic := t4 − t2(= t4 − t1 − RTT ) which
bounds the processing and delivery of the static content por-
tion at the FE server side (assuming a constant RTT). We
define Tdynamic := t5 − t2 and Tdelta := t4 − t2. Then
Tdynamic upper-bounds the overall fetch time Tfetch, while
Tdelta := t5 − t4 serves as a (potentially loose) lower-bound
on this overall time. Meanwhile, Tfetch is mainly consisted
of the time it takes for the FE server to send the user re-
quest to a BE data center, for the data center to process
and dynamically generate a response (the dynamic content
portion) to the user request, and deliver it to the FE server.
Namely,

Tdelta ≤ Tfetch ≤ Tdynamic (1)

Tfetch = Tproc + C ∗ RTTbe (2)

where C is constant, which depends on the TCP window size
on the BE data center. Moreover, fixing a FE server, Tfetch

should be a constant, assuming the variability introduced by
FE server and data center loads, the available bandwidth
between them, etc., is small and negligible relative to the
RTT between the FE server and a client. In other words,
the time it takes for the FE server to receive the delivery of
the dynamically generated portion of the content from the
BE server is (roughly) a constant. On the other hand, the
delivery time (t4 − t3) for the static content is a function
of RTT . Hence our model predicts that as RTT increases,
1DNS resolution time is not included, as it is negligible as
compared to the overall user-perceived response time.

Tdelta decreases. With sufficiently large RTT , Tdelta = 0;
thus the last packet of the static content portion and the
first packet of the dynamic content portion will be delivered
back-to-back or even coalesce as a single packet.

3. ACTIVE MEASUREMENT & CONTENT
ANALYSIS

For our study, we develop an in-house user search query
emulator, which performs exactly the same functionality as
the web-based search box. We deploy the emulator on glob-
ally distributed2 PlanetLab nodes as well as on our lab and
home machines. The number of Planetlab nodes partici-
pating in each of our experiments ranges from 200 to 250,
depending on their reachability at the time being. We con-
duct extensive measurements by submitting the same search
queries to both Bing and Google search engines, and collect
detailed TCPdump with full application-layer payloads. We
perform two sets of experiments: 1) In the first set, search
queries are launched from all measurement nodes to their
default3 FE servers every 10 seconds. 2) In the second set,
we fix one FE server (of Bing or Google respectively) at
a time, and launch queries from all measurement nodes to
this server. We repeat these two sets of experiments using
different sets of keywords and over different times. We re-
fer to the data collected in the first set/type of experiments
as Datasets A, and the second as Datasets B. Due to space
limitation, we omit the details of the active measurement
platform and experiment design and execution.
Parsing Application-Layer Packet Traces and Iden-
tifying the Static Content Part. Using the packet traces
collected via TCPdump, we perform detailed application
layer content analysis as well as transport layer temporal
classification of packet generation and reception events. We
find that in the search results returned by both Bing and
Google, there is a portion of the content that is static, namely,
independent of the search keywords submitted. This static
content portion includes the HTTP header, HTML header,
CSS style files, and the static menu bar, e.g. “Videos,”
“News,” “Shopping,” etc. that are placed on top of each
search result page. The remaining dynamic portion includes
the keyword-dependent dynamic menu bar, search results
and ads. The temporal analysis of the packet-level events
confirms that this static content portion is most likely cached
at FE servers and delivered immediately, as its delivery time
is largely a function of RTT, and does not vary significantly
with, say, the types and complexity of search queries as does
the dynamic content portion (see below and Section 4).
Choice and Effect of Search Queries. Since the dynam-
ically generated content portion is search query dependent,
we use different sets of search keywords with varying popu-
larity, granularity, and complexity. For instance, the Bing
main page provides a list of most popular keywords at the
current time. In terms of granularity, we generate search
queries with concatenated keywords which gives us increas-
ingly refined search results (e.g., “Computer Science Depart-
ment” and “Computer Science Department at University of
Minnesota”). In terms of complexity, we use long and com-

2Although users are distributed globally, the size of the re-
turned search results are quite similar.
3The default server is whatever server IP address the DNS
resolution returns to the client.
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plex search queries and mixtures of keywords that are not
highly correlated (e.g., “computer and potato”).

As an example, Fig. 3 illustrates the effect of 4 search key-
words of different types on the Bing search performance: the
left and right panels plot Tstatic and Tdynamic, respectively,
for the 500 sample queries made in chronological order. As
the performance is susceptible to short-term fluctuations, we
plot the moving median with the sample window size being
10. (The results using Google have similar distributions.)
We observe that Tdynamic varies significantly with the types
of search keywords used, whereas Tstatic is mostly insensitive
to the search keywords used.
Do FE Servers Cache Search Results? To answer this
question and mitigate the effect of this type of caching on our
measurement analysis, we conduct a series of experiments.
First, we collect a list of commonly searched keywords (e.g.,
“mobile cloud computing”) as listed in the drop-down“search
suggestion box”used by both Bing and Google. We also gen-
erate a list of search words not listed by the suggestion bar.
A total of 40,000 keywords are used in the experiments. We
perform two sets of experiments. In the first set, all mea-
surement nodes submit the same search query sequentially
to a fixed FE server. In the second set, each node submits
a different search query to a fixed FE server. We repeat the
experiments with different search queries and vary the FE
server used. Analysis and comparison of the measurement
results (in particular, the characteristics and distributions
of Tdynamic) suggest that FE servers do not appear to cache
any (dynamically generated) search result. This may not be
too surprising, as most search engines attempt to personalize
search results for individual users.

4. DISSECTING END-USER PERFORMANCE
In this section, we present the analysis of search query

traces collected by us using Bing and Google. In particular,
we use the model described in Sec. 2 to extract the Tstatic

and Tdynamic from the traces. We present our methodology
to understand how the round trip delay between user and FE
web servers affects the distribution of Tstatic and Tdynamic.
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Figure 4: Inbound and outbound traffic events trig-
gered by a single search query.

4.1 Extracting & Analyzing Tstatic and Tdynamic

Guided by the basic abstract model in Sec. 2, we per-
form temporal analysis of the packet-level events at the user
(client) side using the collected packet traces. Figure 4
plots five sample timelines of packet generation and recep-
tion events at the client side, where five PlanetLab nodes
are used as clients, each submitting the same search query

to the Bing FE server. The x-axis represents the elapsed
time since the start of the session, when the first TCP SYN
packet is sent to the FE web server. The y-axis represents
the round trip time (RTT) between the client and the FE
server. Each horizontal array of dots/markers represents the
timeline of packet-level events, where each blue cross/red
dot marker indicates the sending/receiving time of a TCP
packet. When RTT values are small, the temporal clus-
ters of packet events are clearly visible: correlating with the
application-layer packet payloads, we find that the first clus-
ter represents the three-way TCP handshake between the
client and the FE server; the second and third cluster rep-
resent the delivery of static and dynamic contents, respec-
tively, from the server to the client. As the RTT increases,
the gap between the end of the second and the beginning
of the third clusters decreases, and eventually the two are
lumped together, as predicted exactly by our model.

Using the datasets B collected via the second type of ex-
periments (see Sec. 3) conducted for both Bing and Google,
we extract and analyze the parameters Tstatic, Tdynamic and
Tdelta. Figure 5 shows the distribution of these parameters
using a sample of measurement data for one Bing FE server
(IP address 198.189.255.208) and one Google FE server (IP
address 74.125.224.18), where 720 repeated experiments us-
ing the same search query are performed over time at each
PlanetLab node. In these plots, x-axis represents the RTT
between a PlanetLab node and the FE server, while y-axis
represents the median value of Tstatic, Tdynamic and Tdelta

observed at each of the PlanetLab nodes. With a few out-
liers, the leftmost plot shows that for both Bing and Google,
Tstatic is relatively stable and is largely independent of the
PlanetLab node that had sent the query. Similarly, Tdynamic

is roughly a constant when RTT is small. However, when
RTT is large, Tdynamic increases linearly with RTT . In
the case of Tdelta, when RTT is small, it decreases linearly
with RTT ; and it becomes zero when RTT is beyond a cer-
tain threshold (for Google, this threshold is around 50ms to
100ms, for Bing, around 100ms to 200ms).

All these observations can be explained using our simple
abstract model. First note that in the definition of Tstatic,
we have subtracted the (initial) effect of RTT . Hence Tstatic

depends mostly on the time to generate and deliver the
(same) static content portion at the FE server (assuming the
available bandwidth and the server load seen by all the Plan-
etLab node is roughly the same). When RTT is small, the
delivery of the static content portion will be finished before
the FE receives the dynamically generated search result from
the BE data center (the time at which this is received at the
FE server is independent of where the client is). Hence when
RTT is small, Tdynamic is roughly a constant while Tdelta de-
creases as a function of RTT . When RTT increases beyond
a certain threshold, the dynamic content portion will be re-
ceived by the FE server before the static content portion is
entirely delivered to the client. Hence Tdynamic increases as
a function of RTT (due to the TCP window mechanism),
while Tdelta becomes zero. The observations therefore match
the prediction by our simple abstract model. Our analysis
also suggests that below a certain threshold, reducing the
RTT further will not drastically improve the overall user
perceived performance.

4.2 Comparing Bing & Google Performances
We now compare the performances of Bing and Google by
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Figure 5: Distribution of Tstatic, Tdynamic, and Tdelta.
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examining various factors and time components in affecting
the overall user-perceived response times using the datasets
A collected via the first type of experiments (see Sec. 3).
Comparing RTT Distributions. In Figure 6, we com-
pare the RTTs between the PlanetLab nodes and their de-
fault FE servers (as determined by the DNS resolution). As
seen in this plot, in general, Bing has FE servers (Akamai
CDN servers) which are closer to PlanetLab nodes than for
Google. In particular, more than 80% of PlanetLab nodes
observe an RTT of less than 20ms for reaching the Bing FE
servers. On the other hand, only 60% of PlanetLab nodes
observe this latency for Google.
Comparing Tstatic and Tdynamic Distributions.
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Figure 7: Tstatic and Tdynamic for Planetlab nodes us-
ing default frontend servers.

Next, we extract and analyze Tstatic and Tdynamic seen
by each client when the default FE server is used for search
queries. Figure 7 shows the distribution of Tstatic and Tdynamic

for both Google and Bing. As seen in this figure, although
the Bing FE servers are generally closer to the clients (Plan-
etLab nodes), it has significantly higher value of Tstatic and
Tdynamic than Google. In contrast, Google has slightly far-
ther FE servers from the clients, but has significantly lower
Tstatic and Tdynamic. In addition, Bing exhibits more vari-
able performance (i.e., higher variances) in the measured
values of Tstatic and Tdynamic than Google. These results
illustrate that placing FE servers closer to clients does not
necessarily reduce Tstatic and Tdynamic. We speculate that
a plausible reason that Bing has higher and more variable
Tstatic values may be due to the higher and more variable
loads at the Akamai FE servers, as they are shared with a
number of other services; while that Google FE servers have
smaller and more stable Tstatic values may be attributed to
the fact that these servers are likely dedicated to distribution
of search results. Similarly, the Tdynamic values for Bing FE
servers are larger, and have more variability. The contribut-
ing factors may involve the processing capability and load
fluctuations on the BE data centers, the search algorithm
being used, the quality of the connection between FE and
BE servers, e.g. loss rate, jitter, throughput, etc. A dedi-
cated connection between FE and BE servers via “internal”
network usually provides better connection than that built
on the general Internet connections.
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Figure 8: Overall delay performances.

Comparing Overall User Search Experiences. Finally,
we compare the overall responsive time for individual search
queries performed on both Bing and Google, as shown in Fig-
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ure 8. The x-axis represents the PlanetLab nodes, and the y-
axis represents the box-plot for the distribution for different
samples. The results show that comparing Google, users us-
ing the Bing search service tend to experience slightly longer
and more variable overall response times. In conclusion,
our study shows that simply placing FE servers closer to
users may not be entirely effective in improving the overall
user-perceived performance in dynamic content distribution.
Other key factors such as the processing time, server loads at
both FE servers and BE data centers as well as the (physical
and TCP) connections between them also play a critical role.
Improving and optimizing these factors are therefore impor-
tant in improving the overall user-perceived performance in
dynamic content distribution such as dynamic generation of
search results in response to user queries.

5. FACTORING FE-BE FETCH TIME
As discussed in Sec. 2, Tfetch consists of two key compo-

nents, namely, Tproc and RTTbe. They represent the search
query processing time at the BE data center and the delivery
time of search results from the BE server to the FE server
respectively. As part of our ongoing work, we are exploring
various mechanisms to separate these two components.
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Figure 9: Correlating Tdynamic and the distance to
BE data center.

To get a better understanding of these components we
conducted the following analysis. We first get a list of pos-
sible locations for Bing and Google data centers from [1,2].
Next for each of these data centers we consider the geo-
graphically closest FE servers, and plot the distribution of
Tdynamic with respect to geographical distane between FE
and BE. As explained in Sec 4 for smaller values of RTT,
Tdynamic can be considered as an approximation for the
Tfetch. Figure 9 shows the distribution of Tfetch time for
Bing and Google with respect to the geographical distance
between the FE and BE locations. For this plot, we con-
sider the Bing data center located in Virginia (US), while
we pick the Lenoir, North Carolina data center for Google.
As seen in these figures, the Tfetch time increases linearly as
the distance between BE and FE increases. We perform a
linear regression to fit a straight line for these data points,
which is shown using the red continuous lines in the figure.
As seen in this figure the Y-intercept for the regression is
260ms for Bing, while it is only 34ms for Google data cen-
ter. This intercept actually represents the computation time
for a given search query for Bing and Google data centers.
Similarly, the slope of the line represents the contribution
of network delay in Tfetch, which are similar for both Bing

and Google. For the different keywords used in our search
queries, we get very similar slope, but pretty ydifferent in-
tercept values. Though our initial results show interesting
characteristics of factors affecting the FE-BE fetch time, we
are currently conducting extensive experiments and analysis
to gain a better understanding behind the factors affecting
the FE-BE fetch time, and thus will potentially guide us in
designing better content placement and delivery strategies
for dynamic content distribution.

6. DISCUSSIONS
In this paper we have focused on the roles of frontend

servers on the end-to-end performance of search queries us-
ing the standard search fucntions of search engines. More
recently, some search engines such as Google has introduced
more advanced search features such as the interactive“search
as you type” feature. Our preliminary investigation of this
new feature shows that our basic model and key observations
still hold. We find that using the interactive search feature,
after each letter a user has typed, a separate query (using a
new TCP connection) is sent to the FE server. The delivery
of each query hence still fits our basic model; although we
believe it is likely that the search query processing times at
the BE data centers are generally reduced because the sub-
sequent queries are highly correlated with previous queries.
We are in the process of conducting more thorough mea-
surements and analysis on this and other search features.

As most Planetlab nodes are located within or close to
the University campus networks (and it is known that some
Akamai frontend servers are placed closer to University cam-
pus networks), we realize that using the PlanetLab as the
testbed may introduce some biases. For instance, the RTT
between PlanetLab and Akamai FE servers may not be of all
users. In addition, in our measurements we do not see any
significant packet losses. In an environment where the loss
rates are high (e.g., in a wireless network), placing FEs closer
to users in fact may significantly improve the user-perceived
end-to-end performance by reducing the total time needed
to deliver the query result (that has been delivered to the FE
server from a BE data center) to a user. As part of ongoing
work, in addition to the PlanetLab, we are utilizing other
testbeds (e.g., Seattle testbed [3]). We are also investigating
the trade-offs between RTTs and loss rates (e.g., in a WiFi
environment) in the placement of FE servers.

7. CONCLUSIONS
In this paper we investigated the roles of FE servers in

improving the user-perceived performance of dynamic con-
tent distribution. Using Bing and Google search services as
case studies, we conducted extensive application-layer active
measurement and data analysis. Our results demonstrate
that there is a critical trade-off between the placement of
FE servers and the FE-BE fetch time. While placing FE
servers closer to users can help reduce latency, other key fac-
tors such as processing times and loads at both FE servers
and BE data centers as well as the quality of (physical and
TCP) connections between them also play a critical role in
determining the overall user-perceived performance.
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