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ABSTRACT

This paper develops and applies semiparametric econometric methods to estimate the form
of selection bias that arises from using nonexperimental comparison groups to evaluate social
programs and to test the identifying assumptions that justify three widely-used classes of estimators
and our extensions of them: (a) the method of matching; (b) the classical econometric selection
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method of difference-in-differences. Using data from an experiment on a prototypical social
program combined with unusually rich data from a nonexperimental comparison group, we reject
the assumptions justifying matching and our extensions of that method but find evidence in support
of the index-sufficient selection bias model and the assumptions that Justify application of a
conditional semiparametric version of the method of difference-in-difference. Failure to compare
comparable people and to appropriately weight participants and nonparticipants are major sources
of selection bias as conveniently measured. We present a rigorous definition of selection bias and
find that in our data it is a small component of conventionally measured bias, but it is still substantial
when compared with experimentally-estimated program impacts. We find that matching participants
to comparison group members in the same labor market, giving them the same questionnaire, and
making sure they have comparable characteristics substantially improve the performance of any
econometric program evaluation estimator. We show how to extend our analysis to estimate the
impact of treatment on the treated using ordinary observational data.
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1.0 Introduction

A standard method for evaluating social programs uses the outcomes of nonparticipants
to estimate what participants would have experienced had they not participated. The dif-
ference between participant and nonparticipant outcomes is the estimated gross impact of
a program reported in many evaluations. The outcomes of nonparticipants may differ sys-
tematically from what the outcomes of participants would have been without the program,
producing selection bias in estimated impacts. A variety of nonexperimental estimators
adjust for this selection bias under different assumptions.! Under certain conditions, ran-
domized social experiments eliminate this bias.? _

Social experiments are costly and the identifying assumptions required to justify them
are not always satisfied.? However, it is widely held that there is no valid alternative to
experimentation as a method for evaluating social programs (see, e.g., Burtless, 1995). In
an important paper, LaLonde (1986) combines data from a social experiment with data
from nonexperimental comparison groups to evaluate the performance of many commonly-
used nonexperimental estimators. For the particular group of parametric estimators that
he investigates, and for his particular choices of regressors, he finds that the estimators
chosen by econometric model selection criteria produce a range of impact estimates that is
unacceptably large.

This paper uses data from a social experiment on a prototypical social program com-
bined with data on comparison groups of persons who chose not to participate in the
program evaluated by the experiment. As documented by Heckman, LaLonde and Smith
(1998), many programs in place around the world are very similar to the program we
analyze in this paper.

Our analysis is based on the following principles. Neither the experimental control
group nor the comparison group we analyze receives treatment, so that differences in mea-
sured outcomes between the two groups can be attributed solely to selection bias. Instead
of examining the performance of specific parametric estimators based on specific sets of

IThese estimators and the identifying assumptions that justify them are summarized in Heckman and
Robb (1985, 1986), Heckman (1990a) and Heckman and Smith (1996).

%See Heckman (1992) and Heckman and Smith (1993; 1995a) for statements of those assumptions.

3See Torp, et al. (1993), Heckman, Khoo, Roselius and Smith (1996) and Heckman, Hohmann, Khoo
and Smith (1997).



regressors in eliminating selection bias, as LaLonde (1986) and scholars who follow him
have done, we use semiparametric econometric methods to estimate the functional form of
the selection bias directly using a variety of different regressors and data sets. We use the
estimated bias functions to test identifying assumptions that have been maintained in the
literature, and to suggest estimators that might be effective in eliminating selection bias
in future evaluations of similar programs. Our method for characterizing bias is general
- and can be applied in a variety of settings, including the study of the analytically similar
problem of sample attrition. '

By characterizing the bias nonparametrically, and by examining the sensitivity of the
estimated bias to many alternative sets of conditioning variables, we analyze the suitability
of entire classes of estimators, rather than trying out a few parametric members of those
classes with a limited set of conditioning variables. Evidence that a particular estimator
with a particular set of regressors “works” in a particular data set is properly discounted
by most serious analysts. There is always the suspicion that the success of an estimator in
a particular instance is the consequence of a diligent specification search. We avoid that
difficulty in this paper by presenting the identifying assumptions that justify broad classes
of estimators in a nonparametric setting, by testing the identifying assumptions using both
nonparametric and semiparametric methods, by using two separate comparison groups
drawn from different data sources and by using a rich variety of conditioning variables.

In particular, we test the nonparametric identifying assumptions that justify three
widely-used types of estimators for eliminating selection bias. The first type of estima-
tor is the class of “index-sufficient” models introduced in Heckman {1980), which assumes
that mean selection bias depends only on P, the probability of being selected into the pro-
gram. The original parametric econometric models of selection bias are special cases of the
index-sufficient model. We develop and apply a new test of index sufficiency and find sup-
port for this characterization of bias. However, the functional form of the index-sufficient
selection bias that we estimate is different from that assumed in traditional economet-
ric selection models. Regions of support where the selection bias for nonparticipants is
negligible are required in order to use the index-sufficient selection estimator to construct
the counterfactuals required to evaluate programs.?>® Such regions are not found in our

4The supports of P are the domains of P with positive density.
®See Heckman (1990a) for a discussion of “identification at infinity,” whereby parameters of interest can
be identified from subgroups of individuals for whom there is no selection bias.



data. To produce them requires a comprehensive sampling plan for collecting the data on
comparison group members.

The second type of estimator whose identifying assumptions we test is the method of
matching. It pairs participants and nonparticipants with common P values to estimate
program impacts.® In general, matching is not guaranteed to reduce bias and may increase
it (see Heckman and Siegelman, 1993 and Heckman, LaLonde and Smith, 1998). Moreover,
matching is open to many of the same criticisms that have been directed against traditional
econometric estimators because the method relies on arbitrary assumptions. Even with the
rich data at our disposal, the method of matching is not, in general, an effective evaluation
method. In our samples, it reduces but does not eliminate the conventional measure of
selection bias. Matching eliminates bias averaged over certain intervals of P but does not
eliminate pointwise bias in P. We demonstrate that this feature of the method is shared
with the classical econometric selection model based on index sufficiency.

The third type of estimator whose identifying assumptions we test is an extension
of the widely-used method of “difference-in-differences”. Conditional on P, outcomes of
participants before and after they participate in a program are differenced and differenced
again with respect to before and after differences for members of the comparison group. The
unconditional version of this estimator and its close cousin - the fixed effects estimator - are
widely used. The assumptions required to justify the conditional version of this estimator
are weaker than those required to justify matching. They are generally supported by our
data. The effectiveness of the conditional difference-in-differences estimator is consistent
with our evidence that the index-sufficient model characterizes bias. Since in our data
selection bias as a function of P is constant over time for most values of P, it can be
differenced out.

A major finding of this study is that the empirical distribution of P for program par-
ticipants is very different from the distribution of P for members of the comparison group.
Not only are the shapes of the empirical distributions different over regions of common
support, but the supports differ as well. Conventional measures of selection bias employed
by Ashenfelter (1978), Lalonde (1986) and Heckman and Hotz (1989) do not distinguish
the bias arising from comparing participants and nonparticipants at the same P values
from the bias arising from comparing persons at different P values.

5The relationship between matching models based on P and classical selection models based on P was
first discussed in Heckman and Robb (1986).



We present a new decomposition of the conventional measure of selection bias that iso-
lates these conceptually distinct sources of bias. We find broad regions of P values over
which the difference between the outcomes of participants and nonparticipants conditional
on a particular value of P is not defined because the supports of the distributions of par-
ticipants and nonparticipants do not overlap. Comparing incomparable people contributes
substantially to selection bias as conventionally measured. This finding, in conjunction
with our evidence that the impact of the program measured in the region of common sup-
- port differs from the overall impact of the program, reveals an important limitation of all
nonexperimental methods for evaluating social programs. Even when these methods solve
the selection problem, they can only identify the effect of treatment for participants who
have counterparts in the comparison group.

Our discovery of the empirical importance of imposing a common support condition in
reducing bias as conventionally measured demonstrates the benefit of the nonparametric
approach to econometrics. Rigorous application of nonparametric methods entails care-
ful specification of the domain over which estimators can be identified and consistently
estimated.

‘This paper also shows the value of having good data. We show that access to a
geographically-matched comparison group administered the same questionnaire as pro-
gram participants and access to detailed information on recent labor force status histories
and recent earnings are essential in constructing comparison groups that have outcomes
close to those of an experimental control group. Data and method both matter in devising
effective nonexperimental estimators of program impacts.

In the concluding sections, we discuss how to extend and apply the methods analyzed in
this paper to analyze the effect of treatment on the treated in the more common situation
where analysts do not have access to experimental data. Two of the three methods require
no modification. The semiparametric selection bias estimator requires additional exclusion
restrictions when applied to ordinary observational data.

2.0 The Evaluation Problem, the Parameter of Interest in this Paper and How
Randomization Estimates It

Following Fisher (1935), Roy (1951) and Quandt (1972), we assume that each person
has two possible outcomes, ¥; and Y}, in the untreated and treated states, respectively.
Let D = 1 signify receipt of treatment and D = 0 its absence. General equilibrium effects
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are ignored so that the outcomes for any person do not depend on the overall level of
participation in the program.”

The problem of program evaluation arises because we observe only Y, or Y] for each
person, but never both. That is, we observe Y where Y = DY; + (1 — D)Y,. Thus we cannot
form the gross gain A = Y) — Y} for anyone. In the standard evaluation problem, analysts
have access to participant records and to data on a comparison group of nonparticipants.
Hence, one can construct the conditional distribution of Y; given a vector of conditioning
variables X and D = 1, and the conditional distribution of Y, given X and D = 0, and
can consistently estimate Pr(D =1{ X) = P(X).8

This paper only considers the evaluation problem for mean impacts.® We focus on
the parameter that receives the most attention in the evaluation literature: the effect of
treatment on the treated, defined as

(1) A(X)=E(A|X,D=1)=E(Y; | X,D=1)~ E(Y; | X,D = 1),
or an averaged version for X in some region K,
(2) A(K) = [ A(X)dF(X | D =1)/ [y dF(X | D = 1).

The average impact parameter is the focus of many evaluation studies, especially those
based on the method of matching. Other aspects of a program may also be interesting, but
parameters (1) and (2) are useful in evaluating the gross benefit of an existing program -
the main ingredient required to make a decision to continue it or shut it down.1%:11

Data on program participants identify E(Y; | X, D = 1). Missing is the information
required to identify E(Yy | X, D = 1). The method of comparison groups uses data on
nonparticipants to estimate it. The method assumes that, conditional on X, the outcomes
of nonparticipants approximate what participants would have experienced had they not

"Lewis (1963) discusses the failure of this assumption in the context of evaluating the effects of unionism
on wages. This assumption is relaxed in an evaluation of skill promotion policies in Heckman, Lochner and
Taber (1997,1998).

8Thus we do not consider the intrinsically more difficult evaluation problems considered by Marschak
(1953) and Lancaster (1971), who consider forecasting the effects of policies never previously implemented
(Marschak) or estimating the demand for goods never previously consumed (Lancaster).

“Heckman (1990b, 1992), Heckman, Smith and Clements (1997; first draft 1993) and Heckman and
Smith (1993, 1995a, 1998) consider the identification and estimation of distributions of impacts.

19See Heckman and Robb (1985), Heckman (1992), Moffitt (1992), Heckman (1997), Heckman and Smith
(1993, 1995a, 1998) and Heckman, Smith and Taber (1998) for discussions of alternative parameters of
interest.

In a cost-benefit analysis the other required ingredient is the cost. See, e.g., Heckman and Smith
(1998).



participated; that is, it assumes E(Yy | X,D = 0) @ E(Y, | X,D = 1). The selection
bias, B(X), associated with the program impact E(A | X,D = 1) that arises when this
assumption fails to hold is:

(3) BX)=EY | X,D=1)-E(Y,|X,D=0).

Under certain conditions, the parameter of interest can be identified with data from a
social experiment. If experiments do not disrupt the program being evaluated, and if control
group members do not have access to close substitutes for the experimental treatment, then
experimental data identify E(Y; | X, D = 1). Thus E{(A(X) | X, D = 1) can be identified
for any set of conditioning variables X within the support of X for D = 1 with data
from a social experiment.!? When it is valid, randomization avoids all of the traditional
econometric problems of model selection. It avoids the need to specify the functional forms
of the estimating equations that relate ¥; and Y; to X, or to specify which variables are
included in or excluded from outcome equations or program participation equations. This
is an important advantage of randomization compared to other evaluation procedures.

3.0 Characterizing Selection Bias

Since social experiments are costly, there is considerable interest in knowing if a nonex-
perimental strategy can be devised that produces estimates close to what would be produced
from an ideal experiment on a prototypical job training program. This paper uses the data
from the control group in a social experiment, together with unusually rich comparison
group data collected under our supervision, to characterize the selection bias, B(X), for
different specifications of X. Knowledge of B(X) is informative about the effectiveness of

entire classes of selection bias correction methods. We now briefly describe the three types
of estimators considered in this paper.

3.1 The Method of Matching

To our knowledge, the method of matching was first used by Fechner (1860). It has
been extensively applied to the evaluation of job training programs in studies conducted
in the late 70* and early 80°."® The method is based on the identifying assumption that

'?Randomization is an instrumental variable that identifies parameters (1) and (2) even when all of the
X are endogenous variables in the traditional sense of the term. See Heckman (1996) for an elaboration of
this point,

13See the detailed references to the historical literature in Heckman, LaLonde and Smith {(1998).
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conditional on some X, Y} is independent of D. In the notation of Dawid (1979), it assumes
that

(A-1) % DIX, Xex.,

for some set y., where “ _Il_7 denotes independence and variables to the right of “” are the
conditioning variables.!4 This assumption produces a comparison group that resembles the
control group of an experiment in one key respect: conditional on X, the distribution of
- Yy given D =1 is the same as the distribution of Y, given D = 0. In pa.rt1cula.r when the
means exist,

(4) Efo | X, D=1)=E(Yo| X,D =0),

so that pointwise in X, bias B(X) = 0.

Many matching estimators have been proposed that exploit (A-1) or its implication
(4). Traditional matching methods pair nonparticipants with participants that are “close”
in terms of X using different metrics.!® For each observation i in the participant sample,
a weighted average of comparison sample observations is formed to estimate the effect of
treatment on i:

(5) Yi— T W (4,7)Y0
je{D=0}

where {D = 0} is the set of indices for the nonparticipants and {D = 1} is the set of
indices for participants, Ny is the number of observations in the comparison group, N, is

the number of observations in the treatment group and Z Wyon, (3,7) =1 for all 2.2
je{D=0}
Matching estimators differ in the weights attached to members of the comparison group.

Define a neighborhood C(X;) for each participant ;. The persons matched to i are in A,
where 4; = {j € {D = 0} | X; € C(X;)}. Different matching methods use different
neighborhoods. Nearest neighbor matching sets C(X;) = mJjn 1 X = X\, 7 € {D = 0}

A stronger version of (A-1) is usually stated: (Y5,Y:) || D | X. Given our focus on parameters (1)
and (2), this stronger version is not needed. The omitted Eumption of conditional independence of ¥}
and D given X would be useful if we sought to evaluate the impact of lack of treatment on the untreated,
E(Yy—Y1 | X, D = 0}, using the outcomes of participants to proxy what nonparticipants would have earned
had they participated. Note that we can estimate the impact of the program on a randomly selected person
as a combination of the impact of treatment on the treated and treatment on the untreated.

15See Heckman, Ichimura and Todd (1997, 1998; first drafts 1993) for a detailed discussion of alternative
matching methods.

1®The weights are allowed to depend on Ny and N; to allow for use of an optimal bandwidth. See
Heckman, Ichimura, and Todd (1996; first draft 1994).



where || || is a norm, Wron, (4,5) = 1, j € A and Wiy, (¢,5) = O otherwise.” Nearest
neighbors may be very far apart. For that reason a criterion must be imposed to ensure that
the match is close in some sense. Caliper matching defines C(.X;) = {X5 11X — X5 < ¢}
where ¢ is arbitrarily prespecified (see Cochrane and Rubin, 1973). If there is no such X IR
the observation i is not matched to any observations. If more than one person is in A;, the
nearest neighbor in terms of norm || || is used to pick the match.

Kernel matching defines

> Gu’
ke{D=0}

WN0N1 (7'?.7) =

where G = G((X:— Xk)/an,) is a kernel that downweights distant observations and a N, 18
a sequence of smoothing parameters with the property that Nlim an, = 0. Nonzero values
Q—00

of this weight implicitly define C(X;) for this version of matching. In Section 5 of this
paper, we extend kernel matching to permit regression adjustment of outcome equations.
To estimate impacts over a set K as in (2), form a weighted sum of (5) over K

(6) M(K) = {E whon, (1) Y1 — je{§_0} Whom, (2,7)Yo;] for X, € K,

1 =

where wp,n, (i) is a weight accounting for scale and possibly heteroskedasticity as well as
the choice of support K.

Regression estimators have also been proposed that exploit (A-1), or its implication (4),
in a linear regression setting. The econometric procedure of Barnow, Cain and Goldberger
(1980) assumes that Y; is linearly related to observables X and an unobservable Uy, so that
E(Yy | X,D=0)=X38+E(U; | X,D =0), and that E(Upy | X,D =0) = E{Up | X) is
linear in X. Under these assumptions, controlling for X via linear regression allows one
to identify E(Yp|X,D = 1) from the data on nonparticipants E(Y;|X,D =0) . These
functional form assumptions do not exploit the richness of assumption (4), which can be
used to produce a nonparametric estimator of treatment effects using conditioning instead
of projection or linear regression methods. Moreover, in practice, users of the method
of Barnow, Cain and Goldberger (1980) do not impose a common support condition in
generating the estimates obtained from the method. The distribution of X may be very

1"There are two versions of this method that differ depending on whether or not each comparison group
observation may be matched to more than one participant observation.



different in the {D = 0} and {D = 1} samples, so that comparability is only achieved by
imposing linearity and extrapolating over different regions.

Recently, attention has focused on matching techniques that compare persons based on
their probability of participation. Define the probability of participation or “propensity
score” as P(X) = Pr(D =1 | X). A theorem of Rosenbaum and Rubin (1983) demon-
strates that if (A-1) is satisfied, then
(A-2) Yo || D|P(X)for X € x,

" provided 0 < P(X) < 1 for X € yx., so that there is a positive probability that the events
D = 0and D = 1 occur for all elements in x.. Conditioning on P(X) rather than on
X produces conditional independence. An implication of (A-2), and not (A-2) itself, is all
that is required to construct the desired counterfactual conditional mean. That implication
is

(7) E(Yo | P(X),D=1) - E(Y, | P(X),D = 0) = B(P(X)) =0,

where (7) could be assumed directly in place of (A-2) or (A-1). Conditioning on P(X) sets
B(P(X)) = 0 and reduces the dimension of the matching problem down to matching on
the scalar P(X). Below we test condition (7) as a statistical hypothesis and reject it in our
data.

The analysis of Rosenbaum and Rubin (1983) assumes that P(X) is known rather
than estimated. They do not present a distribution theory for the pointwise estimator (5)
or averaged estimator (6). Heckman, Ichimura and Todd (1997, 1998; first drafts 1993)
present the asymptotic distribution theory for the kernel matching estimator for the cases
where P is known and where it is estimated.!®

Comparison groups produced assuming (A-1) is valid differ from the control groups
produced by a random experiment in an important way. Randomization equates the dis-
tributions of characteristics in the treatment and control groups. Without randomization,
the distributions of characteristics in the treatment and comparison groups are not nec-
essarily equated even if (A-1) is satisfied. The supports of the distributions of X may be
different in the two groups and the shapes of the distributions may be different over regions
of common support. Because counterparts to participants cannot always be found in the
comparison group, estimators based on (A-1) or equation (7) do not necessarily identify

18Heckman, Ichimura and Todd (1998; first draft 1993) also answer the question, “If P(X) were known
would we match on it or on X?” Using the variance of the average impacts (2) as the choice criterion, the
answer is “it depends”.

10



treatment impacts for all values of X among program participants, unless the impacts do
not depend on X.

A major advantage of the method of randomized trials over the method of matching in
evaluating programs is that randomization works for any choice of X. In the method of
matching, there is the same uncertainty about which X to use as there is in the specification
of conventional econometric models. Even if one set of X values satisfies condition (A-1),
an augmented or reduced version of this set may not. Heckman, Ichimura and Todd (1997;
first draft 1993) discuss tests that can be used to determine the appropriate choice of X
variables. We discuss this problem in Section 4.3 below. Since nonparametric methods
can be used to perform matching, the method does not, in principle, require that arbitrary
functional forms be imposed to estimate program impacts.

3.2 Index Sufficient Methods and the Classical Econometric Selection Model

The traditional econometric approach to the selection problem adopts a more tightly-
specified model relating outcomes to regressors X. This is in the spirit of much econometric
work that builds models to estimate a variety of counterfactual states, rather than just the
single counterfactual required to estimate the mean impact of treatment on the treated,
the parameter of interest in most applications of the methods of matching or random
assignment.’® In the simplest econometric approach, two functions are postulated: Y; =
g1(X,Uy) and Yy = go(X, Up), where Up and U, are unobservables. A selection equation is
specified to determine which outcome is observed. Separability between X and (Ug, Unh) is
assumed, so that
(8) Y1 = qi1(X) + Uy and Y) = go( X) + U,
where E(U;) = E(Uy) = 0. This assumption defines functions called structural functions
that do not depend on unobserved variables. In this notation, the parameter of interest
defined in (1) becomes
(9) EA| X, D=1)=q(X) - go(X)+ E(U1 -Us | X,D =1).

Parameter (9) is an unconventional object for an econometric investigation. It combines
the g,(X} and go(X) functions that are the usual objects of econometric interest with the
conditional mean of the difference in unobservables E(U; — Uy | X, D = 1).

19This emphasis on econometric models as devices to generate a variety of counterfactuals can be traced
back to Haavelmo (1944) or Marschak (1953).
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Much applied econometric activity is devoted to eliminating the mean effect of unobserv-
ables on estimates of functions like g; and g,. However, the mean difference in unobservables
1s an essential component of the definition of the parameter of interest in evaluating social
programs.? In the traditional separable framework, the selection bias that arises from
using a nonexperimental comparison group is
(10) B(X)=E{U | X,D=1)—E(Uy | X,D = 0).

In the standard evaluation problem, the goal is to set B(X) = 0, not to eliminate depen-
dence between (Up, U1) and X. The X can fail to be exogenous and parameters (1) and
(2) can still be identified.

The conventional econometric approach partitions the observed variables X into two not
necessarily disjoint sets (R, Z) corresponding to those in the outcome equations and those
in the participation equation, and postulates exclusion restrictions. Thus it is assumed that
certain variables appear in Z but not in R. The conventional approach further restricts
the model so that the bias B(X) only depends on Z through a scalar index. Note that
exclusion restrictions are neither required nor used to justify matching as an estimator of
(1), (2) or (9).%

The latent index variable model with index I motivates the characterization of bias as
a function of a scalar index. Define ] = H(Z) — v where H(Z) is the mean difference in
utilities or discounted earnings between the participation and nonparticipation states and
v is assumed to be independent of Z.22 Then D =1if I > 0 and D = 0 otherwise, so that
Pr(D =1{Z) = F,(H(Z)). The conventional econometric selection model further assumes
that the dependence between D and (U, U;) that gives rise to bias (10) arises only through
v and that R and Z are independent of (Up, Uy). This implies that E(Uy | Z,R,D =1) =
EUo |v < H(Z)), E(Up | Z,R,D=0)=E({Uy | v > H(Z)), E(U, | Z,R,D = 1) =
E(U|v< H(Z))and E(Uy | Z,R,D = 1) = E(Uy | v > H(Z)).

0If Uy = Uy, as is assumed in the dummy endogenous variable model, then E(U; — Uy | X, D = 1) =0.
If Uy — Up is not forecastable with respect to X and D = 1 at the time the decision to participate in the
program is made, then E(U; ~ Up { X,D = 1) = 0. See Heckman (1992, 1996, 1997) and Heckman and
Smith (1993, 1996, 1998). The model Y = Y; D + Y3{1 — D) = go(X) + [g1(X) — go(X) + Uy ~ U] D + Uy
is a model with a random coefficient on D.

*IHeckman, Ichimura and Todd (1998; first draft 1993) extend the theory of matching to consider
separable models and models with exclusion restrictions and discuss the efficiency gains from using such
restrictions. Exclusion restrictions are natural in the context of panel data models where the variables in
the outcome equation are measured in periods after the decision to participate in the program is made.

22 Absolute continuity of v is often assumed although technically it is not required.
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Therefore, both B(Z) and the mean gain of the unobservables, E(U;~Uy | Z,R, D = 1),

depend on Z only through the index H(Z). When F, is assumed to be strictly monotonic
almost everywhere, we may write H(Z) = F,;}(Pr(D = 1 | Z)) and the bias and mean gain
terms depend on Z solely through P. The bias is
(11) B(P(Z)) = E(Us | P(2),D =0) ~ E(Us | P(Z),D = 0).
This is the “index sufficient” representation where P(Z), or equivalently H (Z2), is the
index.? Conventional econometric models (see, e.g., Amemiya, 1985) assume that the
latent variables 1 and Uy are symmetrically distributed around zero, so that B (P(Z)) is
symmetric around P = % Figure 1 presents an example of a normal selection model. If P
itself is symmetrically distributed around P = %, the average bias over symmetric intervals
around that value is zero even though the pointwise bias is nonzero. Thus, the classical
selection model sometimes justifies matching as a consistent estimator of parameter (2) over
intervals of P where the bias cancels out. To test the index sufficient model, we use our
pooled sample of controls and comparison group members to determine if the estimated
bias is solely a function of P(Z) for different sets of variables Z, or if a more general
conditioning set (R, Z) is required to characterize the bias.

Index sufficiency is only a necessary condition for applying the classical index sufficient
selection model in a nonparametric or semiparametric setting. As noted by Heckman
(1990a), it is also necessary to know a point or interval of P where E(Uy | P(X), D = 0) = 0.
Unless this condition is satisfied, it is not possible to use the index-sufficient selection model
to construct the required counterfactual.®* Thus in order to implement this method, it is
necessary (a) that such a point or interval exists and (b) that it is possible to discover it.

BThis argument is due to Heckman (1980). If there are multiple decision rules for admission into the
program, then a multiple index model is required. See Heckman and Robb (1985).

#4To see why this condition is necessary, suppose that Yy = 8y + Uy and that index sufficiency holds.
Then E(Yo|X ,D = 0) = Bo + E(Up|P(X), D = 0). To construct E(Yy|X ,D = 1), the classical
selection bias model requires that E(Uj) = 0 and that 5 be identified along with E(Up |P(X) ,D = 0).
Then using the fact that E(Us) = E(Up |P(X),D = 1)P(X)} + E(Us|P(X),D=0)(1 - P(X)) = 0,
it follows that E(Up |P(X),D = 1) = —U5ZENB(Ug |P(X),D = 0).To use this result to construct
E{(Yo|X,D = 0) nonparametrically, it is necessary to know (g. If this is known, then E(Ys|X,D =
0) — Bo = E(Up |P(X), D = 0) and it is possible to construct

E(Yo|X,D =1) = - 780 B(Y, | X, D = 0) + #%5.
Heckman (1990a) shows that Gy is identified only if there is a set of values X such that E(Uy |P(X),D =
0) = 0. If there is no such set, then one cannot separate a constant associated with E(Up |P(X),D = 0)
from ,80.
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The traditional selection-correction method parameterizes the bias function B(P(Z))
and eliminates bias by estimating B(P(Z)) along with the other parameters of the model.?®
Heckman and Robb (1985, 1986) term the dependence between Uy and D operating through
the v “selection on unobservables” while the dependence between U, and D operating
through dependence between Z and Uj is termed “selection on observables”. In their
framework, the method of matching assumes selection on observables, because conditioning
on Z controls the dependence between D and Uy, producing a counterpart to (4) for the
residuals: E(Up | Z,D = 1) = E(Uy | Z,D = 0). When selection is on unobservables,
it is impossible to condition on v and eliminate the selection bias. Thus the choice of an

appropriate econometric model critically depends on the properties of the data on which
it is applied.

3.3 Difference-in-Differences

The classical before-after estimator compares the outcomes of participants after they
participate in the program with their outcomes before they participate. With the difference-
in-differences estimator, common time and age trends are eliminated by subtracting the
before-after change in nonparticipant outcomes from the before-after change for participant
outcomes. This method can be generalized to include regressors.?® The simplest application
of the method does not condition on X and forms simple averages over the treatment and
comparison groups.

In this paper, we introduce conditional semiparametric and nonparametric versions of
the difference-in-differences estimator that apply the method of matching to a panel or
to repeated cross sections of persons. Differencing is done conditional on X. The critical
identifying assumption in our proposed method is that conditional on X, the biases are the
same on average in different time periods before and after the period of participation in
the program so that differencing the differences between participants and nonparticipants
eliminates the bias.

To see how this estimator works, let ¢t be a post-program period and ¢’ a preprogram

*Heckman and Robb {1985), Heckman (1990a) and Cosslett (1991) discuss this strategy in a semipara-
metric model.

26Heckman and Robb (1985, p. 218) discuss the difference-in-differences estimator and demonstrate that
it can be implemented using repeated cross-section data. They also present economic models that justify
its use. See also Heckman, LaLonde and Smith (1998).
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period. The method identifies parameters (1) and (2) conditional on X under the assump-
tion '
(12) Bi(X) — Bu(X) =0, for some t,?’,
where B; denotes the bias in time ¢, defined in (10). This method extends the method of
matching because it does not require that the bias vanish for any X, just that it be the same
across ¢ and ¢' conditional on X. Notice further that (12) is implied by the conventional
econometric selection estimator if E(Up; |P(X),D = 1) — E(Upw |P(X),D = 1) is the same
- for different choices of ¢t and ¢'. In application, (12) is often assumed to hold for all ¢ and ¢’
or for ¢ and ¢’ defined symmetrically around ¢ = 0, the date of participation in the program
(i.e., t =—t).

We now compare B(X) to the more conventional measure of bias used in the literature.

4.0 Re-examining the Conventional Measure of Selection Bias

The selection bias measure B(X) is rigorously defined only over the set of X values
common to the D =1 and D = 0 populations. Define S1x = {X | f(X | D =1) > 0} to
be the support of X for D = 1, where f(X | D = 1) is the conditional density of X given
D =1. Let Sox = {X | f(X | D =0) > 0} be the support of X for D = 0 and let Sy
= Sox M Si1x denote the region of overlap. Using the X distribution of participants, we
define the mean selection bias Bg, as

B. _Jdsx BX)AF(X|D=1)
X T [ dF(X|D=1)

A comparable definition of Bg, replaces X with P(X) in the definition of Bg,. The
conventional measure of selection bias B = E(Yy; | D = 1) — E(Yy | D = 0) used by
LaLonde (1986) and others does not condition on X.

'The conventional measure of bias B can be decomposed into a portion corresponding
to a properly-weighted average of B(X) and two other components.?” First note that
(13) B =[5, B(Yo | X,D=1)dF(X | D=1) - [s, E(Yo | X, D = 0)dF(X | D = 0).
Decompose B into three terms:

(14) B = By + By + Bs,

2’One can place the conventional method in a regression framework. Run a least squares regression of
Yy on D, with Yy = mg + m.D + 7, and E(7) = 0. Then plim #; = B as long as a law of large numbers is
valid for the (Yp, D) data sequence.
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where

Bi=[fs0sx EYo | X, D=1)dF(X | D=1) - Jsox\sx E(Yo | X, D = 0} F(X | D=0),

By =[5, E(Yo | X,D=0)[dF(X | D=1)—dF(X | D = 0)], and B; = PxBg,,

where Py = / < dF(X | D = 1) is the proportion of the density of X given D = 1 in the
X

overlap set Sx, S1x\Sx is the support of X given D = 1 that is not in the overlap set Sy,
and Sox\Sx is the support of X given D = 0 that is not in the overlap set Sy.

Term B in (14) arises when Sox\Sx or S1x\Sx is nonempty. In this case we fail to find
counterparts to E(¥p | X, D = 1) in the set Sox\Sx and counterparts to E(Y, | X, D = 0)
in the set S;x\Sx. Term B; arises from the differential weighting of E(Y, | X, D = 0) by
the two densities for X given D = 1 and D = 0 within the overlap set. Term B; arises
from differences in outcomes that remain even after controlling for observable differences.
Selection bias, rigorously defined as Bg,, may be of a different magnitude and even a
different sign than the conventional measure of bias B.

Matching methods that impose the condition of pointwise common support eliminate
two of the three sources of bias in (14). Matching only over the common support necessarily
eliminates the bias arising from regions of nonoverlapping support given by term B, in (14).
The bias due to different density weighting is eliminated because matching on participant P
values effectively reweights the non-participant data. Thus Pstx is the only component

of (14) that is not eliminated by matching.®® Bg, is the bias associated with a matching
estimator.

4.1 Examining the Validity of Matching on P

We examine the validity of matching on P(X) by estimating the three components of
the bias B. If matching is valid, the third component of the decomposition should be
negligible for each value of P(X). Form the orthogonal decomposition of the conditional
mean given X into two components: E(Yy | X,D = 1) = E(Y; | P(X),D = N4+ V
where V = E(Yy | X,D = 1) - E(Yp | P(X),D = 1) and E(V | P(X),D = 1) = 0.
Heckman, Ichimura and Todd (1997, 1998; first drafts1993) show that constructing the
mean conditional on P{X) permits consistent, but possibly inefficient, estimation of the
terms in decomposition (14). The conditional means are integrated against the empirical

**Since B) and By may be of any sign, the matching estimator may have a bias component bigger than
B.
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counterparts of the conditional distributions for P(X), F(P(X) | D = 1) and F(P(X) |
D =0), i.e., the means are self-weighting.

Before presenting our estimates of the components of (14), we describe the data used
to generate them and the variables Z that best predict participation in the program.

4.2 Our Data

The data used in this study come from four training centers participating in a random-
ized evaluation of the Job Training Partnership Act (JTPA). ° Along with data on the
experimental treatment and control groups, information was collected on a nonexperimen-
tal comparison group of persons located in the same four labor markets who were eligible
for the program but chose not to participate in it at the time random assignment was
conducted. These persons are termed ENPs - for eligible nonparticipants.

Random assignment took place at the point where individuals had applied to and been
accepted into JTPA (i.e., admitted by a JTPA administrator). Under ideal conditions,
randomization at this point identifies parameters (1) and (2). Members of the control group
were excluded from receiving JTPA services for 18 months after random assignment. The
controls completed the same survey instrument as the ENP comparison group members.3!
This instrument included detailed retrospective questions on labor force participation, job
spells, earnings, marital status and other characteristics. In this paper, we analyze a sample
of adult males age 22 to 54. Table 1 defines the variables used in this study. Appendix B
describes the data more fully and gives summary statistics for our sample.

4.3 Determining the Probability of Program Participation P

The participation probability P(X) plays a central role in our analysis. In this paper,
participation means that a person applies and is accepted into the program. Heckman and
Smith (1995b) find that for all groups, including adult males, recent (past six months)
labor force status transitions, not the pre-program earnings dip emphasized by Ashenfelter
(1978), are the key predictors of participation. The relative participation rates presented in

29Gee Orr, et al. (1995) for a description of the National JTPA Study.

30See Smith (1994) and Appendix B for descriptions of the ENP sample.

31Treatment group members did not complete the long baseline survey instrument administered to the
controls and ENPs, and so cannot be used in the estimation of the participation model.
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the fifth column of Table 2 demonstrate this point. Persons recently entering unemployment
are the most likely to seek to participate in the program. Participation in job training is a
form of job search for many unemployed workers. Earnings at the time of the participation
decision are an important secondary predictor of participation.

Table 3 presents the estimated coefficients of the logit model P(X). Variables are
included in the model on the basis of two criteria: (a) minimization of classification error
when P(X) > P, is used to predict D = 1 and P(X) < P. is used to predict D = 0, where
F. = E(D); and (b) statistical significance of the included regressors. For adult males, the
two criteria produce the same model. See Appendix C for a more extensive discussion of
the variable selection criteria used in this paper.

Figure 2 presents the distributions of the estimated P(X) in the {D = 0} and {D = 1}
groups. We obtain similar distributions for P(X) using alternative sets of regressors.3? This
figure indicates the potential importance of defining bias on a common support of P(X).
For the sample of controls, the histogram of P(X) values has support over the entire
[0,1] interval. Surprisingly, however, the mode of the distribution of P(X) for controls
is near zero. Many controls have a low estimated probability of participation. In the
sample of ENPs, the support of P(X) is concentrated in the interval [0,0.225]. Thus,
the bias measure Bg,, which is the bias defined conditional on P(X) rather than X, is
defined only over a fairly limited interval. As a result of this restriction on the support,
any nonexperimental evaluation can nonparametrically estimate program impacts defined
only over this interval. As we demonstrate below, the difference between the distributions
of the estimated values of P has important implications for understanding the sources of
selection bias as conventionally measured. Before presenting this decomposition, we first
develop some econometric tools that are used in the empirical results reported in this paper.

5.0 Nonparametric Tools For Estimating Selection Bias B(X) and Other
Objects of Interest

In an econometric sample selection model, the usual goal is to consistently estimate (3
inYo=X8+Up, where E(Y, | X,D=1)= X3+ E({Uy | X,D=1)and E(Yy | X,D =
0) = X8+ E(Uy | X,D =0). In this paper, the goal is to estimate the bias B(X) = E(U |

32These results are available on request from the authors.
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X,D = 1) — E(Us | X, D = 0) that arises from using a comparison group to identify the
parameter E(A | X, D = 1).*® A characterization of B(X) suggests which nonexperimental
strategies, if any, are likely to be effective in eliminating it. Our emphasis is thus very
different from the standard approach that treats bias terms as nuisance functions to be
eliminated.34

In the case where the X are all discrete, estimation of the bias is straightforward. Only
cell means are required. The regression equation used to estimate the bias on comparison
and control samples is
(15) Yo=XB8+FE({Uy} X,D=0)+ B(X)D +-¢,
where B(X) = E(Uy | X,D =1) - E(Uy | X,D =0) and E(¢ | X,D) = 0. B(X) can
be estimated from a least squares regression of Y, on a constant and D interacted with
dummy variables for each X cell. The interactions between D and X identify B(X) at the
discrete coordinates of X even though 3 is not identified unless E(Uy | X,D = 0) = 0,
an assumption not required to identify B(X). If conditioning on X eliminates bias, as is
assumed in the method of matching or in the analysis of Barnow, Cain and Goldberger
(1980), then B{X) = 0 for each value of X.

A simple application of this method is presented in Table 4. We compute the mean
bias within cells defined by a subset of the variables included in the logit for P. This
subset and the cells themselves were chosen by cross-validation to minimize the sample
misclassification rate using the “hit or miss” method described in Section 4.3 and using
the Classification And Regression Tree (CART) method that partitions the data into the
best-predicting groups.®® Within cells, the bias B(X) is large, just as it is in the fourth
column of Table 2. Averaging over cells using the cell weights for the D = 1 population, the
estimated bias is much smaller. Thus, although the biases tend to cancel across cells, the
method of matching per se is not justified by this partition of the data, nor is the method

33In a context where the treatment impact and not the bias is being estimated, the methods we use can
be applied directly by substituting data on Y; for participants for the data on Y, for controls. To apply
the semi-parametric index sufficient selection model (but not the other methods we consider) requires an
exclusion restriction - some variable in Z not in B. We expand on this point below in Section 11.

34See, e.g., Heckman (1979), Cosslett (1991) or Ahn and Powell (1993).

35The method of picking the best predictors is formalized as the CART method developed in Breiman,
Friedman, Ohlsen and Stone (1984). We use the CART algorithm in S+. See Chambers and Hastie (1993).
The method described in Section 4.3 was applied using a parametric logit model. CART is a nonparametric
method that searches for the best-predicting partitions of the data and explicitly considers interactions in
constructing the model. In fitting the parametric logit model, we do not include interactions terms.
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advocated by Barnow, Cain and Goldberger (1980).

When E(Up | X,D = 0) and E(Uy | X,D = 1) are specified more generally as non-
parametric functions of continuous variables, equation (15) is termed the partial linear
regression model.® In this paper we focus on nonparametric estimation of the B(X )s
rather than on estimating the parametric portion of the model, and use the local linear
regression methods described in detail in Appendix A.

Our data have a panel structure with individuals observed in periods ¢t = 1,...,T.

- Individuals are subscripted by “”. Define the bias functions as Ky,(F) = E(Up: | D =
1,F) and Ko, (P;) = E(Ups | D =0, F,), and let e = Upe — D K1(F) — (1 — D) Koe(Ps)
where E(Upi:) = 0. To conserve on notation we suppress the subscript “0” on Y} in the
rest of this section and in Appendix A. Define Y; = (Yi,....Yir), Xi = (Xa, ..., Xi1)',
K;(P) = (Kj(P),...K;r(R)), § = 0,1 and &; = (ea,...,&i7)". Precise assumptions
about ¢ are stated in Appendix A. In this notation, the seemingly-unrelated partial linear
regression model used in this paper is
(16) Y; = X8+ DiK1(P:) + (1 — D) Ko(P) +&:.%

Participants {D = 1) are oversampled in our data relative to their population propor-
tions. We reweight the data to random sample proportions, and use the parametric logit
model to estimate F..3® In the general case, Ky, and Kj; are functions of more than just
P.. In the classical selection model and the extension of the matching method developed
in Heckman, Ichimura and Todd (1997, 1998; first drafts 1993), however, these functions
depend only on P,. The extension of the estimation method to vector-valued arguments

36See, e.g., Robinson (1988) and Hastie and Tibshirani (1990). For discrete X, the method used to
estimate (15) is fully nonparametric.

37In Appendix A, we relax the restriction that 3 is constant across time periods. Robinson (1988) first
proposed the partially linear model in the seemingly-unrelated regression framework.

38The weights are given in the footnote to Table 3. As is common in many evaluations (see the discussion
and methods of solution in Heckman and Robb, 1985), persons in the {D = 1} group are oversampled
compared to persons in the {D = 0} group. This gives rise to the problem of choice-based sampling. The
problems raised by choice-based sampling are a special case of the problem of weighted distributions first
analyzed by Rao (1965; 1986) and the solution is the same as his: weight the sampled distributions back to
population proportions using population weights. Amemiya (1985) discusses applications of Rao's method
in econometrics. Todd (1995) discusses estimation of the model in the text using nonparametric estimators
for P. Her evidence suggests that estimation of P assuming a logit functional form is innocuous in our
sample. Heckman, Ichimura, and Todd (1996; first draft 1994) show that the correction for choice-based
sampling is strictly not required to estimate the bias functions. We reweight the data in order to derive
estimates of the selection bias functions that are functions of P.
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for the K functions is straightforward.

We estimate the bias functions using the “double residual regression” method. Form
expectations of equation (16) conditional on P; and D; to obtain E(Y; | P, Di) = E(X; |
Py, D)8 + D;K\(P;) + (1 — D;}K(P,). Remove the portion of X; and Y, that depends on
P; and D; (i.e., the conditional means) to form an adjusted version of (16):

(17) Yi— E(Y; | F;, D;) = [Xi - E(X; | P Di)|'B + &

Run “adjusted” least squares on this equation to estimate .3 The conditional expectations
E(Y; | P,D;) and E(X; | P,D;) are consistently estimated using this method under
conditions stated precisely in Appendix A.%

To estimate the components of the bias term B{P(X)), we use a local linear regression
estimator applied to the X-adjusted residuals, ¢; = Y; — X, 3, where A is estimated using the
first stage procedure Just described. The pointwise estimator of K4(P,) in the neighborhood
of P, is denoted Kd(Po) where Kd(Po) and 44(Fp) are defined as
19 mgmin 5 e~ Ku(R) - AP - FoPe (B2 e oy

Ka,7rd IG{D“d aN

where P is a given point in the support of B, for {D = d}, G is a kernel with properties
fully characterized in Appendix A, {ax} is a sequence of smoothing parameters and P, is
the sth individual’s estimated value of P. If v4(P) is set to zero for all P, (18) becomes
the standard kernel regression estimator. Introducing -4(Pp) removes the linear bias term
in the neighborhood of Fy, gives an estimator that is robust to the distribution of the
regressors and produces better boundary behavior than is produced using standard kernel
regression. We account for the estimation of the parameters of P in deriving standard
errors and test statistics. See Appendix A for further discussion.

The local linear regression method can be used to construct matches and to extend
matching to regression-adjust for X. As demonstrated in Heckman, Ichimura and Todd

(1997; first draft 1993), local linear matchmg on P defines the Wy, n,(7,7) in (5) to be
Gy T GulPi—PR)-[GyF-P ][ E Gu(Pe — B)]
? ke{D=0} D=0}
Gy ¥ Gu(Pe—PF)?—( E Gu(Pe — P))?

je(D=0} " ke{D=0} ke{D=0}

(19)Wpon, (1, 7) =

%¥The “adjusted” least squares trims out observations for which f(P|D = 1) is too small. Such “trim-
ming” is required to obtain uniform convergence of the estimator. See Appendix A for details and for
the conditions required to secure consistency and asymptotic normality of . Yatchew (1997) presents a
simpler alternative estimator that avoids this first step procedure for estimating 4.

40See Malinvaud (1970) for references on the origins of the double residual regression method.
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where Gy = G (Pk -k
an

estimates (5) or average estimates (6). Consistency and asymptotic normality of these

estimators is established under conditions specified in Heckman, Ichimura and Todd (1998;

first draft 1993). Regression-adjusted local linear matching removes X3 from Yj. Applied

to participant and comparison group data, formula (5) or (6) is used with weights (19) and

with (Y; — X;8) in place of ¥;. The estimates 3 are obtained from the first stage estimator
of equation (17).

). This weight can be used to comstruct consistent pointwise

6.0 Estimating the Components of Our Decomposition of B

We obtain nonparametric estimates of each of the components in (14) by decomposing
our estimate of the bias B into the sa.mple analogs of the three terms in (14) as follows:

(20) =E(Yy|D=1)-E(Yo | D=0)= B, + By + By
where 1 ) !
B =— Yo(B) - — Yo(P;
TN ie{g::l} o(F) No ie{§=0} o(F)
P.€51p\Sp P:eSop\Sp
~ 1 . 1
By=— ¥ EYu|P,D=0-—= ¥ YoP)
1 ie{D=1} No ie (D=0}
1 P,cSp P,eSp
By=— Yo(P) — E(Yei | P.,D; =0
5= N o Yo(R) — B ]

PeSp
where V; denotes the size of the D = 1 sample, N, denotes the size of the D = 0 sample,

“"” indicates an estimate, P, = P(X;) for person i, Y5(P,) is value of Yy, for person i with
probability F;, where Sp, S1p\Sp, Sop\Sp are analogous to Sx, Six\Sx, and Sox\Sx
n (14) and where the counterfactual outcome in the no-treatment state for a D =
observation with probability P, E(Yy; | P, D; = 0), is estimated by a local linear regression
of Yy on P; using data on persons for whom D = 0. Each term in the summations on the
right-hand side of (20) is self-weighted by averaging over the empirical distribution of the
P in either the D = 1 or D = 0 sample. Under random sampling, each term is consistently
estimated and /N times each term centered around its expected value is asymptotically
normal 4!

Following the analysis of the JTPA experiment reported in Bloom, et al. (1993), we
use quarterly earnings and total earnings in the 18 months after random assignment as our

“'The asymptotic normality of each component is justified by Theorem A.1 of Appendix A.
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outcome measures. Table 5 presents consistent and asymptotically normal estimates of the
three components of decomposition (14) using the earnings data from the JTPA experiment
and estimated using the formulas presented below equation (20). The control group sample
gives information on Y, for those with D = 1 and the sample of eligible non-participants
gives Yy for those with D = 0. The first column in Table 5 indicates the quarter (three
month period) for which the estimates are constructed. These quarters are defined relative
to the month of random assignment or eligibility determination. Each row corresponds
to one quarter, with the bottom row reporting averages over the first six quarters (18
months) after random assignment. Column (1) reports the estimated mean selection bias
B . The next three columns report estimates of the components of the decomposition

n (14). The top number in each cell is the estimate, the number in parenthescﬁ is the
bootstrap standard error and the number in square brackets is the percentage of B for the
row that is attributable to the given component. The first component, B, is presented in
column (2) of the table. The component arising from misweighting of the data, Bz, is given
in the column (3) and the component due to selection bias rigorously defined, B,, appears
in column (4). Column (5) presents Bsp(Bsx evaluated with X = P), the selection bias
for those in the overlap set Sp. Column (6) presents the experimental impact estimate
calculated using the full control and treatment group samples while column (7) expresses
Bs, as a fraction of the experimental program impact estimate. All of the values in the
table are reported as monthly doliars. Thus the first row and first column of Table 5 reports
a mean earnings difference of -$420 per month over the three months of the first quarter
after random assignment. The percentages of controls and ENPs in the common support
region for F; are reported in the table notes.

A remarkable feature of the estimates in Table 5 is that for the overall 18 month earnings
measure, terms B, and B, are substantially larger than the selection bias component Bj.
The selection bias is a small fraction (only 7%) of the conventional measure of selection
bias and is not statistically significantly different from zero.*?> These results on the bias for
the overall impact of the program appear to provide a strong endorsement for matching on
P as a method of program evaluation. However, the bias Bg, that is not eliminated by
matching is still large relative to the estimated treatment effects, as is shown in the last

42For adult women and for youth the estimated selection bias is proportionately higher, although the
conventional measure B is lower than for adult males. For adult women and youth the bias measures B
and Bj are of the same order of magnitude. TFhese results are reported in Heckman, Ichimura, and Todd
(1997; first draft 1993).
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two columns.

The decompositions for quarterly earnings tell a somewhat different story. There is more
evidence of selection bias in quarters 4 and 5, although even in these quarters the selection
bias is still dwarfed by the other components of bias in (20). Expressed as a fraction of the
experimental impact estimate, the quarter-by-quarter biases are substantial.

The evidence for the empirical importance of selection bias that cannot be removed
by matching is even stronger when we examine the bias at particular deciles of the P,
distribution (conditional on D = 1) in the overlap set. Table 7, discussed below, shows
that the estimates of bias at the deciles of the control distribution of P are large, nega-
tive and statistically significant at the lowest decile, and large and positive at the upper
decile. The apparent success of matching on P in eliminating some of the conventionally-
measured selection bias in the overall estimate of program impact masks substantial bias
over subintervals of P. The bias that remains after matching is a large fraction of the
experimentally-estimated program impact. Our evidence of substantial pointwise bias that
averages out to small bias over certain intervals is reminiscent of what can occur in the
classical selection bias model, as noted in the discussion surrounding Figure 1. Moreover,
it is inconsistent with the identifying assumption used to justify matching. This empirical
regularity occurs in the other models estimated below and is a central empirical finding of
this paper.

7.0 Testing the Conditions that Justify Matching, Our Extension of Matching,
The Index Sufficiency Hypothesis and the Conditional
Difference-in-Differences Method

We now refine our characterization of the bias function by testing several important
hypotheses. The first hypothesis is the fundamental identifying assumption (7) required
to identify parameter (1) using matching. Rejection of this hypothesis for a broad array
of probabilities of participation P, selected on the basis of various criteria, leads us to test
the validity of regression-adjusted matching. In that method, we postulate econometric
separability and exclusion restrictions and write X = (R, Z), Yy = R'8 +Uy, and E(U; |
X,D} = E(Up | Z,D). In place of (7), we postulate conditional independence for the
disturbances that parallels the conditions specified in (A-1) and consider Uy || D | Z or
the disturbance parallel of (A-2), Up || D | P(Z) or its implication
(21) E(Uy| P(2),D=1)=E(Uo | P(Z),D =0} = E(Uo | P(Z))-
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Separability is a familiar econometric restriction. Exclusion restrictions are motivated
by the temporal structure of the program we analyze. Outcomes are affected by variables
R, like local labor market variables and time effects, that are experienced after participa-
tion decisions are made. Thus R and Z are not the same variables if R is not perfectly
anticipated at the time program participation decisions are made due to uncertainty about
future labor market shocks.

Our evidence on hypothesis (21) is mixed. Using conventional asymptotic standard
- errors, we reject (21). Using standard errors that adjust for estimation of 8, which are
justified in an extensive Monte Carlo analysis reported in Heckman, Ichimura, and Todd
(1996; first draft 1994), we do not reject the hypothesis. However, the estimated pointwise
bias expressed as a function of P is large. We are reluctant to declare a sizeable estimated
effect to be zero based on these tests and we conclude that even after adjusting for R,
matching is not vindicated in our sample. However, the regression-adjusted method im-
proves on simple matching on P in producing somewhat lower average bias over certain
intervals.

We test the index sufficiency hypothesis (11), and do not reject it, although the power
of our test is not high in the empirically-relevant range of alternatives. Therefore, a key
necessary condition justifying the classical econometric selection bias model is consistent
with our data. Large pointwise bias and small average bias over certain intervals are con-
sistent with the econometric selection model. Finally, we test the identifying assumptions
of the conditional difference-in-differences estimator and find that they are satisfied in our
data for all but low values of P in time periods near the date of random assignment or
eligibility determination.

7.1 Testing the Validity of Matching on P

We construct our test of the hypothesis (7) from estimates of 11, (P) = E(Yy | P,D = 1)
and mho(P) = E(Yy | P,D = 0) obtained from the separate local linear regressions of Yj
on P for observations with D = 1 and of Y, on P for observations with I = 0. The
asymptotic normality of the two terms (Njan)/2(fg(P) —ma(P)) ~ N(¥y4,V,),d =0,11is
discussed in Section A.4 of Appendix A, where ¥, and V; are also defined. (See Theorem.
A.3.) We pick the smoothing parameters to satisfy ay, = ay, = ay. The statistic used to
test hypothesis (7) is

(m1(P) — to(P)) (Vi/(anNy) + Vo/ (an No)) (1 (P) — mg(P)) ~ x2(1),
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where V is a consistent estimator of V; for d € {0,1} and N, and N are the sample sizes for
D =1 and D = 0 respectively. For testing hypothesis (21), the test statistics are analogous
except that Y, is replaced by ;. The test statistics and estimators of the variances for
this case are presented in Appendix A, Section A.5. The Monte Carlo evidence reported
in Heckman, Ichimura, and Todd (1996; first draft 1994) suggests that adjustment for the
estimation of 5 is required to produce correct standard errors for samples of size 500-1,000
with the variation in the regressors found in the samples used in our analysis.

Tables 6A and 6B presents the “p values” (rejection rates under the null) for these
hypotheses for various values of the probability of program participation P located at
least one bandwidth apart, so that the test statistics are statistically independent. The
top portion of Table 6A reports tests of hypothesis (7). The relevant period over which
the test should be performed is the post-random assignment period (t = 1,...,6) since
it is post-entry time periods on which the program would be evaluated. For the sake
of completeness, however, we also record the test results for the pre-random assignment
period (t = -1,...,-6).** The bottom portion of the table reports tests of hypothesis (21).
Hypothesis (7), which justifies matching on P, is decisively rejected. In addition, hypothesis
(21) is rejected, so regression-adjusted matching is also inconsistent with our data. When
second order-adjusted standard errors are used that account for the estimation of 3, as in
Table 6B, the evidence is less clear cut. However, the pointwise bias is large (see Figure 3
for bias from the best-predictor P) and it seems inappropriate to ignore this bias and accept
the null of no selection bias when an asymptotically-equivalent test of the same hypothesis
rejects it. Table 7 reports the pointwise bias estimates at deciles of the distribution of P
for controls. The bias is large, negative and statistically significant at low values of P and
large and positive at high values of P, which is inconsistent with the null hypothesis that
matching is a valid estimator.

7.2 Testing Index Sufficiency

Our data are consistent with the hypothesis of index sufficiency. Appendix A, Section
A 6.2, presents the test statistic for this hypothesis. We test E(Uy, | P,Z,D = 1) — E(Uy, |
P,Z,D = 0) = Ky(P,Z) — Ku(P, Z) for different discrete regressors, Z, shown in the

43The same inferences are found when we test over all 12 periods although such a test is not especially
interesting for judging the performance of matching as an evaluation estimator on post-random-assignment
data.
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subtable headings of Table 8, using the best-predicting P score selected on the basis of
tests discussed in Appendix C.** For most cells, and tests over all cells using conventional
significance levels we do not reject the hypothesis in the relevant post-random assignment
period (t = 1,...,6) or for that matter in the pre-random assignment period (t=-1,..,-6).
P values are chosen at least one bandwidth apart so that the test statistics are statistically
independent. A Monte Carlo analysis of the test statistic presented in Appendix D reveals
that the test is consistent but quite conservative. It rejects at a far higher rate (25%)
than the nominal size (5%). On the other hand, the power of the test is not especially
high (roughly 20%) for a large range of alternatives away from the null. A similar pattern
of acceptance of the null of index sufficiency is found for all specifications of P shown in
Table 8, except when P scores are used which exclude both earnings and recent labor force
transition information.

Our acceptance of index sufficiency is necessarily qualified because the power of our
test is not especially high. The test partitions the data by demographic group, by training
center at which the experiment was conducted and by education group. This partitioning
sometimes produces very small cells and it greatly restricts the range of P over which the
test can be performed. When certain cells are deleted, the range of P values over which the
test can be performed is greatly expanded. For this reason, the tests reported in Table 8
omit the “Hispanic” race/ethnicity and the “Corpus Christi” training site cells. Unlike the
case of our test of the conditional independence assumptions that justify the conventional
matching estimator, where the rejections are firm, here we can only make the guarded
statement that the data are consistent with the null hypothesis of index sufficiency and
that further tests with larger samples would be highly desirable.*> The pointwise differences

*Since the terms E(Uy |P,Z,D = 1) and E(Uy |P,Z,D = 0) are identified only up to unknown
constants, we do not test the hypotheses Ko;(P, Z) = Kg:(P) and K1:(P, Z) = K;(P). Our test of index
sufficiency is different from that Fan and Li (1996) because we test the hypothesis that differences are
index-sufficient, not levels. Our test is also different from that of Ait-Sahalia, Bickel and Stoker (1994)
because we test for index sufficiency of a sub-function and not an entire function and we use local linear-
regression methods which greatly simplify the derivation of the sampling distribution of test statistics. See
the discussion in Appendix A.

“*In general, a multiple index mode! would characterize participation in the program, reflecting the
preferences of the individuals and those of the bureaucrats who accept people into the program. Heckman,
Smith and Taber (1996) report the absence of cream-skimming behavior at one of the JTPA training centers
analyzed in this paper. (The required data are not available at the other centers). In a larger sample, or
with different decision rules used by program officials, the single index model might be rejected in favor of
a multiple index model. Local linear regression methods can easily be modified to estimate models with
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in the bias are sometimes substantial (see Figure D-2 displayed in Appendix D), but so are
the standard errors.

Moreover, as noted in Section 3.2, in order to use the index-sufficient model to construct
the desired counterfactual (1) it is necessary to be able to determine a set of X values where
E(Uo|P(X),D = 0) = 0. The restricted support of P(X) evident in Figure 2 precludes
this identification strategy unless parametric restrictions are invoked. The restriction on
the support of P in our sample also eliminates the possibility of a more general statement
about the shape of B(P) over the full support of P for program pa.ri:icipa.nts. Future
evaluations should select comparison groups to enlarge Sp to the full support of program
participants in order to allow valid inferences about the entire sample of participants.

7.3 Testing the Identifying Assumption Justifying the Conditional Difference-
in-Differences Method

Maintaining index sufficiency to characterize bias B(X) simplifies the testing of identi-
fying assumption (12). In light of our evidence on index sufficiency we can reformulate it
in the following way:

(22) B,(P(X)) — By(P(X)) =0, for some ¢,t'
where ¢t is a post-program period and ¢’ is a pre-program period.

Figure 4 plots the pointwise bias estimates over all t. The B,(P) are not constant over
time, or even equal for time periods ¢ = —~t' at low values of P for time periods near
the time of the participation decision. In general, however, the identifying assumption
justifying the conditional difference-in-differences estimator is consistent with our data.
The fourth column of Table 9 presents p-values for tests of hypothesis (22) for symmetric
differences around ¢ = 0.*6 Only for the lowest values of P in the joint test over all six pairs
of quarters is the null close to being rejected at conventional levels. Qutside the interval
t € [~3,3], hypothesis (22) is never close to being rejected for any values of P. Table 10
presents the bias by P decile in a format comparable to that of Table 7. For most deciles,
the bias is substantially lower than for the matching estimator. Pointwise, the estirmated
bias using the difference-in-difference matching estimator, which is a differenced version
of the regression-adjusted matching estimator, is lower than that for the cross-sectional

multiple indices using higher dimension kernels.
46The inference using the unadjusted standard errors is the same as that reported in Table 9.
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matching estimator or the regression-adjusted matching estimator.4

Column (2) of Table 9 reports p-values for the test of the identifying assumption of
the fixed effect model (Ky,(P) = K, (_(P)). In a stationary environment, the fixed effect
method applied to controls (D = 1) is sufficient to identify the parameter of interest.® This
hypothesis is decisively rejected overall for the ENPs and in most cases for the controls,
but the data are consistent with the hypothesis of fixed effects in the interval outside t €

[-3,3]. The results in column (3) of Table 9 show that the same conclusions apply to the
hypothesis Ko (P) = Ko —t)(P).

8.0 Estimated Selection Bias Under Alternative Estimators and Sensitivity of
Estimates to Alternative Specifications of the Outcome and Participation
Equations

This section presents estimates of selection bias associated with the alternative estima-
tors described above and explores the sensitivity of the estimated average selection bias,
Bs,., to variations in the variables included in the outcome equations (R) and in the par-
ticipation equation (Z). We also compare the selection bias, rigorously defined, that is
obtained from the method of Barnow, Cain and Goldberger (1980) with the bias from the
local linear regression estimator.

Table 11 presents estimates of selection bias associated with different matching estima-
tors, where matching is performed using the best-predictor model for P. The first column
of Table 11 gives the benchmark difference in raw mean earnings between the control
and ENP groups. Column (2) is the bias for a local-linear P matching estimator without
regression-adjustment, which imposes a common support condition and uses nonparametric
local linear regression methods in constructing matches. The average bias estimate of $47
improves substantially over a simple mean-difference estimator. Column (3) gives the esti-
mated bias for the regression-adjusted version of the same estimator. The fourth and fifth
columns present the bias estimates for the difference-in-difference and regression-adjusted
difference-in-difference estimators, respectively. The estimated bias is slightly higher.*®

47The bias by decile for the regression-adjusted matching method is only slightly smaller (less than 10%)
for each decile. For the sake of brevity we do not display these results.

48See Heckman and Robb (1985).

®Heckman, Ichimura and Todd (1997; first draft 1993) apply the conditional difference-in-difference
estimator to data from three other demographic groups and find that it generally vields bias estimates
similar to those obtained using cross-sectional matching estimators.
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In Table 12, we explore the sensitivity of the bias estimates to alternative sets of vari-
ables included in the outcome equation. That is, we use the best-predictor P model de-
fined in Appendix C throughout the sensitivity analysis but vary R. Table 12 reveals that
there is relatively little sensitivity in the estimates of selection bias across specifications of
the outcome equations. For example, comparing the baseline specification with Model I,
which includes no regressors except for an intercept, shows little effect of inclusion of the
baseline regressors on the estimated overall bias. Addition of training center indicators,
- race/ethnicity, age and calendar quarter and year durnmies (Model II) to the stripped-down
Model I decreases the estimated overall selection bias roughly by a factor of two. Augment-
ing the regressors of Model II to include measures of previous training, work experience,
the local unemployment rate and a dummy variable for whether or not a child is present
(Model III) increases estimated overall selection bias only by a small amount compared
to Model II. Adding schooling, age and marital status to the Model III specification to
produce Model IV barely changes the estimated selection bias. Adding the labor force
transition variables (Model V) that prove useful in estimating the probability of participa-
tion substantially increases the estimated selection bias. These variables are not included
in the baseline model and are typically not used as regressors in earnings equations.

The final column of Table 12 presents the selection bias that arises from using the
method of Barnow, Cain and Goldberger (1980). This is a weighted linear regression ver-
sion of our method of regression-adjusted matching. Using the same outcome variables (R)
and selection variables (Z) that appear in the baseline model, we estimate linear regression
(16) where B(X) = B(Z) is postulated to be a linear function of Z and E(Up | X ,D =0) =
E(Uos|R ,D = 0) is postulated to be linear in R. We impose the condition of common sup-
port to secure estimates from the method by using the observations with P(Z) € Sp, and
we impose common weighting in estimating the regression across ENP (D = 0) and con-
trol samples by weighting the ENP observations by the ratio of the estimated control and
ENP densities f(P|D = 1)/f(P|D = 0).° The estimated selection biases are large when

S0Following the analysis of White (1980), such weighting reduces misspecification error for
E(UgiX,P(Z2),D=1) — E{Up\|X,P(Z),D =0) when the bias function is assumed to be linear and is
in fact not linear. The denstities are estimated by kernel methods using the kernel defined in Appendix A.
Imposing the common support condition ensures that the denominator is nonzero. In results not reported
for the sake of brevity, we use an alternative way to impose the common weighting condition. A regression
is first estimated without reweighting to obtain an estimate of B(X;) for each person, and then the common
weighting by f(P!D = 1) is used in averaging individual E(X } estimates. Introducing weighting in the
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compared with those obtained from the baseline semiparametric model. Our semiparamet-
ric alternative to linear regression methods offers substantial benefits in reducing selection
bias."!

Table 13 presents a sensitivity analysis of the effect of changes in Z on the estimated
selection bias for both the regression-adjusted local linear matching estimator and the
difference-in-difference version of the estimator. The baseline regressors R from the previous
table are maintained through all of the specifications examined here. The second column
of the table presents the baseline selection bias for the regression-adjusted model. “Coarse
P I” is a model that only includes demographics, schooling and training center dummies
in Z. If there is no access to information on earnings or labor force histories to include
in Z, the estimated bias for the local linear estimator is substantial. For the difference-
in-difference estimator, the quarterly bias estimates are also substantial but they average
out to a low value of $32 per month. Access to information on earnings from the year
preceding random assignment or eligibility determination greatly improves but does not
eliminate the estimated selection bias for the local linear regression estimator, as shown
by the estimates for the “Coarse P II” model. The estimates for the “Coarse P III”
model demonstrate that adding local labor force transition variables to the “Coarse P I”
model greatly reduces the estimated selection bias. The importance of recent labor force
transitions in predicting P and eliminating selection bias is a major empirical finding of this
paper. This information was not used in earlier evaluations of U.S. job training programs
because it was not available.

9.0 Sensitivity of the Estimated Bias to Alternative Definitions of Eligibility,
Mismatch of Geography and Alternative Formats of Survey Questions

National comparison group samples are commonly used tc evaluate local programs.
These samples do not place comparison group members and participants in the same labor
markets. Moreover, the variables and interview formats sometimes differ across surveys
creating further sources of discrepancy between participant and comparison groups unre-
lated to selection bias, rigorously defined. LaLonde (1986) uses comparison groups situated

first stage regression makes a substantial difference in the resulting estimates of bias. The estimated bias is
about four times larger if the regression is unweighted and the weighting is performed in the second stage.

51Below, in Table 19, we report estimated bias for a more standard version of the Barnow, Cain and
Goldberger (1980) estimator that does not impose common support or common weighting.
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in different markets from his participants, all of which were administered different ques-
tionnaires than those given to participants. Part of the bias that he reports arises from
market and survey mismatch. This section investigates these sources of bias and also ex-
plores the impact on the estimated bias of imposing different eligibility criteria in creating
non-experimental comparison group samples.

We use SIPP (Survey of Income and Program Participation) data to investigate these
issues. These data are sufficiently rich that it is possible to determine whether surveyed per-
sons are eligible for JTPA. However, because of sample size and confidentiality restrictions,
it is not possible to make close geographical matches between controls and nonparticipants.
In addition, the SIPP survey asks questions about earnings and labor force participation
in a different format than does the survey used to produce our data.5?

Table 14A presents estimates of the bias (B), the average bias after local linear matching
on P, Bg,, and the regression-adjusted bias, Bs,(adj), from three alternative comparison
samples. The first sample (“full sample”) uses all SIPPs. The second sample uses SIPPs
screened for eligibility for JTPA using the rough guidelines employed by Ashenfelter and
Card (1985) in their evaluation of the closely-related CETA program. The third sample
uses only JTPA-eligible persons.>®* The raw bias B greatly diminishes as more refined
eligibility criteria are imposed to create comparison samples. For the first two samples,
matching and regression—-adjusted matching eliminate a substantial portion of the raw bias
but the bias that remains is still large relative to the program impact. Imposing eligibility
actually increases the measured bias obtained from either method of matching for the
SIPP sample of persons, constructed using either the Ashenfelter-Card criterion or exact
eligibility for JTPA. Table 14B presents analogous estimates for the difference-in-difference
estimators but the benefits of imposing eligibility criteria on the sample are small. Using
samples of eligible individuals as comparison group members may be intuitively appealing
but is not guaranteed to reduce selection bias compared to the estimates obtained from
other samples. The estimator performs comparably for the full sample and the Ashenfelter
and Card (1985) eligible sample, but the bias increases for the sample imposing the more
refined eligibility criterion.

Our estimates demonstrate the importance of basic data quality in producing valid
program evaluations. The bias from use of SIPP data is generally substantially greater

520ur data are collected in the format of the NLSY. For elaboration of these issues, see Smith (1995).
535ee Devine and Heckman (1996) for an analysis of eligibility for the JTPA program.
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than the bias that arises from using the ENP data (compare the biases in Table 14A and
14B with the biases in Table 11).

Unlike the SIPP sample, the ENP sample was drawn from the same geographic locations
as program participants and was administered the same survey questionnaire. To isolate
the effect of geographical mismatch in producing bias, and to evaluate the effectiveness of
econometric methods in reducing the bias, we scramble the ENP-control data and mismatch
by geography within these samples. Since all observations are administered the same
questionnaire, this enables us to estimate a pure geographic mismatch effect. Table 15
reports the result of matching ENPs (D = 0) in two training centers to controls (D = 1)
from two other training centers. For three of the estimators, the raw bias in Table 15
is two to three times as large as the bias in the geographically-aligned data (compare
with the results in Table 11). Matching and regression-adjusted matching reduce, but by
no means eliminate, the bias (compare the second and third columns of Table 15 with
the second and third columns of Table 11). When data are geographically misaligned,
the difference-in-differences estimators generally perform better than the cross-sectional
estimators. Geographic mismatch is an important source of bias in evaluating training
programs.®4-55

Access to comparison samples of persons who are administered the same questionnaire
and located in the same labor market as participants greatly improves the quality of non-
experimental evaluations. Econometric methods generally reduce, but do not eliminate,
these sources of bias and are no panacea for the problems created by using bad data to
evaluate social programs.

10.0. The Consequences of P-Dependence of the Impacts

If the program impact E(Y; — Yy | P,D = 1) depends on P, then econometric methods
applied to non-experimental comparison groups that have P support in regions different
from the support of the participant group estimate a parameter that differs from what is

54Roselius {1996) builds on our analysis and creates a variety of SIPP samples using alternative definitions
of region and city size. She finds substantial bias in all of her SIPP samples that is far in excess of the
ENP-control bias reported in the text. Adjusting for labor market variables like the unemployment rate
in the state or metropolitan statistical area does not reduce the bias she estimates.

55Smith {1995) uses other data sources and considers the consequences of alternative definitions of
variables and survey instruments on the estimated bias.
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estimated by an ideal experiment. This is true even if there is no selection bias so that
B(P(X)) = 0 everywhere. This section presents evidence on this additional source of bias.

Using data on eighteen-month outcomes from the treatment and control groups of the
JTPA experiment, we use local linear regression methods to determine how E(Y; — Y |
P,D = 1) depends on P. The estimates are graphed in Figure 5. The point estimates
suggest a modest dependence in the neighborhood of P = 0.15, but the formal statistical
test whose results we report in Table 16 does not allow us to reject the null hypothesis of
no dependence.5®

However, measuring the program impact only over the limited support of the overlap
set Sp adds an additional -$19 to the bias arising from using a nonexperimental estimator
adapted to a common support. The overall impact estimated over Sp is $38 per month.
The overall impact for the program estimated without any restriction on the support is
$57 per month. Thus the restriction to a common support reduces the estimated program
impact by 33%. The difference between the two estimates of program impact is statistically
significant. (See Table 17). A major lesson of this paper for the design of future evaluations
is that comparison groups should be selected to have P distributions similar to those of
program participants in order to mitigate the support problem.

11. Implementation of Estimators with Ordinary Nonexperimental Samples

The methodologies that we have devised to estimate the bias in samples that combine
experimental and nonexperimental data can also be applied to ordinary nonexperimental
samples to estimate a variety of evaluation parameters of interest. For the nonparametric
sample selection estimator, the only new ingredient that is required is an exclusion re-
striction - at least one variable in Z not in R - that satisfies certain conditions specified
below.

Consider equation system (8) and suppose that index sufficiency characterizes the bias
term and that
(233) E(}Il |Z= R,D= 1) = gl(R) + E(UI |P(Z)1D = 1)
and
(23b) E(Yy|Z, R,D =0) = go(R) + E(Up |P(Z),D =0) .

If there is at least one element in Z not in R that satisfies the conditions

56The test statistic is formally equivalent to the test for index sufficiency of the outcome differences for
a model with R = 1.
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(24a) lim  E(U2|P(Z), D=1)=0

and

(24b) _lim  E(Us |P(Z), D =0) =0,

where Z% and Z°' may be values or sets of values, and need not be the same sets of values,
we can identify g;(R) and go(R) following the argument in Heckman (1990). This enables
us to construct E(Y; —Yp|R) and E(Y: — Yo |R, P(Z) D = 1). To see how to construct the
latter, observe that the left hand sides of (23a) and (23b) can be constructed from sample
" data using, e.g., local linear regression methods. If (24b) holds, and E(Ug|P(Z)) = 0, we
can use the iterated expectation argument and construct

E(Uo|P(2),D=1) = -E(Us|P(2), D=0) [1 ;fZ()Z)]
= [E(Y5}|Z,R, D =0) — go(R)] [1;(—‘02()2)}

Thus we can construct
E(Y;1Z, R,D =1) - [90(R) + E(Us |P(Z) ,D = 1)] = B(Y; - Y|, R,D = 1).

Observe that condition (24a) is not required. The empirical evidence on the support of P
presented in this paper suggests that producing the sample counterparts to (24b) or (24a)
may be difficult in practice.

The cross-sectional and difference-in-difference matching methods considered in this
paper can be applied as formulated to nonexperimental data.>” They do not require the
limit sets defined by (24a) and (24b).

12. Summary, Synthesis and Conclusions

This paper develops a framework for combining experimental and nonexperimental data
to test the identifying assumptions that justify three widely-used nonexperimental methods
of evaluating social programs based on comparison groups: (1) the method of matching; (2)

57 As noted by Heckman and Smith (1996), the difference-in-difference estimator identifies the “treatment
on the treated” parameter only when no baseline observations have received treatment. For the general
case, see their paper.

35



the classical econometric selection bias model which represents the bias solely as a function
of the probability of participation P; and (3) the method of difference-in-differences.

We decompose the conventional measure of bias into three components corresponding
to (a) differences in the supports of the regressors between participants and members of
the comparison group; (b) differences in the shapes of the distributions of the regressors
in the two groups in the region of common support; and (c) selection bias, rigorously
defined at common values of the regressors for both groups. The first two components are
eliminated by matching on characteristics that are “close” in the two groups. Only the
third component - selection bias - remains.

We apply our methods to unusually rich data from the control group of a random exper-
iment on a prototypical job training program combined with a nonexperimental comparison
group of nonparticipants. Our decomposition reveals that selection bias rigorously defined
is generally the smallest of the three components of bias as conventionally measured but it
is still a substantial fraction of the experimentally-determined impact of the program we
study. In our data, both of the forms of matching we examine reduce but do not elim-
inate the conventional measure of bias. Matching cannot eliminate a nonzero selection
bias, rigorously defined, and in fact the method is based on the assumption that it is zero.
In related work, Heckman, Ichimura and Todd (1997; first draft 1993) find that for other
demographic groups, matching sometimes increases the estimated bias, at least for some
sets of conditioning variables.

Our data are consistent with the index sufficiency assumption that underlies the classical
selection bias model. This model cannot be implemented semiparametrically in our data
because the support of P is limited. To apply the method semiparametrically in future
evaluations, it is necessary to enlarge the support of P for comparison group members so
that it matches the full support of participants (P € (0,1)).

QOur data are also consistent with the identifying assumptions required to justify appli-
cation of a conditional version of the method of difference-in-differences to the evaluation of
job training programs for all but low values of P. The conditional difference-in-differences
estimator is consistent with the index-sufficient model of selection bias and only requires
that the bias be the same before and after the date of the program participation decision,
or at least be the same in symmetric intervals around the date of the program participation
decision.

The method of matching and the classical selection bias model share one important
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feature: under the assumptions that justify each method, selection bias B(X) averages out
to zero over certain intervals. Matching is based on the assumption that selection bias is
zero for all intervals, however small. Our tests clearly reject this assumption, which also
underlies the regression method advocated by Barnow, Cain and Goldberger (1980). The
cross-section bias detected in our analysis is characterized by a crossing property. Sizeable
negative bias in some cells or intervals is offset by sizeable positive bias in other cells or
mtervals. A weighted average across cells can reduce the overall bias substantially. This is
why some form of matching reduces the bias in our sample, although it does not eliminate
it.

As shown in Figure 3, estimated selection bias as a function of P is sizeable, especially
in the vicinity of P = 0. In that neighborhood, the shape is broadly consistent with the
form of the classical selection bias displayed in Figure 1. However, our analysis rejects the
application of the normal selection bias model of Heckman (1979). The dashed lines in
Figure 3 reveal a large difference between the estimates of selection bias obtained using the
nonparametric methods developed in this paper and the classical parametric selection bias
model based on the inverse Mills’ ratio.

We also demonstrate the substantial benefits of having access to nonexperimental data
that (a) place nonparticipants in the same labor markets as program participants; (b) ad-
minister the same questionnaire to both groups; and (c) include information on recent labor
force status histories. Recent labor force status transitions turn out to be more important
predictors of program participation than the recent earnings histories emphasized in the
analysis of Ashenfelter (1978). Failure to use comparison groups of persons situated in the
same labor markets as participants and administered the same questionnaires contributes
substantially to the bias as conventionally measured. These sources of bias are empiri-
cally more important than selection bias, rigorously defined. Access to recent labor force
histories in estimating the probability of program participation considerably improves the
performance of nonexperimental methods. These findings enhance our ability to design
future nonexperimental evaluations of training programs. Since the JTPA program we
consider is typical of a variety of training programs in place around the world, the lessons
from our study apply more generally.

Although further testing with larger samples would be highly desirable, our analysis
suggests that semiparametric sample selection bias methods of the sort proposed by Heck-
man (1980}, Cosslett (1991) and Ahn and Powell (1993) are one potentially promising
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method for evaluating training programs provided that comparable data are collected on
nonparticipants and participants located in the same geographic areas and administered
the same questionnaire and provided that the support of the distribution of P for nonpar-
ticipants is enlarged. Labor force status history variables, local labor market variables and
personal characteristics that determine participation (i.e., Z variables) but are excluded
from the outcome equations are valid exclusion restrictions for identifying the semipara-
metric selection model. The temporal structure of the program makes some of the Z and
R variables distinct. .

Another very promising method that does not require an exclusion restriction is our
extension of the method of difference-in-differences. Conditioning on P, the bias function
B:(P) tends to be constant over all time periods t, except possibly for low values of P in
time periods near the date of random assignment or eligibility determination. It is for this
reason that the index sufficient selection model and our conditional version of the method
of difference-in-differences are consistent with each other.

We stress the importance of collecting information on recent labor force status histories
and of designing nonparticipant samples so that the distributions of P have the same
support for both participants and nonparticipants. It is essential to get the full support
to identify parameters (1) and (2) for the entire population of participants.®® Lack of
common support - comparing the incomparable - is a major source of selection bias as it is
conventionally measured. Our evidence leads us to a rigorous reformulation of the definition
of selection bias so that it excludes bias arising from gaps in the common support and from
differences in the weights applied to participant and comparison group samples over the
region of common support.

Using a common support and a common set of weights applied to participant and com-
parison group samples goes a long way toward improving the performance of any economet-
ric evaluation estimator. Table 18A clearly demonstrates this point. Column (1) presents
. the raw bias (B) quarter-by-quarter and overall using the means for the control and ENP
samples. Column (2) shows how the bias is reduced simply by matching to the nearest
neighbor using P. (Recall that nearest neighbors can be far apart.) Column (3) shows
how the imposition of the common support condition improves of the nearest-neighbor

581n practical terms, for training programs such as JTPA stratified sampling of nonparticipants based on
their labor force status or labor force status histories seems a promising strategy. The original ENP data
collection plan called for stratification on labor force status, but this plan was abandoned for cost reasons.
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matching estimator. Quarter-by-quarter, there is a substantial reduction in bias. However,
the overall average is slightly higher in (3). Column (4) presents estimates of the bias that
arise from local linear matching (on P) while column (5) presents the estimates that arise
from regression-adjusted local linear matching. Both procedures impose common support
and common weighting and both improve over the raw mean or crude nearest-neighbor
estimators.

Similar patterns appear in Table 18B for the difference-in-differences estimator. Simple
differencing symmetrically before and after the date of random assignment or eligibility
determination eliminates person-specific components of bias. Compare column (1) of that
table with column (1) of Table 18A. Imposing common support and common density in
column (2) generally reduces the quarter-by-quarter bias. However, as we found for the
nearest neighbor estimator, the overall average bias is slightly higher. Using regressors to
adjust for the bias reduces it slightly as shown in column (3). Note in comparing Tables 18A
and 18B that the overall bias from our conditional difference-in-differences estimator and
from the cross-sectional matching estimator are of the same order of magnitude. Column
(3) of Table 18C reveals that even though the inverse Mills’ ratio as typically applied
is badly biased (see the estimates in the first column), weighting by a common density
(f(P|D = 1)) greatly improves the performance of the estimator.’® Imposing common
support alone without reweighting does not lead to substantial improvement, as shown in
column (2).

It is instructive to contrast the biases defined over a common support and with common
weighting with the biases defined in the conventional way (e.g., as in Ashenfelter (1978) or
LaLonde (1986)). One conventional measure of bias is the OLS estimate of 7 in the model

Y =g(X)+Dr+U,

applied to controls and comparison group members, where g(X) depends on the specifica-
tion used. The normal selection bias method introduces the inverse Mills’ ratio terms into
g(X) in conducting a cross-section analysis. The difference-in-differences method uses Y
or regression-adjusted Y differenced symmetrically around the date of random assignment

S9For column (3), the ENP observations (for which D = Q) in the regression are weighted by the ratio
f(P|D = 1)/f(P|D = 0), where the densities are estimated by standard kernel methods. Imposing the

common support condition ensures that the weights are finite and nonzerc. The control observations are
self-weighting by the f(PjD = 1) distribution.
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or eligibility determination. Estimates of 7 reveal the bias in the conventional common
coefficient model (Uy = U,), where the program impact is assumed not to depend on X.
This estimate of bias combines the three sources of bias distinguished in this paper plus
any bias arising from correlation between U and X.%° In contrast, estimates of the bias
that condition on a common support and impose a common weighting of participant and
comparison group data produce an estimate of selection bias as rigorously defined in this
paper.

The estimates of 7 for the different methods are presented in Table 19. Except for the
inverse Mills’ ratio, the overall biases (7) from the other commonly-used estimators are of
the same order of magnitude. All except the inverse Mills’ ratio estimator produce biases
that are smaller than the raw mean B. At the same time, all are large relative to the
program impact and exhibit substantial variability across quarters. The different sources
of bias tend to cancel each other out. This is especially true of the Barnow, Cain and
Goldberger (1980) estimator. (Compare Column (3) of Table 19 with the last column of
Table 14.)

By decomposing the bias 7 into its components, we determine whether a small estimated
7 is due to a fortuitous combination of offsetting biases or whether each component of the
bias is small. Sources of bias such as the failure of common support and discrepancies in the
weights across participants and comparison group members depend on the sampling plan
used to collect the data for the comparison group and so are likely to vary across evaluations.
The factors generating self-selection are more likely to be similar across evaluations. The
focus in this paper is on the estimation of the stable components of the conventional measure
of bias. Knowledge of these components facilitates generalization of the evidence from any
one study to other environments, and is more informative about the sources of bias than the
measure B or 7 traditionally used to summarize bias. Our decomposition demonstrates that
in our data, selection bias, rigorously defined, is large relative to experimentally-estimated
program impacts but is small relative to the conventional measure of bias.

Our analysis highlights the benefits of randomized trials. While the bias is reduced
using nonexperimental methods that impose common support and common weighting, it
is not eliminated. Experiments avoid the need to specify precise functional forms of econo-
metric models or to select regressors to appear in outcome or participation equations.

60Heckman and Todd (1994) decornpose the bias 7 for the model with g(X) = X{ and present the
contribution for the case where Uy is correlated with X.
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Typically, experimental treatment and control groups reside in the same location and are
administered the same questionnaires. Experiments solve the problem of common sup-
port by balancing the distributions of characteristics between treatments and controls and
producing an impact estimate for all P values. If a nonexperimental evaluation method
has to be used, semiparametric selection bias models estimated on data with full support
for nonparticipants or conditional difference-in-differences estimators fit outside the period
immediately surrounding the period of initial participation in the program appear to be
promising methods that deserve much further exploration and testing.
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APPENDIX A

A.1 THE LOCAL LINEAR REGRESSION ESTIMATOR

Fan (1992, 1993) develops the distribution theory for the local linear regression estimator of

E(Y|P = PR), where Y and P are random variables. The estimator of the expectation at P is
defined as ¥;, the solution to

min 3% = = 7a(B ~ RIPG((Py ~ F)/an), (A-1)
where G(-) is a kernel function and ay is a bandwidth parameter. The local linear estimator at
-each point is obtained by weighted least squares, with greater weight given to points closer to
Py when G is a symmetric single-peaked function. %, consistently estimates the first derivative
of E(Y|P = Fp), a result we use below. Higher order derivatives can be consistently estimated
under additional smoothness assumptions on E(Y | P = Fy) from the coefficients of the higher
order terms in (P, — Fp) in a local polynomial regression. For example, if it exists, the g**-order
derivative of the regression function can be estimated as the coefficient on [(P; — Pp)?/q! of the
local polynomial regression.

There are several advantages of local linear estimation over standard kernel methods. If
E(Y|P = B) is twice continuously differentiable with respect to Py, then the bias of the local
linear regression estimator is of the same order in the boundary regions of the support of P as it
is in the interior regions, whereas the kernel estimator suffers from a lower order bias at boundary
points. As shown in Figure 1 in the text, conventional selection bias methods exhibit the greatest
bias in the neighborhood of the boundary values P € {0,1}, and as shown in Figure 2 a lot of
our data is near P = 0, so the better performance of local linear estimators at these values is
potentially important for our study. In addition, the first order bias of the local linear estimator
does not depend on the distribution of P. This property makes the local linear estimator robust
to different distributions of P and produces dramatic simplifications in the distribution theory of
our test statistics, compared to what would be obtained from standard kernel methods.

A.2 ESTIMATING THE PARTIALLY LINEAR MODEL

We adopt the following notation. The R variables appear in the outcome equation. The Z
variables appear in the probability that D = 1, Pr(D = 1|Z) = P(Z'8). In this paper, a logit
model is used to estimate P. Estimators are designated by “*”, and P; = P(Z!8).

A.2.1 Estimation Method. The outcome model that we estimate is:

Yy = R:tﬁ + Ku(Pi) + £y, fori e {D = 1}, teT
Y;'t = R;t/B + Kot(R,) + €it, fOI' 1€ {D = 0}, t e T



where {D = 1} is the set of ¢ indices for which D; = 1, {D = 0} is the set of 7 indices for which
D; =0, and T is the set of time periods used to estimate the model, 7 ={1,...T}. N=No+ N
and Ny and Nj are the number of observations in {D = 0} and {D = 1}, respectively.

We may write these equations as

Yie = R, 8+ DiK1:(P) + (1 — D)Ko (P:) + €, teT. (A-2)

In implementing this model, we replace P; with P;. Let R; = (Ri1,... ,RiT) denote the matrix of
stacked regressors for all individuals over all time periods and let X;; = (Ry,... , Ri) denote the
submatrix for individual ¢ through period t. For t > ¢, we assume, (i) E{e;; | X, Z:, Di} = 0, (ii)
B{e | X, Zi, D; = d} = 02(Xy, Zi, D; = d), (iii) E{eaci | Xut, Zi, D; = d} = (X, Zi, Di = d).
This model is an extension of the partially linear regression model of Wahba (1984) and Robinson
(1988).

We first estimate P, = P(Zf@) by weighted logistic regression. Using the estimator P;, we
then estimate 3, Ky,(P;) and Ko:(F,). The slope coefficients 3 are restricted to be the same for
observations with D; = 0 and D; = 1 and are assumed constant over time. The nonparametric
components K;; and Ky, are allowed to vary across groups and over time.

We use the observations for which D; = 1 to nonparametrically estimate E(Yy|P;, D; = 1) and
E(R;it|P;, D; = 1) and observations with D; = 0 to nonparametrically estimate E(Y;|P;, D; = 0)
and E(Ry|P;, Di = 0). Let Yiy = Yis — E(Rit | Pi,Di = d) and Ry = Ry — E(Rat | By, D; = d),
where d € {0,1} and we leave the choice of bandwidth ap, implicit. Throughout this paper
an, = an, = an. (3 is estimated by pooling observations across groups over 7T :

B=1303 3 RuRuwQu) 'Y (Y Y RuViaQu),
teT de{0,1} ie{D=d)} teT de{0,1} ic{D=d}
where Qo«. and Qh- are indicator functions that exclude a small fraction (2%) of the data with low
estimated densities. More precisely, Qu = 1{f(P;|D; = d) > Gag}, where the estimated density
of P, given D; = d, f(B|D; = d), is obtained using a standard kernel density estimator with a
truncated biweight kernel and where §yq is the second percentile of the estimates of f(P;|D; = d).
The expression for the biweight kernel is

15/ .2 2
_ ) (s =1)%for |s| < 1
Gls) = { 0 otherwise.

Such “trimming” is required to ensure that the nonparametric estimator is uniformly consistent.’
Estimates of K1;(P;) and Ky (P;) are then obtained by local linear regression of Y;; — R, on P,

! The global bandwidth parameter for the density estimates is chosen following the recommendation of Silverman
{1986), which in our case gives ay = _A(H/1.34)N‘”5, where A is a constant that depends on the kernel (A = 2.7768)
and H is the interquartile range of P;.



performed separately within the {D = 1} and {D = 0} groups. If 3 is allowed to vary across
different ¢, the estimator is

Be=1Y ¥ RuaBeuQul™ Y Y RiaViaaQu
de{0,1} ie{D=d} de{0,1} ie{D=d}

The terms K and K are then estimated using a local linear regression of Y;; - RﬁtB on P; for the
two groups (D; = 0, 1) for each period.

A.2.2 Choice of Kernel Function, Smoothing Parameters and Trimming. Heckman, et
al (1996) establish that the choice of G () does not affect the asymptotic variance of 3 but does
affect the variance of the estimator of the nonparametric components Ky, and K;,. We use a fixed
bandwidth of 0.06 in constructing the estimates of 3. The empirical results are not sensitive to
perturbations of the bandwidth in the interval [0.04, 0.08].

A.3 ASSUMPTIONS

Heckman, et al (1996) establish the asymptotic properties of the estimators and test statistics
used in this paper under the following assumptions. Our analysis allows for data to be randomly
missing for some quarters. To focus on the main ideas, and to simplify the notation, we abstract
from this complication in stating the propositions, but in presenting computational formulae we
allow for it.

Assumption 1 {(Ri, ..., Rir; Y, -, YiT; Zi; Di) Yie{p=d}, d € {0, 1} are independent across
individuals 7 for each d, but may be correlated across time for each individual. O

Assumption 2 P(Z!f) is twice continuously differentiable with respect to # and both deriva-
tives have finite second moments.O

This condition is satisfied for a logit because the first and second derivatives of the logit CDF
are uniformly bounded and because of Assumption 3 which we now present.

Let |- |2 denote the Euclidean norm. We assume:

Assumption 3 E{Yc7(|Rul3™ + 1Z:3* + |Yie[*)} < oo for some 6 > 0. O

We estimate 8 by a weighted logistic likelihood to account for choice-based sampling. (See, e.g.,
Amemiya, 1985). Let 8 denote the estimator of §. Asymptotic normality for the weighted score

vector
1Olog L;

0o

wzD) =B Tty
ie{D=0}u{D=1}
is assumed where L; is the contribution of the ith observation to the weighted logistic likelihood,
N = Np+ N, and Ny and N are the number of observations in {D = 0} and {D = 1}, respectively.
Assumption 4 VN (6—-6) = N~1/2 Zie{p=0yu{p=1} ¥(Zi, Ds)+op(1}, converges in distribution
to a M(0, Vp) random variable, where V} is the asymptotic variance of §. O



To state the next assumption, we define

u(Po) p u(Py) u(Fo)
(@) = / $2G(s)ds / G(s)ds — | / sG(s)ds]?,
«(Ro)

£(Po) ¢(Py)
Py ,  [uR) u(Po)

CE) = | $2G(s)ds)? — / SG(s)ds sG(s)ds,
€(Po) o(Py) ¢(Po)
1‘(Po) u{Fo) g u(Fy)

C3(G) = $?G(s)ds — u f sG(3)ds|2G? (w)du
€{(Po) E(Po) £(Pa)

where the upper and lower limits of integration, u(P,) and #(Fp), satisfy u(l) =0, u(B) =
Py €[0,1) and £(0) = 0, &(Py) = —oo if Py € (0,1]. Operationally, when the estimated P is within
a bandwidth ay of 0 or 1, C; changes discontinuously for § = 1,2.3.

We impose the following conditions on G and on C1(G), Ca2(G), C3(G) :

Assumption 5 (a} The second derivative of G(s) is finite; (b) C1(G) # 0; and (c) C1(G),
C2(G) and C3(G) are finite.O

Observe that C1(G)/| f;;g:‘;) G(s)ds}? corresponds to the variance of a random variable with

density G(s)/ f“(P") G(s)ds if G(s) > 0. Assumption 5 holds, for example, if G(-) is taken to be a
smooth density supported in a finite interval. These restrictions on the kernel function are satisfied
by the biweight kernel that we use (defined in A.2.1).

Since @ is estimated, we impose the following two regularity conditions on the behavior of the
conditional expectations and the conditional densities of P; given D; = 1 and D; = 0, fo,(P|D = 0)
and fg,(P|D = 1), in the neighborhood of the true value of 8 = fy :

Assumption 6 E(R; | F;, D; = d) and E(Y; | P, D; = d), d € {0,1}, are twice continuously
differentiable with respect to € in the neighborhcod of § = 6.0

Assumption 7 For d € {0,1}, (a) fs,(P|D = d) is bounded and continuous on {0, 1] and (b)
for any € > 0 there exists & > 0 such that if |# — 6g| < 6 then

sup |fs(P|D =d) — fo,(P|D =d)| < e.0
G<PL1

It is possible to weaken Assumption 6 and still obtain consistency and asymptotic normality
of the estimated 3 and K functions, but the advantages of the local linear estimator described in
Section A.l materialize only when it is maintained.
' To construct a consistent estimator of the asymptotic variances we assume:
Assumption 8 Let (3, be the true value of 3. For d € {0,1}, Var(Yy|P;,D; = d) and
Var(Yis — RyBo|P:, Di = d) are continuous functions of P evaluated at § = 8. O

A.4 DECOMPOSING THE CONVENTIONAL MEASURE OF SELECTION BIAS
A.4.1. Estimation Method. To obtain consistent and asymptotically normal estimates of By;,
By, and Bg; defined below equation (14) in the text, it is necessary to estimate the overlapping
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support region, Sp, and E(Y;|P;,D; = 0). To estimate the region of overlapping support, Sp,
we estimate the densities fg,(:|D = d) for d € {0,1}, using a standard kernel density estimator,
feo(-lD = d), applied to the estimated values of P for each group.?

The estimated density is evaluated at all observed data points. For both the D=0and D=1
distributions, all points with zero density and the points corresponding to the lowest two percent
of estimated density values are eliminated or “trimmed.”® Sp is the subset of the points from both
densities that survive trimming and share a common support. In our application, roughly 50%
of the control observations (D = 1) and 80% of the ENPs (D = 0) lie in the overlap region. We
estimate E(Y};;|P;, Di = 0) by local linear regression using the estimated values of P.

The sample analogue estimators of By, Bs and Bj defined below equation (20) in the text are,
for period ¢,

Blt = ]\fl-l Z Ktjf—Nd-l Z Ktjf

iE{D—l} ie{ D=0}
By = N' Y E(YulB,Di=0L-Ng' Y Yal
ie{D=1} ie{D=0}
By = NS [Yie — E(Ya|P,, D; = 0)} s,
ie{D=1}

where I; = 1{i € Sp}, If = 1{i € 5%}, the superscript ¢ denotes complement, N; denotes the
number of observations in the set {D =d} for d € {0,1}, and N = No + N,.4

A.4.2 Asymptotic Distribution of the Estimators. Heckman, et al (1996) establish that By,
By, and Bs, are consistent and asymptotically normal nonparametric estimators when estimated
regressors are used to estimate unknown conditional mean functions. Define p; = limy_.oc Ng/N
for d € {0,1} and ¥y (p) = E(YulP: = p,D; = 0), and let P! = 8P(Z!9)/8(Z!9) and v, (p) =
B, (p)/Op, the asymptotic variance-covariance matrix of VN N (8 — 6) as Vg and

¢ = E{Y4(P)P![Z; - E(Zi|P;, D; = 0){D; = 1}.

We prove:

Theorem A.l. Suppose Assumptions 1-8 hold and pg > 0 for d € {0,1}. If the deterministic or
stochastic bandwidth satisfies plimy_.o0an,/hn, = ap for a positive constant ag and a deterministic

*For all nonparametric estimates, we use the biweight kernel defined earlier.

*In estimating the density, we find that it is important to use a kernel that is zero outside a finite interval. With
a normal kernel, or any other kernel with unbounded support, no points are estimated to have zero density. This
makes it difficult to choose a trimming level that will eliminate the low density points. With a kernel supported over
a finite interval, some points are estimated to have a density of zero, so that they can be eliminated along with 2%
of the observations with positive estimated densities. With a kernel that has unbounded suppott, estimates of mean
bias tend to be sensitive to the trimming level but with a kernel supported on a finite interval they are not. For
further discussion, see Heckman, Ichimura, and Todd (1996).

41f we allow for random attrition, as we do in our empirical work the sets {D = 1} and {D = 0} and the values
of N; and Np are time indexed.



sequence Ay for which

. 2 _ . 4 _
N]{)ll-noo Nohy/log Ny = oo and N%)linm Nokiy, =0,

then N1/2(By; — By;) converges in distribution to A(0,0%,) where
o3 = Var(YIf|D = 0)/pg + Var(Yo IS D = 1)/py,
NY2(By, — By,) converges in distribution to A’ (0,02,) where

o3, = Var{E(Yali|P;, D; = 0)|D; = 0}/py + Var{E(YsLi|P;, D; = 0)|D; = 1}/p,
+ E{[(fao (P Di = 1)/ (foo (B D; = 0)) = 1*[YeeL; — E(YaeLi| P, D = 0)}*|D; = 0}/ + ' Ve,

and NV/2(B3, — By;) converges in distribution to A(0, 0%,) where

0% = E{Var(Yuli|P;, D; = 0)|D; = 1}/p,
+ E{[foo (P:|D; = 1)/ fo, (P Di = 0)*Var(YyeLi| P;, D; = 0)|D; = 0}/p, + ¢ Vpe.O

For simplicity the above expression assumes that the score vector of 4 and Yj; are not cor-
related.® We estimate the asymptotic variances using bootstrap methods, so we do not discuss
estimation of the variances by the plug-in method. Modifications to allow for random attrition are
straightforward and for the sake of brevity are deleted.

A.5 ESTIMATION OF THE MODEL WITH REGRESSORS

We next present results on the asymptotic distributions of our estimators of 8, Ko and Kj;,
and Bys, (adj).

A.5.1. Asymptotic Distribution of 8. Let fiuy = Ryt — E(Ru|P, Di = d) and 3y =
Z; — E(Z;|P;, D; = d). Throughout we assume that ay, = ay, = ay and hy, = hn, = hn.

Theorem A.2. Under Assumptions 1-8, if the (deterministic or stochastic) bandwidth ap sat-
isfies plimy_.ooan /Ry = ag > 0 for some deterministic sequence hy for which limy_,o VA% /log N =
oo and limy_.o NRY, = 0, and H), defined below, is nonsingular, and 3, is the true value of 3,
then

VN@B-B)=H'S S (N/N)YVENTY? S (FaraeieQai + Haatry) + 0p(1),

teT de{0,1} ie{ D=d}
where Hy = 3 ,c1 2 deq0,1} P4E (FitaTi4yQai| Di = d) and for d € {0,1},

Hyg = E(Ky(P:)P[faZ4Qui| Di = d),

®Note that when P; has the same distribution under D; = 0 and D; = 1 this assumption is not necessary because
¢ = 0 in that case. The derivation for the more general case is available on request from the authors.



where (0, is as defined in Section A.2.1 except in this expression true rather than estimated values
are used. We estimate the variance-covariance matrix of 3 by

D20 D Gurabiea(eaN) T (A-3)

de{0,1} T€T teT ic{D=d}

where

Oird = HyfirafirQai + Hog(Zi, Dy)),

H o= S Y Y fudfieaQuin

de{0,1} teT ic{D=d}

Hy = N3 S KL(P)P(ZB)ruaiQui,
teT ic{D=d}

and where g = Zi — E(Z) | Pe, Dx = d), fita = Rita — E(Rita | P, Di = d), &4a = (Yis — RL5) ~

: A _ OB (Y — RYB|P: ,D; = d) _

E(Yy — R,B | Pi,D; = d), Ki,(P) = 3F , and ¥(Z;, D;) is defined below
s

Assumption 3.0

In an extensive Monte Carlo analysis, Heckman, et al (1996) show that the asymptotic theory
for 3 is very reliable for samples of the size used in this paper and that bootstrap and asymptotic
standard errors agree.
A.5.2. Asymptotic Distributions of Ky and K;;.

We prove the following central limit theorem for the estimator Kz (-} in Heckman, et al (1996).
Let K4(Py) = (Kg1(Po),-.. . Kar(Po)Y, and Ka(Po) = (K41(Po),-.. ,Kar(Po)) ford € {0,1}.

Theorem A.3. Under Assumptions 1-8, if the bandwidth satisfies plimy_.ccan /Ay =29 > 0
for some deterministic sequence hy for which limp— e N2 4/log N = co and limy oo N hN =c
for some ¢ > 0, then

(Naw) 2 [Ka(Po) = Ka(Po)] = N(O,Va) + 5K, Ki(Po)Z: EGg

(Nay )1/2aN +op(1),
(A-4)

where the (s,t) element of Vj is

E(E.'SE;AP,' = Pg, D,— = d)
foo(Po | Di = d)piCi(G)’

and where C1,C; and Cj are defined just before Assumption 5.0

The asymptotic bias is ¥4 = l 7 (Po) EC;; 1/26

5In samples with a few thousand observations, estimation of 3 affects the sampling error of the estimated bias
functions. Since 3 converges at rate N'/2 and the bias functions converge more slowly, a conventional argument
assumes that “N is big enough” to ignore the effect of estimating 3 in deriving the asymptotic distribution of the
estimated bias term. This assumption turns out to be quite misleading in samples of the size at our disposal.



A.5.3 Asymptotic Distribution Theory of Estimation of Etsp(adj). We next discuss the

asymptotic properties of our estimator of the regression-adjusted average bias B:g,(adj), which is
defined as

Bisp(ads) = [ [Kn(P) - Kn(P)AF(P|D=1)/ [ aF(P|D=1),
P P
where Sp is the common support defined earlier. B,s,(adj) is consistently estimated by

A
BtSp (adj) = Z [f{u(f):) - kot(f)t)]j!/ E fii
ie{D=1} ie{D=1)

where I; for i € {D = 0} U{D = 1} is defined in Section A.4.1. These terms ensure that the
estimated control functions Ky and Ky, are compared at common points of support and keep the
denominators of Ky; and Kp from becoming too small so that the statistical properties of this
average are well defined. Denote the conditional expectation of a random variable given P € Sp
by Esp and let ¢y = [K14(Fi) — Koe(P)] L — E{[Kwe(P) — Kot(B))| L}

Theorem A.4. Under Assumptions 1-8 if the bandwidth satisfies plimy_.can/An = ap > 0
for some deterministic sequence hy for which imy_.oo Nh% /log N = oo and limy_ee NhE, = 0,

_ A
then the asymptotic distribution of v'N (Bisp(adj)— Bis, (adj)) is the same, to the first order, as

N ieqpar) itk — Ticqpeoy €ithilfoo (P1D: = 1)/ foo (P Di = 0)]

+ Lie{D=1} ul /101 Pr(P € Sp|D =1)]
—~{Esp(Xit|Di = 1) — Esp(Egp{Xu|Pi, D; = 0)|D; = 1))'V/N(B — 5p)
—~{Esp(Ke(P)P(Z:|D = 1)

—Es,(Esp(Kb(P)P/Z: | P, D; = 0)|Ds = 1)) VN (8 ~ 60).0

Note that if the distributions of P for the ENP and control groups are the same, then the estimation
of 8 and € do not affect the first order asymptotic distribution since the latter two terms in this
expression are zero. In this paper, we bootstrap to estimate the standard errors, so we do not
present details of how to construct plug-in estimates of the variances.

A.6 JUSTIFYING THE TEST STATISTICS USED IN THIS PAPER

Testing for the absence of selection bias, By;(P) = 0 for all t, or the equivalent hypothesis
of mean independence of Uy conditional on P, E(Upy|P; = P,D; = d) = E(Up|P. = P), and
testing for index sufficiency are central tasks of this paper. All of the required test statistics are
derived from the results presented in Theorem A.3. An important consequence of this theorem
is that if the same kernel G and bandwidth ap are used to estimate Kj: and K, the associated
bias terms (the second term on the right hand side of equation A-4) cancel when Ky; = Ko, as is

postulated under the null hypothesis of no selection bias. Because we use the local linear regression



estimator, the bias does not depend on the distribution of the regressors on which K7; and Ky are
estimated. These convenient properties allow us to avoid having to adjust the test statistics for
noncentrality parameters. Exactly the same elimination of noncentrality parameters occurs when
testing for conditional mean independence, which in this context is the same as testing for the
absence of bias conditional on P. A similar simplification emerges in testing for index sufficiency.
In that case, it is postulated that K(P,Jg) — Ko(P,J¢} are the same for all discrete-valued Jg,
¢ =1,...,L. Under the null hypothesis of index sufficiency, the bias term that arises from forming
f(l(ﬁ‘, Je) — f(o(f’,.]g) is the same for all J;. The test for index sufficiency is based on differences
(K1(P, Jy) — Ko(P,Je)] — [K1(P, Ju) — Ko(P,Jp)) for J; # Jp. The bias term is the same and
differences out under the null hypothesis.

Recall that K; and Ko, are estimated via local linear regression of the residuals Uit = Yu—R.,B
on P, for the samples for which D = 1 and D = 0, respectively. In constructing the tests, the
asymptotic theory suggests that estimation of 8 should not affect the distribution of the test
statistics, because 3 converges at rate VN but K, and K converge at rates /Nay, which are
lower. However, Heckman, et al (1996) report in a simulation study that for samples of the size
used in this paper, failure to account for the effects of estimated 3 on the variance of the test
statistics produces tests that reject at too high a rate relative to the nominal significance level
and hence are conservative. In the text, we present both adjusted and unadjusted variances in
conducting tests based on this covariance matrix.

A.6.1. Test Of No Bias Or Conditional Mean Independence. Under the conditions of
Theorem A-3, and under the null hypothesis B,(P) = K1;(P) — Kot (P) = 0, if the same kernel and
bandwidth are used to estimate K, and Ky, then

(K1t — Koo)' [(Vae/(Nrawy)) + (Vor/(Noan ) ™ (K — Ko) 2 x3(21).

Arraying the Ky, and Ko into a T x 1 vector K; — Ko, under the conditions of Theorem A-3
applied to all ¢,

(K1 — Ro)[(Vi/(Nan,)) + (Vo/ (Noan,)) "} (K1 = Ko) 5 xX(T),

where Vy is a consistent estimator of Vy,, d € {0,1}, and an, = an;.

We now present methods for estimating the variances Vp and Vj. To conserve on notation, and
to anticipate the expression for the variances required in the test of index sufficiency, we present
expressions for the variances conditional on strata Jy, £ =1, ..., L. In testing for mean independence,
there is only one stratum - the whole sample. We first present the estimator of the variance that
does not adjust for higher order terms.

A.6.1.1 Unadjusted Variance Estimator. Define

Vi(Py) = diag (Vi,(Po, h), Vot (Po, J1), - - -» Vie(Po, Je), Vor(Po, Je)).



For d € {0,1},

Vie(Po, Jo) = Cg'Var (i~ Rify | P= Py, J = Jp, D =d)
’ , faO(PU|D=d)p(J=J£|P=P0’D2d)’

consistently estimates Vy, where Cg = C3(G)/C%(G), G is the same kernel density function used in
the local regression estimator, and L equals the number of discrete values of Jy with L = 1 in the test
for mean independence. Further, Var(Y; —RLBy | P=Py,J = Jo,D =d), fa,(Po}J = Je, D = d),
and P(J = J, | P,D = d) are consistent estimators of the conditional variance of £, the conditional
density of P;, and the conditional probability of J = J, respectively. To test mean independence
at S different values of P simply add the test statistics over all points separated by at least 2ay.
Each test statistic is independent and thus the overall asymptotic distribution is x2(ST).
To estimate one diagonal component of V3, Heckman, et al (1996) justify the estimator

Va(Po) = 3 ELWE(Po),
ie{D=d}

where £;4; = (Vi — R:tB - Rdt(Pi))Qdi and the weights Wi(Pp) are
Go ¥ Gr(Pe—R)?2-Gi(Po-P) £ Gurl(P:—R)

Woa(Py) = ke{D=d} ke{D=d}
> Gjo Y GuwPi-PRP)Y-| ¥ GrolP:-F)%?"°
j€{D=d} ke{D=d} ke{D=d}

where Gji = G((P; — Pi)/an). Although they show that this is a consistent estimator, their
Monte Carlo study reveals that this estimator underestimates the true variance by about 50%.
This evidence motivates our proposal to use the adjusted variance defined in A.6.1.2 below.

Over all time periods, the natural estimator of the variance-covariance matrix for the full T x 1
vector Ky at P = Py is:

VaPo) = D EuEaWi(Po),

ie{D=d}
where €,4 = (£,41, ..., a7 ). However, this estimator is not feasible when the panel is not balanced
as is the case for our data.” Consistent estimates of each component in the variance-covariance
matrix are not guaranteed to produce an estimated covariance matrix that is positive definite.
Instead, we use an alternative consistent estimator that is guaranteed to be positive semi-definite:

ValPo)= Y &by,
ie{D=d}
where
éid = [Ei1n(s, YW1 (Po), ..., Eiarn(i, T)Wir (Po)Y,

"Recall that for simplicity we have ignored the unbalanced case in presenting the asymptotic theory. Modifying
it to account for random attrition is straightforward but notationally burdensome.
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and where 7(z,t) = 1 if observation 7 has data available in period t and 7(¢,t) = 0 otherwise.
A.6.1.2 Adjusting for Estimating 3. To adjust for higher-order variance terms, we apply the
delta method to add two terms to Vy:

A
Var= Va +aN¢A£VaAt—2aNd[ > Zéu:@edzwid@di] [ S R'ith'deijl

ic{D=d} teT i€{D=d}

where

ic{D=d}

A.6.2 TESTING INDEX SUFFICIENCY. Testing index sufficiency is a central goal of this
.paper. Unlike the test proposed by Ait-Sahalia, Bickel, and Stoker {(1994), we test for index
sufficiency of a sub-function rather than of an entire function. We ask if the K4 functions can be
written solely in terms of P;, so that we can represent equation (A-2) as Y;; = R0+ D;[K1:(F:) —
Kot (F;)] + Kot(P;) + e;. We are not interested in the question of whether the conditional mean
function for ¥;; can be expressed solely as a function of P;, which is the question addressed by
Aint-Sahalia, et al. (1994).

Using discrete regressors, the null hypothesis of index sufficiency is as follows. Letting J; be
the value of the discrete regressor in the £* group,

A= [ > &thQdi] :

Klt(P'r Je) - KOf.(Pa Jl) = Klt(Pa Jl') - KOt(P: Jl") for all £ and e’a ev el = 1)'"1L7

and for all P and t € 7. We test for equality of the conditional mean bias functions for different
subgroups within the population.

We estimate K;¢(P, J¢) for some fixed finite number of points P = P,, s = 1,..., S, all of which
are in the support of P given Jp for £ = 1,...,L, and compare the estimated functions at the
chosen points. We construct the test at points where the conditional densities are bounded away
from zero, to guarantee that estimators of each Kj;(P,J¢) are uniformly consistent and converge
at the same rate.®

The statistic for testing the null hypothesis of index sufficiency at a point Py in period ¢ is:
Fo(Po) = Au(Po) Q7 (P)Au(Po) 5 xA(L = 1),

where
Ai(Po) = M - [K1(Po, 1), Kot(Po, J1), - - -, K1e(Po, JL), Kot (Po, JL)

8The same “trimming rule” discussed in section A.4.1 is used to estimate the densities for the different subgroups
onthe Jg, £=1,.., L.
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TABLE 1
DEFINITION OF VARIABLES

Variable Name

Description

Training Center:
Corpus Christi, Fort Wayne,
Jersey City, Providence.

Indicator variables for the geographic location of the
individual.

Race and Ethnicity:
black, white, Hispanic.,

Indicator variables for the race/ethnicity of the
individual. Individuals who reported Asian or
*“other’” were included in the Hispanic category
inR but notin Z.

Apge:
age 22-29, age 30-39, age 40-49, age 50-54.

Indicator variables for the age of the individual
calculated using the average age in years of the
individual within the quarter of the observation.

Education:
less than 10th grade, 10-11th grade, 12th grade,
1-3 years college, 4 or more years of college.

Indicator variables for the educational attainment
of the individual at the time of random
assignment or eligibility determination,

Missing values are imputed.*

Marital Status:

currently married,

last married 1-12 months before RAJ/EL,
last married >12 months before RA/EL,
single, never married at RA/EL.

Indicator variables for marital status at the time of
random assignment or eligibility determination (RA/EL).
Missing values are imputed.*

Children less than 6 years of age Indicator variable for the presence of young
children in the household at the time of the baseline
interview. Missing values are imputed®.

Calendar Quarter: Indicator variables for the calendar quarter

quarter i, quarter 2, quarter 3, quarter 4,

for the observations. Quarter 1 refers to January,
Febuary, and March etc. If an observation overlaps two
quarters, then the variable takes on fractional values.

Calendar Year:
year 1987, year 1988, year 1989, year 1990.

Indicator variables for the calendar year of the
observation. If the observation overlaps two years,
then the year indicators take on fractional values.

Local Unemployment Rate

(sources: U.S. Department of Labor’s publication “Labor
Force, Employment, and Unemployment Estimates for
States, Labor Market Areas, Counties, and Selected Cities”™
for the years 1986-1991 provide the unemployment rates.
Population weights are obtained from annual total
population data available in the U.S. Department of
Commerce’s Regional Economic Information System

(REIS)).

This variable gives the monthly unemployment
rate. The data is published at the county

and metropolitan levels. We calculate the
unemployment rate as a population-weighted
average of the unemployment rates of the
counties and metropolitan areas served by each
of the four training centers in the JTPA data.
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TABLE 1 (continued)

DEFINITION OF VARIABLES

Variable Name

Description

Labor Force Status Transition:
employed -> employed,
unemployed -> employed,
OLF -> employed,

employed -> unemployed,
unemployed -> unemployed,
OLF -> unemployed,
employed -> OLF,
unemployed -> OLF,

OLF -> OLF.

The two most recent labor force statuses during the period
composed of the month of random assignment or

eligibility determination and the six preceding months define
a set of nine labor force status patterns. In each case,

the second status is that in the month of random assignment
or eligibility determination and the first status

(if different) is the most recent preceding status.
Repeated patterns such as "employed -> employed” indicate
persons in the same labor force status for afl seven months.
Missing values are imputed.*

Number of Persons in the Household

Continuous variable indicating the number of persons
in the individual’s household as of the baseline
interview. Missing values are imputed.*

Eamings in the Month of Random
Assignment or Eligibility Determination

Self-reported monthly earnings in the month

of random assignment or eligibility determination
from the baseline survey. Persons for whom

the survey covers only a part of the month

have their responses scaled up to a full month.

Ever had Vocational Training

Indicator variable for whether the respondent ever
had vocational or technical training as of the baseline
interview date, excluding courses taken while in

high school. Missing values are imputed. *

Currently Receiving Vocational Training

Indicator variable for current receipt of vocational
or technical training as of the baseline interview.
Excludes courses taken in high school. Missing
values are imputed. *

Number of Job Spells in the 18 Months
Prior to Random Assignment or Eligibility
Determination:

zero, one, two, more than two.

Categories for the number of full or partial job
(not employment) spells experienced

during the 18 months prior 1o random
assignment or eligibility determination.
Missing values are imputed.*

Work Experience

Continuous variable indicating months of work experience
prior to random assignment or eligibility determination,

It is calculated using the Mincer method, (age-education-6)*12,
for the period prior to our data, adding in actual experience

in months for the five years prior to RA/EL.

* An appendix available upon request from the authors describes the imputation procedure for these variables.



1129 pokodwg

<- pedoidwy 2y} oy sane(ar *er uonedpnred uoneyndod sy Jo sndo] sy wi pus sojer uonedisnred uonendod oy ut seoulalsIp GAIS suwajos ISy |i
“UOYRUTULIRRP AIIIGIZN9/uatuu3ISSe WOPUEI JO 318 9} 1918 SYIUCW 8 Y] JIAO PRJEg[NIfed

ST uBoW 9Y| ‘(seuiodanes uonIsURD 310} IOQE[ AY) JO UONIUGAp ) I0f | I|qRL 9es) Juswuisse wopuel 0} Joud syuow Xis ay) ul swayed uotsuen

SmE)S 3210] Joqe] uo [euoyipuod sjuedidured-uou 9qid3no pue sponuoa peusuniadxa ayl jo sdunures APuUow Ul 20ULIAFJIP UeAW B SIAIS Uwnod SH] |

(609°0) (Lsn)
060t ¥<1°0- 2000 L100 L6T £99 09's 370 < 410
(5L8°0) (z6)
86T 20£2 690°0 TL00 18¢ 6cl sv'1 470 <- pa£ojdwoupy
(809°0) {602)
108 14994 $80°0 6110 96¢ ¥6'1 096 470 <- pehojdug
(L65°0) Lo7)
SILT UTE wIo 601°0 0£Z SS'G 18°S pafojdwaun <- 470
(£85°0) (69
1L9T 8997 £60°0 S010 oy 91y Ll podojdwaup <- pakordwaun
(9st'0) (881)
EIe o'z 600 8510 svi- 599 6¢°LT pedojdwoup) <- padojdwg
(19L70) (Le)
6E1°T L8LC Z100 1900 821- 1t Ly pofojdiryg <- 470
(91%°0) (820)
£oLt 8IS1 ££0'0 BE00 E.w- 9 6L01 padojdwy <- pakordwou)
(8L
. » . . 12¢- WeL 911z pakordwg <- padojdwg
44 saey 14 ndog $indot moy 44 ey {meo 112D by 1P W 2D
:czaa——o_:am _HP_.“— LLVILIVRETE -e-u& u_u.-ﬂa— ns_m— uA_Zm— ue s[onuo) Jo
ure1304g Juajagjao) adesaay weidod payeurf)syg adejusodag adejuariag
Jo sydog uopendog
LLIESLENET T | RS ETETT

SINT 8¢ PUB 5|013u0)) g05 ‘AT NPV
sodureg (INF) uedppieduoy aqidiEg pus jonuo) EBuaunsadyy

saefjo¢] A[qruoy W passaidxs] sdujuiey AjI)iend)

LIDOT A4 QAL SALVH ANV STLVH AdNAD ‘SNLVLS 30404 04V A4 LIDOTSLI ANV
NOLIVAIOILY Vd 40 ALITIAVEOUd AHL ANY ST13D NOILISNVYL SNLVES D04 H04VT Ad SYIH AALYWILSA

1314vlL



TABLE 3

COEFFICIENT ESTIMATES AND p-VALUES FROM WEIGHTED PARTICIPATION LOGIT t

BEST PREDICTOR MODEL FOR THE PROBABILITY OF PARTICIPATION ++
Experimental Control and Eligibile Nonparticipant (ENP) Samples
Dependent Variable: 1 for Experimental Control, 0 for Eligible Nonparticipant
Adult Males, 508 Controls and 388 ENPs

Variables Coeft Std Error p-Value®*
Intercept -5.07 0.83 0.0000
Fort Wayne, IN 245 041 0.0000
Jersey City, NJ 0.66 0.43 0.1273
Providence, R1 2.19 0.44 0.0000
Black 0.49 033 0.1333
Hispanic 0.43 0.40 0.2837
Other race/ethnicity 0.61 0.55 0.2653
Age 30to 39 -0.50 030 0.0926
Age 40 to 49 -0.60 0.38 0.1115
Age 50to 54 -0.29 0.62 0.6361
Fewer than 10 years schooling -0.83 040 0.0397
10-11 years schooling 0.66 034 0.0510
13-15 years schooling 0.90 035 0.0096
16 or more years schooling -1.38 054 0.0101
Last married 1-12 months prior to RA/EL** 0.42 0.80 0.5995
Last married >12 months prior to RA/EL -0.03 0.61 0.9648
Single, never married at RA/EL 0.71 0.36 0.0498
Child age less than 6 present in household -0.16 038 0.6761
Unemployed -> Employed 1.52 0.42 0.0003
OLF -> Employed 0.79 0.76 0.3016
Employed -> Unemployed 2.46 0.46 0.0000
Unemployed -> Unemployed 2.67 0.58 0.0000
OLF -> Unemployed 3.27 0.60 0.0000
Employed -> OLF 2.55 0.61 0.0000
Unemployed -> OLF 2.30 0.87 0.0085
OLF -> OLF -0.15 0.61 0.8002
One job in 18 months prior to RA/EL 0.41 0.39 0.2894
Two jobs in 18 months prior to RA/EL 0.57 0.50 0.2600
More than two jobs in 18 months prior to RA/EL 1.87 052 0.0003
Enrolled in vocational training at RA/EL 1.94 0.62 0.0019
Ever had vocational training? -0.28 032 0.3815
Total number of household members -0.25 0.10 0.0134
Earnings in the month of RA/EL -0.00 0.00 0.0000

+ Weights are used in the estimation procedure to account for choice-based sampled data. It is assumed that in a random sample

Controls represent 3% and ENPs 97% of the eligible population.

1 The omitted training center is Corpus Christi, TX; the omitted race is white; the omitted age group is 22-29; the omitted schooling
category is twelve years; the omitted marital statis is curreatly married at RA/EL; the omitted labor force transition pattem is

Employed -> Employed; the omitted number of job spells in the 18 months prior to RA/EL is zero.
* Reported p-values are for two-tailed tests of the null hypotheses that the true coefficient equals zero.

** RAJEL indicates the month of random assignment (RA) for the experimental controls and the date of eligibility (EL) for Eligible

Nonparticipants (ENPs)
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TABLE 6A

TESTS OF CONDITIONAL MEAN INDEPENDENCE OF EARNINGS AND RESIDUALS
BASED ON ASYMPTOTIC STANDARD ERRORS
WITHOUT ADJUSTMENT FOR ESTIMATION OF g+

Experimental Controls and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

p-VALUES FROM TESTS OF CONDITIONAL MEAN INDEPENDENCE OF EARNINGS t+
HyEQP.D=1)=E¥,P,D=0)

Joint Test Joint Test

for Quarters for Quarters
Yalue of P t=1tot=6"* t=6tot=-1
0.0025 0.0000 0.0242
0.005 0.0002 0.0803
0.01 0.0042 0.2416
0.02 0.1224 0.1919
0.03 0.4363 0.1238
0.04 0.7659 0.1585
0.05 0.9423 0.3271
0.10 0.1678 0.8464
Joint 0.0000 0.0159

p-VALUES FROM TESTS OF CONDITIONAL MEAN INDEPENDENCE OF RESIDUALS t+
Hy: EU,IP,D = 1) = E(U,IP,D = 0)

Joint Test Joint Test

for Quarters for Quarters
Valye of P t=1tot=6 t=Htot=-1
0.0025 0.0002 0.0293
0.005 0.0004 0.0815
0.01 0.0040 0.2586
0.02 0.2056 0.4078
0.03 0.6563 0.5680
0.04 0.8060 07177
0.05 0.9885 0.8064
0.10 0.2591 0.7456
Joint 0.0001 0.2515

t Densities were estimated using a biweight kenel and using the fixed bandwidth proposed in Silverman (1986) (defined in Appendix
A, Section A.2). Conditional means were estimated by local linear regression using a fixed bandwidth of 0.06 and a biweight
kemel. (See Appendix A, Section A.l for a description of local linear regression and Section A.6 for a description of the test
procedure.)

t1 Finai row presents the p-value from a joint test at all of the indicated values of P.

* The number of observations within one bandwidth of P=0.0025 in quarter 1 are 140 controls and 328 ENPs. For other P points, the
numbers of observations are the following: 143 controls, 331 ENPs (P=0.005), 150 controls and 336 ENPs (P=0.01), 158 controls
and 345 ENPs (P=0.02), 170 controls and 350 ENPs (P=0.03), 184 controls and 353 ENPs (P=0.04), 198 controls and 355 ENPs
(P=0.05), and 120 controls and 52 ENPs (P=0.1). The number of observations in other quarters are similar, but vary slightly
because of the unbalanced panel data.



TABLE 6B

TESTS OF CONDITIONAL MEAN INDEPENDENCE OF RESIDUALS
. BASED ON ASYMPTOTIC STANDARD ERRORS
WITH ADJUSTMENT FOR ESTIMATION OF 51

Experimental Controls and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controis and 388 ENPs

p-VALUES FROM TESTS OF CONDITIONAL MEAN INDEPENDENCE OF RESIDUALS ++
Ho: E(UglP,D = 1) = E(UyiP, D = 0)

Joint Test Joint Test

for Quarters for Quarters

Value of P t=1tot=6 t=-6tot=-1
0.0025 0.0955 0.6421
0.005 0.1129 0.7346
0.01 0.2170 0.7773
0.02 05925 0.6738
0.03 0.8289 0.7808
0.04 0.9563 0.8726
0.05 0.9939 0.9042
0.10 0.5790 0.9253
Joint 1.0000 1.0000

1 Densities were estimated using & biwcight kemel and using the fixed bandwidth proposed in Silverman (1986) (defined in Appendix
A, Section A.2). Conditional means wers estimated by local linear regression using a fixed bandwidth of 0.06 and a biweight
kemel. (See Appendix A, Section A.l for a description of local linear regression and Section A.6 for a description of the test
procedure.)

T1 Final row preseats the p-value from a joint test at all of the indicated values of P.
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TABLE 8
p-VALUES FROM TESTS OF INDEX SUFFICIENCY +

Experimental Controls and Elig, Nonparticipant (ENP) Samples
Best Predictor Model for the Probability of Program Participation
Adult Males, 508 Controls and 388 ENPs

Tests by Race and Ethnicity +1
ﬂ;lolén Test Joint Test
r Quarters for Quarters
Value of P t=1tot=6 t=-6tot=-1
0.002 04229 0.4376
0.039 0.5213 0.7867
0.076 0.2268 0.5307
0.113 0.6526 0.2827
0.150 0.0175 0.2440
Joint* 0.0421 0.3983
Tests by Training Center t1
Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tot=6 t=-6tot=-1
0.008 0.4942 0.8503
0.026 0.3404 0.1392
0.044 0.0952 0.023¢
0.062 0.0925 0.0626
0.080 0.4062 0.2633
Joint* 0.4667 0.5959
Tests by Years of Schooling Categories 1+
Joint Test Joint Test
for Quarters for Quarters
Value of P t=1tot=6 t=-6tot=-1
0.003 04717 0.4646
0.022 05736 0.2842
0.042 0.2576 0.0967
0.061 0.0792 0.0188
0.080 0.0967 0.0964
Joint* 0.1718 0.1686

t Densities were estimated using a biweight kernel and using the fixed bandwidth proposed in Silverman (1986) (Defined in Appendix
A, Section A.2). Conditional means were estimated by local linear regression using a fixed bandwidth of 0.06 and a biweight
kemnel. (See Appendix A, Section A.l1 for a description of local linear regression and Section A.6 for a descri tion of the test
gmcadure.) Standard errors used in the test are asymptotic and are not adjusted for higher order terms (as described in Appendix A,

ection A.6). When adjustment is made for estimation of £, the estimated standard errors are substantially larger.

t1 The tests by race and cthnicity include "White™ and "Black™ groups. The tests by training center include "Fort Wayne", "Jersey
City", and "Providence”. The tests by years of schooling category include "Fewer than 10 years of schooling”, "10-11 years of
schooling”, "12 years of schocling”, and "More than 12 years of schooling”.

* Joint tests shown include only a subset of the P points that are a1 least one bandwidth apart.



TABLE 9

p-VALUES FROM TESTS FOR FIXED EFFECT AND DIFFERENCE-IN-DIFFERENCES
SPECIFICATIONS FOR THE BIAS FUNCTION

All Tests Are Symmetric Around Time =0 t t1
Std. Errors Adjusted for Estimation of §
Adult Maies, 508 Controls and 388 ENPs

Null tested jointly over ¢ € {1,2,3,4,5,6}*

Value of P Fixed Effect Fixed Effect Difference-in-
Test for Controls Test for ENPs Differences Test
1) (2) 3 4)
0.0025 0.0922 0.8042 0.1221
0.0050 0.0967 0.8578 0.1291
0.0100 0.1148 0.8609 0.1688
0.0200 0.2158 0.3093 0.4279
0.0300 0.2327 0.0948 0.7579
0.0400 0.0807 0.0454 0.9353
0.0500 0.0047 0.0466 0.9707
0.1000 0.0057 0.1785 0.9914
Overall 0.1303 0.0019 0.8087
Null tested jointly over t € {1,2,3}*

0.0025 0.3160 0.9417 0.4083
0.0050 0.3251 0.9832 0.4907
0.0100 0.3614 0.9949 0.7176
0.0200 0.4392 0.6269 0.9899
0.0300 0.3158 0.1877 0.9999
0.0400 0.1159 0.0785 1.0000
0.0500 0.0121 0.0680 0.9999
0.1000 0.0068 0.4363 0.9999
Overall 0.0255 0.0001 0.7008

Null tested jointly over t € {4,5,6)*

0.0025 0.3456 0.9968 0.9386
0.0050 0.8779 0.9832 0.8424
0.0100 0.7217 0.9115 0.6266
0.0200 0.6256 0.8132 0.6123
0.0300 0.7353 0.8501 0.8768
0.0400 0.8467 0.9206 09772
0.0500 0.8522 0.9263 0.9906
0.1000 0.4140 0.9931 0.9966
Overall ‘ 0.9498 03141 0.9376

t Densitics were estimated using a biweight kernel and using the fixed bandwidth proposed in Silverman (1986) (Defined in Appendix
A, Section A.2.) Conditional means were estimated by local lincar regression using a fixed bandwidth of 0.06 and a biweight
kemel (See Appeadix A, Section A.l for a description of local linear regression and Section A.6 for a description of the test
grocedure.) Standard errors uscd in the test are asymptotic and are not adjusted for higher order terms (as described in Appendix A,

ection A.6). When adjustment is made for estimanon of 8, the estimated standard errors are substantially larger.

+1 Null hypothesis for fixed effects test for controls is Hy: Ky, (P) — Ky —,(P) = 0; null hypothesis for fixed effect test for ENPs is Hy:
Ko (P) = Ky (P} = 0; null hypothesis for difference-in-differences test is Hy: [K),(P)— Ky _(P)] = [Ko:(F)— Ko _,(P)} = 0; where
(~t)is a pre-program period { periods before random assignment or eligibility determination.

* Values of P in the overall test are at feast one bandwidth apart.
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TABLE 11

COMPARISON OF ESTIMATED SELECTION BIAS UNDER ALTERNATIVE ESTIMATORS
OF PROGRAM IMPACTS FOR THE BEST PREDICTOR MODEL FOR P t ++

Quarterly Earnings Stated in Monthily Dollars
Experimental Control (D=1) and Elig. Nonparticipant (ENP) (D=0) Samples
Adult Males, 508 Controls and 308 ENPs

(1) (2) (3) ) ()
Difference Local Linear Regression- Difference-in- Difference-in-
in P Score Adjusted Differences Differences
Quarter Means Matching Local Linear Local Linear Regression-Adjusted
Matching P Score Local Linear
Matching Matching
Qtrl 418 (38) 33 (59 39 (60} 97 (62) 104 (63)
Qtr2 -349 (47) 37 (61) 39 (64) 77 (89) 77 (92)
Qtr3 <337 (55) 29 (78 21 (80) 90 (114) 74 (114)
Qtrd -286 (57) 80 (77) 65 (82) 112 (90) 98 (91)
Qtrs 305 (57) 64 (77) 50 (83) 19 (95) -5 (99
Qtré -328 {63) 37 (82) 17 (90) 4 (105) 35 (111)
Averageof 1 to 6 2337 (47) 47 (60) 33 (64) 67 (71) 52 (74)
As a % of impact 775% 107% 88% 153% 120%

t The best predictor model was used for the probability of participation. It is given in Table 3.

11 For the nonparametric estimates, a fixed bandwidth of 0.06 and a biweight kemel function were used. (See Appeadix A, Sections
A.l, A.4, and A.5 for additional details conceming the estimation procedure.) Bootstrap standard errors are shown in parentheses.
They are based on 50 replications with 100% resampling.
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TABLE 15

EFFECT OF GEOGRAPRY ON ESTIMATED BIAS
COMPARING CONTROLS AT TWO SITES TO ELIGIBLE NON-PARTICIPANTS AT TWO SITES

in the 18 Months After Random Assignment
Quarterly Earnings Expressed in Monthly Dollars

Elig. Nonparticipant (ENP) Sample at Corpus Christi and Fort Wayne
Experimental Control Sample at Jersey City and Providence
Adult Males, 149 Controls and 276 ENPs

Difference-in-
Regression Adjusted  Difference-in differences for
Difference Local Linear Local Linear differences for Regression Adjusted
Quarter in Means Matching + Matching Local Linear Local Linear
B B, B, (adf) Matching Matching
Qtr1 -534(53) -203(85) -184(110) -143(111) -135(126)
Qtr2 -504(73) -166(107) -154(120) -125(118) -72(130)
Qtr3 -515(78) -177(120) -147(127) -73(131) -9(141)
Qtrd -485(78) -200(121) -164(132) -87(141) 19(151)
Qtrs -527(72) -272(127) -211(132) -254(160) -136(167)
Qtré -524(75) -281(110) -189(112) -257(162) -82(165)
Averageof 1t06 -515(63) -216(95) -175¢108) -157(110) -69(123)
As a % of impact 1183% 497% 402% 360% 159%

t 2% trimming is used to estimate the overlapping support region. A fixed bandwidth of 0.06 is used for the nonparametric estimates.
(See Appendix A for more details on the estimanon procadure.) Bootstrap standard erors are shown in parentheses. They are
based on 50 replications with 100% resampling.



TABLE 16
P-VALUES AND POINT ESTIMATES FROM TESTS OF P-DEPENDENCE OF TREATMENT IMPACTS
HQ : E(Y] -YolP,D = 1)— E(Y] —YolD = 1)=0

Experimental Control and Treatment Samples
Average Monthly Earnings Over the First Six Quarters After Random Assignment
Adult Males, 649 Controis and 1478 Treatments

Test Values of P p-values 1 Point Estimates t1
0.00040 0.9607 -29
0.00081 0.9587 31

0.0020 0.9529 -36
0.0024 0.9511 -38
0.0095 0.8952 -50
0.0159 0.7765 47
0.0315 0.5760 -28
0.04%4 0.7137 25
0.0691 0.3765 41
0.0970 0.6485 -38
0.1272 0.4745 38
0.1632 0.2647 74
0.2119 0.4271 57
0.2712 0.8116 -20

t A bandwidth equal to 0.06 and a biweight kernel were used for the nonparametric estimates (see Appendix A,
Sections A.] for additional details conceming the estimation procedure.) The distribution of the test statistic is
noncentral chi-squared under the null.

t1 Values shown are the difference between the conditional and unconditional estimated means.



TABLE 17

COMPARISON OF MONTHLY IMPACTS ESTIMATED
OVER THE ENTIRE SUPPORT AND OVER THE RESTRICTED SUPPORT ¢

Quarterly Earnings Expressed in Monthly Dollars

Experimental Control and Treatment Samples
Adult Males, 649 Controls and 1478 Treatments

Estimated Impact Estimated Impact
Quarter Using Entire Support +1 Using Restricted Support Difference
Qe (33) 3 i
12
Qtr2 26 (42) 516)
(38) (36) 11
Qtr3 51 69 518)
(36 36 13
Qtrd 57) (85) §28)
(42) (51) (15)
Qtrs 39 58 -18
(39) (36) (14)
Qtré 49 71 23
(44) (35) (15)
Average of 38 57 -20
1t06 (16) (16) %)

t Bmmp standard errors are shown in parentheses. They are based on 50 bootstrap replications with 100%
sampling.

+1 In our data the experimental control group was administered a long baseline survey that gathered five years
of retrospective data while the experimental treatment group was not (See Appendix B). Since wformation on
recent labor force status and oa recent eamings is missing for treatments, we are oaly able to obtain coarse esti-
mates of P fot the treased group. In particular, we use the coarse Il model described in the notes to Table 13.
The support region in the nonexperimental analysis is determined using the best predictor P model, so it is nec-
essary to estimate which treatment group members would be excluded by the common support restriction in
order to obtain impact estimates within the support region that would be estimated by a nonexperimental
method. The adjusted treatment impacts were obiained as follows. For controls and treatments, we first divide
the coarse P distribution into 20 egual-size bins, then within-bin treatment im are estimated. The average
unadjusted impact estimate is obtained as the weighted average of the within-bin estimates, with weights given
by the proportion of controls within each bin. The adjusted impact estimate is Enu.xl to the weighted average of
the within-bin estimates, with the weights given by the proportion of controls within cach bin after deleting con-
trols whose values of P lic outside the overlap regica.



TABLE 18A

COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OFf MEAN PROGRAM IMPACTS 1
Quarterly Earnings Expressed in Monthiy Dollars
Adult Male, 508 Experimental Controls and 388 Elig. Non-participants

Difference  Nearest Neighbor Nearest Neighbor Local Linear Regression Adjusted
Quarter in Means w/o Common Support w/ Commmon Support Maiching Local Linear Matching

Q)+ (2) &) 4) )]
Qtr1 418 ( 38) 221 { 56) 123 ( 67) 33 ( 59) 39 ( 60)
Qtr2 -349 ( 47) -166 ( 151) 77 ( 83) 37 ( 61) 39 ( 64)
Qtr3 .337 ( 55) .58 (206) 53 ( 96) 29 ( 78) 21 ( 80)
Qtrd -286 ( 57) 161 (178) 86 ( 96) 80 ( 77) 65 ( 82)
Qtrs 305 ( 57) 167 ( 196) 87 ( 100 64 ( 17 50 ( 83)
Qtré -328 ( 63) 45 (191) 34 (113) 37 ( 82) 17 ( 90)
Average of 1to6 -337 ( 47) 62 (127) 77 ( 80) 47 ( 60) 19 ( 64)

Asa % of impact  775% 142% 176% 107% 88%

1 Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% resampling.

t1 The estimates for each column are defined as follows:
(1) 8= E@!D = 1}~ E(Y D = 0), where E denotes the sample mean.

@) B =L ppayTolD = 1) £ yprompyTolD = 0) where £ypipapy¥olD = 1) is the sample mean of {D=1] outcomes and
Eﬂpm.,gb’olD =0,P) san{ple mean of nearest nei A matched (D=0} outcomes. The necarest neighbor match for each
ob::rvauon in {D=1} is the observation in {D=0} that is closest in terms of P. Maiching is done with replacement. (See Section 3.1
in the text.)

(3) és, =£ (”pes"ogl)(Yg]PESp.D =1})- Ef(PIFES .D.n(YDIP ES,:.D = (). Same estumlor as (2) except that matches arc only
c:on,nrm:wﬂr within the region of overlapping support 5'p, which is precisely defined in Appendix A.

(4) Estimates are constructed using local linear regression on P, as described in the text. There are no variables in the outcome
equation. (See Section 5.0 in the text.)

()] ﬁsﬂdl) = E,(NESP.D=|)(YQ—RﬁIPESp,D =]1)— Ef np‘s”u,”(Yo-R,mPESp.D =0) . This is the same estimator as n (4)
except matching is performed on the residuals Yo — RS instead of on outcomes Y. (See Section 5.0 in the text.) The following
regressors R are included in the outcome equation: dummy variables for training center, race, schooling, age, previous training,
work experience in months, local unemployment rate, marital status, presence of a child age less than six, and quarter and year
cffects.



TABLE 13B

COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTSY

Quarterly Earnings Expressed in Monthly Dollars
Adult Male, 508 Experimental Controls and 388 Elig. Non-participants

Difference- Conditional on P Regression-Adjusted Conditional on
Quarter in-Differences Difference-in-Differences P Difference-in-Differences
w/o Common Support w/ Common Support w/ Common Support
(1) t1 2 3)
Qtrl 172(42) 97(62) 104(63)
Qtr2 142(47) 77(89) 77(92)
Qtr3 41(56) 90(114) T4(114)
Qtr4 43(61) 112(90) 98(91)
Qtrs -54(63) 19(95) -5(99)
Qtré -111(64) 4(105) -35(111)
Averageof 1to 6 39 67 52
( 47) (D) ( 74)
As a % of impact 89% 153% 120%

t Bootstrap standard errors are shown in parcatheses. They are based on 50 replications with 100% resampling.

11The estimates for each column are defined as follows:
(1) Bp =EQFo,D=1)-EWpglD = D)= [EF gD = 0)— EQ¥g;.)|D = 0)], where £ denotes the sample mean.

@ Bps,=ELppves,pyXoPeSpD=1) - Epppes, putyTodPESpD=0) - [Epppes, peiyTorniPESPD=1) -
Ef(’ .s’.ps‘)(}'o‘(_,ﬂPESp'D = ()], where E](pl}v(s’.p.]) 7] -Yo‘(_,ﬂPeSp'Dl 1) is the umple mean of the D = | outcomes,
and [(PlPesSy D-l)(YGJ -Yo.(_,)IPES,.D = 0) is the nmple mean of the D =0 maiched outcomes. Matches are cmnmcled by
local linear regression on P as described in the text (See Section 5.0 in the text.). The model does not include regressors in the
outcome model.

(3) Same as (2) except the following regressors are included in the outcome equation: training site, age, education, marital status,
children less thmc?indiwor, indicator for currently enrolled in training, labor market experience, local unemployment rate, season
and year.



TABLE 18C

COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS t

Quarterly Earnings Expressed in Monthly Dollars
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants

Inverse Mills’ Ratio Inverse Mills’ Ratio Inverse Mills’ Ratio
Quarter w/o Common Support w/ Common Support w/ Common Support
w/o Density Weighting w/o Density Weighting w/ Density Weighting
(11t 2) 3
Qtrl -610 ( 86) -619 (161} -147 (176)
Qtr2 -514 ( 95) 403 (194} 3 (220)
Qtr3 -497 ( 96) -365 (190) 30 (215)
Qtrd <494 ( 97) 421 (191) -80 (215)
Qtrs -510 ( 98) -441 ( 190) -69 ( 215)
Qtré 498 (102) -323 (196) 48 (222)
Averageof 1106 -521 ( 86) -553 (161) 36 (37
As a % of impact 1198% 985% 3%

1 Bootstrap standard errors are shown in parentheses. They are based on 50 replications with 100% resampling.

11 The estimates for each column are defined as follows:

1) 8, = E(ZI(P)ID =1)- E(lo(P)ID 0), where £ denotes the sample mean, 4, is an estimator of E(UlX,D = 1)
obtained under the Mills’ rauo assumption and Ay is an estimator of E(U,1X, D = 1).

(2) B, 5, = B(4,(P)\PeSp D = 1)~ E(1(PYIP€Sp D = 0), where £ denotes the sample mean. 4, is an estimator of

EW, D =1) and 1, is an estimator of E(UolX, D = 0} obtained under the Mills® ratio msumpnon (Same as (1}
except mean is only taken over observations in the overlapping support, S,.)

(3) gA,S’ = EI(NESPDKI)(A'! (P)IP ESP = 1) Ef(np‘s’ Dﬂ)(lﬂ(P)lPESp D= 0) This estimator is same as (3)
except restricted to the overlapping support region, Sp.



TABLE 19

COMPARISON OF ESTIMATED MEAN BIAS
UNDER ALTERNATIVE ESTIMATORS OF MEAN PROGRAM IMPACTS+

Quarterly Earnings Expressed in Monthly Dollars
Adult Males, 508 Experimental Controls and 388 Elig. Nonparticipants

Nearest Method of Barnow,

Neighbor  Cain and Goldberger Difference Inverse Mills’ Ratio

Quarter Difference w/o Common w/o Common Support -in-Differences w/o Common Support

in Means Support  w/o Density Weighting w/o Common Support w/o Density Weighting

(Dt (2) (3) @ 5)

Qtrl 418( 38) 221( 56) -15{ 47) 173( 42) -611( 86)
Qtr2 -349( 47)  -166( 151) 53( 55) 142( 47) -515( 95)
Qtra 337( 55)  -58(206) 62( 58) 40( 56) -498( 96)
Qtrd -286( 57) 161( 178) 107( 60) 43( 61) 495( 97)
Qtrs -305( 57) 167( 196) 94( 62) -54( 63) -511( 98)
Qtré -328( 63)  45(191} 54( 62) -111( 64) -499( 102)
Averageof 1 to 6 -337( 47)  62(127) 62( 58) 39( 47) -521( 86)

Asa % of impact 775% 143% 143% 90% 1198%

tstrap standard errors are shown j theses. They are based on 50 replications with 100% resampling.
F PR SRR Y SECH SSTEAN R SR o we !

(1) B = E(Y,ID = 1)~ E(Y,o|D = 0), where £ denotes the sample mean.

@) B = B piprpeyolD = 1) = B o1 (Yol D = 0), where £ yppus)(YolD = 1) is estimated by the sample mean of {D=1}
outcomes and g 1o FolD =(S) by the sample mean o{( { } nearest neighbor matches. (See Section 3.1 in the
text.)

(3) Same as described in footnote 9 in Table 12 except without imposing a common support restriction.
@) Bp = E(Yo,1D =1) = E(Yq D = 1)~ [E(¥ 1D = 0) = E(Y,_y|D = 0)], where £ denotes the sample mean.

5) E{:‘l,(P)ID =1)- E(%(P)ID; 0), where £ denotes the sample mean, i, 1s the estimator for E(UyIR, D = 1) under
the Mills’ ratio assumption and A, is the estimator of E(UyIR, D =0).



TABLE B-1
NUMBERS OF OBSERYATIONS OMITTED DUE TO SAMPLE RESTRICTIONS
Experimentai Control and Elig. Nonparticipant (ENP) Samples

Adult Males

ENP Control

Restriction Sample Sample
Total number of observations 827 864
Number dropped due to missing date of eligibility screening 4 0
Number dropped due to missing value for race 7 0
Number dropped due to having no valid earnings observations 56 54
Number dropped due to rectangular sample restriction 372 302
Final analysis sample size 388 508

1. The rectangular sample restriction requires that each observation included have at least one moath of valid eamnings data in the 18
months prior to madom assigumeat or eligibility screening (RA/EL), valid camings data in the month of RA/EL, and at least onc
month of valid ecamings data 1n months 13 to 18 nfterkﬁ.



TABLE B-2

DESCRIPTIVE STATISTICS FOR VARIABLES USED IN THE PAPER
Experimental Control and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

Variable Names (Effects) ENPs Controls ENPs Controls
Mean Mean Std Error Std Error
Corpus Christi, TX 0.418 0.165 0.025 0.016
Fort Wayne, IN 0317 0.530 0.024 0.022
Jersey City, NJ 0.121 0.156 0.017 0.016
Providence, RI 0.144 0.150 0.018 0.016
white 0387 0524 0.025 0.022
black 0.119 0.272 0.016 0.020
Hispanic 0.441 0.169 0.025 0.017
other races 0.054 0.035 0.012 0.008
age 250 29 0.173 0.220 0.019 0.018
age 30 to 39 0397 0.380 0.025 0.022
age 40 to 49 0216 0.138 0.021 0.015
age 50to 54 0.052 0.026 0.011 0.007
less than 10th grade 0.341 0.196 0.023 0.017
10th - 11th grade 0.183 0.230 0.019 0.019
12th grade 0.270 0361 0.022 0.021
1-3 years college 0131 0.168 0.017 0.016
4+ years college 0.075 0.046 0.013 0.009
last married 1-12 months prior to RA/EL 0.020 0.040 0.007 0.008
last married >12 months prior to RA/EL 0.038 0.131 0.009 0.014
single, never married 0.255 0.508 0.021 0.022
children age less than 6 0.332 0.179 0.023 0.016
quarter 1 0.277 0.251 0.018 0.015
quarter 2 0.227 0.207 0.018 0.013
quarter 3 0.174 0.281 0.014 0.016
quarter 4 0321 0.260 0.018 0.015
year 1986 0.000 0.000 0.000 0.000
vear 1987 0.126 0322 0.015 0.020
year 1988 0.715 0544 0.020 0.021
year 1989 0.147 0.129 0.016 0.014
year 1990 0.012 0.006 0.005 0.003
year 1991 0.000 0.000 0.000 0.000
ever had vocational training 0.247 0.349 0.022 0.021
currently having vocational training 0016 0.071 0.006 0.011
in school or traning in the month of RA/EL 0.097 0.063 0.015 0.011
last in school or training 1-3 months before RA/EL 0.019 0.047 0.007 0.009
last in school or training 4-6 months before RA/EL 0.015 0.028 0.006 0.007
local unemployment rate 7.719 6.287 0.169 0.120




TABLE B-2 (continued)

22.

DESCRIPTIVE STATISTICS FOR VARIABLES USED IN THE PAPER
Experimental Control and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

Variable Names (Effects) ENPs Controls ENPs Controls
Mean Mean Std Error Std Error
employed - > employed 0.731 0.210 0.022 0.018
unemployed -> employed 0.067 0.106 0.012 0.013
OLF -> employed 0019 0.047 0.007 0.009
employed -> unemployed 0.042 0273 0.010 0.019
unemployed -> unemployed 0.042 0.174 0010 | 0.016
OLF -> unemployed 0.014 0.060 0.006 0.010
employed -> OLF 0.012 0.057 0.005 0.010
unemployed -> OLF 0.006 0.017 0.004 0.006
OLF -> OLF 0.067 0.058 0.012 0.010
one job spell in 18 months prior to RA 0580 0348 0.025 0.021
two job spells in 18 months prior to RA 0.229 0.287 0.021 0.020
three or more job spells in 18 months prior to RA 0.095 0.250 0.015 0.019
total number of household members 4.132 3072 0.083 0.076




TABLE C-1

PERFORMANCE OF ALTERNATIVE PROBABILITY OF PROGRAM PARTICIPATION LOGIT SPECIFICATIONS
COMPARING COARSE AND RICH PROBABILITY OF PROGRAM PARTICIPATION SPECIFICATIONS

{estimated standard errors in parentheses)
Experimental Control and Elig. Nonparticipant (ENP) Samples
Adult Males, 508 Controls and 388 ENPs

ENP t1 Control ++ ual-Weight *
Prediction Prediction iction
Specification Percentage Percentage Percentage
Coarse Scores I + 69.07 70.47 69.77
(2.35) (2.02) (1.55)
Coarse Scores I t 7242 74.21 7332
(2.27) (1.94) (1.49)
Coarse Scores ITI T 79.38 78.15 78.77
(2.05) (1.83) (1.38)
Best predictor P + 81.96 81.89 81.92
(1.95) (L.71) (1.30)
Best predictor P without earnings t 82.47 81.50 81.99

(1.93) (1.72) (1.29)

}See;hedeﬁniﬁmsdthewﬁablesind:uemodehpruenwdmderﬁble 13. The variables in the optimal scores are proseated in
ahle 3.

11 The "ENP Prediction Rate”™ and "Control Prediction Rate" columns give the perceatages of ENPs and coatrols correctly predicted,
respoctively, using the hit or miss rule.

* The "Equal-Weight Prediction Rate” column gives the simple mean of the ENP and control correct prediction rates.



