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Abstract
Traditional estimators of item response theory (IRT) scale scores ignore uncertainty carried over
from the item calibration process, which can lead to incorrect estimates of standard errors of
measurement (SEM). Here, we review a variety of approaches that have been applied to this
problem and compare them on the basis of their statistical methods and goals. We then elaborate
on the particular flexibility and usefulness of a Multiple Imputation (MI) based approach, which
can be easily applied to tests with mixed item types and multiple underlying dimensions. This
proposed method obtains corrected estimates of individual scale scores, as well as their SEM.
Furthermore, this approach enables a more complete characterization of the impact of parameter
uncertainty by generating confidence envelopes (intervals) for item tracelines, test information
functions, conditional SEM curves, and the marginal reliability coefficient. The MI based
approach is illustrated through the analysis of an artificial data set, then applied to data from a
large educational assessment. A simulation study was also conducted to examine the relative
contribution of item parameter uncertainty to the variability in score estimates under various
conditions. We found that the impact of item parameter uncertainty is generally quite small,
though there are some conditions under which the uncertainty carried over from item calibration
contributes substantially to variability in the scores. This may be the case when the calibration
sample is small relative to the number of item parameters to be estimated, or when the IRT model
fit to the data is multidimensional.
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1 Introduction
In applications of item response theory (IRT), it is common to score individuals using
maximum marginal likelihood (MML) estimates of item parameters, which are ideally
obtained using a large and independent calibration sample. In this process, the standard
errors of measurement are estimated as either the reciprocal of the square root of the Fisher
information function evaluated at the posterior mode for maximum a posteriori (MAP)
scoring (or maximum likelihood scoring if there is no prior), or the standard deviation of the
posterior under expected a posteriori (EAP) scoring. The use of MML estimates in
conjunction with MAP or EAP scoring is a form of Empirical Bayes (EB; Carlin & Louis,
2000).

However, both the scale score and its standard error—the latter in particular—are affected
by the uncertainty in the item parameter estimates, which is carried over from the calibration
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process (Tsutakawa & Johnson, 1990). For frequentists, the item parameter estimates differ
from true parameter values due to sampling error, which is represented in the standard errors
of the parameter estimates. From a likelihood perspective, the uncertainty is reflected by the
curvature of the log-likelihood, often represented as the information matrix of the item
parameters. For Bayesians, point estimates of item parameters alone do not convey
information about the width of the posterior distributions, which is non-negligible unless the
calibration sample size tends to infinity so that the posteriors become peaked. From any
statistical point of view, then, uncertainty in the item parameter estimates is concerning.

Unfortunately, traditional scoring approaches (e.g., MAP or EAP) fail to acknowledge this
uncertainty. Chief among the problems is an incorrect statement of measurement error. The
scale score's standard error of measurement (SEM) is often underestimated and the scale's
marginal reliability overestimated, which means that the scores may be taken as having
greater precision than is justified. As Cheng and Yuan (2010) pointed out, an understated
SEM can also lead to premature termination of a computerized adaptive test. The problem is
most pronounced in situations where a small calibration sample is used, or when item
parameters are estimated using the sample to be scored (Tsutakawa & Johnson, 1990).

Researchers have proposed a number of approaches to address this problem and related
issues (e.g., Lewis, 1985; Tsutakawa & Soltys, 1988; Tsutakawa & Johnson, 1990; Thissen
& Wainer, 1990; Mislevy & Yan, 1991; Mislevy, Wingersky, & Sheehan, 1993; Patz &
Junker, 1999; Embretson, 1999; Lewis, 2001; Hoshino & Shigemasu, 2008; Cheng & Yuan,
2010; Zhang, Xie, Song, & Lu, 2011). In the research reported here, we first provide a brief
review of existing approaches, comparing them with respect to both their underlying
methods and intended objectives. In broad terms, three types of methods have been applied
to this problem: analytic approximations, fully Bayesian sampling based approaches, and
multiple imputation (MI) based approaches. These approaches have been utilized to
accomplish two related, but distinct goals: 1) obtain corrected standard errors of
measurement that take uncertainty in the item parameters into account, and 2) characterize
the nature and impact of item parameter uncertainty on subsequent estimation and inference.

After reviewing these approaches, we provide a formal justification for the MI based
strategy and illustrate its use with a three-item artificial data set. Extending Mislevy et al.'s
(1993) results, we use MI to obtain corrected estimates of individual scale scores and their
standard errors of measurement. Using MI, we also characterize the specific ways in which
uncertainty in the item parameters can affect scoring. Thissen and Wainer (1990) proposed
that it may be helpful to visualize the uncertainty by generating confidence envelopes for
item characteristic curves. We carry this idea further by constructing confidence envelopes
for test information functions and conditional SEM curves. Such depictions make it possible
to observe the ways in which the effects of parameter uncertainty vary across the values of
the latent trait. The MI based approach may also be used to obtain confidence intervals for
the marginal reliability coefficient. After illustrating the approach with the artificial data set,
we analyze data from a large educational assessment. Lastly, through simulation studies, we
examine the ways in which model complexity, calibration sample size, and test length
contribute to these effects.

Our approach improves upon the existing alternatives in several important ways:

• First, in contrast to analytical approximation methods (e.g., Cheng & Yuan, 2010;
Zhang et al., 2011) that explicitly require the calculation of a number of
nonstandard derivative matrices that are model-specific, the MI based approach is
easily applied to any IRT model (e.g., uni- or multi-dimensional, dichotomous or
polytomous) and scoring method (e.g, MAP, EAP, or even summed score EAP),
provided that the asymptotic covariance matrix of the item parameter estimates is
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available. This flexibility is an important feature, as we note that previous studies
have not considered item parameter uncertainty in the context of polytomous or
multidimensional IRT models. Here, we illustrate the proposed approach for tests
of mixed item types (including 2- and 3-parameter logistic models for dichotomous
data and a logistic graded response model for ordered responses) analyzed using
either a unidimensional or a multidimensional model, specifically the item bifactor
model (e.g., Gibbons & Hedeker, 1992 and Cai, Yang, & Hansen, in press)

• Second, in contrast to fully Bayesian methods (e.g., Patz & Junker, 1999) that must
rely on Markov chain Monte Carlo (MCMC) to sample the intractable posterior
distributions, the MI approach is computationally simple and efficient. It relies on
information that is routinely printed in the output of most standard IRT software
programs, in conjunction with the easily accomplished task of random sampling
from the multivariate normal distribution.

• Third, in contrast to previous MI based methods, in which analyses were either
limited to single items or the between-item parameter error covariances were not
estimated (and, thus, treated as zero), our approach makes use of a modern
estimation algorithm (Supplemented EM; Cai, 2008) for computing the asymptotic
covariance matrix of the item parameters that is applicable to any IRT model. This
covariance matrix is not an automatic byproduct of the current gold-standard Bock
and Aitkin (1981) EM algorithm of item parameter estimation.

• Finally, this approach systematizes a number of seemingly disparate methods under
a single framework, including Thissen and Wainer's (1990) confidence envelopes
and Lewis's (1985) expected response functions. Even approximation methods
based on pseudo maximum likelihood (e.g., Hoshino & Shigemasu, 2008) can be
reinterpreted in light of the multiple imputation framework.

2 A Brief Review of Existing Approaches
2.1 Two- vs. Single-Stage

With the exception of fully Bayesian sampling based methods, nearly all existing proposals
assume a two-stage process for estimating the IRT scale scores. The items are first
calibrated, preferably using MML or Bayesian methods. In this stage, the item parameters
are estimated, as well as their error covariance matrix. In the second stage, the item
parameters are used to produce the IRT scale scores. Corrections are generally made in the
second stage, utilizing a) the point estimates, b) the error covariance matrix, and c) either
additional derivatives and linearization arguments for analytic approximations or, in the case
of MI methods, random sampling from an approximation to the posterior distributions of the
item parameters. Two-stage methods are popular not only because they generally lead to
sound estimates, but also because they are consistent with the standard operating procedures
in applied educational and psychological testing situations.

Fully Bayesian sampling based methods (e.g., Patz & Junker, 1999), on the other hand,
involve a single stage. They rely on MCMC to produce random draws from a Markov chain
having the full joint posterior of the item parameters and the individual latent variables as its
invariant distribution. Under the ergodicity of the Markov chain, dependent samples from
the chain can be used to approximate the full posterior. When inferences regarding
individual latent traits are desired, one simply “marginalizes” over the other dimensions of
the posterior, i.e., by integrating out the item parameters, and the IRT scale scores thus
obtained (e.g., as posterior means) would already have taken the uncertainty in item
parameters into account. Given the MCMC output, marginalization amounts to ignoring that
part of the MCMC output related to the item parameters. The single-stage approach is
appealing conceptually. However, a significant barrier to its wide-spread adoption is its
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complexity, computational intensiveness, and in some cases, inflexibility. Even as MCMC
gains popularity, its proper usage still requires considerably more effort and statistical
expertise when compared to more deterministic and better understood methods such as the
EM algorithm. As Edwards (2005) noted, a number of competing MCMC samplers have
been proposed for IRT, and the question of their relative algorithmic efficiency has not been
entirely settled in the methodological literature. Furthermore, we point out that in contrast to
two-stage IRT scoring methods, it is difficult to conceive how the single-stage approach can
easily accommodate certain non-standard but nevertheless popular and useful IRT scoring
algorithms such as summed-score to EAP translations (Thissen & Wainer, 2001).

2.2 Two Related Goals: Correction vs. Characterization
Most existing approaches have sought solely to obtain corrected estimates of SEM for IRT
scale scores that take into account the uncertainty in the item parameters. These include
analytic approximations based on Bayesian calculations (Tsutakawa & Soltys, 1988;
Tsutakawa & Johnson, 1990), analytic approximations based on pseudo maximum
likelihood (Cheng & Yuan, 2010; Hoshino & Shigemasu, 2008), as well as MI-based
expected response functions (Lewis, 1985; Lewis, 2001; Mislevy et al., 1993). MCMC
methods (e.g., Patz & Junker, 1999) may also be regarded as belonging to this category.

For analytic approximations (Bayesian or likelihood), the asymptotic argument is typically
based on Taylor series expansions of the nonlinear estimating equations of the IRT scale
scores. From the first (sometimes second) order approximation, corrected standard error
formulae are obtained. In contrast, the expected response functions are motivated by an
explicit analogy to multiple imputation for treating missing data (Rubin, 1987). Using the
point estimates of item parameters to represent the item response functions amounts to a
single round of imputation, replacing the unknown (hence “missing”) item parameter values
by the modes of their marginal log-likelihood. In contrast, a multiple imputation approach
uses more than one random imputations to recover the uncertainty due to not knowing the
item parameters exactly. Averaged response functions under multiple random imputations
are expected response functions.

Thissen and Wainer (1990) demonstrated an approach with an entirely different goal. Rather
than seeking corrected estimates, they used confidence envelopes around the item response
functions to reflect the uncertainty in the item parameters. This approach can be viewed as
complimentary to the expected response function approach of Mislevy et al. (1993). Unlike
Mislevy et al. (1993), however, the focus of Thissen and Wainer (1990) is not on obtaining
corrected SEM for the scale scores. The resulting graphical displays (referred to as the M-
line plots) are simply used to characterized how errors in the item parameter estimates
impact the plausible shapes of item characteristic curves. The confluence of Thissen and
Wainer's (1990) confidence envelopes and Mislevy et al.'s (1993) expected response
functions leads to the dominating insight of this research. That is, multiple imputation
provides a natural framework to integrate the two goals, simultaneously providing corrected
standard errors of measurement and visual representations of the uncertainty.

3 The Proposed Approach
3.1 Some Notation

Without loss of generality, let yi be an n × 1 vector of observed item responses for an
individual randomly sampled from an ability distribution with density f (θ), where θ is the
latent trait. Suppose the item parameters for the n items are contained in γ· The IRT model
postulates a conditional distribution for y on θ and γ: f (y|θ, γ). We assume that θ and γ are
a priori independent. Integrating out the incidental parameter θ, we have f (y|γ) = ∫ f (y|θ,
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γ) f (θ)dθ. For a sample of N independent respondents, the distribution of response patterns

is f (Y|γ) = , where Y is an N × n matrix of item responses. Given prior
distribution π(γ), the posterior of the item parameters is

If the prior is taken to be uniform, then the posterior is proportional to the marginal log-
likelihood log L(γ|Y) based on an observed matrix of item responses Y (the calibration
sample). Numerical optimization of the log-likelihood leads to the MML estimator , and
Bock and Aitkin's (1981) EM algorithm is often used. The log-likelihood curvature around

the mode is usually presented as the asymptotic covariance matrix , where  is the
information matrix based on a calibration sample of size N. Recently Cai (2008) proposed
the use of a Supplemented EM algorithm (Meng & Rubin, 1991) to compute  for IRT
models.

Due to the Bernstein-von Mises phenomenon (see e.g., van der Vaart, 1998), it is well-

known that a multivariate normal with mean  and a covariance matrix equal to 
provides a reasonable approximation to the posterior f (γ|Y). With an abuse of notation, we
may write

(1)

where  represents a normal distribution with mean  and covariance matrix

 and  indicates asymptotic equivalence (in N). In other words, the (analytically

intractable) true posterior f (γ|Y) becomes the gold standard here, and  provides

a convenient approximation. If  provides a good enough approximation to f (γ|
Y), estimands (e.g. IRT scores, information, and standard errors of measurement) that are
based on f (γ|Y) should also be approximated well.

3.2 Illustration
To illustrate the proposed MI based procedure, we created a simple data set consisting of
500 simulated responses to three items. Each of the items was of a different type: two-
parameter logistic (2PL), three-parameter logistic (3PL), and three-category graded response
(GRM3). Although this illustration is somewhat unrealistic, the very short test length offers
some advantages. Most importantly, it allows us to easily present the generating and
estimated values of all eight item parameters, their error covariance matrix, and examples of
the randomly imputed parameter sets. In addition, the numbers of possible response patterns
(twelve) and summed scores (five) for this three-item test are small, allowing us to
demonstrate the MI based scoring for each possibility. Finally, despite the simplicity of this
example, it nonetheless features two kinds of complexity not previously considered in
studies addressing parameter uncertainty: polytomous items (as represented by item 3) and
tests of mixed item types. These features will also be present in the real data set considered
later.

The generating item slopes and intercepts for this illustration were randomly drawn from
distributions chosen to resemble values commonly observed in educational or psychological
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testing. Both data generation and parameter estimation were conducted using IRTPRO (Cai,
du Toit, & Thissen, forthcoming).

Table 1 shows the generating values, along with the MML estimates and their error
covariance matrix. The standard errors of the item parameter estimates are the square roots
of the diagonal elements of this matrix. The off-diagonal elements of the matrix represent
covariances between the parameters. The fact that some of these elements are non-zero is
notable, as prior methods seeking to account for parameter uncertainty have ignored these
covariances. In the case of the 3PL model (used for item 2), the guessing parameter is
expressed as the logit of the guessing probability g; the generating value of −1.39
corresponds to a probability of about 0.2, as might be expected for a multiple choice item
with five options. The MML parameter estimates and the error covariance matrix will be
used in the MI based approach, as we describe in the following sections.

3.3 Multiple Imputation Inference for EAP Scores
3.3.1 Preliminaries—We now consider EAP scoring under item parameter uncertainty.
The logic developed in this section, however, is quite general. Though we will assume a
unidimensional θ for simplicity of notation, we note that the methods apply directly to
multidimensional IRT models where θ is a vector. In the ideal case where item parameters
are known, inference for θ for an individual with n × 1 response pattern x should be based
on the following posterior

(2)

The EAP estimator with given γ is an expectation over the posterior distribution in Equation
(2)

(3)

with SEM given by the square root of posterior variance

(4)

If the item parameters are unknown, standard practice is to use the “plug-in” estimator, in
which the MML estimates  are used in place of γ. Notice that unless N tends to infinity,
the traditional estimator

ignores the inherent variability of  as reflected by . The traditional SEM estimator

 also ignores this variability.

3.3.2 A Formal Justification for the Proposed Multiple Imputation Procedure—
Tsutakawa and Johnson (1990) demonstrated that to properly account for the uncertainty in

, one must base the inference for θ on the posterior distribution of θ given x and Y, which
they represented as (their Equation 14, presented here with slight notational change)
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(5)

Note that a critical feature of Equation (5) is that the posterior of the item parameters f (γ|Y)
from calibration now serves as the prior. It can be shown (see Appendix A) that the EAP
estimator of θ can be represented as

(6)

This estimator does not depend on any particular values of  because it averaged over all
plausible values of γ. The posterior variance (see Appendix A)

(7)

also automatically takes the uncertainty in γ into account. Equation (6) shows that  is an

expectation of  with respect to f (γ|x, Y). Equation (7) reveals a familiar variance
decomposition. The posterior variance is equal to the sum of two components, the
expectation of a variance and the variance of an expectation. The first component may be
conceived of as the “within” variance, and the second is the “between” variance.

It turns out that f (γ|x, Y) can be treated as f (γ|Y) for a number of reasons. If x is actually a
component of Y (i.e., calibration and scoring for the same sample), then the appropriate
notation should replace Y by Y(x), where Y(x) denotes the response pattern matrix without
observation x. However, f (γ|x, Y(x)) coincides with f (γ|Y). If x is an independent
observation (i.e., the scoring sample), IRT scoring requires that f (γ|x, Y) be the same as f
(γ|Y), as we do not wish to change the scoring criterion once the items have been calibrated.
Furthermore, due to Equation (1), we can use a normal approximation of f (γ|Y) as

. Consequently, we may replace Equations (6) and (7) with the following
approximations:

(8)

(9)

Now, we have a multiple imputation algorithm to approximate  and V( ):

1. Draw M > 1 sets of values from a multivariate normal distribution with mean 

and covariance matrix . Denote them as γj for j = 1, …, M.

2. Plug each γj into Equations (3) and (4) and compute  as well as V( ). Write 

as shorthand for  and Vj for V( ).

3. The multiple imputation EAP approximation to  is the empirical average,

(10)

which approximates the right hand side expression of Equation (8).
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4. The multiple imputation variance approximation is

(11)

where  is an estimate of the “within” imputation variance

(expectation of a variance) and  is an estimate of the
“between” imputation variance (variance of an expectation). These correspond to
the two parts on the right hand side of Equation (9).

The ratio

(12)

is known as relative increase in variance due to missing data (Schafer, 1997). It can be taken
as a crude measure of the impact of item parameter uncertainty. We will use this measure in
the simulation studies to be described in Section 5.

As previously mentioned, the MI based approach may be applied to any number of other
scoring methods. Thus, in our analyses, we present results not only for pattern EAP scoring,
but also for summed score to EAP translations (Lord & Wingersky, 1984). As will be
demonstrated, the impact of item parameter uncertainty may differ according to scoring
method.

3.3.3 Illustration for the Proposed Procedure—The MI based procedure was applied
to the three-item data set, following the steps described above.

1. We drew M = 20 sets of plausible item parameter values from a multivariate

normal distribution with mean  and covariance matrix , both given in Table
1. We denote the plausible parameter values as γj for j = 1, …, 20. The imputed
sets of γj are presented in Table 2.

2. We now plug each γj into Equations (3) and (4). We obtain a different posterior
distribution for each vector γj. This is illustrated in Figure 1, in which the prior
distribution, item tracelines, and posteriors distributions are shown for three
response patterns. The posteriors have different means and standard deviations.

3. The MI based approximation to  is calculated by taking the average of  across
all imputations.

4. The MI based variance approximation V( ) is calculated using Equation (11), and
the relative increase in variance r is calculated using Equation (12). Table 3 shows

, B, V( ), and r for both full pattern EAP scoring and the summed score EAP
translations. For the full pattern EAP, the relative increase in variance r ranged
from 0.2% to 10.8%. For the summed score EAP translations, the observed values
of r had a much narrower distribution, between 1.4% and 1.6%.

The scores obtained using the MML parameter estimates are compared with MI based scores
in Figure 2. These two sets of scores are almost perfectly correlated, for both the response
pattern EAPs and summed score EAPs. This result is consistent with previous studies; while
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item parameter uncertainty may result in overestimates of score precision, it does not
necessarily result in biased scores.

In Figure 3 the SEM are plotted against the score estimates. There are differences in the
SEM. As expected, the SEMs are generally larger for the MI scores. The magnitude of the
correction, however, is substantially larger for the full pattern EAP scores than for the
summed score EAPs (consistent with the values of r reported in Table 4).

3.4 Multiple Imputation Confidence Envelopes
3.4.1 Confidence Envelopes for Item Characteristic Curves—Thissen and Wainer
(1990) considered confidence envelopes for the item characteristic curves. Let Tk(θ|γ)
denote a generic item category response curve for category k. For example, for the 2PL IRT
model, the characteristic curve for the “correct” response is

where c is the item intercept, a is the item slope, and both are components of γ. When γ is
known without error, the curves are simply mathematical functions of the item parameters.
When estimates of item parameters are used, Tk(θ| ) contains uncertainty. Thissen and
Wainer (1990) reasoned that since the posterior distribution of γ is reasonably well

approximated by a normal with mean  and covariance matrix  (i.e., Equation 1), if one
can produce multiple random samples of γ from this approximate posterior, approximate
confidence limits of the item characteristic curves can be found by plotting the randomly
varying item characteristic curves over repeated imputations. These so-called “M-line” plots
are generated by Thissen and Wainer (1990) to illustrate the shape of confidence envelopes
for a variety of dichotomous IRT models. However, Thissen and Wainer's (1990) method
has the same limitations as Mislevy et al.'s (1993) expected response function method. The
random sampling of the item parameters are done in an item by item manner because they
do not have access to the full error covariance matrix of the item parameter estimates.

We present here a slight variation of Thissen and Wainer's (1990) basic idea:

1. Draw M > 1 sets of values from a multivariate normal distribution with mean 

and covariance matrix . Denote them as γj for j = 1, …, M.

2. Choose a reasonably fine grid to numerically represent θ, e.g., from −3 to +3 in
step sizes of .01.

3. Plug each γj into Tk(θ|γ) and at a chosen θ level, empirically locate the upper and
lower 1 − α/2 quantile from the M values of Tk(θ|γj).

4. Repeat the last step for all θ levels to find a (1 − α) × 100% confidence envelope.

To ensure that the boundaries of the confidence envelopes are well-characterized t, a large
M is necessary. We generally use M = 1000 random draws.

Figure 4 presents confidence envelopes for the three items in our illustration. (see. The
upper, middle, and lower panels correspond to item 1 (2PL), 2(3PL) and 3 (GRM) in order.
The solid curve is the usual item characteristic curve based on the MML item parameter
estimates. The dotted curves represent the upper and lower 95% confidence limits, based on
M = 1000 random samples drawn from the multivariate normal approximation to the
posterior distribution of the item parameters. Incidentally, we also computed the expected
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response functions (dashed curves), obtained by averaging the response functions across all
the imputed parameter sets. As Mislevy et al. (1993) noted, the expected response functions
are not logistic and tend to have slightly lower slopes than the item response function based
on the MML item parameter estimates.

3.4.2 Confidence Envelopes for Information and SEM Curves—For general
multiple-categorical IRT models, item i′s Fisher information function is given by the
following expression

where K is the number of categories (see Baker & Kim, 2004). The Fisher information
functions are additive. For n items, the test information function is the sum of item
information functions

(13)

When a prior for the ability distribution is used in scoring (e.g., MAP scoring), test
information must also include the contribution from the prior. The standard error of
measurement curve is found as a one-to-one transformation of the test information curve

(14)

Recognizing that F(θ|γ) is a nonlinear transformation of γ, we follow essentially the same
strategy used in the previous sections to create confidence envelopes for the test information
function:

1. Draw M > 1 sets of values from a multivariate normal distribution with mean 

and covariance matrix . Denote them as γj for j = 1, …, M.

2. Choose a reasonably fine grid to numerically represent θ, e.g., from −3 to +3 in
step sizes of .01.

3. Plug each γj into F(θ|γ) and at a chosen θ level, empirically locate the upper and
lower 1 − α/2 quantile from the M values of F(θ|γj).

4. Repeat the last step for all θ levels to find a (1 − α) × 100% confidence envelope.

Because F(θ|γ) and sem(θ|γ) enjoy one-to-one relation, the confidence limits for the SEM
curve are found by transforming the confidence limits of the test information function.

As an illustration, consider the confidence envelopes for the test information function and
the conditional SEM for the three-item data set, presented in Figure 5.

These curves highlight the extent to which our characterizations of test information or the
conditional SEM can be impacted by item parameter uncertainty. This may have
implications for test assembly, in which particular combinations of items may be selected in
order to produce a particular test information or conditional SEM curve. The width of the
confidence envelopes we observe for these functions suggests that assembling tests to
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closely match target information of SEM curves may be misguided. The confidence
envelopes generated through the MI based approach allow the imprecision due to
uncertainty in item parameters to be visualized.

3.4.3 Confidence Intervals for Marginal Reliability—As a final application, we
consider confidence intervals for the marginal reliability coefficient, which is an important
IRT-based measure of overall scale reliability. Let the prior f (θ) for the ability distribution
have variance σ2. Marginal reliability is defined as

(15)

(see e.g., Thissen & Wainer, 2001), where the integral in the numerator returns the average

error variance, and sem(θ|γ) is as defined in Equation (14). Of course,  is also a nonlinear
transformation of γ, suggesting the following algorithm:

1. Draw M > 1 sets of values from a multivariate normal distribution with mean 

and covariance matrix . Denote them as γj for j = 1, …,M.

2. Plug each γj into  and empirically locate the upper and lower 1 − α/2 quantile

from the M values of . The result is a (1 − α) × 100% confidence interval for
marginal reliability.

For the three-item data set, the MML item parameter estimates yield an estimated marginal
reliability of .29 (which is low, as expected, given the very short test length). However, the
MI based approach offers a more complete characterization–that the marginal reliability has
a 95% confidence interval between .17 and .43 based on M = 1000 imputations.

3.5 Summation
The proposed multiple imputation approach not only provides corrected scale scores and
standard errors of measurement that take parameter uncertainty into account, but also
confidence envelopes or intervals for other important quantities such as the item
characteristic curve, the test information function, the conditional SEM curve, and the
marginal reliability coefficient. As demonstrated with he three-item data set, the approach is
flexible enough to be applied to not only full pattern EAP scores, but also other scoring
methods (e.g. summed score EAP) and various IRT models (e.g., 2PL, 3PL, or GRM).

4 Application to empirical data
4.1 Data and methods

As an empirical demonstration of the proposed multiple imputation approach, we analyzed
data from the 2000 Program for International Student Assessment (PISA; Adams & Wu,
2002). We extracted a random sample of 1500 students from the United States with
complete responses for Math Booklet 8. For our analyses, we used 500 students as a
calibration sample and 1000 students as a scoring sample. Math Booklet 8 consists of 15
items–8 free response (FR), 5 multiple choice (MC), and 2 complex multiple choice (CMC).
Logistic graded response models were fit to the FR and CMC items with the number of
ordered categories determined by the number of different scores assigned (either 2 or 3). A
3PL model was used for the MC items. In estimating item parameters, a log-normal prior
was placed on the guessing parameter. The mean of this prior was based on the expected
probability of a correct response, assuming blind guessing and given the number of response
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options. Item parameter estimates and the item parameter asymptotic covariance matrix
were obtained using IRTPRO (Cai et al., forthcoming).

Because PISA items are nested within testlets or passages, we obtained estimates for both a
unidimensional (ignoring the testlet structure but consistent with how the test data are scored
in practice) and a bifactor item response model with specific factors modeling testlet effects.
Parameter estimation and scoring for the bifactor model has been described elsewhere (Cai
et al., in press). Here, we focus on the effects of item parameter uncertainty on the precision
of scores for the general dimension and show the application of the MI based method in both
the unidimensional and multidimensional IRT contexts.

As outlined in previous sections, the MML item parameter estimates and the item parameter
error covariance matrix were used to generate multiple sets of plausible parameter values.
For the unidimensional model, 39 parameters were estimated. The bifactor model required
estimation of additional 10 parameters (specific factor slopes for the 10 items loading on 3
specific factors).

As before, 20 sets of parameters were imputed to obtain the MI based score estimates based
on the full response patterns and summed scores for individuals in the scoring sample.
Confidence envelopes for test information and the conditional SEM and a confidence
interval of the marginal reliability coefficient were based on M = 1000 imputations.

4.2 Results
As shown in Figure 6, the scale score estimates are almost perfectly correlated for both
unidimensional model and bifactor model, regardless of the scoring method (full response
pattern or summed score EAP)

Figure 7 shows the scale score and SEM estimates and their corrections based on the MI
approach. For most individuals in the scoring sample, the SEM increases under the MI based
approach. Across the scoring sample, the average relative increase in variance (r) based on
Equation (12) was 3.5% for the unidimensional model and 7.6% for the bifactor model
under full response pattern scoring. In contrast, the average relative increase in variance for
the summed score EAP estimates was less than 1% for either scoring method. In addition to
having larger average increases, the impact of item parameter uncertainty on the full pattern
scores appears to be more variable than for the summed score translations. Specifically,
there are some response patterns with vary large increases in the SEM (up to 32.9% for the
unidimensional model and 67.1% for the bifactor model). The increases for the summed
score a much more uniform across all response patterns.

The 95% confidence envelopes for test information and the conditional SEM for the
unidimensional model are shown in Figure 8. Graphical representations and proper
interpretation of test information in the multidimensional case, though potentially quite
interesting, are beyond the scope of this study.

For this 15-item test, the MML parameter estimates produce a marginal reliability of .82.
From the MI based approach, its 95% confidence interval was found to be .78 to .84.

5 A Simulation Study
Previous studies have shown that the magnitude of bias in the standard errors of
measurement can vary depending on conditions such as item response model complexity,
calibration sample size, and test length all of which influence the test information. For
example, Tsutakawa and Johnson (1990) observed that relatively simple Rasch models tend
to provide decent estimation of the latent ability levels and their standard errors of
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measurement, even with small calibration samples. In contrast, a three-parameter logistic
model with a calibration sample size of 400 individuals produced biases the posterior means
of the latent trait and underestimation the posterior standard deviations by more than 40
percent, on average.

As a complement to the simple illustration and the empirical analysis of PISA data, a
simulation study was conducted. The goal was further characterize the conditions in which
the uncertainty carried over from item calibration leads to uncertainty in the scoring process.
Based on the findings of previous studies, we manipulated the following: model complexity,
calibration sample size, and test length. For this study, the number of imputations was fixed
to M = 20, as previous research has already demonstrated that 20 imputations should provide
reasonably good correction of the standard errors of measurement (Mislevy et al., 1993).
The combination of the number of items (J = 5, 10, 20, 40), the size of calibration sample (N
= 500, 1000, 2000, 5000), and item type (2PL, 3PL, and logistic GRM with 5 categories)
yielded a total of 48 conditions.

For each condition, 500 calibration samples were generated; in addition, one independent
scoring sample of 10,000 cases was produced. The item parameters used for data generation
were chosen to resemble estimates obtained from real educational and psychological data
sets. Following data generation, we calibrated the items using MML estimation and obtained
the parameter error covariance matrix. Twenty item parameter sets were randomly drawn
from the multivariate normal approximation to the posterior distribution of the item
parameters, as described in previous sections. These parameter sets were then used to obtain
the MI based scores and SEM for the scoring sample. The relative increase in variance (r)
was also calculated for each case in the scoring sample. The values of r were averaged
across the many calibrations (500 replications were used for most conditions; however, for
conditions ). The mean values of r were then averaged within deciles (1000 individuals) of
the “true” level of the latent trait and across the entire scoring sample for each condition.
The results are reported in Table 5.

For most conditions, the average relative increase in variance is rather small, ranging from
1.8% to 14.7%. However, some trends are evident. For a given test (i.e, for a fixed number
of items and item type), the average relative increase in variance decreases as the size of the
calibration sample increases. This is to be expected, as larger calibration samples yield more
precise estimates of the item parameters. The patterns of relative increase across tests of
different length and across item types are more complex. Test information increases with the
number of items. Thus, for longer tests, we expect smaller “within” imputation error
variance. At the same time, longer tests require estimation of more item parameters,
resulting in greater “between” variance. In cases where the calibration sample is small, those
parameter estimates may not be very precise. Consequently, the highest relative increase in
variance was observed for the 40-item tests with the smallest calibration sample examined.
Even for these conditions, however, the increases appear rather modest.

Figure 9 presents a more detailed view of the relative increase in variance for the 5-category
graded items across the simulation conditions of varied test length and calibration sample
size. Here, the average relative increase in variance is obtained within each decile of the true
scores on the latent trait (which are known for these simulated data but, of course, are never
known in practice). As in Table 5, it is clear that the relative increase in variance diminishes
with increasing sample size. It is also apparent that the percentages are not uniform across
the range of the latent trait. For those conditions where there is substantial relative increase
in variance (e.g, n = 40, N = 500), the percentages are greatest at the highest and lowest
deciles of the true θ's. This is again consistent with existing results obtained by analytic
approximation (e.g., Cheng & Yuan, 2010) for simpler IRT models.
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6 Discussion
In this research, we have proposed a multiple imputation based approach for characterizing
the ways in which uncertainty about item parameters affects item response functions, test
information functions, standard errors of measurement, and marginal reliability. We argue
that the approach presents several advantages over the existing alternatives. First, it can be
applied to a variety of IRT models and scoring methods. Second, it is computationally
simple and utilizes information that is readily available in the output of standard IRT
software programs. Third, the approach makes use of the asymptotic covariance matrix of
the item parameters, obtained through an application of the Supplemented EM algorithm
(Cai, 2008). This allows us to conduct analyses of entire tests, whereas past efforts have
mostly focused on parameter uncertainty with respect to individual items. Finally, our
proposed approach connects a variety of seemingly disparate methods that have been used to
handle item parameter uncertainty. In so doing, our approach integrates the related goals of
providing corrected standard errors of measurement and the (highly visual) characterization
of the effects of uncertainty.

To demonstrate the relevance of the proposed approach to the problem of uncertainty in item
parameters, we derived approximations for EAP scores and their SEM (Equations 8 and 9,
respectively) that utilize the MML estimates of the item parameters and their covariance
matrix. The MI based EAP approximation is an average of the EAP scores obtained with M
> 1 sets of plausible values for the item parameters. The error variance for this estimate is a
combination of the within and between imputation variances. The square root of the total
error variance provides a corrected SEM.

After illustrating the proposed approach with a artificial, three-item data set, we examined
data from the 2000 PISA math test. Crucial to the MI based method is the random sampling
of plausible item parameter values from a multivariate normal approximation to the item
parameter posteriors. The MI based score estimates and SEM are obtained by scoring with
these imputed parameter sets and combining the results. In addition to these corrections, we
constructed confidence envelopes for item characteristic curves, building on the work of
Thissen and Wainer (1990). A depiction such as this helps to convey the extent to which
error in the item parameters leads to uncertainty about the shape of the response functions.
Importantly, the amount of uncertainty may vary across levels of the latent trait. A similar
approach was taken to generate confidence envelopes for the test information function and
the conditional SEM curve. Finally, we used MI to calculate confidence intervals for
marginal reliability. This allows us to convey the uncertainty in the marginal reliability that
is due to error in the estimation of the item parameters.

We also conducted simulations, which allowed us to investigate how various factors can
influence the uncertainty in scores. In these simulations, we manipulated the size of the
calibration sample, the length of the test, and the complexity of the response model. The
effect of parameter uncertainty was quantified as the relative increase in error variance. This
analysis demonstrated that, on the whole, parameter uncertainty contributes little to total
error variance. However, in situations where the calibration sample is small and the number
of items is large (and especially in the case of a more complex response model), the error
carried over from item calibration may occasionally be non-negligible.

It is important to know the extent to which the latent trait estimates are uncertain because a
number of critical decisions are based on the SEM. In variable-length computerized adaptive
testing algorithms, for example, the SEM is often used as a termination criterion. In such
cases, underestimation of SEM can result in premature termination of the test. In addition,
such underestimation could result in flawed inferences concerning individuals' standing
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relative to a certain performance standard or to one another. Specifically, scores might be
assumed to have greater precision than is warranted, given the known uncertainty in the item
parameters. Standard errors have also been incorporated into statistical models such as
hierarchical linear models with latent variables (Raudenbush & Bryk, 2002). For such
applications, improved SEM estimates will enhance estimation of regression parameters and
their associated standard errors. The MI based approach presented in this paper provides a
simple and flexible means of obtaining these improved estimates.
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Appendix A
The EAP estimator of θ is a posterior expectation, i.e.,

From Equation (5), the equation above can be rewritten as

Interchanging the order of integration, we see that

where the last line requires the conditional independence of x and Y given γ. By the same
token, the posterior variance can be written as
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Figure 1.
Item trace lines and posterior distributions for three response patterns. Solid lines represent
the tracelines and posteriors based on the MML parameter estimates; those based on M=20
randomly imputed parameter sets appear as dotted lines.
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Figure 2.
Traditional and MI based EAP estimates.
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Figure 3.
MI based scale score and SEM corrections. Traditional estimates are represented by the
closed triangles. MI based estimates are shown as open circles.
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Figure 4.
Confidence envelopes for item tracelines. The solid curves represent the item characteristic
curves based on the MML item parameter estimates. The dotted curves represent the 95%
confidence limits. The dashed curves show the expected response functions. The confidence
limits and expected functions are generated based on M = 1000 imputations
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Figure 5.
Confidence envelopes for test information and the conditional SEM. Solid curves show test
information and the conditional SEM based on the MML item parameter estimates. The
dotted curves represent the 95% confidence limits. The expected information and
conditional SEM curves are shown as dashed lines. The confidence limits and expected
functions are based on M = 1000 imputations.
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Figure 6.
Estimated IRT Scale Scores for PISA Math Booklet 8.
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Figure 7.
Traditional and MI based response pattern and summed score SEM estimates plotted against
EAPs for PISA Math Booklet 8. For clarity, values for 200 randomly selected individuals in
the scoring sample are plotted; the mean, minimum, and maximum values of r are based on
the full scoring sample of 1000 individuals. Traditional estimates and SEMs based on the
MML item parameters are shown as triangles. MI based results are shown as circles.
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Figure 8.
Confidence envelopes for test information and the conditional SEM for PISA Math Booklet
8. The solid curves show test information and the conditional SEM based on the MML item
parameter estimates. The dotted curves represent the 95% confidence limits. The expected
information and conditional SEM curves are shown as dashed lines. The confidence limits
and expected functions are based on M = 1000 imputations.
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Figure 9.
Mean relative increase in variance (by deciles) under various simulated test lengths and
calibration sample sizes for the logistic graded response model with 5 categories.
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Table 5

Relative increase in variance, r(%)

Calibration sample size (N)

Items, J 500 1000 2000 5000

2-parameter logistic model

5 2.6 1.2 .6 .2

10 2.2 1.1 .5 .2

20 2.7 1.3 .7 .3

40 14.7 3.5 1.2 .4

3-parameter logistic model

5 4.7 2.1 .9 .4

10 2.9 1.4 .8 .3

20 3.5 1.8 .9 .4

40 8.8 2.4 1.1 .5

graded response model

5 2.3 1.1 .5 .2

10 1.8 .9 .5 .2

20 2.3 1.2 .6 .3

40 3.3 1.7 .9 .4
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