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Abstract: Understanding the spatiotemporal patterns of urban heat islands and the factors that
influence this phenomenon can help to alleviate the heat stress exacerbated by urban warming
and strengthen heat-related urban resilience, thereby contributing to the achievement of the United
Nations Sustainable Development Goals. The association between surface urban heat island (SUHI)
effects and land use/land cover features has been studied extensively, but the situation in tropical
cities is not well-understood due to the lack of consistent data. This study aimed to explore land
use/land cover (LULC) changes and their impact on the urban thermal environment in a tropical
megacity—Karachi, Pakistan. Land cover maps were produced, and the land surface temperature
(LST) was estimated using Landsat images from five different years over the period 2000–2020. The
surface urban heat island intensity (SUHII) was then quantified based on the LST data. Statisti-
cal analyses, including geographically weighted regression (GWR) and correlation analyses, were
performed in order to analyze the relationship between the land cover composition and LST. The
results indicated that the built-up area of Karachi increased from 97.6 km2 to 325.33 km2 during
the period 2000–2020. Among the different land cover types, the areas classified as built-up or bare
land exhibited the highest LST, and a change from vegetation to bare land led to an increase in LST.
The correlation analysis indicated that the correlation coefficients between the normalized difference
built-up index (NDBI) and LST ranged from 0.14 to 0.18 between 2000 and 2020 and that NDBI
plays a dominant role in influencing the LST. The GWR analysis revealed the spatial variation in the
association between the land cover composition and the SUHII. Parks with large areas of medium-
and high-density vegetation play a significant role in regulating the thermal environment, whereas
the scattered vegetation patches in the urban core do not have a significant relationship with the LST.
These findings can be used to inform adaptive land use planning that aims to mitigate the effects of
the UHI and aid efforts to achieve sustainable urban growth.

Keywords: surface urban heat island; land surface temperature; megacity; sustainable development
goals; Karachi
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1. Introduction

Urbanization refers to the growth and modernization of cities and the migration of
people from rural to urban areas. Currently, cities contain more than half of the world’s
population [1], with the last few decades having seen a significant increase in urbanization
across the globe. The proportion of the global population living in urban areas is predicted
to rise to 68% by 2050 from its present value of 55%, and nearly 90% of this growth will take
place in Asia and Africa [2]. The 11th goal of the 2030 Agenda for Sustainable Development
adopted by the United Nations member states in 2015 targets the crucial role of urban
settlements in fostering sustainable development and focuses on developing inclusive,
sustainable, and resilient urban environments [3]. Urbanization has led to a rapid increase
in the geographic extent of urban areas. This has a major effect on the local environment’s
energy balance and results in the urban heat island (UHI) effect, which can be defined as a
situation wherein the surface temperature in cities is higher than that of the surrounding
areas [4–6]. This local difference in temperature negatively impacts both people and the
environment, because it can decrease the air quality, lead to increased energy consumption,
and affect people’s health [7,8]. The projected global temperature increase combined with
the increasing UHI effect will make developing countries more susceptible to heat-related
deaths and illnesses. Understanding the spatiotemporal patterns in urban heat islands
and the factors that influence this effect can help to mitigate the negative impacts of urban
warming, improve urban resilience, and contribute to the achievement of the sustainable
development goals in urban settlements.

Urbanization-induced land use and land cover (LULC) change has drastically in-
creased as a result of the rapid economic development and growing population in recent
decades [9]. Since LULC change is most common in developing countries in the central
parts of individual cities, investigating land cover change and the accompanying environ-
mental impacts in developing countries is critical [10]. Hassan et al. [11] analyzed land
cover change and its influence on the surface urban heat island intensity (SUHII) in seven
Asian megacities—namely, Kabul, Dhaka, Thimphu, Delhi, Kathmandu, Colombo, and
Karachi. The LULC in each city was classified using a machine learning classifier and
Landsat data and was linked to changes in the thermal environment [11]. Kikon et al. [12]
assessed temporal changes in rising trends of UHI in Noida City, India, using Landsat
data and grid-level analysis, and compared them with the LULC change pattern. Arshad
et al. [13] evaluated the impacts of LULC changes on the surface urban heat island and
revealed that the reduction of green space in old city areas and transition zones caused
high LST and warming in Lahore, Pakistan. The loss of vegetative cover during the ur-
banization process and its correlation with the increase in LST have also been reported in
Islamabad [14].

As remote sensing sensors have developed, thermal infrared remote sensing has
become crucial to the retrieval of LSTs [15,16] and the investigation of surface urban heat
island (SUHI) effects [17–19]. The UHI phenomenon has been described in several Asian
countries [20–22]. A time series analysis was performed to analyze the intensity of the
urban heat island in eight Asian megacities, including Karachi, from 1992 to 2012 [23]. In
particular, the combination of multispectral data with thermal infrared imagery acquired
by the Landsat TM, ETM+, OLI, and TIRS sensors improved our ability to obtain LSTs and
land cover change information while simultaneously using the same datasets. As compared
with satellite remote sensing data, such as MODIS and ASTER, a key benefit of Landsat
data is the long-term temporal range (Landsat-4 and 5 TM data are available from 1980
onwards) [24]. Remote sensing spectral indices can quantitatively represent the land cover
composition and were correlated with the LST in several studies [25,26]. Zhou et al. [27]
analyzed the impact of land cover composition on the thermal environment in Washington
DC, USA. The correlation between LST and the normalized difference vegetation index
(NDVI) and the normalized difference built-up index (NDBI) suggest that they exert a
negative and positive effect on LST in tropical and subtropical regions, respectively [18,21].
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Karachi is one of Pakistan’s fastest-growing and largest megacities and has a high
population density. Together with the rapid urban development that has occurred in recent
decades, the thermal environment of the city has deteriorated rapidly. However, as a result
of the spatial scarcity and the inconsistent distribution of existing meteorological stations,
especially in developing countries such as Pakistan, accurate estimations of changes in
SUHII remain challenging. Thus, there are only a few previous studies that have focused on
the thermal environment of Karachi. The changes in SUHI in Karachi and its relationship
with rapid urbanization and LULC were analyzed based on day and nighttime LST data
from MODIS and Landsat images in 2009 and 2017 [28]. Hassan et al. [11] conducted a
comparative study to examine the changes in the thermal environment in seven South
Asian megacities from 2000 to 2019 using yearly average LST from MODIS data with a 1-km
spatial resolution. A comparative study was conducted to detect the urbanization patterns
of four rapidly developing lowland South Asian cities, including Karachi, in 2019 [29].
Despite these efforts, multitemporal satellite remote sensing data have been insufficiently
employed, and our knowledge on the long-term evolution of SUHI and concurrent LULC
changes in Karachi is still lacking.

In June 2015, a heatwave struck Karachi and killed more than 1000 people [30]. It
is necessary to comprehensively investigate the spatiotemporal changes of the urban
thermal environment in the Karachi metropolitan region. The reliability on support vector
machines for remote sensing image classification and the LULC change analysis has been
demonstrated in various studies [31–33]. In this study, the LULC was classified using the
support vector machine method, and the LST datasets were derived from Landsat images in
Karachi. The relationships between these datasets were then explored through a bivariate
correlation analysis and geographically weighted regression (GWR) statistical analysis.
The study’s specific objectives were: (1) to analyze the LULC changes, (2) to explore the
spatial and temporal variations in the urban thermal environment with a primary focus on
hotspots, and (3) to explore the relationship between the LST and LULC patterns using the
GWR model in Karachi.

2. Materials and Methods
2.1. Study Area

Karachi, Pakistan’s largest and most densely populated city, is the provincial capital
of Sindh Province. It is the country’s primary seaport, industrial center, and financial hub.
The Karachi urban agglomeration, which covers 3527 km2, is located on the Arabian Sea
coastline between 24.45◦N and 25.15◦N and between 66.37◦E and 67.37◦E (Figure 1). The
Lyari and Malir Rivers flow through the city on their way to the Arabian Sea. Adminis-
tratively, the city is divided into seven districts and 31 subdivisions [34]. Karachi’s urban
population has grown from 9.45 million in 1998 to 14.91 million in 2017. According to
the United Nations’ estimates [35], the city’s population will reach more than 20 million
by 2025. The rapid rate of urbanization during the last three decades has had negative
consequences for the environment, specifically in relation to the UHI, air pollution, and
energy consumption, as a result of the lack of urban expansion planning and insufficient
essential public infrastructure and facilities [36].
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data consisted of collection 2, level 2 data obtained from the United States Geological Sur-
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covered three Landsat tiles (152_042, 152_043, and 153_043). The land surface temperature 
could be determined from thermal infrared (TIR) measurements of satellite sensors. How-
ever, the TIR measurements are very sensitive to cloud contamination, which precludes 
an accurate determination of the LST [37]. In addition, precipitation can cause large vari-
ations in the surface emissivity. Thus, seasonal differences can influence remote sensing 
image availability (increased cloud cover) and accuracy in LST measurements. In order to 
reduce the uncertainties of LST determination, satellite images with a minimum amount 
of cloud coverage (<10%) corresponding to the driest months (September–November) 
were collected in our study [38,39]. Table 1 lists the eight Landsat scenes that were used 
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Figure 1. The geographical location of the study area.

2.2. Datasets

Eleven Landsat images acquired between 2000 and 2020 were utilized to map the
land use/land cover changes and the urban thermal environment with 5-year intervals
(Table 1). The images were acquired by Landsat 5 TM, 7 ETM+, and 8 OLI/TIRS. Landsat
data consisted of collection 2, level 2 data obtained from the United States Geological
Survey (https://earthexplorer.usgs.gov, accessed on 12 August 2021). The entire study area
covered three Landsat tiles (152_042, 152_043, and 153_043). The land surface temperature
could be determined from thermal infrared (TIR) measurements of satellite sensors. How-
ever, the TIR measurements are very sensitive to cloud contamination, which precludes an
accurate determination of the LST [37]. In addition, precipitation can cause large variations
in the surface emissivity. Thus, seasonal differences can influence remote sensing image
availability (increased cloud cover) and accuracy in LST measurements. In order to reduce
the uncertainties of LST determination, satellite images with a minimum amount of cloud
coverage (<10%) corresponding to the driest months (September–November) were collected
in our study [38,39]. Table 1 lists the ten Landsat scenes that were used for LST retrieval in
this study.

Table 1. Details of the Landsat imagery used.

Year Date Satellite and Sensor Spatial Resolution (m)

2000 26 October 2000 Landsat5 TM 30
1 October 2000 Landsat5 TM 30

2005 16 October 2005 Landsat7 ETM+ 30
7 October 2006 Landsat5 TM 30

2010 7 November 2010 Landsat5 TM 30
21 October 2010 Landsat7 ETM+ 30

2015 5 November 2015 Landsat8 OLI 30
12 November 2015 Landsat8 OLI 30

2020 1 October 2020 Landsat8 OLI 30
24 October 2020 Landsat8 OLI 30

https://earthexplorer.usgs.gov
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3. Methods

In our study, the entire data processing and analysis workflow included several steps.
First of all, the land use/land cover types were classified, and the land surface temperature
was retrieved from the Landsat images. Thereafter, the intensity of the SUHI was quantified
using the LST and land cover classification data. Finally, the relationship between the LST
and land cover was explored. Figure 2 is an overview of the data processing workflow in
this study.
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3.1. Land Use/Land Cover Classification

The support vector machine (SVM) approach has been widely used for LULC clas-
sification with multisource remote sensing data and has exhibited its capacity to obtain
accurate results [31–33]. The SVM classifier with a radial basis function kernel, and a
penalty hyperparameter of 100 was used here to classify the land cover into four broad
types: built-up area, bare land, water bodies, and vegetation. As one of the most widely
used kernels, the radial basis function kernel is in the form of a Gaussian function and
can obtain optimal results for nonlinear data. For each LULC class, around 150 samples
were collected to ensure sufficient representation [40]. High-resolution satellite images in
Google Earth and pan-sharpened versions of Landsat data were used to gather ground
truth information [41]. The LULC classes and their descriptions are shown in Table 2,
together with the number of training and testing pixels used during the SVM classification.

Quantitative metrics were used to assess the accuracy of each classified image. Ground
truth regions for classification accuracy assessment were created using ancillary land
cover change data from topographical maps and urban LULC maps acquired from the
Survey department of Pakistan and Karachi Municipal Corporation [34]. The ground truth
data were interpreted based on their spectral characteristics and a literature review with
additional ancillary information.
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Table 2. LULC classification scheme and class descriptions.

LULC Class Description No. of Training Pixels No. of Testing Pixels

Water bodies Rivers, permanent open water, lakes, ponds, and reservoirs 60 120

Built-up area Residential areas, land used for commerce and services, industry,
transportation, and roads 150 240

Vegetation Agricultural areas, crops, fallow land and vegetation, and scrub 150 240

Bare land Exposed soils, landfill sites, areas of active excavation, and open
bare land 150 240

3.2. Land Surface Temperature Retrieval

The land surface temperature was retrieved using a radiative transfer equation
(RTE) [41]. Normalized LST values can provide objective information about the spatial
distribution of the LST values extracted from satellite images obtained under a variety of
atmospheric, temporal, and lighting conditions [42]. The LST values were standardized
using Equation (1) to ensure the information extracted from satellite imagery captured over
multiple years was comparable.

NLST = (LSTi −LSTmin)/(LSTmax −LSTmin), (1)

where NLST is the normalized LST, LSTi is the pixel i initial LST, and LSTmin and LSTmax
are the minimum and maximum LST in a given scene, respectively.

3.3. Calculation of the Surface Urban Heat Island Intensity

The most popular method for modeling the effects of urban growth and land cover
change on the SUHII is to calculate the temperature differences between urban and rural
areas. Since the definitions of urban and rural areas vary greatly from country to country,
there is no standardized method to distinguish urban areas and rural areas [4]. Under the
framework of the local climatic zone (LCZ), the SUHII was measured as the differential
LST between built-up and green space areas [43]. As the LST within the areas of green
space varied, an average LST was used as a reference for mapping SUHII. In this study, the
SUHI intensity was measured as the difference in LSTs between built-up areas and areas of
green space [44]. The SUHII was calculated for each built-up area pixel using Equation (2):

SUHIIi = Tbui − Tgs, (2)

where Tbui is the land surface temperature at pixel i, and Tgs, is the mean land surface
temperature of the green space pixels. The green space pixels of the study area were
determined using the LULC classification map. The SUHII for the whole study area was
calculated using Equation (3):

SUHII =
1
n ∑n

i=1 SUHIIi, (3)

where SUHIIi is the surface urban heat island intensity at pixel i, and n is the total number
of built-up pixels.

Following Reference [41], we classified the areas in the SUHII maps into five classes:
no SUHII (SUHII < 0.00), low SUHII (0.00–2.00), moderate SUHII (2.00–4.00), high SUHII
(4.00–6.00), and very high or extreme SUHII (>6.00).

3.4. Statistical Analysis

According to a systematic review [45], the majority of previous studies (>68%) tended
to utilize global-based analysis to quantify the relationship between spatial variables and
UHI variables. The ordinary least squares (OLS) regression, which assumes constant re-
lationships over spaces between the independent and dependent variables, is the most
commonly used approach. On the regional scale, however, the SUHI effect may be context-
sensitive and vary considerably over time and location [46]. In this study, both bivariate
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correlation analysis and geographically weighted regression (GWR) were used to quantify
the relationships between the LST and the land cover composition [47]. Pearson’s corre-
lation coefficient was used to quantify the correlation between these two variables. We
selected 1000 random samples to conduct a correlation analysis between the NLST, NDVI,
and NDBI.

Geographically weighted regression is a technique in which the spatial heterogeneity
of the relationships between the independent variables and the dependent variable can be
captured [48,49]. The following formula was used for GWR:

yi = β0(ui, vi) + ∑
k

βk(ui, vi)xik + εi, (4)

where (ui, vi) indicates the spatial coordinates of observation i, β0 and βk are the estimated
parameters, and εi denotes the random error in terms of observation i. Each observation is
assigned a weight based on the distance decay function. The weighting of an observation
is not constant but is a function of the geographical location. Larger weights are assigned
to observations closer to point i [50]. The inverse distance weighting has been adopted
in different environmental studies [51–53]. In the GWR model, the relationships between
the dependent and independent variables vary spatially [54]. The prediction performance
of the GWR model can be improved by adjusting the regression coefficients according to
the location. The kernel and bandwidth are the key parameters in the GWR model that
affect the model accuracy. Herein, the adaptive Gaussian kernel was used because the
1000 sampling points were randomly distributed over an irregular study area. The model
accuracy was evaluated using the coefficient of determination (R2) and corrected Akaike
Information Criterion (AICc). In this research, the GWR models were developed using
ArcGIS 10.5 software.

4. Results
4.1. Land Use/Land Cover Change Analysis

The overall accuracies of the land cover maps that were produced ranged from 86.2%
to 94.28% (Table 3). Details of individual maps of land cover changes are shown in Table 3.
The maps show a continued expansion in the built-up area of Karachi over the period
2000–2020 (Figure 3). In the center of the city, the percentage cover of the built-up area
was highest in 2000. Since then, the built-up area has gradually extended outward into
the suburbs. Moreover, the amount of open bare land decreased significantly. The result
reveals an interesting two-stage pattern in the land cover changes, i.e., first, the open bare
land and vegetation were converted to open land and then into built-up areas. Thus, areas
that were open bare land and vegetation in 2000 were converted to open land by 2010 and
to built-up areas by 2015. By 2020, these built-up areas had become denser.

Figure 4 depicts the contribution of net changes in various LULC classes to changes
in built-up areas. The Gadap, Bin Qasim, Murad Memon, Ibrahim Hyderi, Manghopir,
Gulzar-i-Hijri Baldia, and Mauripur subdivisions experienced the largest increases in the
built-up areas class. The smallest increases were in areas near the center of the city, such as
The Garden, Saddar, Ferozabad, Harbor, Liaquatabad, SITE, Lyari, and Arambagh. Figure 4
shows that built-up area expansion primarily occurred due to the transformation of open
bare land to built-up land in the northern and northeastern parts of the city. Vegetated areas
were encroached upon by built-up areas in almost all parts of Karachi, except those near to
the center. Moreover, in certain subdivisions, including The Garden, Saddar, Arambagh,
Lyari, Civil Lines, Liaquatabad, and Harbor, there was only a slight increase in the area
classed as built-up, because these were established CBD areas in which construction was
restricted [56].
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Table 3. Accuracy assessment of the classified maps.

Land Cover
2000 2005 2010 2015 2020

Prod. User Prod. User Prod. User Prod. User Prod. User

Type (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Built-up 97.5 100 75 93.75 95.12 97.29 90 97.43 87.5 87.5

Bare land 95 90.47 94.5 78 95.12 86.66 97.5 95.12 87.5 63.63

Vegetation 85 85 92.5 94.87 100 92.85 95 88.37 97.5 86.66

Water bodies 80 84.21 95 100 75 93.75 85 100 80 100

Overall 90 89 92.14 94.28 86accuracy (%)

Kappa coefficient 0.8 0.85 0.8 0.92 0.86
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2015, and 2020.

Table 4 presents statistics for the LULC patterns in Karachi during the period 2000–
2020. It can be seen that, between 2000 and 2020, the built-up area expanded by nearly
173%, from 440.19 km2 to 765.52 km2. Overall, the amount of vegetation cover and open
bare land declined significantly over the same period. The amount of vegetation cover
fluctuated, falling from 553.99 km2 to 428.07 km2 between 2000 and 2010 before increasing
to 477.13 km2 in 2015 and, finally, declining again to 378.13 km2 in 2020. The amount of
open bare land decreased from 2570.19 km2 in 2000 to 2390.58 km2 in 2020, whereas the
area covered by water bodies increased from 43.54 km2 to 86.53 km2 between 2000 and
2020. A total of 179.61 km2 of bare land and 175.86 km2 of vegetation was converted into
other land uses during this period (Figure 3). These LULC losses can be attributed to an
increase in the urban area resulting from a high demand for residential space and space for
business activities [55]. The open bare land and vegetation classes were those most affected
by this rapid urbanization.
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Table 4. LULC changes in Karachi during the period 2000–2020.

Land
Cover
Type

2000 2005 2010 2015 2020

Area Percentage Area Percentage Area Percentage Area Percentage Area Percentage

(km2) (km2) (km2) (km2) (km2)

Built-up 440.19 12.20 537.79 14.91 606.49 16.80 680.62 18.79 765.52 21.14
Bare land 2570.19 71.24 2415.24 66.94 2512.99 69.63 2425.58 66.98 2390.58 66.02
Vegetation 553.99 15.35 465.01 12.89 428.07 11.86 477.13 13.18 378.13 10.44

Water bodies 43.54 1.21 58.80 1.63 61.59 1.71 38.14 1.05 86.53 2.39
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4.2. Spatiotemporal Variations in the Urban Thermal Environment
4.2.1. Variations in the Normalized Land Surface Temperature

Figure 5 shows the classified NLST maps of the study area. Each map shows five
classes of NLST—namely, very low temperature, low temperature, medium temperature,
high temperature, and very high temperature. They were defined using the standard
deviation and mean value. Very high and high temperature areas were concentrated in
the suburban areas, areas surrounding the suburbs, and in areas of open bare land; the
main roads linking the city and the surrounding towns also appeared to have high or
very high temperatures. Overall, the very high temperature class covered the majority of
the suburbs. The area covered by each temperature class throughout the study period is
shown in Table 5. The medium-temperature class covered the largest area over the five time
periods, followed by the high-temperature class. Along with the decrease in the amount
of green space, the area corresponding to the very low-temperature class also gradually
decreased. In contrast, as a result of the built-up area expansion, the areas covered by
the medium- and high-temperature classes increased considerably. The area of high and
very high LST increased from 18,304.38 km2 in 2000 to 23,240.70 km2 in 2020 in the study



Remote Sens. 2022, 14, 2164 10 of 19

area. Population growth, industrial development, the large number of vehicles, and traffic
congestion are also connected to the increase in the areas denoted as being medium- and
high-temperature classes [57,58].
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Table 5. Area covered by each NLST class (km2).

Temperature Class Very Low
Temperature Low Temperature Medium

Temperature High Temperature Very High
Temperature

Range (T ≤ Tmean −
1STD)

(Tmean − 1STD < T
<Tmean − 0.5STD)

(Tmean − 0.5STD <
T <Tmean + 0.5STD)

(Tmean + 0.5STD <
T <Tmean + 1STD) (Tmean + 1STD < T)

Year

2000 15,687.36 10,872.99 27,408.42 3675.51 14,628.87
2005 11,025.90 14,597.91 27,034.11 17,903.16 10,696.77
2010 8844.30 17,358.57 31,042.08 13,228.56 10,783.26
2015 11,649.96 18,408.15 26,046.63 12,450.24 12,702.69
2020 9451.89 14,931.09 33,634.26 10,318.41 12,922.29

4.2.2. Variations in the Surface Urban Heat Island Intensity

The acquired satellite imagery was used to assess the spatiotemporal variations of
SUHI over Karachi during the study period (2000–2020). The results showed that the SUHI
intensity increased over this period due to the continual expansion of the built-up area.
The areas corresponding to a very high, high, or moderate SUHII increased, whereas those
in which the SUHII was classified as low or having no SUHI decreased to a certain extent
(Table 6).

Table 6. Spatiotemporal variations in the area covered by different SUHII zones (hectares).

SUHI Zone 2000 2005 2010 2015 2020

None/No SUHI 0.43 0.02 0.27 0.63 0.09
Low 0.67 0.76 1.31 1.3 1.13
Moderate 0.55 0.87 0.88 0.94 1.39
High 0.29 0.56 0.44 0.57 0.96
Very High 0.21 0.31 0.09 0 0.33

Figure 6 displays the spatial patterns of SUHII for different years during the study
period. In 2000, the SUHII was very low in most of Karachi’s core areas; however, there
were small pockets of moderate and high SUHII in the northwest, north, and south of the
city. In the outskirts of Karachi, the situation was different. Very high SUHI zones increased
from 0.21 hectares in 2000 to 0.33 hectares in 2020. Similarly, high and moderate zones
increased from 0.29 and 0.55 hectares in 2000 to 0.95 and 01.39 hectares in 2020. These areas
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experienced haphazard expansion of the built-up areas during the study period and also
included areas of exposed barren rocky outcrops that formed ridges and low hills. The
exposed rocks with little vegetation coverage received direct solar radiation, which was
converted into heat energy, resulting in a high LST. These factors resulted in a SUHI that
was more intense than in the urban core [59].
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2000–2020.

4.3. Relationship between Variations of LST and Land Cover Changes
4.3.1. Relationship between Land Cover Types and Land Surface Temperature

The relationships between the NLST and the four land cover categories used in
this study are illustrated in Figure 7. The increase in the NLST with time reflects the
increase in the size and intensity of the urban heat island because of the land use/land
cover changes and the built-up area expansion in the study area [41]. These trends have
become more pronounced since 2000, as, after this date, the areas surrounding Karachi
that were formerly agricultural and open bare land ceased to be cultivated and became
built-up areas. Significant variations between the average NLST of the different land cover
classes can be seen. For the vegetation and water body classes, a relatively large range
of temperatures was observed over the study period. Changes in the vegetation density
within the metropolitan area may be responsible for the LST variation for this class. Many
investigators observed a negative relationship between the amount of vegetation and the
land surface temperature [11,28]. As a result of the inclusion of mixed pixels, the land
surface temperatures of the water bodies can be influenced by the temperature of the
surroundings, for example, bare land. This may be a reason for the high NLST values
observed in pixels that represent water bodies. It was observed that land cover types
that were converted into built-up and open bare land classes were those for which the
temperature increase was the greatest.
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4.3.2. Relationship between Land Cover Composition and Normalized Land
Surface Temperature

The NDVI and NDBI maps of Karachi for 2000 and 2020 are shown in Figure 8a,b,
respectively. The NDVI values varied from −0.17 to 0.46 in 2000 and from −0.12 to 0.45 in
2020. In 2000 and 2020, high NDVI values were observed in the eastern part of the study
area, which was covered by cultivated land. In 2000, the NDBI values were in the range of
−0.40 to 0.36; in 2020, they were between −0.36 and 0.55. In 2000, areas with high NDBI
values were mainly concentrated in the central and the northwest of the Malir River. By
2020, the area with high NDBI values had increased and also expanded to the southern and
northeastern sides of the river (Figure 8b). These spatial patterns in the NDBI are consistent
with the observed patterns in urban land use changes (Figure 3) and the NLST (Figure 6) in
the study area.

The calculated Pearson’s correlation coefficient values indicated a significant positive
correlation among the NLST and NDBI for all the land cover types throughout the study
area (Figure 9). The built-up area exhibited the strongest correlation between the NDBI
and NLST; the correlation was weakest for the areas covered by water bodies (0.012 in
2000 and 0.0026 in 2020). There was a weak correlation between the NLST with NDVI for
all land cover types. This correlation was strongest for the vegetation class (0.319 in 2000
and 0.183 in 2020). The built-up and bare land categories exhibited the lowest correlation
coefficients (0.029 and 0.177, respectively, in 2000 and 0.001 and 0.010, respectively, in 2020).
The relationship between the NLST and NDVI demonstrated that the higher the vegetation
density within a region, the lower the land surface temperature detected.
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Figure 10 shows the distributions of the correlation coefficients for these two relationships,
together with the corresponding values of the local adjusted R2. The GWR analysis captured
the spatial variation of the relationships between the NDVI and NDBI and the NLST. There
was considerable spatial variation in the GWR results for different land cover classes. In the
east and northeast of the study area, there was a strong positive correlation between the NLST
and the NDBI, with coefficient values ranging from 0.82 to 0.88 in the urban core (Figure 10a).
These areas mainly consisted of high-density urban residential and commercial areas and
included the districts of Central, East, Korangi, and Kiamari. The CBD of Karachi is almost
entirely built-up with sparsely distributed small-sized green spaces. The correlation between
the NLST and the urban density was very low in these areas. The areas in which the correlation
between the NLST and the NDVI was strongly negative were situated in the northern, eastern,
and western parts of the study area (Figure 10c). These areas included large parks that have
grasslands with dense vegetation. The relationship between the NDVI and NLST was very
weak near to the coast. This may be due to the large uncertainty in the NDVI estimates that
resulted from the presence of mixed pixels that included both water and vegetation. These
uncertainties can be minimized by using remote sensing data from sensors with higher spatial
resolution, such as Sentinel and Gaofen satellites [60–62]. Figure 10b,d demonstrate the GWR
model’s overall fitness: a high adjusted R2 value indicates good model fitness.
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5. Discussion

In this study, we describe the rapid expansion in the built-up area of Karachi during
the period from 2000 to 2020. It was shown that this expansion primarily occurred at
the expense of areas that were previously planted with crops or were open bare land.
Expansion of built-up areas at the expense of cropland during the process of urbanization
has also been noted in other Pakistani metropolises, including Lahore [63], Peshawar [64],
and Islamabad [65]. An important feature observed concerning LULC changes in Karachi
during 2000–2020 was that the cropland and open bare land were first converted into areas
of open land before becoming part of the built-up area. This type of change pattern was also
observed in high-density metropolitan cities, such as Hyderabad [33] and Faisalabad [66].
This process was due to the fact that agricultural land and other types of land acquired by
real estate companies were left open for many years before being rebuilt or restructured.

As compared to impervious surface types, such as roads, buildings, and industrial
areas, the evapotranspiration in the vegetated areas is greater. In these areas, the vegetation
canopy also provides shading, and as a result, the temperature is lower [67]. The rising trend
in NLST across all land cover types implies an overall surface warming trend. Although
the SUHII fluctuated, the proportion of areas in which the SUHII was classified as high
increased in almost all subdistricts. The SUHII increased to the greatest extent in the
subdivisions with the lowest vegetation cover. In these areas, shrubland and grassland
were converted into high-density built-up areas. This is in accordance with the results of
previous studies in which it was shown that the core areas of cities experience the greatest
increase in SUHII due to the dense nature of the built-up area and the high population
density [68]. In contrast, our study demonstrates that the SUHII increased more in the
peripheral areas of Karachi, such as Korangi, Landhi, Ibrahim Hyderi, Bin Qasim, Shah
Faisal, and Model Colony, than in the central areas. The greater rise in the SUHII in the
countryside areas may be linked to the large-scale conversion of cropland and open bare
land to built-up areas. The government encourages new housing schemes and the migration
of people from central areas to suburban and rural areas. The new housing schemes increase
the funding of public infrastructures, educational institutes, and transportation networks
to CBD areas. However, the SUHII in these areas is exacerbated by the rapid construction
of the new settlements and other public infrastructures.

The regression analysis results presented in this study suggest that the GWR model
can produce good results and provide detailed information at the local scale. According
to the adjusted R2 values, the GWR model can explain 84% of the variation in the land
surface temperature in the study area [69,70]. From north to south, there was a trend from
a negative correlation to a positive NDVI correlation, with the values of the adjusted NDVI
R2 ranging from −3.159 to 4.195. According to the land cover classification results, the
built-up area density in the southern part of the city core was low. To the north of the
core area, the vegetation density was high and stable, and the variations of the NDVI
were observed to have a significant impact on the LST. This can be attributed to the strong
cooling effect that vegetation produces in these areas. This study found that aggregated
green space in parks was more effective in terms of providing cooling effects than scattered
vegetation patches in the urban core. Increasing the total area and aggregation level of green
space can considerably alleviate the negative impact of urban heat islands. Furthermore, in
Pakistan, geospatial data are not freely shared due to various institutional and technical
problems [71,72]. The openness of geospatial data collected by different government
departments can facilitate the understanding of the relationship between urbanization
and UHI.

Although this study provides a comprehensive description of SUHI variability, further
work is necessary to investigate the influence of the spatial patterns in LULC on the SUHII,
as this remains unclear. This can be achieved by applying high-resolution remote sensing
data and multiscale landscape pattern analysis approaches [41,73]. Moreover, a time series
analysis could provide a more precise picture of the SUHI variation in Karachi in relation
to LULC changes. The findings of this study are restricted to one coastal city in Pakistan.
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The association between LST and land cover may vary in different cities. Therefore, to fully
grasp the impacts of urban land cover characteristics on the LST, the relationship between
LULC and the LST should be examined by comparing cities in different settings [74].

6. Conclusions

The analysis of LULC change and its influence on the SUHII and the urban ther-
mal environment of Karachi performed in this study demonstrated that the SUHII grew
exponentially in Karachi during the period from 2000 to 2020. The size of the built-up
area increased massively, whereas the amount of open bare land declined by more than
76.76% during this period, and the area covered by vegetation increased by 68.35%. These
changes significantly altered the patterns of SUHII within Karachi, Pakistan. During the
study period, the areas in which the SUHII intensity was classified as moderate, high, and
very high increased from 0.55% to 1.39%, 0.29% to 0.96%, and 0.21% to 0.33% of the study
area, respectively. It was also found that the SUHII increased to the greatest extent in the
peripheral subdivisions in the eastern and northern parts of the city, in which there was
the greatest expansion in the urban area at the expense of areas of vegetation and open
bare land.

The GWR technique was used in this study. The highest NDBI regression coefficients
were found in the districts situated in the east and the west, including Kamari and Malir.
The southern and central parts of the city were found to have the lowest NDBI coefficients.
This information could aid decision-makers in developing policies at the regional scale
and fine-tuning planning practices at the local scale, with the aim of improving thermal
conditions and promoting sustainable development in less-developed regions. From the
regression coefficient map, the areas in which green space was most effective in terms
of mitigating UHI effects were identified. Large- and medium-sized parks with dense
and aggregated vegetation coverage are recommended in order to improve the thermal
environment in Karachi. Moreover, future land use and land cover changes can be modeled
to help decision-makers enhance the thermal resilience in cities under different land change
conditions more effectively.
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