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Abstract

Structural quantities such as order parameters and correlation func-

tions are often employed to gain insight into the physical behavior and

properties of condensed matter systems. Although standard quantities

for characterizing structure exist, often they are insufficient for treating

problems in the emerging field of nano- and microscale self-assembly,

wherein the structures encountered may be complex and unusual.

The computer science field of shape matching offers a robust solution

to this problem by defining diverse methods for quantifying the simi-

larity between arbitrarily complex shapes. Most order parameters and

correlation functions used in condensed matter apply a specific mea-

sure of structural similarity within the context of a broader scheme. By

substituting shape matching quantities for traditional quantities, we

retain the essence of the broader scheme, but extend its applicability

to more complex structures. Here we review some standard shape-

matching techniques and discuss how they might be used to create

highly flexible structural metrics for diverse systems such as self-assem-

bled matter. We provide three proof-of-concept example problems

applying shape-matching methods to identifying local and global struc-

tures and tracking structural transitions in complex assembled systems.

The shape-matching methods reviewed here are applicable to a wide

range of condensed matter systems, both simulated and experimental,

provided particle positions are known or can be accurately imaged.
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1. INTRODUCTION

The preponderance of new nanometer- and micron-sized colloidal particles of nearly arbitrary

shape, composition, and interaction has made possible the self-assembly of exquisitely complex

structures with potential uses in a variety of technologies (1–4). Because material properties and

behavior are determined by both the global and local shapes, or patterns, within the self-

assembled structure (1, 5–9), methods and tools are needed to characterize the salient structural

features of the assemblies. The field of condensed matter physics has traditionally led the way in

developing algorithms for characterizing crystal structures and constructing theories to connect

these structures to thermodynamics and to overall system properties (10–12). These approaches

typically involve constructing structural order parameters and/or correlation functions that can

discriminate between different building block arrangements and are well developed for systems

of point-like, rod-like, and spherical particles (13–17). Examples include nematic and smectic

order parameters for systems of rods (18, 19, 20), liquid crystals, and bond order parameters

(14, 15, 21, 22) for 2d and 3d systems of spheres.

However, these functions fail, in many cases, to fully describe the structural complexity of

assemblies of more unusual nanocolloids, including those formed from spherical particles

(7, 23), rod-like particles (8, 24), polyhedral particles (25–32), colloidal molecules (3, 33–37),

patchy spheres (38–43), arbitrarily shaped objects (1, 3), polymer-tethered nanoparticles (4, 28,

44–48), and terminal assemblies resembling biological structures (49, 50). For example, it is

easy to envision that order parameters defined for spherical- or rod-shaped particles may fail

when applied to more complex shaped particles, such as Y particles or triangular plates (3).

As a result of the increased complexity of nano building blocks, there are few model problems

in nano- and microscale self-assembly for which generally applicable order parameters can be

defined. The dearth of structural metrics has led many recent experimental and computational

studies of assembled systems to rely heavily on visual inspection or ad hoc analysis for charac-

terizing structures, rather than well-established schemes. This approach is not optimal, because

visual inspection can be time consuming and typically less accurate than mathematical analysis,

and ad hoc analysis can be idiosyncratic, making it difficult to compare structures across

independent studies. The impetus for new structural metrics is also driven by advances in

microscopy techniques that allow for the direct imaging of nano- and microscale systems, which

have greatly extended the range of systems for which detailed structural analysis can potentially

be performed. For example, the tracking of micron-sized colloidal particles in 2d and 3d is now

routine (51–55), and high-fidelity imaging of nanoparticles (56) and their assemblies (26, 57,

58) is steadily improving. Combined with proper image processing techniques, one can extract

much information about structure, such as the particle positions (51, 55) and other key fea-

tures, providing detailed structural information on par with simulations. Assuming one can

construct order parameters sensitive to these unique building blocks and their assemblies,

similar routines can be applied to both experimental and simulated systems, allowing for direct

comparison (26, 36).

Analysis techniques from the computer science field of shape matching offer a potentially

powerful solution to the problem of creating general structural metrics for these systems. Shape

matching involves defining general structural metrics that can be used to measure the degree of

similarity between diverse shapes. Such similarity measures can be applied within the context of

traditional condensed matter order parameter and correlation function schemes to obtain

analogous quantities for more complex structures. This is possible because, in practice, most

standard structural characterization schemes include an implicit concept of matching or shape

similarity; that is, the schemes typically measure the degree to which a structure of interest
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matches another (often ideal) structure. As a familiar example, consider the standard nematic

order parameter, which gives an optimal value of 1 when the rod-like particles within the

system are perfectly aligned, and 0 if the rods have random orientations. In this case, the order

parameter measures the degree to which the local arrangement of rods in the system, described

mathematically by the angles between neighboring rods, matches with an ideal reference system

with perfect alignment (see Figure 1). Other structural characterization schemes and spatial or

temporal correlation functions involve similar underlying concepts of matching. As we discuss

below, by modifying these schemes to use shape-matching methods, we retain their overall

physical insight, but gain the ability to apply them to complex structures. Although we focus

exclusively on simulated assembled systems here, these types of methods are general enough

that they can be applied to particle systems in general, provided that the particle positions and/

or orientations can be determined or imaged. Examples of systems, both experimental and

simulated, to which shape-matching methods can potentially be applied include, but are not

limited to, nanoparticle superlattices created from mixtures of spherical and/or nonspherical

nanoparticles (57, 58); microphase-separated systems, such as tethered nanoparticles and block

copolymers that form crystalline and quasicrystalline domains (59, 60); colloidal ionic crystals

(61); dense colloids (52); and granular matter (62, 63).

This review is organized as follows. In Section 2, we review shape-matching methods from

the literature, restricting our scope to methods that we believe are most immediately applicable

to assembled systems. We describe how representative shapes can be extracted from particle

systems, review the shape descriptors that are best suited to describe these shapes numerically,

and show how they can be compared quantitatively. In Section 3, we apply a prototype shape-

matching scheme to three representative example problems from simulations of self-assembly.

Our examples include identifying global structures in a microphase-separating system of poly-

mer-tethered nanospheres (59), detecting local icosahedral clusters in a fluid of hard tetrahedral

particles (25), and tracking the twisting of a helical sheet formed from polymer-tethered

nanorods (65). In Section 4, we suggest new applications for shape-matching methods,

including constructing correlation functions, measuring local crystal grains and crystal defects,

devising guided computer algorithms to map parameter spaces and search for target structures,

and grouping and classifying structures based on particular structural features. To aid in the
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Figure 1

Example of an implicit shape-matching scheme within the context of a standard order parameter. The figure
depicts the process of computing the nematic order parameter �P2 for a system of rod-like colloidal ellipsoids
that assemble into an aligned ordered phase (64). In the language of a shape-matching scheme (see Section 2),
the colloidal system acts as a query structure that we wish to characterize. An ideal system for which the rods
are all oriented along the average global director acts as an implicit reference structure. The local values of the
angles y between rods in the query structure and reference structure act as shape descriptors. The Legendre
polynomial P2 acts as a similarity metric. The global nematic order parameter �P2 is computed by averaging
over local values of P2[cos(y)].
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development and dissemination of new structural analysis methods based on shape-matching

techniques, we provide accompanying software and examples via the web (66).

2. SHAPE MATCHING

Quantifying how well structures match has been generalized in the context of shape matching

(67) (see Figure 2). Familiar applications include matching fingerprints and signatures (67),

facial recognition (68), and medical imaging (69). Shape matching defines the concept of the

shape descriptor, a numerical fingerprint that describes a pattern or shape. Shape descriptors

are associated with query structures and compared with reference structures. The degree

of matching between query and reference structures is quantified by a similarity metric.

Matching information can be used to create order parameters and correlation functions,

identify structures, and perform many other types of structural analysis. Because we can choose

virtually any structure as a reference for comparison, shape matching facilitates the creation of

highly specific structural metrics. In the following sections, we review the process of

constructing a customized structural metric that involves choosing interesting structures to

characterize, computing shape descriptors, and using similarity metrics to compare them.

2.1. Representative Structural Patterns

Before we can compute a shape descriptor, we must extract a representative structural pattern

from the system. This step relies largely on physical intuition; often, redundant or unimportant

structural information can be discarded out of hand to ensure that the matching scheme is only

sensitive to important structural features. One standard type of coarse-graining that is often

Similarity
metric

Underlying
structural pattern

Particle
structure

Shape
descriptor

a

b

Structure
identi�cation

Order
parameters

Correlation
functions ...

Reference
descriptor 1

Reference
descriptor 2

Query
descriptor

... Reference
descriptor n

Figure 2

Data flow diagram for shape matching. (a) A structural pattern is extracted for a given query structure and
then indexed into a shape descriptor, which represents a numerical fingerprint for the structure. (b) The shape
descriptor is then compared with shape descriptors for reference structures to give a measure of similarity
between shapes. Depending on how we choose the query and reference structures, the similarity value
obtained may be applied to constructing order parameters, correlation functions, or other applications.
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employed, particularly to the case of small clusters of roughly spherical particles, is to consider

particle positions exclusively, discarding information regarding particle sizes and shapes that

may be nearly identical (see Figure 3). This type of coarse-graining can also be applied to more

complex morphologies, such as structures assembled from polyhedral building blocks (25), or

hierarchical assemblies such as micellar systems (70–72) or virus capsids (49, 50), wherein the

building blocks assemble into larger structural subunits that arrange into superstructures. In

such cases, the representative structural pattern is given by the positions of assembled subunits,

rather than the individual building blocks (detailed in Section 3.2 below).

Many complex structures cannot be described by positions alone, and require information

regarding building block sizes, shapes, and orientations. Such structures can be described by

volumetric data or voxel data (i.e., d-dimensional pixel data), which are represented numeri-

cally by a collection of weights or pixel intensities for cells in a grid that spans space. This

representation is particularly apt for describing the microphase-separated morphologies assem-

bled from systems of tethered nanoparticles and block copolymers, wherein spatial density

maps for the aggregating species may resemble sheet-like or network domains (71–74) (see

Figure 4). Voxel data capture the essential structural features of these systems, whereas a

pattern based on the positions of individual particles within the superstructure does not. The

same rule applies to many other types of structures for which the bulk shape is more important

than the underlying particle positions, including all types of phase-separated structures, many

complex biological structures such as proteins and macromolecules (75, 76), and large but finite

(aka terminal) nanoparticle assemblies. Shape descriptors are typically sufficiently flexible to

use either voxel data or point cloud data as inputs.

Shape descriptors are typically constructed to describe finite objects. Thus, when describing

global structures such as crystals or bulk disordered systems, local shapes must first be

extracted from the infinite system and then combined into finite local patterns that reflect the

global pattern for indexing. The types of global patterns that we create depend on the structural

properties of the system. For structures with long-range orientational ordering, such as crystals

and quasicrystals (77), the shape and spatial orientation of local clusters within the system are

highly correlated. Thus, a global structural pattern can be obtained by translating all local

Crystals, crystalline
superstructures, simple 
phase-separated structures

Combine local patterns 
into a global pattern by 
the superposition method

1 2 Compute shape 
descriptor based on
the global pattern

Sglobal

Global structure Local structures Global pattern Global descriptor

...
(etc.)

Figure 3

Extracting global patterns using the superposition method. For structures with long-range orientational
ordering, such as the diamond structure formed by tetragonally patterned patchy spheres depicted (40),
a global pattern is extracted by translating all local clusters (78) or density maps to a common origin.
Here, the local structures are represented by particle positions, but more complex representations are
possible. A global shape descriptor, Sglobal, is then computed for the resulting finite structure.
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shapes to a common origin (22), a scheme that we denote as the superposition method.

The visual depiction of the superimposed structures is known as a bond order diagram (78),

an example of which is depicted for the diamond structure formed by patchy particles (40) in

Figure 3. For crystals with multiple particle types, independent global descriptors can be created

for each type independently, and a combined descriptor can be created. Global descriptors

based on orientational ordering are applicable to crystalline structures in general, including

phase-separated systems arranged in crystalline superstructures (59, 79), wherein the neighbor

directions are computed for the centers of the micelles, cylinders, etc., rather than the individual

particles. Some noncrystalline globally ordered, microphase-separated structures, such as lay-

ered or network structures, can be described by superposition as well, wherein global patterns

are built up from local density maps, rather than from local point clusters. This reflects the fact

that the probability density of observing particles in particular spatial directions within these

morphologies is often nonuniform.

For systems without long-range orientational ordering such as liquids, glasses, and amor-

phous solids, a different strategy must be employed, because, in such cases, the superposition of

local structures inherently yields a uniform pattern. Rather than combining neighbor directions

or density maps by superposition, we compute a probability distribution of local patterns. The

probability histograms for different structures can then be compared to obtain a measure of

similarity between global structures (Figure 4). Computing probability distributions is also

useful for certain complex orientationally ordered structures, for which the superposition of

local density maps becomes nondistinguishing due to the presence of many different character-

istic directions within the structure. An example of such a structure is given by the double

gyroid structure composed of tethered nanorods (74) shown in Figure 4.

2.2. Shape Descriptors

Once we have extracted a representative structural pattern from our particle system, we can

compute a shape descriptor to represent the pattern numerically. Depending on the intended

Sglobal = P(Slocal)
Slocal,α

Slocal,β

Compute shape 
descriptor for each local
structure separately

1 2 Compute probability
distribution of local
descriptors

...
(etc.)

...
(etc.)

Local
density maps

Shape
descriptors

Probability
histogram

Global structure

Liquids, glasses, disordered 
superstructures, complex 
phase-separated structures

β

α

α β ...

Figure 4

Extracting global patterns using the probability distributions method. For structures without long-range
orientational ordering, or complex global structures with many different characteristic directions, a global
pattern, Sglobal, can be built up from the probability distribution, P, of local patterns. The double gyroid
formed from tethered nanorods (74), which falls into the latter category, is characterized by computing the
distribution of local nanoparticle density maps sampled throughout the structure. The red/blue color
scheme emphasizes the bicontinuous nature of the interpenetrating network.

268 Keys � Iacovella � Glotzer

A
n
n
u
. 
R

ev
. 
C

o
n
d
en

s.
 M

at
te

r 
P

h
y
s.

 2
0
1
1
.2

:2
6
3
-2

8
5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
M

ic
h
ig

an
 -

 A
n
n
 A

rb
o
r 

o
n
 0

4
/0

9
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



application, different shape descriptors may be best suited to describe a particular structural

pattern, and this information should be considered when deciding which shape descriptor to

compute. Below is a short list of desirable shape descriptor properties within the context of

assembled systems:

� Robustness: The degree of sensitivity to structural defects or random thermal noise. Some

shape descriptors have an inherent data-smoothing mechanism, whereas others require

preprocessing to effectively process thermal data.
� Invariance: The ability for shape descriptors to remain invariant (i.e., unchanged) under

certain mathematical transformations. Invariance under scaling and translations is typically

desirable. Additionally, descriptors may be invariant under rotations, mirroring operations,

or similarity transformations. Rotation invariance is the most important of these properties

for particle systems. For descriptors without rotation invariance, we often must align or

register (80, 81) objects prior to matching.
� Efficiency: The computational effort required to calculate the descriptor. For certain applica-

tions, computational time and memory costs may be limiting factors for choosing a shape

descriptor. For example, efficiency may be an important factor for on-the-fly order parameter

calculations that occur during a molecular simulation, whereas for offline data analysis

it may be irrelevant. Often, there is a direct trade-off between computational cost and

accuracy.
� Comparability: The ease of matching. Shape descriptors should yield similar results for

similar structures and different results for different structures. Shape descriptors should be

constructed such that similarity is easy to quantify. The numerical similarity should directly

reflect the physical similarity between the shapes used to construct the descriptors.

Below, we review some shape descriptors from the computer science shape-matching litera-

ture. Because shape matching is a broad field, we focus on the subset of methods that are best

suited for assembled systems. For a general review of some relevant shape-matching methods,

see References 82–84.

2.2.1. Point-matching descriptor. For relatively simple structures such as small clusters of

atoms, molecules, or nanoparticle/colloidal building blocks, we can use the particle positions

themselves (or a corresponding density map) as a shape descriptor (Figure 5a). Matching for

this scheme is often based on the root-mean-square (RMS) difference between points; thus,

the scheme itself is sometimes referred to as RMS matching. Point-matching schemes were

applied to early attempts at shape matching for macromolecules (94), and more complex

variations have since been implemented for proteins (95). Point-matching schemes have the

advantage of being conceptually trivial; however, there are many subtleties associated with

these schemes that should be considered. First, the descriptor requires an assignment step to

determine the optimal correspondence between points in compared structures, which is used

to reorder the coordinates in the shape descriptors accordingly. Also, because the descriptors

are sensitive to scale, position, and orientation, structures must first be normalized and

registered unless the orientations are known beforehand or rotation-dependent matching is

desired. Depending on the application, shapes may be registered based on rigid alignment or

other constraints. Because both assignment and registration are computationally expensive

(i.e., they scale poorly with the number of points, n), point-matching descriptors should be

avoided unless (a) the number of atoms, molecules, or building blocks that make up the

structure is small; (b) matching is required for only a few structures; or (c) registration is

not required.
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2.2.2. Shape histogram. Another conceptually simple shape descriptor that has been applied to

molecular database searches is known as the shape histogram (86) (Figure 5b). This descriptor

is based on a density map of the structure on a polar or spherical grid. Shape histograms are best

suited for describing structural patterns that can be broken down into concentric shells, such as

nanoparticle clusters, proteins, and macromolecules. Shape histograms are also well suited for

indexing global patterns created by the superposition method, as outline above, and can index

a   Point matching b   Shape histogram

d   Harmonic descriptors

e   Shape contexts

c   Shape distributions

Harmonic
representation of 
shape histogram

Histogram with
shells, sectors

Raw datapoints

Probability
distribution of
local quantities

Simple clusters
Complex clusters, 
crystals, simple phase-
separated structures

+

+

+

+  ...

x1

x2

...

r

All types of clusters and
crystals, simple phase-
separated structures

Clusters, either
simple or complex 

=

f    Light�eld descriptor

Collection of
shape histograms
for each point

Complex clusters or
assemblies, phase-
separated structures

2D images from all
di�erent angles

P(r),
P(θ),
etc.θ

Phase-separated
structures

assemblies,
separated s

Figure 5

Depiction of six different shape descriptors applied to self-assembled systems. (a) The point-matching
descriptor (80, 85). Descriptor components are given trivially by particle positions or density maps.
(b) The shape histogram descriptor (86). The structure is indexed into a spatial histogram consisting of
shells and sectors. (c) Shape distributions descriptors (87). The probability distribution is computed for
various local measurements, such as the distance or angle between surface points. (d) Harmonic descriptors
(88–91). The shape histogram is decomposed into a convenient harmonic representation, which can be used
for rotation-invariant matching. (e) The shape contexts descriptor (92). A coarse histogram is created for
each point on the structure. The descriptor is given by the collection of subdescriptors for each point.
(f ) The lightfield descriptor (93). Images or projections are constructed from several different vantage
points and indexed into individual shape descriptors. The overall descriptor is given by the collection of
subdescriptors for each image.
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structures with orientational ordering such as crystals or quasicrystals and simple microphase-

separated structures such as layered phases or network structures. The shape histogram has

the advantage over the point-matching method that no assignment step is required because the

ordering of points is lost during binning. Additionally, the grid resolution can be adjusted to

provide a variable degree of coarse-graining. As with the point-matching method, the shape

histogram requires registration to match nonaligned objects, unless only radial bins are used

(i.e., the angular grid resolution is set to zero). However, shape histograms may lose their

discerning capabilities without an angular component. If n is large, the cost of registration can

be significantly reduced by aligning the histograms themselves rather than the underlying

structures.

2.2.3. Shape distributions. For many applications, registration is too costly, and rotation-

invariant descriptors are required. A simple, yet powerful method for creating invariants,

known as the shape distributions scheme (87) (Figure 5c), involves computing distribution

functions for simple rotationally invariant local metrics. Such local metrics are defined based

on object surfaces; thus, this method is best applied to structures with clearly defined, yet

distinguishable, surfaces, such as microphase-separated structures formed by block copolymers

(45, 60) or tethered nanoparticles (4, 28, 71, 73) (see, for example, Figure 4). The shape

distribution D2 is defined as the probability distribution of the distance between pairs of surface

points. Another similar distribution A3 is defined by the probability distribution of angles

formed by triples of surface points. Similar distributions are defined for higher numbers of

points. The distributions D2 and A3 are similar to the radial distribution function g(r) and the

angular distribution function a(y), respectively, although usually only surface particles are

considered. As with g(r) and a(y), shape distributions are too coarse to distinguish between

similar shapes, such as small polyhedral clusters.

2.2.4. Harmonic/invariant moment descriptors. A more complex, but more powerful method

for computing invariant descriptors is to compute the harmonic transform of the shape histo-

gram. By disregarding the phase information, we obtain descriptors that are invariant under

rotations (Figure 5d). As with the shape histogram, harmonic descriptors are versatile and

can be applied to a wide range of structures including complex nanoparticle clusters, proteins,

and macromolecules, as well as crystalline or microphase-separated structures. The method

by which we compute the harmonic transform of the shape histogram depends on the

underlying basis. Invariants can be obtained for shapes on the circle (y-dependence) (88), sphere

(y,f-dependence) (89), disk (r,y-dependence) (90), and ball (r,y,f-dependence) (91). On the

unit circle or sphere, the harmonic descriptors are called Fourier descriptors, whereas on the

disk or ball, the descriptors are known as Zernike descriptors. The implementation of these

methods for complex assembled systems is described in detail elsewhere (96). Harmonic

descriptors exhibit an inherent data-smoothing mechanism that leaves them better suited for

describing small polygonal or polyhedral clusters than the shape histogram, which is prone to

error without sufficient averaging. This property, combined with the property of rotational

invariance, makes harmonic descriptors ideal for describing orientationally disordered global

structures, such as liquids, glasses, and certain microphase-separated structures, via the proba-

bility distributions method. Harmonic descriptors also contain additional frequency-dependent

information regarding the symmetries of the structure. These unique properties of harmonic

descriptors have already been successfully applied to constructing orientational order parame-

ters for small clusters and simple crystals (21, 22).
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2.2.5. Shape contexts. It is fairly common in the context of self-assembly experiments and

simulations to encounter nearly ideal assembled structures with localized defects. Thus, it is

often desirable to distinguish between local structural dissimilarities that arise due to defects

and overall differences in the structure. A brute-force solution to this problem is to explicitly

include defective structures in the library of reference structures such that they may be identified

directly (70); however, this requires a priori knowledge of the entire space of potential defective

structures. Obtaining such knowledge may be intractable for complex assemblies with many

degrees of structural freedom, or unmapped systems whose local motifs have not yet been

thoroughly studied. A more general solution is to apply a partial matching scheme, such as the

shape contexts method (92, 97), which is capable of matching structures independently of local

defects, as well as identifying such defects (Figure 5e). The shape contexts method combines

elements of the point-matching scheme with the shape histogram descriptor. Here, a separate

shape histogram is computed for each sample point in the structure, wherein the coordinate

system is centered at that point. The points in the query structure are then assigned to their

corresponding points in the reference structure by optimizing the match between shape histo-

grams. Outlier points that do not correspond well (i.e., local defects) can be excluded to obtain

a partial match, or used to identify the defects. Shape contexts can be applied to any system

wherein local defects might arise, such as atomic or molecular clusters, micro- or nanoscale

assemblies, or biological structures. Because shape contexts are based on the shape histogram,

they have the same limitations when indexing structures with a small number of sample points

locally.

2.2.6. Lightfield descriptor. The shape contexts descriptor is just one example of the more

general method for creating new powerful descriptors by combining simpler subdescriptors. A

similar method based on combining subdescriptors is given by the lightfield descriptor (93),

which involves projecting 3D structures onto 2D images from 20 vantage points at the vertices

of a dodecahedron. This process effectively simulates the act of viewing a structure from

different angles by eye, giving the lightfield descriptor its name (Figure 5f). The lightfield

descriptor can thus be applied to microphase-separated structures, nano/colloidal scale assem-

blies, or other structures that can be effectively identified by the trained eye. Each of the 20 2d

images is indexed by a 2d descriptor, and assignment is performed for pairs of these descriptors

for compared structures to optimize correspondence. In practice, many initial rotations of the

dodecahedron are attempted to minimize error due to small offsets in the spatial orientation.

2.2.7. Other possible descriptors. In addition to the shape descriptors outlined above, the

shape-matching literature defines numerous potentially useful descriptors that we have not

mentioned here. Some intriguing possibilities include graph-based descriptors (98–100),

descriptors based on reflective symmetries (101), and methods based on the similarity of slices

of objects (102). Several structural metrics from the condensed matter literature might also

serve as useful shape descriptors for some applications. For example, in the realm of global

structures, diffraction patterns, radial distribution functions, or orientation tensors [e.g., the

radius of gyration tensor or the nematic order tensor (103)] could be indexed into shape

descriptors. For local structures, analysis schemes such as the common neighbor analysis

scheme of Reference 16 could be easily incorporated. Although many of the structural metrics

from the literature may not be independently distinguishing for a wide range of problems, they

may still yield useful information as part of a more general scheme through a combination of

descriptors.
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2.3. Similarity Metrics

The degree to which two shape descriptors match (104) is quantified by a similarity metric.

Computing a similarity metric involves reducing the complex information contained in shape

descriptors into a single scalar value that indicates the degree of matching. The similarity

metric that best suits a particular application depends on both the shape descriptor and the

intended physical application. The following are some desirable properties of similarity

metrics:

� Metric Behavior: The ability for a similarity metric to give a value that is proportional to

the physical match between the structures. Some similarity metrics satisfy the triangle

inequality (104) [i.e., MðSA,SBÞ þMðSA,SCÞ � MðSB,SCÞ, where M is a similarity metric,

and SA,SB,SC are shape descriptors] and are thus truly metrics, whereas others do not

and can be considered pseudo-metrics. It is typically desirable for similarity metrics to range

smoothly with the difference between structures.
� Normalization: The range of possible matching values for a given matching scheme. For

many condensed matter physics applications, we desire similarity metrics that range from

0 to 1 for use as pseudo-order parameters. Although many similarity metrics do not vary

naturally from 0 to 1, they can often be changed by simply shifting and scaling the interval

that defines an ideal and worst-case match. In practice, there is little difference between this

type of pseudo-order parameter and a standard order parameter in terms of the underlying

physics.
� Specificity: The degree to which a similarity metric highlights specific differences between

shape descriptors. For some applications it is desirable to give more weight to specific

important differences between the descriptors.

Often, similarity metrics are based on simple geometric functions, such as the Euclidean

distance or vector projection between shape descriptors, which are typically represented as long

vectors. Whereas similarity metrics based on the Euclidean distance are particularly common in

the shape-matching literature (67), schemes based on the vector projection are more commonly

(implicitly) applied throughout the condensed matter literature (15, 21, 22). In practice, the

mathematical form of the similarity metric is typically of little consequence; virtually any

function can be chosen, provided it ranges smoothly as the shapes become physically different.

In some specific cases, specialized similarity metrics are designed to be used in conjunction with

particular shape descriptors. The shape histogram scheme described in Section 2.2 above

utilizes a specialized quadratic form distance function for matching (86), which accounts for

mismatches arising from near misses that occur due to the discrete nature of the histogram bins.

The P2 Legendre polynomial shown in Figure 1 is an implicit example of a specialized similarity

metric, specifically designed to match the angles of rod-like particles with the ideal angle given

by the global director (20).

3. EXAMPLE APPLICATIONS

In this section, we demonstrate the application of shape-matching techniques to a few represen-

tative problems from our studies of self-assembly. For simplicity, we use the same shape descrip-

tor and similarity metric for all of the examples. Because our goal here is to demonstrate the

basic usage of shape-matching techniques, our examples should be considered proofs of concept

rather than optimal solutions to the problems. Additional examples of applications of other

shape descriptors to self-assembly may be found in References 96 and 105.
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3.1. Prototype Shape-Matching Scheme

For our example problems, we use the 3d Fourier shape descriptor (89), which is the harmonic

descriptor defined for patterns on the sphere, y,f. We choose this descriptor because it is closely

related to the spherical harmonics bond order parameters introduced by Nelson and coworkers

(21, 22); thus, many readers will already be partially familiar with them. The basic idea behind

the 3d Fourier descriptor is to decompose a 3d structure into one or more patterns on the 2d

surface of a sphere, and represent these patterns mathematically by computing the discrete

spherical harmonics transform. This method of representing a pattern as its harmonic transform

is analogous to the way that 1d signals along the perimeter of the circle can be described by their

discrete Fourier transform.

How we extract the patterns on the sphere depends on how data are represented. For

simplicity, we use a minimal data representation based solely on particle positions (i.e., point

cloud data) for all of our examples; however, other types of data, such as volumetric data, can

also be easily treated by Fourier descriptors. For our examples, we describe particle structures

as patterns on the sphere by (a) translating the structure to the origin, (b) grouping all positions

within a radial shell rs , and (c) converting each position x into its angular direction relative to

the origin [y(x),f(x)]. This is repeated for all ns radial shells required to fully describe the 3d

structure, resulting in ns patterns in total on the sphere for each structure.

For each pattern on the sphere, the Fourier coefficients of the discrete spherical harmonics

transform are given by

q‘ ¼
1

n

X

n

i¼1

Ym�
‘ ½yðxiÞ,fðxiÞ� m ¼ �‘,�‘þ1, . . . ‘: 1:

The term Ym
‘ is a set of spherical harmonics with angular frequency ‘. The coefficients q‘ are

vectors with 2‘þ 1 complex components. Although the Fourier coefficients in their complex

number form are rotationally dependent (i.e., their value depends on the spatial orientation of

the underlying pattern), we can convert them to their rotationally invariant form by computing

the magnitude of each coefficient. The invariant circular coefficients are given by

j q‘ j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p

2‘þ 1

X

‘

m¼�‘

j qm‘ j2

v

u

u

t : 2:

The Fourier invariants are positive real numbers. Although the coefficient magnitudes them-

selves can be used directly as order parameters (22), incorporating them into a shape descriptor

is often more powerful, because we can compare shapes based on a variety of frequencies and

length scales. To create a descriptor from the Fourier coefficients, we simply combine the

desired q‘ or jq‘ j into a long vector. For example, a general rotation-invariant shape descriptor

that is applicable to patterns on the sphere over a range of symmetries is given by

S
F3
shelli

¼<j q‘min
j, j q‘minþ1 j, . . . j q‘max

j> : 3:

The range of frequencies can be adjusted to obtain a desired level of resolution. For our

examples below, we use ‘min ¼ 4 and ‘max ¼ 12. Because each Fourier descriptor describes the

pattern for a given shell, we must combine the Fourier descriptors for each shell to describe the

overall shape:

S
F3 ¼< S

F3
shell1

,SF3
shell2

, . . . SF3
shellns

> : 4:

For our example applications, we use a simple similarity metric based on the Euclidean

distance jSi � Sjj between harmonic shape descriptors:
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MðSi,SjÞ ¼ 1� 2ðjSi � Sj j=jSi j þ jSj jÞ: 5:

This similarity metric is proportional to the Euclidean distance between shape descriptor

vectors, but is normalized such that vectors that match perfectly give a value of 1, whereas

vectors that are perfectly anticorrelated give a value of �1. Vectors with no directional correla-

tion (i.e., that are orthogonal) give a value of 0. This normalization allows us to make a clearer

analogy between our matching scheme with a typical order parameter; however, only the

relative value of the similarity metric is relevant and the normalization is merely a matter of

convenience.

3.2. Example 1: Micellar Crystal Structures

A straightforward application of shape-matching techniques to particle systems is to identify

unknown structures by searching a database of known reference structures. Structures are

identified by the known structure that gives the best match. Structure identification can be

performed for either local structures or for global samples. As a simple example of structure

identification for a global sample, consider the ditethered nanosphere system of References 59

and 79, which self-assembles into spherical micelles. The micelles themselves pack into an

ordered binary crystalline superstructure. Depending on the state point, the system forms

different crystals, as shown in Figure 6. The structural pattern that represents the different

crystals is obtained by identifying the micelle centers of mass, which comprise the set of

positions that describe the system. The micelle centers of mass are determined by creating a

density map (i.e., a voxel representation) for the aggregating polymer tethers and then applying

a Gaussian filtering algorithm adapted from the colloidal science literature (51, 55) to identify

the spheroid centers. Because the superstructure has long-range orientational ordering, a global

pattern is given by the superposition of local patterns (see Figure 3). The pattern for the

Reference

FCC 0.65

HCP 0.56

BCC 0.62

SC 0.81

Diamond 0.72

Reference Mdi�(SF3, SF3
ref)

Mdi�(SF3, SF3
ref)

FCC 0.57

HCP 0.50

BCC 0.58

SC 0.52

Diamond 0.63
Micelle COMBulk structure

a

b
Superposition

θ = 30°

θ = 60°

Figure 6

Identification of global crystalline structures for a system of ditethered spheres (59, 79), as compared to face
centered cubic (FCC), hexagonally close packed (HCP), body centered cubic (BCC), simple cubic (SC), and
diamond. (a) A crystal formed in the ditethered nanosphere system where the planar angle between tether
attachment is 30 degrees. Ignoring chemical specificity of the tether micelles, the structure best matches the
ideal diamond lattice. (b) A crystal formed by the ditethered nanosphere system with planar angle between
tether attachment of 60 degrees. Ignoring chemical specificity of the micelles, the structure best matches an
ideal SC structure. In both cases, the micelle centers of mass (COM) are extracted using a Gaussian filter,
and matching is based on the global superposition of local patterns (Section 2.1).
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unknown crystal is compared to those for several standard candidate crystals. For each pattern

we compute the 3d Fourier descriptor SF3 described above, with rotationally invariant coeffi-

cients for a single shell, ns ¼ 1. Using this method, the patterns are compared independently of

spatial orientation over a single length scale used to construct the local clusters. The unknown

crystal is identified by the reference structure that gives the best match. The structures in

Figure 6a,b are identified as diamond and simple cubic, respectively, wherein we do not

consider the chemical specificity of the two types of micelles. Notice that the best match does

not necessarily give a value that approaches 1; such deviations are common when comparing

thermal systems to mathematically perfect reference structures, as we have done here. The

micellar system under investigation exhibits thermal disorder as well as polydispersity in the

shape and size of the micelles; thus, particle positions deviate from the ideal lattice points.

Oftentimes, comparison with reference systems that exhibit similar levels of noise may provide

clearer results.

This type of database search has already been applied to particle systems in the context of

proteins and macromolecules (75, 76, 94, 95, 106–108). Although database searches have only

been applied in limited cases to assembled systems (70, 74), many standard local structure

identification schemes in the condensed matter literature bear a strong resemblance to shape-

matching identification schemes. For example, the common neighbor analysis scheme of Refer-

ence 16 involves constructing numerical fingerprints for pairs of atoms based on their local

neighbor configurations and identifying local clusters by matching the distribution of finger-

prints with those for ideal structures. In the language of shape matching, the collection of

common neighbor analysis fingerprints can be considered a shape descriptor, and the catalog

of ideal fingerprints can be considered a database of reference structures. A similar identifica-

tion scheme is given by the bond order parameters of Reference 22. Here, particular local

structures with strong symmetries, such as small ordered clusters of spherical particles, can be

identified by finding structures with bond order parameters that exceed a particular threshold

(109). In this case, the bond order parameters represent shape descriptors, and the threshold

values act implicitly as similarity metrics, because the ideal structures are known to have high

values of the bond order parameters.

3.3. Example 2: Icosahedral Clusters of Tetrahedral Particles

As mentioned in the previous example, a common application of structural characterization

schemes is to identify local motifs within a global system. Examples include finding locally

stable clusters in liquids (16, 25), colloids and gels (110), and nanoparticle superstructures

(70, 74), as well as identifying structural defects in, or grain boundaries between, crystalline

domains, such as in dense colloids (54). Often, these local structural characteristics can be

directly related to the thermodynamic, mechanical, or other properties of the system.

When detecting local structures in systems without long-range orientational order (i.e.,

disordered systems), we often encounter structures that are not present in our reference library.

A structure that does not match with those in the reference library within a certain threshold is

considered disordered or unimportant (70, 74). The threshold must be chosen carefully; in

thermal systems, an overly stringent cutoff value might cause a matching scheme to miss highly

ordered structures perturbed slightly from their ideal configurations, whereas an overly permis-

sive cutoff can misidentify highly disordered structures. In most cases, a sufficiently rigorous

cutoff can be defined such that its value does not affect the qualitative results.

As an example of identifying ordered local structures in an otherwise disordered system,

consider the hard tetrahedron fluid studied in Reference 25 (Figure 7). In this system, an
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important local motif to both the fluid and the glass, originally identified by visual inspection, is

the icosahedron formed by 20 tetrahedra sharing a common vertex. To identify icosahedra in

the system, we first cluster all sets of 20 tetrahedra in the system that share a common vertex.

The structural pattern for each cluster is defined by the directions of vectors drawn from the

center of the cluster through the face of each of the 20 tetrahedra, which for an ideal icosahedral

cluster results in a dodecahedron. Any local cluster i that matches the shape of a dodecahedron

with a value ofMcutðS
F3
i ,SF3

dodecahedronÞ > 0:9 is considered to be in an icosahedral motif. Figure 7

shows the fraction of tetrahedra that participate in at least one icosahedron as a function of

pressure. Icosahedra are relatively common in the tetrahedral fluid (below P ¼ 62) and become

more prevalent with increasing density, persisting into the glass if the fluid is compressed too

quickly. As the fluid transforms into a quasicrystal at P� 62, the fraction of tetrahedra in

icosahedra decreases drastically and vanishes for the ideal quasicrystal without thermal fluctu-

ations. Although the value of Mcut may affect the absolute number of icosahedra, the same

underlying physical transition is captured for any reasonable value.

3.4. Example 3: Assembly of a Helical Ribbon

Another standard application of structural metrics is to track structural transitions, either as a

function of time or a changing reaction coordinate. This is typically accomplished by monitor-

ing either an order parameter or correlation function as the system goes through a transition.

Tracking structural transitions is important for a wide variety of applications, including eluci-

dating thermodynamic transitions (15, 19, 111–113) and assembly pathways (26, 40, 114,

115). Many of the advanced molecular simulation techniques used to study transitions

(116–120) rely on structural metrics in the context of pseudo-reaction coordinates (117),

biasing parameters (116), and collective variables (120) to guide the statistical sampling algo-

rithm. Standard order parameters have been devised for various types of ordering, including

40 50 60 70 80 90
0

0.05

0.10

0.15

0.20

0.25

P

fico

x

y

z

y

Figure 7

Icosahedral clusters in the hard tetrahedron system (25). As the pressure, P, and the corresponding density
increase, the fraction of icosahedra, fico, increases until the system transforms into a dodecagonal quasicrys-
tal at P� 62, at which point the number of icosahedra vanishes.
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bond orientational ordering (22, 121–123), liquid crystalline ordering (13, 20) such as nematic

(18) and smectic (19) phases, chiral ordering (17), and helical ordering (124). Time correlation

functions based on these types of order parameters have been applied to creating structural

memory functions for glassy liquids (125, 126) and ordered motifs attaching to a growing

quasicrystal nucleus (127).

As a simple example of using shape descriptors to create an order parameter, consider the

ribbon-like bilayer composed of laterally tethered nanorods, which are studied in Reference 65

and shown in Figure 8. The initial sheet or ribbon is unstable and eventually relaxes into a

stable helical structure. We can track this structural transition by matching the shape of the

sheet at a given time t with the final, fully equilibrated helical structure: MðSF3
t ,SF3

helixÞ. Because

the structure is 3d and has radial dependence, we use a Fourier descriptor with ns ¼ 6 radial

shells: rs ¼ 10s, 30s. . .110s, where s is the distance unit corresponding to a Lennard-Jones

particle diameter. Because the sheet only changes in terms of its twist in space, we save compu-

tational effort by only considering points along the backbone of the sheet. Figure 8 shows the

helical order parameter as a function of time for a long molecular dynamics run. We observe

that the sheet begins to twist from both ends simultaneously, which gives rise to a defect at the

center of the helix, where a mismatch in the periodicity between the two ends occurs. This

results in a tendency for the structure to bend to close the defect. The bend persists for many

millions of time steps before annealing into a defect-free helix at approximately t=t ¼ 4.5�107.

This behavior is well captured by matching the overall shape of the structure but is not captured

by the more standard H4 descriptor applied in the original reference, which only measures the

degree of helical ordering and gives an essentially constant value for all times after the comple-

tion of twisting at t=t � 7�106 (65). Using H4 alone, it would appear that the structure is

fully formed at this early time, which does not capture the important defect removal behavior,

which can also be observed by visual inspection.

t /τ x 107

Initial twisting

Bent helix
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Figure 8

Assembly of a helical sheet composed of laterally tethered nanorods (65). The rods form a bilayer with long
attractive tethers on one side and shorter attractive tethers on the other. As the dimensionless time, t=t,
progresses, the sheet folds into a helix to maximize the favorable energetic interactions between the longer
tethers. The matching order parameter Mdist(St=t, Shelix) compares the structure at time t with the shape of
the final ideal helical structure.
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4. FUTURE OUTLOOK

Beyond identifying local and global structures and tracking structural transitions, there are

many more applications of shape matching. In this section, we briefly review some areas in

which we are currently applying shape matching for studying self-assembly. Additional details

may be found in Reference 105 and in the individual references cited below.

4.1. On-The-Fly Structure Identification

For many assembly applications, such as the bottom-up-building-block-assembly algorithm

(BUBBA) (128), we are interested in cataloging unique structures. When enumerating unique

structures, it is not typically necessary (or feasible) to define a library of reference structures a

priori, as we did for Examples 1 and 2 above. Rather, the reference library can be compiled on

the fly as new structures are encountered (see Figure 9a). Each new structure is given a unique

identifier, and structures that are duplicates are labeled with the same identifier. In addition to

cluster enumeration schemes, this type of algorithm can potentially be applied to automatically

detect regions of unique ordering in structural phase diagrams.

4.2. Space/Time Correlation Functions

In Example 3 above, we demonstrated how shape matching could be used to track a

structural transition as a function of time or a reaction coordinate. Another common

application of structural metrics is to characterize how structures change in space. In the

context of shape matching, this involves choosing structures from different points in the

system, rather than ideal structures, as reference structures. Spatial correlation functions are

often used to measure structural correlation lengths. In the condensed matter literature,

structural correlation functions have been defined for crystal-like ordering in 2d (121, 122)

and 3d (15, 22), nematic ordering (130), and many other more specialized types of order-

ing. More specialized types of spatial correlation functions have been widely applied as well.

One example is the q6 	q6 scheme of References 15 and 131, which detects ordered crystal

nuclei based on spatial correlations between local bond order parameters. This scheme can

be adapted to identify crystal nuclei in general by replacing q6, which is only sensitive to

particular crystal structures, with other shape descriptors that are applicable to a particular

crystal under investigation. Figure 9b depicts the formation of a diamond-structured crystal

nucleus (yellow) in a system of patchy particles, identified by replacing q6 with the ‘ ¼ 3

Fourier coefficient, q3 (40).

4.3. Structure Grouping and Classification

The field of self-assembly involves a wealth of particle building blocks and the assemblies they

form; thus, it is sometimes useful to categorize or classify structures based on particular struc-

tural features. For example, Reference 3 ranks different building blocks for self-assembly based

on their shape anisotropy. Shape-matching methods can provide numerical metrics by which to

classify structures. Structures can be ranked based on the degree to which they exhibit a

particular structural feature of interest or on how well they match ideal structures exhibiting

a particular feature. For example, structures can be ranked based on their sixfold symmetry

by computing the value of their ‘ ¼ 6 Fourier descriptor, which is proportional to the degree

of sixfold symmetry. Similarly, we can create groups of structures that exhibit a particular
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Figure 9

Potential uses for shape matching in assembly applications. (a) Searching parameter spaces for unique structures. The panel
depicts the bottom-up-building-block-assembly (BUBBA) algorithm (128). (b) Computing spatial correlation functions. The panel
depicts detecting a growing diamond crystal nucleus in a system of patchy particles (40). (c) Structure grouping and classification.
The panel depicts a similarity matrix (i.e., all of the pairwise similarity values) for 2d clusters of different sizes, labeled in the
panel. Matching is performed for the representative shape descriptors, M(Si,Sj), where groups of similar structures are identified
by bright boxes about the line y ¼ x. (d) Abstract correlation functions. The panel depicts a structural phase diagram for the 2d
Lennard-Jones Gauss system (top), created by visual inspection (129), compared with a phase diagram for the same system
generated automatically using a shape-matching algorithm (bottom). The respective phase classifications are defined in the text of
Reference 129.
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structural feature by comparing shape descriptors. One example of a technique used to visually

group similar structures is given by plotting a matrix of pairwise similarity values known as a

similarity matrix or heat map (132), as depicted in Figure 9c for 2d colloidal clusters (D. Ortiz,

E. Jankowski & S.C. Glotzer, unpublished data). Groups of clusters with similar structural

features produce bright blocks, indicating that clusters within this region of parameter space

match well. Grouping objects based on shape similarity has also been applied recently to

macromolecules and proteins (75, 107).

4.4. Abstract Correlation Functions

Thus far, we have either extended the applicability of standard condensed matter order param-

eters and correlation functions by incorporating shape matching, or applied standard shape-

matching applications directly in the context of assembled systems. However, in addition to

extending existing applications for use with assembled systems, shape matching allows us to

invent new methods that have not yet been explored. For example, rather than creating corre-

lation functions in space and time, as we typically do for condensed matter systems, we can

create abstract correlation functions in parameter space. Figure 9d depicts a parameter space

correlation function computed for the 2d Lennard-Jones Gauss system (129), which identifies

structural phase boundaries (purple) by finding points in parameter space that do not match

well with their neighboring points. This correlation function is able to reproduce the structural

phase diagram produced in Reference 129 by visual inspection of more than 5,000 independent

configurations. This scheme is just one example of how shape-matching algorithms can replace

the human element in searching for target structures and rapidly mapping parameter spaces.

The ability to expedite self-assembly research by automating the study of unique systems may

represent one of the most important uses for shape matching moving forward.

5. SUMMARY

The example applications and shape descriptors that we have provided here represent only a

small subset of the vast range of possibilities yet to be explored. In the future, the wealth of

shape descriptors from the shape-matching literature should be tested for different classes of

particle systems to expand the scope of order parameters available to the fields of experimental

and computational assembly. New abstract order parameters and correlation functions, such as

the phase space correlation function of Figure 9d, can be constructed to expand the algorithms

used to explore new systems. More immediately, the relatively simple algorithms outlined here

can be applied to existing assembled systems to enhance our ability to gain insight into the

underlying physics of these complex systems.
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