
Characterizing the Applicability of

Classification Algorithms Using Meta-Level Learning

Pavel Brazdil 1

Jo~o Gama 1

Bob Henery 2

1 LIACC, University of Porto, Rua Campo Alcgre 823; 4100 Porto, Portugal.
email: pbrazdil, jgama @ncc.up.pt.

2 Dept. of Statistics, University of Strathclyde, Livingston Towel', 26 Richmond
Street, Glasgow, UK, email: r.j.henery @strathclyde.ac,uk.

Abstract , This paper is concerned with a comparative study of different
machine learning, statistical and neural algorithms and an automatic analysis
of test results. It is shown that machine learning methods themselves can be
used in organizing this knowledge. Various datasets can be characterized using
different statistical and information theoretic measures. These together with
~he test results car~ be used by a ML system to generate a set of rules which
could also be altered or edited by the user, The system can be applied to a new
dataset to provide the user with a set of recommendations concerning the
suitability of different algorithms and these are graded by an appropriate
information score. The experiments with the implemented system indicate
that the method is viable and useful.

1 Introduction

Project StatLog carded out perhaps the most comprehensive comparative study of different
machine learning, neural and statistical classification (D.Michie, et al., 1994). About 22
different algorithms were evaluated on more than 20 different datasets of industrial interest.
It is interesting that no particular algorithm could be considered 'best' when considering the
error rates. With some datasets one particular algorithms could be better than other
algorithms, but with other datasets this could easily be the other way round. As there was
no algorithm which could be considered best overall, a question arises whether one could
adopt a method that would identify the promising algorithm(s) on the basis of the existing
test results. The purpose of this paper is to show how we can do that.

The aim of our work is to obtain a set of rules characterizing the applicability of different
algorithms. It appears that datasets can be characterized using certain features such as
number of attributes, proportion of binary, categorical or numeric attributes, unknown
values etc. In addition, we can use other more complex statistical or information theoretic
measures. It is reasonable to try to match the features of datasets with our knowledge
concerning the performance of algorithms. If we select the algorithm that most closely
matches the features of the dataset on which the algorithm performed well, then w e increase
the chances of obtaining useful results. The advantage is that not all algorithms need to be

84

tried out. Those algorithms that do not match the data can be excluded, and so, a great deal
of computing effort effort can be saved.

In order to achieve this aim, we need to determine which data.set features are relevant. After
that, various instances of learning tasks can be examined with the aim of formulating a
'theory' concerning the applicability of different machine learning and statistical algorithms.
The process of constructing such a theory can be considered as a kind of meta-level
learning. The knowledge concerning as to which algorithm is applicable can be summarized
in the form of rules of the form: If the given dataset has characteristics C1..Cn, then
classification algorithm A is (may be) applicable.

Each rule can in addition be qualified using certain statistical measures, such as estimates of
correctness. For reasons explained later we prefer to use estimates of how informative each
rule is. Rules concerning applicability of algorithms can be constructed manually, or with
the help of some (se'mi-)automadc method. In this paper we are concerned with the
application of machine learning methods to this problem.

Previous work on comparative studies has usually considered only a few algorithms (e.g.
neural networks and decision trees) and these were done usually on few datasets only (a
comprehensive review of previous work appears in D.Michie, et al. (1994)). As the number
of tests was generally limited, few people have attempted to automate the formulation of a
theory concerning the applicability of different algorithms. One exception was the work of
Aha (1992) who represented this knowledge using rule schemata. One example of such a
rule schema is:

If (# training instances < 737) AND
(# prototypes per class > 5.5) AND
(# relevant attributes > 8.5)

Then IB 1 >> C4

where IB1 >> C4 means that algorithm IB1 is predicted to have significantly higher
accuracies than algorithm C4. Our approach differs from Aha's in that we are not concerned
with just a comparison between two algorithms, but rather a group of algorithms. This
task is more challenging than a set of pairwise comparisons. Also, out rules are suitably
quantified and so our recommendations are more refined.

There is, however, an alternative solution to the problem of how we can go about selecting
a suitable classification algorithm. Instead of attempting to predict which classification
algorithm would perform well, we can try out all different algorithms and examine the
outcome. This approach has been adopted by Shaffer (1993) who compared three different
classification algorithms - C4.5, C4.5rules and back propagation. The algorithms were
evaluated on five different datasets using cross-validation (CV). The objective of the method
is to consider each dataset in turn, and in each case select that algorithm that appears to give
the highest success rate. In this context CV could be considered as another (more complex)
classification algorithm. The experimental results have shown that CV is superior to any
of the individual algorithms. This method has, of course, the disadvantage that it requires a
lot of processing time before the final answer can be given. For some classification
algorithms the learning times may be of the order of hours, particularly if we use large
industrial datasets (such as the ones used in StatLog). Besides, we have to have all
classification algorithms available and the expertise to use them. Our approach avoids these
difficulties.

85

Organization of this Paper

This paper is organized as follows. Sections 2 describes a set of basic dataset measures used
to characterize datasets. Section 3 describes the preprocessing of test results, and in
particular, the criteria used to determine whether a particular algorithm can be considered
applicable or non-applicable. This section describes also how a particular machine learning
algorithm (C4.5) can be used to generate a set of rules on the basis of the available data
(dataset measures and classified test results). Section 4 is concerned with the issue of
assessing the informativity of the individual rules generated. Section 5 gives an overview of
the results and analysis of some of the rules generated. Section 6 shows how the system
can provide an advice concerning which algorithm is most suitable for a given dataset. In
this section we discuss also the correlation between the advice and the actual performance.

2 " C h a r a c t e r i s t i c s o f Datasets

Our overall aim is to be able to match the features of datasets with our past knowledge
concerning the algorithms. In order to achieve this, we need to determine which dataset
features are relevant. In this section we will briefly describe some of the features used in
this study. The features can be divided into simple measures, statistical measures and
information based measures. The simple measures include:

N

P
k
Bin_att
Cat_att
Un_attrib
Cost

Number of examples in the dataset.
Number of attributes.
Number of classes.
Proportion of binary attributes.
Proportion of categorical atlributes.
Proportion of unknown attributes.
Cost matrix indicator (it is equal to 1 if costs are used and 0 otherwise)

As for the statistical measures, we have adopted those suggested by R.Henery and C.Taylor
(Michie D.et al, 1994). These measures include:

SD_ratio Standard deviation ratio. Geometric mean ratio of standard deviations of
the individual populations to the pooled standard deviation.

Corr.abs Mean value of correlations between attributes (mean over all pairs of
attributes and all populations).

Cancorl Canonical correlation for the best single linear combination of attributes
that discriminates between populations.

Fractl

Skewness

Kurtosis

The first eigenvalue of canonical discriminant matrix divided by the sum
of all eigenvalues.

Mean of I E(X-IX) 3 I / t~ 3.

Mean of I E(X-Ia) 4 I / 0 "4.

where E(X-IX) represents a moment, IX mean and a standard deviation. The information
based measures include:

86

I-I(A)
H(C)
M(C,A)
EN.attr

Mean entropy (complexity) of attributes.
Entropy (complexity) of class.
Mean mutual information of class and attributes.
Equivalent number of attributes H(C) / M(C,A)

Each dataset is then simply described using a vector of numeric values.

3 Using Test Results as Data in Meta-level Learning

The test results obtained during the StatLog project were used as raw data which was
preprocessed in a particular way. The results for each dataset were analyzed with the
objective of determining which algorithms achieved low error rates (or costs). All ~
algorithms with low error rates were considered applicable to this dataset. The other
algorithms were considered inapplicable.

This categorization of the test results can be seen as preparatory step for the metalevel
learning task. Of course, the categorization will permit us also to make predictions
regarding which algorithms are applicable on a new dataset.

Of course, the ~uestion whether the error rate is high or low is rather relative. The error rate
of 15% may be excellent in some domains, while 5% may be bad in others. This problem
is resolved using a method similar to subset selection in statistics. First, the best algorithm
is identified according to the error rates. Then an acceptable margin of tolerance is

calculated. All algorithms whose error rates fall within this margin are considered
applicable, while the others are labeled as inapplicable.

The level of tolerance can reasonably be defined in terms of the standard deviation of the
error rate, but since each algorithm achieves a different error rate, the appropriate standard
deviation will vary across algorithms. The standard deviation can be estimated by
calculating the error margin

EM = sqrt(ER * (1 - ER) / NT),

where ER represents the error rate of the 'best' algorithm, NT the number of examples in
the test set. Then all algorithms whose error rates fall within the interval <ER, ER +
k*EM> are considered applicable. Of course we still need to choose a value for k which
determines the size of the interval. This affects the confidence that the truly best algorithm
appears in the group considered. The larger the value of k, the higher the confidence that the
best algorithm will be in this interval. As a rough guide, a value of k=3 corresponds to a

95% confidence level.

For example, let us consider the tests on the Segment dataset consisting of 2310 examples.
The best algorithm appears to be ALLOC80 with the error rate of 3% (ER=0.03). Then

EM= sqrt(0.03 * (1 - 0.03) / 2310) = 0.0035

which is 0.35%. In this example, we can say with high confidence that the best algorithms
is in the group with error rates between 3% and k * 0.35%. If k=l, the interval is relatively
small - <3%, 3.35%> and includes only two other algorithms (AC2, BayesTree) apart from
ALLOC80. All the algorithms that lie in this interval can be considered applicable to this
dataset, and the others inapplicable. If we enlarge the margin, by considering larger values

87

of k (e.g. 2, 4, 8 or 16), we get a more relaxed notion of applicability. If k=16, for
example, the relatively broad band will include most of the "average" algorithms (see
Fig.l).

Algorithm Error rate Class (k=16) Margin Note

ALLOC80 .030 Appl
AC2 .031 Appl
BayesTree .033 Appl

NewlD .034 Appl

C4.5 .040 Appl
CART .040 Appl
DIPOL92 .040 Appl
CN2 .043 Appl

IndCART .045 Appl
LVQ .046 Appl
SMART .052 Appl
Backprop .054 Appl

Cal5 .062 Appl
Kohonen .067 Appl
RBF .069 Appl
kNN .077 Appl

Logdisc .109 Non-Appl
CASTLE .112 Non-Appl
Discrim .116 Non-Appl
Quadisc .157 Non-Appl
Bayes .265 Non-Appl
ITrule .455 Non-Appl
Default .900 Non-Appl

0.030 Margin for k=0

0.0335 Margin fork=l

0.037 Margin fork=2

0.044 Margin fork=4

0.058 Margin for k=8

0.086 Margin for k=16

Fig. 1 Test Results on Segment dataset and Error Margins

The decision as to where to draw the line (by choosing a value for k) is, of course, rather
subjective. In this work we had to consider an additional constraint related to the purpose
we had in mind. As our objective is to generate rules concerning applicability of algorithms
we have opted for the more relaxed scheme of applicability (k=8 or 16), so as to have
enough examples in each class (Appl, Non-Appl). This point will be discussed in more
detail later.

Some of the tests results analyzed are not characterized using error rates, but rather costs.

Consequently the notion of error margin discussed earlier has to be adapted to costs. The
standard error of the mean cost can be calculated from the confusion matrices (obtained by
testing), and the cost matrix 1.

1 The values obtained on the basis of some tests were:
Dataset Algorithm Mean cost
German credit Discrim 0.525

$~andard error (of mean cos0
0.0327

88

We notice that the categorization of error rates (into Appl, Non-Appl) seems to be a bit
unnatural, but it is necessary, given our aims. We require it simply for the next step, that
involves meta-level learning. As we use a classification algorithm we need to introduce
such categorization. Had we chosen a regression algorithm, this would not be necessary.

Preprocessing of Test Results

The problem of learning was divided into several phases. In each phase all the test results
relative to just one particular algorithm (e.g. CART) were joined, while all the other results
(relative to other algorithms) were temporarily ignored. The purpose of this strategy was to
simplify the class structure. For each algorithm we would have just two classes (Appl and
Non-Appl). This strategy worked better than the obvious solution that included all available
data for training. For example, when considering CART algorithm and margin of k =16 we
get:

CART-Appl, Satim CART-Non-Appl, KL

CART-Appl, Vehic
CART-Appl, Head
CART-Appl, Heart
CART-Appl, Belg
CART-Appl, Segm
CART-Appl, Diab
CART-Appl, Cr.Ger
CART-Appl, Cr.Aust
CART-Appl, DNA
CART-Appl, New-Bel
CART-Appl, Faults
CART-Appl, Tset

CART-Non-Appl, Dig44
CART-Non-Appl, Chrom
CART-Non-Appl, Shut
CART-Non-Appi, Tech
CART-Non-Appl, CUT
CART-Non-Appl, Cr.Man
CART-Non-Appl, Letter
CART-Non-Appl, Simdat

Fig. 2 Classified test results relative to one particular algorithm (CART)

The classified test results are then modified as follows. The dataset name is simply
substituted by a vector containing the corresponding dataset characteristics (measures).
Values which are not available or missing are simply represented by "?". This extended
dataset is then used in the meta-level learning.

Prior Ordering of Algorithms

The classified test results are interesting per se. They enable us to make quick comparisons
among different classification algorithms. Obviously, the more often a particular algorithm
is classified as applicable, the better.

If we consider the classified test results of CART for k=16 shown earlier, we see that this
algorithm can be considered applicable in 13 cases and inapplicable in 9. These numbers

Heart disease Discrim 0.415 0.0688
Head injury Logdiscr 18.644 1.3523

In the experiments reported later the error margin was simply set to the values 0.0327, 0.0688
and 1.3523 respectively, irrespective of the algorithm used.

89

can be used to estimate the probability P(Ai-Appi) that the algorithm Ai is applicable. Here
we prefer to calculate the information associated with this probability, suitably normalized.
(The method takes into account the overall probability of algorithms falling into the class
"applicable". Full description appears in Section 4).

0
tO

03

t -

O
'.,T.,

_=

1,0
0,8

0,6

0,4
0,2

0,0

-0,2
-0,4

-0,6

-0,8
-1,0

t i i i i I i i I i i i i :--:--:m:l~t N :1~1:1[i:[~,1 :~1 I~ t
 mMM[4IH

Fig. 3 Information associated with the prior probability of applicability
of different classification algorithms tested in Statlog

Fig. 3 shows the information values for all algorithms tested in StatLog. We have decided
to show here the mean of two values, one relative to the error margin k=8 and the other
relative to k=16. All values are arranged in a descending order. ALLOC80, for example, is
the first place in the ordering. The associated information value is around .7 bits. That is,
the information that ALLOC80 is applicable is worth about .7 bits. Similarly the
information that Dipo192 or kNN is applicable is worth about .5 bits and so on.

If the information is negative, this can be interpreted as an argument that the algorithm is
likely to be non-applicable. This does not mean, of course, that we cannot find situations
in which the algorithm could be useful. If we do not have any other information, finding
such situations may simply be somewhat less likely.

The information values provide us with useful default decisions which need not be
followed. Indeed, the purpose of met,a-level learning can be viewed as the process of finding
useful rules which enable us to make better decisions than those incorporated in these
defaults.

Choice of Algorithm for Meta-Level Learning (C4.5)

A question arises as to which algorithm we should use in the process of meta-level
learning. We have decided to use C4.5 (Quinlan, 1992) for the following reasons. First, as
our results have demonstrated, this algorithm achieves quite good results overall. Secondly,

90

the decision tree generated by C4.5 can be inspected and analyzed. This is not the case with
some statistical and neural learning algorithms.

So, for example, when C4.5 has been supplied with the partial test results relative to
CART algorithm, it generated the following decision tree:

N > 6435 : Non-Appl (8.0)

N <= 6435:
I Skew <= 0.57 : Appl (2.0)
I Skew > 0.57: Non_Appl (12.0)

It has been argued that rules are more legible than trees. The decision tree shown earlier can
be transformed into a rule form using a very simple process, where each branch of a tree is
simply transcribed as a rule. The applicability of CART can thus be characterized using the

following set of rules:

CART-Appl <-- N <= 6435, Skew > 0.57

CART-Non-Appl <-- N > 6435
CART-Non-Appl <-- N <= 6435, Skew <= 0.57

Quinlan (1992) has argued that rules obtained from decision trees can be improved upon in
various ways. For example, it is possible to eliminate conditions that are irrelevant, or
even drop entire rules that are irrelevant or incorrect. In addition it is possible to reorder the
rules according to certain criteria, iniroduce a default rule to cover the cases that have not
been covered. System C4.5 provides a command that permits to transform a decision tree
into a such a rule set. The rules produced by the system are characterized using (pessimistic)

error rate estimates.

As is shown in the next section, error rate (or its estimate) is not ideal measure, however.
This is particularly evident when dealing with continuous classes. This problem has
motivated us to undertake a separate evaluation of all candidate rules and characterize them
using a new measure. The aim is to identify those rules that appear to be most informative.

The details are given in the following section.

4 Character iz ing the Rules Generated

We notice that the amount of data used in generating the rules concerning applicability of
one particular algorithm is rather modest. As we used only the StatLog test results, we had
only about 22 examples at our disposal (each case represents the results of particular test on
a particular dataset). Of these, only a part represented 'positive examples', corresponding to
the datasets on which the particular algorithm performed well. Also, the set of dataset
descriptors used may not carry too much information. We could thus expect that the rules

generated capture a mixture of relevant and fortuitous regularities.

In order to strengthen our confidence in the result the rules generated are evaluated. Our aim
is to determine whether the rules could actually be used to make useful predictions
concerning its applicability. A rule is considered useful if it appears to make better
predictions than the appropriate default rule. The default rule simply states that the
algorithm is applicable (with no conditions attached), if the algorithm performs well on
relatively many datasets. If the algorithm performs poorly, the default is that the algorithm

is non-applicable.

91

The predictive power of the rules should thus be compared to the default. If a rule appears to
be less informative than the default, the default rule should be used instead. All rules

(including defaults) are quantified using a measure of how predictive they are. The method
of how this is done is given below.

The evaluation of how successful the rules are in predicting the applicability (or non-
applicability) of a given algorithm is done using a leave-one-out procedure. Following this
procedure all but one items is used in training, while the remaining item is used for testing.
Of course, the set of rules generated in each pass could be slightly different, but the form of
the rules was not our primary interest here.

Let us consider, for example, the problem of predicting applicability of CART. This can be
characterized using a confusion matrix, such as the ones shown below, showing results
relative to the error margin k=16.

Appl Non-Ant~l

Appl 11 2

Non-Appl 1 8

The rows represent a true class. The columns refer to the predictions made using the rules
generated.

The confusion matrix shows that the rules generated were capable of correctly predicting
the applicability of CART on a unseen dataset in 11 cases. Incorrect prediction was made
only in 1 case. Similarly, if we consider non-applicability, we see that the correct
prediction is made in 8 cases, and incorrect one in 2. This gives a rather good overall
success rate of 86 %.

Had we decided to use a default rule stating that CART is simply applicable, the number of
correct predictions would increase to 13 (11+2), and the number of incorrect ones to 9
(1+8). This gives a success rate of about 59 %. The default stating that CART is
inapplicable gives correct predictions in 9 cases, and incorrect one in 13. The corresponding
success rate is about 41%.

We notice that success rate is not the ideal measure, however. As the margin of
applicability is extended (by making k larger), more cases will get classified as applicable
and consequently, the estimates concerning applicability will be easier to make. If we
consider an extreme case, when the margin covers all algorithms, we will get an apparent
success rate of 100 % (equal to the default). This apparent paradox can be resolved by
adopdng the measure ca/led information score described by Kononenko and Bratko (1991).
This measure takes into account prior probabilities.

The information score associated with a definite positive classification 2 is defined as -log

P(C), where P(C) represents the prior probability of class C. The information scores can be
used to weigh all classifier answers. In our case we have two classes Appl and Non-Appl.

2 The term 'def'mite positive classification' is used here to indicate that the classifier affirms that
the case belongs to class C with a probability of 1.

92

The weights can be represented Conveniently in the form of a information score matrix as
follows:

Aool Non-AvDI

Appl - log P(Appl) - log (1 - P(Appl))

Non-Appl - log (1 - P(Non-Appl)) log P(Non-Appl)

The information scores can be used to calculate the total information provided by a rule on
the given dataset. This can be done simply by multiplying each element of the confusion
matrix by the corresponding element of the information score matrix.

The quantifies P(Appl) and P(Non-Appl) can be estimated from the appropriate frequencies.
If we consider the frequency of Appl and Non-Appl for all algorithms (irrespective of the
algorithm in question), we get a kind of absolute reference point. This enables us to make
comparisons fight across different algorithms.

For example, if we consider tests of 23 algorithms on 22 datasets, we get a dataset
consisting of 506 cases (23 x 22). As it happens 307 cases fall into the class Appl. The
information associated with -logP(Appl) is .log (307 / 506) = 0.721. Similarly, the value
of -log P(Non-Appl) is -log (199/506) = 1.346.

We notice that due to the distribution of data (given by the relatively large margin of
applicability of k=16), the examples of applicable cases are relatively common.
Consequently, the information concerning applicability has a somewhat smaller weight

(.721) than the information concerning non-applicability (1.346).

If we multiply the elements of the confusion matrix for CART by the corresponding
elements of the information score matrix we get the following matrix:

Appl Non-Appl

Aool 7.93 2.69

Non-Appl .72 10.77

This matrix is in a way similar to the confusion matrix shown earlier with the exception
that the error counts have been weighted by the appropriate information scores. To obtain
an estimate of the average information relative to one case, we need to divide all elements

by the number of cases considered (i.e. 22). This way we get:

Appl Non-Appl

Appl .360 .122

Non-ADol .033 .489

The information provided by classification of Appl is .360 - .033 = .327 bits. The
information provided by classification of Non-Appl is similarly .489 - . 122 = .367 bits.

This information obtained in the manner described can be compared to the information
provided by the appropriate default rule. If we assume that CART is applicable by default,
the corresponding rule will give a correct answer in 13 cases and incorrect one in 9 (we note
that as the number of correct answers exceeds the number of errors, this is actually the fight
default to consider). The number of correct answers and errors can be expressed using a
confusion ma~'ix. Then we can calculate the overall information score in a similar way as

93

before. Each answer needs to be weighed using the appropriate information score. In our
case we get (13" -logP(Appl) - 9* -log(1-P(Non-Appl))) / 22 = 0.131 bits.

This information score of the default rule can be compared to the information score provided
by the rules. A rule can be considered useful if it provides us with more information than
the default. If we come back to our example, we see that the classification for Appl provide
us with .327 bits, while the default classification provides only .131 bits. This indicates
that the rules are more informative than the default for CART. In consequence, the actual
rule should be kept and the default rule discarded.

5 Rules Generated in Meta-level Learning

This section contains some rules generated using the method described. As we have not
used a uniform notion of applicability throughout, each rule is qualified by additional

information. The symbol Appl $ k represents the concept of applicability derived on the

basis of the best error rate. In case of Appl Appl $16 the interval of applicability is <Best

error rate, Best error rate + 16 STD's> and the interval of non-applicability is <Best error
rate + 16 STD's, 1>.

The set of rules generated includes a number of 'default rules' which can be easily recognized
(they do not have any conditions on the right hand side of "4--"). Each rule included shows
also the normalized information score. This parameter gives an estimate of the usefulness
of each rule. Only those rules that could be considered minimally useful (with information
score > .200) have been included here. In the implemented system we use a few more rules
which are a bit less informative (with inf. scores down to .100).

Decision Tree and Rule Base Algorithms; Inf. score:

C4.5-Appl $16 <--'- .477

C4.5-Non-Appl $ 8 4-- k > 2 .226

Newld-Appl $16 4-- .609

AC2-Non-Appl $ 8 <--- .447

CART-Appl $ 8 ~-- N <= 4999, Kurtosis > 2.92 .186

CART-Appl $16 ~-- N <= 6435, Skew > 0.57 .328

CART-Non-Appl $ 8 4-- N > 4999 .226

CART-Non-Appl $16 4-- N > 6435 .367

IndCART-Appl $ 8 4-- Cancorl <= 0.78 .274

IndCART-Appl $16 4-- .384

Cal5-Appl $16 <--- k <= 7 .524

Cal5-Non-Appl $16 <--- k > 7 .244

CN2-Appl $16 4-- .702

ITRule-Non-Appl $ 8 ~-- N > 768 .549

ITRule-Non-Appl $16 <-- N > 1000 .918

Statistical Algorithms: Inf. score:

Discrim-Appl $ 8 ~-- N <= 1000 .247

94

Discrim-Non-Appl $ 8 ~-- N > 1000 .453

Discrim-Non-Appl $16 ~ k > 4 .367

QuaDisc-Appl $ 8 +-- N <= 1000 .309

QuaDisc-Appl $16 ~ Skew <= 2.56, EnAUr > 2.98 .229

QuaDisc-Non-Appl $ 8 ~-- N > 1000, Hx <= 5.58 .226

LogDisc-Appl $'8 ~-- N <= 3186 .495

LogDisc-Non-Appl $ 8 ~-- N > 3186 .323

LogDisc-Non-Appl $16 ~ k > 4 .367

Alloc80-Appl $ 8 ~-- .406

Alloc80-Appl ,1, 16 ~-- .797

kNN-Appl $16 ~-- .766

Smart-Appl $16 ~ Fractl > 0.63 .262

Bayes-Non-Appl $ 8 ~-- .418

Bayes-Non-Appl $16 ~ .705

BayTree-Appl $16 ~-- k <= 7 .557

BayTree-Non-Appl $16 ~-- k > 7 .305

Castle-Non-Appl $ 8 ~-- Cost <= 0, N > 768 .420

Castle-Non-Appl ,1, 16 ~ Bin_att <= 0 .734

Neural Network Algorithms: Inf. score:

Dipo192-Appl $ 8 ~-- .341

Dipo192-Appl $16 ~-- .544

Radial-Non-Appl $ 8 ~-- .401

LVQ-Appl $16 +- .498

BackProp-Appl $ 8 ~- N <= 3000 .495

BackProp-Appl $16 ~-- k <= 7, EnAttr > 2.88 .229

BackProp-Non-Appl $ 8 ~ N > 3000, Cancorl > 0.61 .259

Kohonen-Non-Appl ,I, 8 *-- .641

Cascade-Non-Appl $ 8 ~-- .706

Cascade-Non-Appl $16 <---- .866

Fig. 4 Some Rules Generated During Meta-Level Learning

The rules presented could be supplemented by another set generated on the basis of the
worst error rate (i.e. the error rate associated with the choice of most common class or

worse). In case of Appl $16 the interval of applicability is <0, Default error rate - 16

STD's> and the interval of non-applicability is <Default error rate - 16 STD's, 1>.

D i s c u s s i o n

The problem of learning rules for all algorithms simultaneously is formidable. We want to
obtain a substantial number rules to qualify each algorithm. In addition, there are perhaps
far too many measures given the available data. To limit the complexity of problem we

95

have considered one algorithm at a time. This facilitated the construction of rules.
Considering that the problem is difficult, what confidence can we have that the rules
generated are minimally sensible?

One possibility is to try to evaluate the rules, by checking whether they are capable of
giving useful predictions. This is what we have done and the method was described earlier.
Note that measuring simply the success rate has the disadvantage that it does not
distinguish between predictions that are easy to make, and those that are more difficult.
This is why we have evaluated the rules by examining how informative they are in general.
Our analysis showed that the rules generated can indeed provide us with a useful
information. For example, the following rule

Discrim-Appl $ 8 <--- N <= 1000

provides us with .247 bits of information, if invoked, which is reasonable. On quick glance
the condition "N <= 1000" is a bit puzzling, however. Why should Discrim perform
simply well, if the number of examples is less than this number?

One possible answer to this question is that the condition shown is simply fortuitous. The
rules could contain some fortuitous conditions, given that they were generated on the basis
of relatively few data. Unless we have more data, it is difficult to determine which
conditions are really relevant. However, it is necessary to note that each condition, such as
.... N <= 1000", should be interpreted contextually. The condition cannot be simply
interpreted as "Discrim performs will perform well if such and such condition is satisfied".
The correct interpretation is something like - "Discrim is likely to compete well under the
conditions stated, provided no other more informative rule applies".

However, the condition seems to make sense in the light of the following additional
evidence. Some algorithms have a faster learning rate than others. These algorithms
compete well with others provided the number of examples is small. The fast learning
algorithms may however be overtaken by others later. The experiments with learning
curves on the Satellite Image dataset show that Discriminant algorithm is among the first
six algorithms in terms of error rate as long as the number of examples is relatively small
(100, 200 etc.). This algorithm seems to quickly pick up what is relevant and so we could
say, it competes well under these conditions. When the number of examples is larger,
however, Discriminant is overtaken by other algorithms. For example, with 3200 examples
Discriminant is in the 15th place in the ranking. This supports the view that the system
has 'discovered' a new piece of experimental knowledge from the regularities in the dam.

There is of course a well recognized problem that should be tackled. Many conditions
contain numeric tests which are either true or false. It does not make sense to consider
Discriminant algorithm applicable if the number of examples is less than 1000, and
inapplicable, if this number is just a bit higher. Obviously a more flexible approach is
needed (e.g. using flexible matching). We note, however, that this problem is somewhat
attenuated by the fact different error margins are used in the process of rule generation. The
rules for CART generated by the system were:

CART-Non-Appl $ 8 <--- N > 4999 .226

CART-Non-Appl $16 <--- N > 6435 .367

These rules suggest that there may be a functional dependence between non-applicability
and N. It is conceivable that if we used more error margins (e.g. k=4, 8, 12, 16 etc.), we

96

could get a more precise model of this dependence. So we can get some benefits of flexible
matching without further work.

6 Giving Advice Concerning Application

Rules generated in the way described permit us to give recommendations as to which

classification algorithm could be used with a given dataset. This is done with the help of a
kind of expert system called an Application Assistant (AplAs). This system contains a

knowledge base containing all the rules shown earlier (the actual rule set includes a few

extra rules with lower information scores), The interpreter is quite standard, but uses a

particular method for resolution of conflicts.

We notice that the knowledge base may contain potentially conflicting rules. In general
several rules may apply, some of which may recommend the use of a particular algorithm

while others may be against it. Some people believe that knowledge bases should always

be cleaned up so that such situations would not arise. This would amount to obliterating

certain potentially useful information and so we prefer to deal with the problem in a

different way.

v~ j L e t t e r s

A11oc80

DiDo192 I

K~nl i

Cn2 I

HewId I l

Lvu

C4.5

IndCart ~3

OuaD i s c I
R a d i a l D
Cart I

Smart I]
BavTree i t
Cal 5 I
Ac2 l i

B a c k P r o p I J
Lo~Disc ~

Discr im I I
Kohonen i J

Baves [--- J
Castle~ J

I L [u l e I
.Cascade I

.675

.415

.385

.295

.230
�9 1 6 3

.083

.066

.001

.097

.113

.142

.!53

.186

.199

.221
345
.410

.474

.561

.577

.733

.813

Fig. 5 Recommendations concerning applicability of algorithm (for Letters datase0

For every algorithm we consider all the rules satisfying the conditions, sum all the
information scores and then normalize them. The information scores associated with the

recommendation to apply an algorithm are taken with a positive sign, the others with a
negative one. The sum of information scores is then normalized. In our case, as we use two
margins (k=8 and k=16), the mean is divided by 2. The output of this phase is a list of
algorithms ordered by their information scores. A positive score can be interpreted as an

97

argument to apply the algorithm. A negative score can be interpreted as an argument
against the application of the algorithm. Moreover, the higher the score, the more
informative is the recommendation in general. The information score can be then considered
as a strength of the recommendation. Figure 5 shows the recommendations obtained for the
Letters dataset.

The recommendations given are of course not perfect. They do not guarantee that the first
algorithm in the recommendation ordering will have the best performance in reality.
However, our results demonstrate that the algorithms accompanied by a strong
recommendation do perform quite well in general. The opposite is also true. The algorithms
that have not been recommended have a poorer performance in general. In other words, we
observe that there is a reasonable degree of correlation between the prediction and the actual
test results. This is illustrated in Fig. 6 which shows the correlation between the
information score and the success rate for one particular dataset (Letters).

"v~J Letters

Success rate

Z~r.A

r = 6 .G251~155

C~f%xo~o

)i~c ~n~r

a l l ,

Information score

Fig. 6 Correlation between information score and success rate (for Letters dataset)

98

The top part shows the algorithms with high success rates. The right part shows the
algorithms accompanied by a strong recommendation concerning applicability. We notice
that several algorithms with high success rates appear there. The algorithm that is most
strongly recommended for this dataset is Alloc80 (Inf. score = .601 bits). This algorithm
has also the highest success rate of 93.6 %. The algorithms kNN and Dipo192 share the
second place in the recommendation ordering. We note that kNN is a very good choice,
while Dipo192 is not too bad either.

The correlation between the information score and success rate could, of course, be better.
For example, Dipo192 is a bit overvalued, Castle undervalued etc. The correlation could be
improved, in the first place, by obtaining more test results. This would give us the
opportunity to possibly refine the rule set. It would be beneficial to consider also other.
potentially useful sets of rules, including the ones generated on the basis of other error
margins.

Some Problems and Future Work

Some of the measures used in estimating the performance of algorithms are not too simple
to calculate. For example, the programming effort in calculating SD ratio is greater than
that in running the linear discriminant on the available data. Indeed to find SD_ratio requires
virtually all the quantities needed in finding the quadratic discriminant. This poses the
question: if it is easier to run, say linear discriminants and NewlD, why not run them and
use the performance of these procedures as yardsticks by which to judge the performance of
other algorithms? The similarities evident in the empirical results strongly suggest that the
best predictor for logistic regression is linear discriminants (with logistic regression doing
that little better on average), and AC2 is very similar to NewlD (if there is no hierarchy),
and so on. This idea has been followed up and described in (D.Michie, et al., 1994).

There is scope for further work. As almost certainly there are insufficient data to construct
reliable rules, it is worth considering an interactive method, capable of incorporating prior
expert's knowledge. As one simple example, if it is known that an algorithm can handle
cost matrices, this could simply be provided to the system. As another example, the
knowledge that the behaviour of NewlD and AC2 is likely to be similar could also be
useful to the system. The rules for AC2 could be then be constructed from the rules for
NewlD, by adding suitable conditions concerning e.g. the hierarchical structure of the
attributes. Also, some algorithms have in-built checks on applicability, such as linear or
quadratic discriminants, and these should be incorporated into the rules constructed by the

system.

Despite the fact that there is space for possible improvements, the method is sound in
principle and seems to produce very promising results. The user can get a recommendation
as to which algorithm could be used with a new dataset. Although the recommendation is
not guaranteed to give the best possible advice, it narrows down the user's choice.

A c k n o w l e d g e m e n t s

This work was supported by Esprit II Project StatLog (No.5170). The authors wish to
thank Commission of European Communities for this support. Also, we wish to thank the
following partners for providing the individual test results:

99

�9 Dept. of Statistics, Univ. of Strathclyde, Glasgow, UK; �9 Dept. of Statistics, Univ. of
Leeds, UK; �9 Aston University, Birmingham, UK; �9 Forschungszentrum Ulm, Daimler-
Benz AG, Germany; �9 Brainware GmbH, Berlin, Germany; �9 Fraunhofer Gesellschaft

IITB-EPO, Berlin, Germany; �9 Institut fuer Kybernetik, Bochum, Germany; �9 ISoft, Gif

sur Yvette, France; �9 Dept. of CS and AI, University of Granada, Spain.

The authors wish to thank Luis Torgo for some corrections, and also, to anonymous

referees for their comments.

References

Aha D. (1882): Generalizing from Case Studies: A Case Study, in Proc. of the Ninth
International Workshop on Machine Learning (ML92), ed. D.Sleeman and

P.Edwards, Morgan Kaufmann.

Michie D., Spiegelhalter D.J., Taylor C.C. (1994): Machine Learning, Neural and
Statistical Classification, Prentice Hall. To be published.

Kononenko I. and Bratko I. (1991): "Information-Based Evaluation Criterion for Classifier's

Performance", in Machine Learning, Vol.6, No. 1, Kluwer Academic Publishers.

Quinlan R. (1992): C4.5: Programs for Machine Learning, Morgan Kaufmann.

Shaffer C. (1993): Selecting a Classification Method by Cross-Validation, in Machine
Learning, Vol.13, No. 1, Kluwer Academic Publishers.

A p p e n d i x

1. Classification Algorithms Used in StatLog

Decision Tree Classifiers:
C4.5 - Inductive Decision Tree
NewlD - New Inductive Decision Tree
AC2 - Decision Trees with Knowledge Acquisition
CART - Classification and Regression Tree
IndCART - Classification and Regression Tree
Cal5 - Numeric Decision Tree Classifier

Rule Classifiers:
CN2
ITrule

- Decision Rule Classifier
- Probabilistic Decision Rule Classifier

Classical Statistical Algorithms:
Discrim - Fisher's Linear Discriminants
Quadisc - Quadratic Discriminats
Logdisc - Logistic Discriminants

Non-Parametric Statistical Algorithms:
ALLOC80 - Density Estimation (Kernel Classifier)

100

kNN
SMART

Bayes
BayesTree

CASTLE
DIPOL92

- k-Nearest Neighbour
- Projection Pursuit (Smooth Additive Regression)
- Naive Bayes
- Extension of Naive Bayes

- Causal Networks

- Discriminate Analysis with Post-Optimisation

Neural Network Classifiers:
RBF - Radial Basis

LVQ - Linear Vector Quantizer

Backprop - Multi Layer Perceptron (Back Propagation)

Kohonen - Self Organizing Feature Map

Our experiments included one additional algorithm (Cascade) which is officially not
included among the algorithms evaluated under StatLog.

2. Datasets Used in StatLog

* Cr.Aust - Australian credit
* Cr.Ger - German credit
* Satim - Landsat Satellite image

Dig44 - Handwritten digits (Digits)
KL - Karhunen-Loeve Digits

* Vehic - Vehicle siihouttes

* Segm - Image Segmentation
Chrom Chromosomes

Head - Head injury

* Heart - Heart disease

* Shut Shuttle control

* Diab - Diabetes of pima-indians

Belg - Belgian power
* DNA - DNA sequence

Tech - Technical

Faults - Finance of maintenance
New-Bel - New Belgian power

Tset - Tsetse Fly Distribution
CUT - Character Segmentation
Cr.Man - Credit Management

* Letter - Letter Recognition
Simdat - Simulated data

(withdrawn later)

The dataset marked with "*" were authorized for public distribution and available via ftp

(s e e the next section). The datasets mentioned contain typically several thousands of

examples. The largest dataset contains 58000 examples, and the smallest only 270
examples. The datasets are characterized using a varied number of attributes. The Australian
credit data (Cr.Aust), for example, is characterized using 14 attributes. The number of
attributes can be much larger, however. The DNA, Technical and New-Belgian power
datasets are characterized by more than 50 different attributes. The number of classes also

varies, and is between 2 and 26 for the datasets shown.

3. Support for Further Comparat ive Testing

LIACC can offer various datasets used in the comparative testing within StatLog as well
as some software that has been written during the StatLog project. In particular, LIACC

can provide the source code of Evaluation Assistant which can help users to carry out

further comparative testing.

General information about this can be obtained from LIACC, University of Porto, from
ftp.ncc.up.pt (192.26.239.52), directory pub/statlog, file README. Alternat ively,
interested parties can contact P.Brazdil or J.Gama, at LIACC, University of Porto, Rua
Campo Alegre 823, 4100 Porto, Portugal, Tel.: +351 600 1672, Fax.: +351 600 3654, or

by email statlog-adm@ncc.up.pt.

101

3.1 Datasets

All public domain datasets used in StatLog can be obtained from LIACC, University of
Porto, from ftp.ncc.up,pt, directory pub/statlog/datasets. This directory contains several
subdirectories, one for each dataset. Each subdirectory contains an associated .doc file with a
brief description of the dataset and previous test results on this dataset. Some larger datasets
have been split into train and test set (as used in the StatLog project).

The main source of datasets is the UCI Repository of Machine Learning Databases and
Domain Theories which is managed by D.W.Aha. Some datasets were processed and the
repository mentioned contains both the unprocessed and processed versions. The datasets
available from LIACC, contain only the processed datasets. These datasets can also be
obtained from University of Strathclyde, via ftp.strath.ac.uk (130.159.248.24), directory
Stams/statlog.

3.2 Conducting New Tests with Evaluation Assistant

New tests can be carried out by interested parties with the help of Evaluation Assistant,
which is a software tool developed within Project StatLog. Its aim is to facilitate testing
of statistical, machine learning and neural algorithms on given datasets and provide
standardized performance measures. The Evaluation Assistant is oriented towards
classification tasks. Two versions of Evaluation Assistant exist: a command version, and
an interactive one.

The command version of Evaluation Assistant consists of a set of basic commands that
enable the user to test learning algorithms. This version is implemented as a set of Cshell
scripts and C programs. The interactive version of Evaluation Assistant provides an
interactive interface that enables the user to set up the basic parameters for testing. The
interactive interface is implemented in C and exploits X windows. This version generates a
customized version of some scripts which can be examined and modified before execution.

The source code of the Evaluation Assistant is available from LIACC via ftp.ncc.up.pt.
The command version is stored in the directory pub/statlog/eac. The source code of the
interactive version is stored in the directory pub/statlog/eai. Both versions run on SUN
SPARCstation IPC and other compatible workstations.

3.3 Application Assistant

This software prototype analyses previous test results and generates rules concerning
applicability of different machine learning, statistical and neural network algorithms. The
rules can be used to provide the user with a recommendation concerning which
classification method is appropriate for a given dataset.

The rules referred to earlier are generated on the basis of previous test results and dataset
characteristics. The semi-automatic analysis of previous test results is done with the help of
one particular ML algorithm (C4.5). The result is transcribed in the form of rules which
can be altered or edited by the user. The rules constitute, in effect, a knowledge base of an
expert system, The system can be applied to a new dataset to provide the user with a set of
recommendations concerning the suitability of different algorithms, graded by a score.

102

3.4 Future Plans Concerning Support

In future database accesible by ftp from LIACC will be organized in such a way that it is
easy to add new datasets, classification algorithms, test methods etc.; as these become
publicly available. The database will be maintained and new test results validated whenever
this will be feasible. Datasets will only be added to the database if they are of indus~,ial
and/or commercial relevance. One of the principal aims of the database will be to give
algorithm developers access to the expersise developed earlier. In this way, the developers of
new algorithms will be able to compare results with chosen classification procedures that
were used in the StatLog project. This will facilitate the evaluation of new procedures, and
should extend the range of algorithms available to potential industrial users.

