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Abstract ,  This paper is concerned with a comparative study of different 
machine learning, statistical and neural algorithms and an automatic analysis 
of test results. It is shown that machine learning methods themselves can be 
used in organizing this knowledge. Various datasets can be characterized using 
different statistical and information theoretic measures. These together with 
~he test results car~ be used by a ML system to generate a set of  rules which 
could also be altered or edited by the user, The system can be applied to a new 
dataset to provide the user with a set of  recommendations concerning the 
suitability of different algorithms and these are graded by an appropriate 
information score. The experiments with the implemented system indicate 
that the method is viable and useful. 

1 Introduction 

Project StatLog carded out perhaps the most comprehensive comparative study of different 
machine learning, neural and statistical classification (D.Michie, et al., 1994). About 22 
different algorithms were evaluated on more than 20 different datasets of industrial interest. 
It is interesting that no particular algorithm could be considered 'best' when considering the 
error rates. With some datasets one particular algorithms could be better than other 
algorithms, but with other datasets this could easily be the other way round. As there was 
no algorithm which could be considered best overall, a question arises whether one could 
adopt a method that would identify the promising algorithm(s) on the basis of the existing 
test results. The purpose of this paper is to show how we can do that. 

The aim of  our work is to obtain a set of  rules characterizing the applicability of  different 
algorithms. It appears that datasets can be characterized using certain features such as 
number of attributes, proportion of  binary, categorical or numeric attributes, unknown 
values etc. In addition, we can use other more complex statistical or information theoretic 
measures. It is reasonable to try to match the features of datasets with our knowledge 
concerning the performance of algorithms. If  we select the algorithm that most closely 
matches the features of the dataset on which the algorithm performed well, then w e  increase 
the chances of  obtaining useful results. The advantage is that not all algorithms need to be 
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tried out. Those algorithms that do not match the data can be excluded, and so, a great deal 
of computing effort effort can be saved. 

In order to achieve this aim, we need to determine which data.set features are relevant. After 
that, various instances of  learning tasks can be examined with the aim of  formulating a 
'theory' concerning the applicability of  different machine learning and statistical algorithms. 
The process of constructing such a theory can be considered as a kind of  meta-level 
learning. The knowledge concerning as to which algorithm is applicable can be summarized 
in the form of rules of  the form: If the given dataset has characteristics C1..Cn, then 
classification algorithm A is (may be) applicable. 

Each rule can in addition be qualified using certain statistical measures, such as estimates of  
correctness. For reasons explained later we prefer to use estimates of how informative each 
rule is. Rules concerning applicability of  algorithms can be constructed manually, or with 
the help of some (se'mi-)automadc method. In this paper we are concerned with the 
application of machine learning methods to this problem. 

Previous work on comparative studies has usually considered only a few algorithms (e.g. 
neural networks and decision trees) and these were done usually on few datasets only (a 
comprehensive review of  previous work appears in D.Michie, et al. (1994)). As the number 
of  tests was generally limited, few people have attempted to automate the formulation of  a 
theory concerning the applicability of different algorithms. One exception was the work of  
Aha (1992) who represented this knowledge using rule schemata. One example of such a 
rule schema is: 

If (# training instances < 737 ) AND 
(# prototypes per class > 5.5 ) AND 
(# relevant attributes > 8.5 ) 

Then IB 1 >> C4 

where IB1 >> C4 means that algorithm IB1 is predicted to have significantly higher 
accuracies than algorithm C4. Our approach differs from Aha's in that we are not concerned 
with just a comparison between two algorithms, but rather a group of algorithms. This 
task is more challenging than a set of pairwise comparisons. Also, out rules are suitably 
quantified and so our recommendations are more refined. 

There is, however, an alternative solution to the problem of how we can go about selecting 
a suitable classification algorithm. Instead of  attempting to predict which classification 
algorithm would perform well, we can try out all different algorithms and examine the 
outcome. This approach has been adopted by Shaffer (1993) who compared three different 
classification algorithms - C4.5, C4.5rules and back propagation. The algorithms were 
evaluated on five different datasets using cross-validation (CV). The objective of  the method 
is to consider each dataset in turn, and in each case select that algorithm that appears to give 
the highest success rate. In this context CV could be considered as another (more complex) 
classification algorithm. The experimental results have shown that CV is superior to any 
of the individual algorithms. This method has, of  course, the disadvantage that it requires a 
lot of  processing time before the final answer can be given. For some classification 
algorithms the learning times may be of  the order of hours, particularly if we use large 
industrial datasets (such as the ones used in StatLog). Besides, we have to have all 
classification algorithms available and the expertise to use them. Our approach avoids these 
difficulties. 
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Organization of this Paper 

This paper is organized as follows. Sections 2 describes a set of basic dataset measures used 
to characterize datasets. Section 3 describes the preprocessing of test results, and in 
particular, the criteria used to determine whether a particular algorithm can be considered 
applicable or non-applicable. This section describes also how a particular machine learning 
algorithm (C4.5) can be used to generate a set of rules on the basis of the available data 
(dataset measures and classified test results). Section 4 is concerned with the issue of 
assessing the informativity of the individual rules generated. Section 5 gives an overview of 
the results and analysis of some of the rules generated. Section 6 shows how the system 
can provide an advice concerning which algorithm is most suitable for a given dataset. In 
this section we discuss also the correlation between the advice and the actual performance. 

2 " C h a r a c t e r i s t i c s  o f  Datasets  

Our overall aim is to be able to match the features of datasets with our past knowledge 
concerning the algorithms. In order to achieve this, we need to determine which dataset 
features are relevant. In this section we will briefly describe some of the features used in 
this study. The features can be divided into simple measures, statistical measures and 
information based measures. The simple measures include: 

N 

P 
k 
Bin_att 
Cat_att 
Un_attrib 
Cost 

Number of examples in the dataset. 
Number of attributes. 
Number of classes. 
Proportion of binary attributes. 
Proportion of categorical atlributes. 
Proportion of unknown attributes. 
Cost matrix indicator (it is equal to 1 if costs are used and 0 otherwise) 

As for the statistical measures, we have adopted those suggested by R.Henery and C.Taylor 
(Michie D.et al, 1994). These measures include: 

SD_ratio Standard deviation ratio. Geometric mean ratio of standard deviations of 
the individual populations to the pooled standard deviation. 

Corr.abs Mean value of correlations between attributes (mean over all pairs of 
attributes and all populations). 

Cancorl Canonical correlation for the best single linear combination of attributes 
that discriminates between populations. 

Fractl 

Skewness 

Kurtosis 

The first eigenvalue of canonical discriminant matrix divided by the sum 
of all eigenvalues. 

Mean of I E(X-IX) 3 I / t~ 3. 

Mean of I E(X-Ia) 4 I / 0 "4. 

where E(X-IX) represents a moment, IX mean and a standard deviation. The information 
based measures include: 
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I-I(A) 
H(C) 
M(C,A) 
EN.attr 

Mean entropy (complexity) of  attributes. 
Entropy (complexity) of class. 
Mean mutual information of class and attributes. 
Equivalent number of attributes H(C) / M(C,A) 

Each dataset is then simply described using a vector of numeric values. 

3 Using Test Results as Data in Meta-level Learning 

The test results obtained during the StatLog project were used as raw data which was 
preprocessed in a particular way. The results for each dataset were analyzed with the 
objective of  determining which algorithms achieved low error rates (or costs). All ~ 
algorithms with low error rates were considered applicable to this dataset. The other 
algorithms were considered inapplicable. 

This categorization of the test results can be seen as preparatory step for the metalevel 
learning task. Of course, the categorization will permit us also to make predictions 
regarding which algorithms are applicable on a new dataset. 

Of course, the ~uestion whether the error rate is high or low is rather relative. The error rate 
of  15% may be excellent in some domains, while 5% may be bad in others. This problem 
is resolved using a method similar to subset selection in statistics. First, the best algorithm 
is identified according to the error rates. Then an acceptable margin of  tolerance is 

calculated. All algorithms whose error rates fall within this margin are considered 
applicable, while the others are labeled as inapplicable. 

The level of tolerance can reasonably be defined in terms of the standard deviation of the 
error rate, but since each algorithm achieves a different error rate, the appropriate standard 
deviation will vary across algorithms. The standard deviation can be estimated by 
calculating the error margin 

EM = sqrt(ER * (1 - ER) / NT), 

where ER represents the error rate of  the 'best' algorithm, NT the number of  examples in 
the test set. Then all algorithms whose error rates fall within the interval <ER, ER + 
k*EM> are considered applicable. Of course we still need to choose a value for k which 
determines the size of the interval. This affects the confidence that the truly best algorithm 
appears in the group considered. The larger the value of k, the higher the confidence that the 
best algorithm will be in this interval. As a rough guide, a value of  k=3 corresponds to a 

95% confidence level. 

For example, let us consider the tests on the Segment dataset consisting of  2310 examples. 
The best algorithm appears to be ALLOC80 with the error rate of  3% (ER=0.03). Then 

EM= sqrt( 0.03 * (1 - 0.03) / 2310) = 0.0035 

which is 0.35%. In this example, we can say with high confidence that the best algorithms 
is in the group with error rates between 3% and k * 0.35%. If k=l,  the interval is relatively 
small - <3%, 3.35%> and includes only two other algorithms (AC2, BayesTree) apart from 
ALLOC80. All the algorithms that lie in this interval can be considered applicable to this 
dataset, and the others inapplicable. If we enlarge the margin, by considering larger values 
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of k (e.g. 2, 4, 8 or 16), we get a more relaxed notion of applicability. If  k=16, for 
example, the relatively broad band will include most of the "average" algorithms (see 
Fig.l). 

Algorithm Error rate Class (k=16) Margin Note 

ALLOC80 .030 Appl 
AC2 .031 Appl 
BayesTree .033 Appl 

NewlD .034 Appl 

C4.5 .040 Appl 
CART .040 Appl 
DIPOL92 .040 Appl 
CN2 .043 Appl 

IndCART .045 Appl 
LVQ .046 Appl 
SMART .052 Appl 
Backprop .054 Appl 

Cal5 .062 Appl 
Kohonen .067 Appl 
RBF .069 Appl 
kNN .077 Appl 

Logdisc .109 Non-Appl 
CASTLE .112 Non-Appl 
Discrim .116 Non-Appl 
Quadisc .157 Non-Appl 
Bayes .265 Non-Appl 
ITrule .455 Non-Appl 
Default .900 Non-Appl 

0.030 Margin for k=0 

0.0335 Margin fork=l 

0.037 Margin fork=2 

0.044 Margin fork=4 

0.058 Margin for k=8 

0.086 Margin for k=16 

Fig. 1 Test Results on Segment dataset and Error Margins 

The decision as to where to draw the line (by choosing a value for k) is, of course, rather 
subjective. In this work we had to consider an additional constraint related to the purpose 
we had in mind. As our objective is to generate rules concerning applicability of algorithms 
we have opted for the more relaxed scheme of applicability (k=8 or 16), so as to have 
enough examples in each class (Appl, Non-Appl). This point will be discussed in more 
detail later. 

Some of the tests results analyzed are not characterized using error rates, but rather costs. 

Consequently the notion of error margin discussed earlier has to be adapted to costs. The 
standard error of  the mean cost can be calculated from the confusion matrices (obtained by 
testing), and the cost matrix 1. 

1 The values obtained on the basis of some tests were: 
Dataset Algorithm Mean cost 
German credit Discrim 0.525 

$~andard error (of mean cos0 
0.0327 
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We notice that the categorization of error rates (into Appl, Non-Appl) seems to be a bit 
unnatural, but it is necessary, given our aims. We require it simply for the next step, that 
involves meta-level learning. As we use a classification algorithm we need to introduce 
such categorization. Had we chosen a regression algorithm, this would not be necessary. 

Preprocessing of Test Results 

The problem of learning was divided into several phases. In each phase all the test results 
relative to just one particular algorithm (e.g. CART) were joined, while all the other results 
(relative to other algorithms) were temporarily ignored. The purpose of this strategy was to 
simplify the class structure. For each algorithm we would have just two classes (Appl and 
Non-Appl). This strategy worked better than the obvious solution that included all available 
data for training. For example, when considering CART algorithm and margin of k =16 we 
get: 

CART-Appl, Satim CART-Non-Appl, KL 

CART-Appl, Vehic 
CART-Appl, Head 
CART-Appl, Heart 
CART-Appl, Belg 
CART-Appl, Segm 
CART-Appl, Diab 
CART-Appl, Cr.Ger 
CART-Appl, Cr.Aust 
CART-Appl, DNA 
CART-Appl, New-Bel 
CART-Appl, Faults 
CART-Appl, Tset 

CART-Non-Appl, Dig44 
CART-Non-Appl, Chrom 
CART-Non-Appl, Shut 
CART-Non-Appi, Tech 
CART-Non-Appl, CUT 
CART-Non-Appl, Cr.Man 
CART-Non-Appl, Letter 
CART-Non-Appl, Simdat 

Fig. 2 Classified test results relative to one particular algorithm (CART) 

The classified test results are then modified as follows. The dataset name is simply 
substituted by a vector containing the corresponding dataset characteristics (measures). 
Values which are not available or missing are simply represented by "?". This extended 
dataset is then used in the meta-level learning. 

Prior Ordering of Algorithms 

The classified test results are interesting per se. They enable us to make quick comparisons 
among different classification algorithms. Obviously, the more often a particular algorithm 
is classified as applicable, the better. 

If  we consider the classified test results of CART for k=16 shown earlier, we see that this 
algorithm can be considered applicable in 13 cases and inapplicable in 9. These numbers 

Heart disease Discrim 0.415 0.0688 
Head injury Logdiscr 18.644 1.3523 

In the experiments reported later the error margin was simply set to the values 0.0327, 0.0688 
and 1.3523 respectively, irrespective of the algorithm used. 
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can be used to estimate the probability P(Ai-Appi) that the algorithm Ai is applicable. Here 
we prefer to calculate the information associated with this probability, suitably normalized. 
(The method takes into account the overall probability of algorithms falling into the class 
"applicable". Full description appears in Section 4). 
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Fig. 3 Information associated with the prior probability of applicability 
of different classification algorithms tested in Statlog 

Fig. 3 shows the information values for all algorithms tested in StatLog. We have decided 
to show here the mean of two values, one relative to the error margin k=8 and the other 
relative to k=16. All values are arranged in a descending order. ALLOC80, for example, is 
the first place in the ordering. The associated information value is around .7 bits. That is, 
the information that ALLOC80 is applicable is worth about .7 bits. Similarly the 
information that Dipo192 or kNN is applicable is worth about .5 bits and so on. 

If the information is negative, this can be interpreted as an argument that the algorithm is 
likely to be non-applicable. This does not mean, of course, that we cannot find situations 
in which the algorithm could be useful. If we do not have any other information, finding 
such situations may simply be somewhat less likely. 

The information values provide us with useful default decisions which need not be 
followed. Indeed, the purpose of met,a-level learning can be viewed as the process of finding 
useful rules which enable us to make better decisions than those incorporated in these 
defaults. 

Choice of Algorithm for Meta-Level Learning (C4.5) 

A question arises as to which algorithm we should use in the process of meta-level 
learning. We have decided to use C4.5 (Quinlan, 1992) for the following reasons. First, as 
our results have demonstrated, this algorithm achieves quite good results overall. Secondly, 
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the decision tree generated by C4.5 can be inspected and analyzed. This is not the case with 
some statistical and neural learning algorithms. 

So, for example, when C4.5 has been supplied with the partial test results relative to 
CART algorithm, it generated the following decision tree: 

N > 6435 : Non-Appl (8.0) 

N <= 6435: 
I Skew <= 0.57 : Appl (2.0) 
I Skew > 0.57:  Non_Appl (12.0) 

It has been argued that rules are more legible than trees. The decision tree shown earlier can 
be transformed into a rule form using a very simple process, where each branch of  a tree is 
simply transcribed as a rule. The applicability of CART can thus be characterized using the 

following set of  rules: 

CART-Appl <-- N <= 6435, Skew > 0.57 

CART-Non-Appl <-- N > 6435 
CART-Non-Appl <-- N <= 6435, Skew <= 0.57 

Quinlan (1992) has argued that rules obtained from decision trees can be improved upon in 
various ways. For example, it is possible to eliminate conditions that are irrelevant, or 
even drop entire rules that are irrelevant or incorrect. In addition it is possible to reorder the 
rules according to certain criteria, iniroduce a default rule to cover the cases that have not 
been covered. System C4.5 provides a command that permits to transform a decision tree 
into a such a rule set. The rules produced by the system are characterized using (pessimistic) 

error rate estimates. 

As is shown in the next section, error rate (or its estimate) is not ideal measure, however. 
This is particularly evident when dealing with continuous classes. This problem has 
motivated us to undertake a separate evaluation of all candidate rules and characterize them 
using a new measure. The aim is to identify those rules that appear to be most informative. 

The details are given in the following section. 

4 Character iz ing  the Rules Generated  

We notice that the amount of data used in generating the rules concerning applicability of 
one particular algorithm is rather modest. As we used only the StatLog test results, we had 
only about 22 examples at our disposal (each case represents the results of particular test on 
a particular dataset). Of these, only a part represented 'positive examples', corresponding to 
the datasets on which the particular algorithm performed well. Also, the set of dataset 
descriptors used may not carry too much information. We could thus expect that the rules 

generated capture a mixture of relevant and fortuitous regularities. 

In order to strengthen our confidence in the result the rules generated are evaluated. Our aim 
is to determine whether the rules could actually be used to make useful predictions 
concerning its applicability. A rule is considered useful if it appears to make better 
predictions than the appropriate default rule. The default rule simply states that the 
algorithm is applicable (with no conditions attached), if the algorithm performs well on 
relatively many datasets. If the algorithm performs poorly, the default is that the algorithm 

is non-applicable. 
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The predictive power of the rules should thus be compared to the default. If a rule appears to 
be less informative than the default, the default rule should be used instead. All rules 

(including defaults) are quantified using a measure of how predictive they are. The method 
of  how this is done is given below. 

The evaluation of  how successful the rules are in predicting the applicability (or non- 
applicability) of a given algorithm is done using a leave-one-out procedure. Following this 
procedure all but one items is used in training, while the remaining item is used for testing. 
Of course, the set of  rules generated in each pass could be slightly different, but the form of 
the rules was not our primary interest here. 

Let us consider, for example, the problem of predicting applicability of  CART. This can be 
characterized using a confusion matrix, such as the ones shown below, showing results 
relative to the error margin k=16. 

Appl Non-Ant~l 

Appl 11 2 

Non-Appl 1 8 

The rows represent a true class. The columns refer to the predictions made using the rules 
generated. 

The confusion matrix shows that the rules generated were capable of correctly predicting 
the applicability of CART on a unseen dataset in 11 cases. Incorrect prediction was made 
only in 1 case. Similarly, if we consider non-applicability, we see that the correct 
prediction is made in 8 cases, and incorrect one in 2. This gives a rather good overall 
success rate of  86 %. 

Had we decided to use a default rule stating that CART is simply applicable, the number of 
correct predictions would increase to 13 (11+2), and the number of  incorrect ones to 9 
(1+8). This gives a success rate of  about 59 %. The default stating that CART is 
inapplicable gives correct predictions in 9 cases, and incorrect one in 13. The corresponding 
success rate is about 41%. 

We notice that success rate is not the ideal measure, however. As the margin of  
applicability is extended (by making k larger), more cases will get classified as applicable 
and consequently, the estimates concerning applicability will be easier to make. If we 
consider an extreme case, when the margin covers all algorithms, we will get an apparent 
success rate of 100 % (equal to the default). This apparent paradox can be resolved by 
adopdng the measure ca/led information score described by Kononenko and Bratko (1991). 
This measure takes into account prior probabilities. 

The information score associated with a definite positive classification 2 is defined as -log 

P(C), where P(C) represents the prior probability of class C. The information scores can be 
used to weigh all classifier answers. In our case we have two classes Appl and Non-Appl. 

2 The term 'def'mite positive classification' is used here to indicate that the classifier affirms that 
the case belongs to class C with a probability of 1. 
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The weights can be represented Conveniently in the form of a information score matrix as 
follows: 

Aool Non-AvDI 

Appl - log P(Appl) - log (1 - P(Appl)) 

Non-Appl - log (1 - P(Non-Appl)) log P(Non-Appl) 

The information scores can be used to calculate the total information provided by a rule on 
the given dataset. This can be done simply by multiplying each element of  the confusion 
matrix by the corresponding element of  the information score matrix. 

The quantifies P(Appl) and P(Non-Appl) can be estimated from the appropriate frequencies. 
If  we consider the frequency of  Appl and Non-Appl for all algorithms (irrespective of  the 
algorithm in question), we get a kind of absolute reference point. This enables us to make 
comparisons fight across different algorithms. 

For example, if we consider tests of  23 algorithms on 22 datasets, we get a dataset 
consisting of 506 cases (23 x 22). As it happens 307 cases fall into the class Appl. The 
information associated with -logP(Appl) is .log (307 / 506) = 0.721. Similarly, the value 
of -log P(Non-Appl) is -log (199/506) = 1.346. 

We notice that due to the distribution of data (given by the relatively large margin of  
applicability of  k=16), the examples of  applicable cases are relatively common. 
Consequently, the information concerning applicability has a somewhat smaller weight 

(.721) than the information concerning non-applicability (1.346). 

If  we multiply the elements of  the confusion matrix for CART by the corresponding 
elements of the information score matrix we get the following matrix: 

Appl Non-Appl 

Aool 7.93 2.69 

Non-Appl .72 10.77 

This matrix is in a way similar to the confusion matrix shown earlier with the exception 
that the error counts have been weighted by the appropriate information scores. To obtain 
an estimate of  the average information relative to one case, we need to divide all elements 

by the number of  cases considered (i.e. 22). This way we get: 

Appl Non-Appl 

Appl .360 .122 

Non-ADol .033 .489 

The information provided by classification of  Appl is .360 - .033 = .327 bits. The 
information provided by classification of Non-Appl is similarly .489 - .  122 = .367 bits. 

This information obtained in the manner described can be compared to the information 
provided by the appropriate default rule. If we assume that CART is applicable by default, 
the corresponding rule will give a correct answer in 13 cases and incorrect one in 9 (we note 
that as the number of correct answers exceeds the number of errors, this is actually the fight 
default to consider). The number of  correct answers and errors can be expressed using a 
confusion ma~'ix. Then we can calculate the overall information score in a similar way as 
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before. Each answer needs to be weighed using the appropriate information score. In our 
case we get (13" -logP(Appl) - 9* -log(1-P(Non-Appl)) ) / 22 = 0.131 bits. 

This information score of the default rule can be compared to the information score provided 
by the rules. A rule can be considered useful if it provides us with more information than 
the default. If we come back to our example, we see that the classification for Appl provide 
us with .327 bits, while the default classification provides only .131 bits. This indicates 
that the rules are more informative than the default for CART. In consequence, the actual 
rule should be kept and the default rule discarded. 

5 Rules Generated in Meta-level Learning 

This section contains some rules generated using the method described. As we have not 
used a uniform notion of applicability throughout, each rule is qualified by additional 

information. The symbol Appl $ k represents the concept of  applicability derived on the 

basis of the best error rate. In case of Appl Appl $16 the interval of applicability is <Best 

error rate, Best error rate + 16 STD's> and the interval of non-applicability is <Best error 
rate + 16 STD's, 1>. 

The set of rules generated includes a number of 'default rules' which can be easily recognized 
(they do not have any conditions on the right hand side of  "4--"). Each rule included shows 
also the normalized information score. This parameter gives an estimate of the usefulness 
of each rule. Only those rules that could be considered minimally useful (with information 
score > .200) have been included here. In the implemented system we use a few more rules 
which are a bit less informative (with inf. scores down to .100). 

Decision Tree and Rule Base Algorithms; Inf. score: 

C4.5-Appl $16 <--'- .477 

C4.5-Non-Appl $ 8 4-- k > 2 .226 

Newld-Appl $16 4-- .609 

AC2-Non-Appl $ 8 <--- .447 

CART-Appl $ 8 ~-- N <= 4999, Kurtosis > 2.92 .186 

CART-Appl $16 ~-- N <= 6435, Skew > 0.57 .328 

CART-Non-Appl $ 8 4-- N > 4999 .226 

CART-Non-Appl $16 4-- N > 6435 .367 

IndCART-Appl $ 8 4-- Cancorl <= 0.78 .274 

IndCART-Appl $16 4-- .384 

Cal5-Appl $16 <--- k <= 7 .524 

Cal5-Non-Appl $16 <--- k > 7 .244 

CN2-Appl $16 4-- .702 

ITRule-Non-Appl $ 8 ~-- N > 768 .549 

ITRule-Non-Appl $16 <-- N > 1000 .918 

Statistical Algorithms: Inf. score: 

Discrim-Appl $ 8 ~-- N <= 1000 .247 
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Discrim-Non-Appl $ 8 ~-- N > 1000 .453 

Discrim-Non-Appl $16 ~ k > 4 .367 

QuaDisc-Appl $ 8 +-- N <= 1000 .309 

QuaDisc-Appl $16 ~ Skew <= 2.56, EnAUr > 2.98 .229 

QuaDisc-Non-Appl $ 8 ~-- N > 1000, Hx <= 5.58 .226 

LogDisc-Appl $'8 ~-- N <= 3186 .495 

LogDisc-Non-Appl $ 8 ~-- N > 3186 .323 

LogDisc-Non-Appl $16 ~ k > 4 .367 

Alloc80-Appl $ 8 ~-- .406 

Alloc80-Appl ,1, 16 ~-- .797 

kNN-Appl $16 ~-- .766 

Smart-Appl $16 ~ Fractl > 0.63 .262 

Bayes-Non-Appl $ 8 ~-- .418 

Bayes-Non-Appl $16 ~ .705 

BayTree-Appl $16 ~-- k <= 7 .557 

BayTree-Non-Appl $16 ~-- k > 7 .305 

Castle-Non-Appl $ 8 ~-- Cost <= 0, N > 768 .420 

Castle-Non-Appl ,1, 16 ~ Bin_att <= 0 .734 

Neural Network Algorithms: Inf. score: 

Dipo192-Appl $ 8 ~-- .341 

Dipo192-Appl $16 ~-- .544 

Radial-Non-Appl $ 8 ~-- .401 

LVQ-Appl $16 +- .498 

BackProp-Appl $ 8 ~- N <= 3000 .495 

BackProp-Appl $16 ~-- k <= 7, EnAttr > 2.88 .229 

BackProp-Non-Appl $ 8 ~ N > 3000, Cancorl > 0.61 .259 

Kohonen-Non-Appl ,I, 8 *-- .641 

Cascade-Non-Appl $ 8 ~-- .706 

Cascade-Non-Appl $16 <---- .866 

Fig. 4 Some Rules Generated During Meta-Level Learning 

The rules presented could be supplemented by another set generated on the basis of  the 
worst error rate (i.e. the error rate associated with the choice of  most common class or 

worse). In case of  Appl $16 the interval of applicability is <0, Default error rate - 16 

STD's> and the interval of non-applicability is <Default error rate - 16 STD's, 1>. 

D i s c u s s i o n  

The problem of learning rules for all algorithms simultaneously is formidable. We  want to 
obtain a substantial number rules to qualify each algorithm. In addition, there are perhaps 
far too many measures given the available data. To limit the complexity of  problem we 
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have considered one algorithm at a time. This facilitated the construction of rules. 
Considering that the problem is difficult, what confidence can we have that the rules 
generated are minimally sensible? 

One possibility is to try to evaluate the rules, by checking whether they are capable of 
giving useful predictions. This is what we have done and the method was described earlier. 
Note that measuring simply the success rate has the disadvantage that it does not 
distinguish between predictions that are easy to make, and those that are more difficult. 
This is why we have evaluated the rules by examining how informative they are in general. 
Our analysis showed that the rules generated can indeed provide us with a useful 
information. For example, the following rule 

Discrim-Appl $ 8 <--- N <= 1000 

provides us with .247 bits of information, if invoked, which is reasonable. On quick glance 
the condition "N <= 1000" is a bit puzzling, however. Why should Discrim perform 
simply well, if the number of examples is less than this number? 

One possible answer to this question is that the condition shown is simply fortuitous. The 
rules could contain some fortuitous conditions, given that they were generated on the basis 
of  relatively few data. Unless we have more data, it is difficult to determine which 
conditions are really relevant. However, it is necessary to note that each condition, such as 
.... N <= 1000", should be interpreted contextually. The condition cannot be simply 
interpreted as "Discrim performs will perform well if such and such condition is satisfied". 
The correct interpretation is something like - "Discrim is likely to compete well under the 
conditions stated, provided no other more informative rule applies". 

However, the condition seems to make sense in the light of the following additional 
evidence. Some algorithms have a faster learning rate than others. These algorithms 
compete well with others provided the number of examples is small. The fast learning 
algorithms may however be overtaken by others later. The experiments with learning 
curves on the Satellite Image dataset show that Discriminant algorithm is among the first 
six algorithms in terms of error rate as long as the number of examples is relatively small 
(100, 200 etc.). This algorithm seems to quickly pick up what is relevant and so we could 
say, it competes well under these conditions. When the number of examples is larger, 
however, Discriminant is overtaken by other algorithms. For example, with 3200 examples 
Discriminant is in the 15th place in the ranking. This supports the view that the system 
has 'discovered' a new piece of experimental knowledge from the regularities in the dam. 

There is of course a well recognized problem that should be tackled. Many conditions 
contain numeric tests which are either true or false. It does not make sense to consider 
Discriminant algorithm applicable if the number of examples is less than 1000, and 
inapplicable, if this number is just a bit higher. Obviously a more flexible approach is 
needed (e.g. using flexible matching). We note, however, that this problem is somewhat 
attenuated by the fact different error margins are used in the process of  rule generation. The 
rules for CART generated by the system were: 

CART-Non-Appl $ 8 <--- N > 4999 .226 

CART-Non-Appl $16 <--- N > 6435 .367 

These rules suggest that there may be a functional dependence between non-applicability 
and N. It is conceivable that if we used more error margins (e.g. k=4, 8, 12, 16 etc.), we 
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could get a more precise model of this dependence. So we can get some benefits of flexible 
matching without further work. 

6 Giving Advice Concerning Application 

Rules generated in the way described permit us  to give recommendations as to which 

classification algorithm could be used with a given dataset. This is done with the help of a 
kind of expert system called an Application Assistant (AplAs). This system contains a 

knowledge base containing all the rules shown earlier (the actual rule set includes a few 

extra rules with lower information scores), The interpreter is quite standard, but uses a 

particular method for resolution of conflicts. 

We notice that the knowledge base may contain potentially conflicting rules. In general 
several rules may apply, some of which may recommend the use of  a particular algorithm 

while others may be against it. Some people believe that knowledge bases should always 

be cleaned up so that such situations would not arise. This would amount to obliterating 

certain potentially useful information and so we prefer to deal with the problem in a 

different way. 
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Fig. 5 Recommendations concerning applicability of algorithm (for Letters datase0 

For  every algorithm we consider all the rules satisfying the conditions, sum all the 
information scores and then normalize them. The information scores associated with the 

recommendation to apply an algorithm are taken with a positive sign, the others with a 
negative one. The sum of information scores is then normalized. In our case, as we use two 
margins (k=8 and k=16), the mean is divided by 2. The output of this phase is a list of  
algorithms ordered by their information scores. A positive score can be interpreted as an 
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argument to apply the algorithm. A negative score can be interpreted as an argument 
against the application of the algorithm. Moreover, the higher the score, the more 
informative is the recommendation in general. The information score can be then considered 
as a strength of the recommendation. Figure 5 shows the recommendations obtained for the 
Letters dataset. 

The recommendations given are of course not perfect. They do not guarantee that the first 
algorithm in the recommendation ordering will have the best performance in reality. 
However, our results demonstrate that the algorithms accompanied by a strong 
recommendation do perform quite well in general. The opposite is also true. The algorithms 
that have not been recommended have a poorer performance in general. In other words, we 
observe that there is a reasonable degree of correlation between the prediction and the actual 
test results. This is illustrated in Fig. 6 which shows the correlation between the 
information score and the success rate for one particular dataset (Letters). 
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Fig. 6 Correlation between information score and success rate (for Letters dataset) 
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The top part shows the algorithms with high success rates. The right part shows the 
algorithms accompanied by a strong recommendation concerning applicability. We notice 
that several algorithms with high success rates appear there. The algorithm that is most 
strongly recommended for this dataset is Alloc80 (Inf. score = .601 bits). This algorithm 
has also the highest success rate of 93.6 %. The algorithms kNN and Dipo192 share the 
second place in the recommendation ordering. We note that kNN is a very good choice, 
while Dipo192 is not too bad either. 

The correlation between the information score and success rate could, of course, be better. 
For example, Dipo192 is a bit overvalued, Castle undervalued etc. The correlation could be 
improved, in the first place, by obtaining more test results. This would give us the 
opportunity to possibly refine the rule set. It would be beneficial to consider also other. 
potentially useful sets of rules, including the ones generated on the basis of other error 
margins. 

Some Problems and Future Work 

Some of the measures used in estimating the performance of algorithms are not too simple 
to calculate. For example, the programming effort in calculating SD ratio is greater than 
that in running the linear discriminant on the available data. Indeed to find SD_ratio requires 
virtually all the quantities needed in finding the quadratic discriminant. This poses the 
question: if it is easier to run, say linear discriminants and NewlD, why not run them and 
use the performance of these procedures as yardsticks by which to judge the performance of 
other algorithms? The similarities evident in the empirical results strongly suggest that the 
best predictor for logistic regression is linear discriminants (with logistic regression doing 
that little better on average), and AC2 is very similar to NewlD (if there is no hierarchy), 
and so on. This idea has been followed up and described in (D.Michie, et al., 1994). 

There is scope for further work. As almost certainly there are insufficient data to construct 
reliable rules, it is worth considering an interactive method, capable of incorporating prior 
expert's knowledge. As one simple example, if it is known that an algorithm can handle 
cost matrices, this could simply be provided to the system. As another example, the 
knowledge that the behaviour of NewlD and AC2 is likely to be similar could also be 
useful to the system. The rules for AC2 could be then be constructed from the rules for 
NewlD, by adding suitable conditions concerning e.g. the hierarchical structure of the 
attributes. Also, some algorithms have in-built checks on applicability, such as linear or 
quadratic discriminants, and these should be incorporated into the rules constructed by the 

system. 

Despite the fact that there is space for possible improvements, the method is sound in 
principle and seems to produce very promising results. The user can get a recommendation 
as to which algorithm could be used with a new dataset. Although the recommendation is 
not guaranteed to give the best possible advice, it narrows down the user's choice. 
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A p p e n d i x  

1. Classification Algorithms Used in StatLog 

Decision Tree Classifiers: 
C4.5 - Inductive Decision Tree 
NewlD - New Inductive Decision Tree 
AC2 - Decision Trees with Knowledge Acquisition 
CART - Classification and Regression Tree 
IndCART - Classification and Regression Tree 
Cal5 - Numeric Decision Tree Classifier 

Rule Classifiers: 
CN2 
ITrule 

- Decision Rule Classifier 
- Probabilistic Decision Rule Classifier 

Classical Statistical Algorithms: 
Discrim - Fisher's Linear Discriminants 
Quadisc - Quadratic Discriminats 
Logdisc - Logistic Discriminants 

Non-Parametric Statistical Algorithms: 
ALLOC80 - Density Estimation (Kernel Classifier) 
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kNN 
SMART 

Bayes 
BayesTree 

CASTLE 
DIPOL92 

- k-Nearest Neighbour 
- Projection Pursuit (Smooth Additive Regression) 
- Naive Bayes 
- Extension of Naive Bayes 

- Causal Networks 

- Discriminate Analysis with Post-Optimisation 

Neural Network Classifiers: 
RBF - Radial Basis 

LVQ - Linear Vector Quantizer 

Backprop - Multi Layer Perceptron (Back Propagation) 

Kohonen - Self Organizing Feature Map 

Our experiments included one additional algorithm (Cascade) which is officially not 
included among the algorithms evaluated under StatLog. 

2. Datasets  Used in StatLog 

* Cr.Aust - Australian credit 
* Cr.Ger - German credit 
* Satim - Landsat Satellite image 

Dig44 - Handwritten digits (Digits) 
KL - Karhunen-Loeve Digits 

* Vehic - Vehicle siihouttes 

* Segm - Image Segmentation 
Chrom Chromosomes 

Head - Head injury 

* Heart - Heart disease 

* Shut Shuttle control 

* Diab - Diabetes of  pima-indians 

Belg - Belgian power 
* DNA - DNA sequence 

Tech - Technical 

Faults - Finance of maintenance 
New-Bel - New Belgian power 

Tset - Tsetse Fly Distribution 
CUT - Character Segmentation 
Cr.Man - Credit Management 

* Letter - Letter Recognition 
Simdat - Simulated data 

(withdrawn later) 

The dataset marked with "*" were authorized for public distribution and available via ftp 

( s e e  the next section). The datasets mentioned contain typically several thousands of  

examples. The largest dataset contains 58000 examples, and  the smallest  only 270 
examples. The datasets are characterized using a varied number of attributes. The Australian 
credit data (Cr.Aust), for example, is characterized using 14 attributes. The number of 
attributes can be much larger, however. The DNA, Technical and New-Belgian power 
datasets are characterized by more than 50 different attributes. The number of classes also 

varies, and is between 2 and 26 for the datasets shown. 

3. Support  for Further Comparat ive  Testing 

LIACC can offer various datasets used in the comparative testing within StatLog as well 
as some software that has been written during the StatLog project. In particular, LIACC 

can provide the source code of Evaluation Assistant which can help users to carry out 

further comparative testing. 

General information about this can be obtained from LIACC, University of Porto, from 
ftp.ncc.up.pt (192.26.239.52), directory pub/statlog, file README. Alternat ively,  
interested parties can contact P.Brazdil or J.Gama, at LIACC, University of Porto, Rua 
Campo Alegre 823, 4100 Porto, Portugal, Tel.: +351 600 1672, Fax.: +351 600 3654, or 

by email statlog-adm@ncc.up.pt. 
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3.1 Datasets 

All public domain datasets used in StatLog can be obtained from LIACC, University of 
Porto, from ftp.ncc.up,pt, directory pub/statlog/datasets. This directory contains several 
subdirectories, one for each dataset. Each subdirectory contains an associated .doc file with a 
brief description of the dataset and previous test results on this dataset. Some larger datasets 
have been split into train and test set (as used in the StatLog project). 

The main source of datasets is the UCI Repository of Machine Learning Databases and 
Domain Theories which is managed by D.W.Aha. Some datasets were processed and the 
repository mentioned contains both the unprocessed and processed versions. The datasets 
available from LIACC, contain only the processed datasets. These datasets can also be 
obtained from University of Strathclyde, via ftp.strath.ac.uk (130.159.248.24), directory 
Stams/statlog. 

3.2 Conducting New Tests with Evaluation Assistant 

New tests can be carried out by interested parties with the help of Evaluation Assistant, 
which is a software tool developed within Project StatLog. Its aim is to facilitate testing 
of statistical, machine learning and neural algorithms on given datasets and provide 
standardized performance measures. The Evaluation Assistant is oriented towards 
classification tasks. Two versions of Evaluation Assistant exist: a command version, and 
an interactive one. 

The command version of Evaluation Assistant consists of a set of basic commands that 
enable the user to test learning algorithms. This version is implemented as a set of Cshell 
scripts and C programs. The interactive version of Evaluation Assistant provides an 
interactive interface that enables the user to set up the basic parameters for testing. The 
interactive interface is implemented in C and exploits X windows. This version generates a 
customized version of some scripts which can be examined and modified before execution. 

The source code of the Evaluation Assistant is available from LIACC via ftp.ncc.up.pt. 
The command version is stored in the directory pub/statlog/eac. The source code of the 
interactive version is stored in the directory pub/statlog/eai. Both versions run on SUN 
SPARCstation IPC and other compatible workstations. 

3.3 Application Assistant 

This software prototype analyses previous test results and generates rules concerning 
applicability of different machine learning, statistical and neural network algorithms. The 
rules can be used to provide the user with a recommendation concerning which 
classification method is appropriate for a given dataset. 

The rules referred to earlier are generated on the basis of previous test results and dataset 
characteristics. The semi-automatic analysis of previous test results is done with the help of 
one particular ML algorithm (C4.5). The result is transcribed in the form of rules which 
can be altered or edited by the user. The rules constitute, in effect, a knowledge base of an 
expert system, The system can be applied to a new dataset to provide the user with a set of 
recommendations concerning the suitability of different algorithms, graded by a score. 
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3.4 Future Plans Concerning Support 

In future database accesible by ftp from LIACC will be organized in such a way that it is 
easy to add new datasets, classification algorithms, test methods etc.; as these become 
publicly available. The database will be maintained and new test results validated whenever 
this will be feasible. Datasets will only be added to the database if they are of indus~,ial 
and/or commercial relevance. One of the principal aims of the database will be to give 
algorithm developers access to the expersise developed earlier. In this way, the developers of 
new algorithms will be able to compare results with chosen classification procedures that 
were used in the StatLog project. This will facilitate the evaluation of new procedures, and 
should extend the range of algorithms available to potential industrial users. 


