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Abstract

Good cache memory performance is essential to achieving high

CPU utilization in shared-memory multiprocessors. While the per-

formance of caches is determined by both application end oper-

ating system (OS ) references, most research has focused on the

cache performance of applications afone. This is partiafly due to

the difficulty of measuring OS activity and as a resrtl~ the cache

performance of the OS is largely unknown. In this paper, we char-

acterize the cache performance of a commercial System V UNIX

rtrttrtittg on a four-CPU multiprocessor. The related issue of the per-

formance impact of the OS synchronization activity is tdso stttdicd.

For our study, we use a hardware monitor that records the cache

misses in the machine without perturbing it. We study three multi-

processor workloads: a parallel Compilq a multiprogrsmmed load

and a commercial database. Our results show that OS misses oc-

cur frequently enough to stall CPUS for 17-21 ‘Yoof their non-idle

time. Further, if we include application misses induced by OS

interference in the cache, then the SQU time reaches 25%. A de-

tailed analysis reveals three major sources of OS misses: instruction

fetehea, process migratiom and data accesses in block operations.

As for synchronization behavior, we find that OS syncfrrordzation

has low overhead if supported correctly end that OS locks show

good locality and low contention.

1 Introduction

Cachdaaed shared-memory multiprocessors rely heavily on cache

memories to bridge the difference in speed between processors and

mairr memory. This eruciaf role of caches is well known to devel-

opers of parallel applications and writers of psrallelizing compil-

ers, who tune their algorithms for cache performance. In cxmrasL

there is little published literature on how the references of a mul-

tiprocessor operating system (OS) affect cache performance. This

lack of literature is partially due to the technical difficulty of re-

liably measming OS activity. Inde+ because of the complexity

and reef time nature of the OS activity, these measurements csn-

not usually be taken born machine simulators; a reef machine is

required In additio~ to avoid perturbing the machine being mea-

sur~ sophisticated hardware or software support is required. A

second reason for the lack of data regarding multiproceswr OS

references is that researchers have traditionally focused on the per-

formance of compute-intensive applications, which entait negligible

OS activity. Other common loads, however, like commercial and

softwaredevelopment loads, may require significant OS activity.
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Seversf researchers have pointed out the importance of the cache

performance of the OS in sequential machines. FWSC Clark [7]

reports that the cache performance of the VAX-11/780 measured

with a performance monitor is lower than the one predicted with

application-only traces. Second, in a simulation using traces of

VAX memory references, Agerwaf ei ol [1] show that the OS can

be responsible for over 50~o of the cache miss rate. Related work

byOustcrhout[14] and Anderson et ul [2] suggests that OS activity

is mafcing an increasing impact on the performance of machines.

This OS activity causes cache misses directly and also indirectly

in the applications by displacing the state of the applications from

the cache. In work based on application-only simulations, Mogul

and Borg [13] and Gupta el rzl [9] show the importance of pre-

serving and reusing the cache state of applications. Given all these

previous observations, our goal in this paper is to provide an in-

depth experintentaf characterization of the cache performance of a

multiprocessor OS.

Our experiments characterize the cache performance of the IRIX

OS running on the Silicon Graphics POWER Station 4D/340, a

multitxoeessor with four 33 MHz MIPS R3000 CPUS. In our ex-

pfi’ents, we use a hardware monitor to capture all instruction and

data cache misses for each CPU. By using a hardware monitor, we

captttre the complete system behavior without any measurement-

induced perturbation. The experiments consist of running each of

three parallel workloads for 1-2 mirtutes. ‘ho of the workloads

are common engineering worfdoti one is a parallel compile of

56 files, the other a parallel numeric program running concurrently

with the parallel compile errd five screen e&t sessions. The third

workloti-is an Oracle database.

Our results show dtat cache misses in the OS stall CPUS for

17-21% of their non-idle time. This stalf time reaches 25% if we

add application misses induced by OS interference in the cache. In

our analysis, we identify thr~ main sets of OS misses: instruction

misses, data misses due to process migratio~ and data misses in

block operations. These misses stall CPUS for about lfWO, up to

4~0. and up to 6% of their time respectively. Finally, we also

discover that OS synchronization displays good cache performance

if supported correctly.

This paper is organized as follows. Sections 2 and 3 describe the

experimental setup and the workloads evaluated respectively. Sec-

tion 4 characterizes the cache performance of the OS. This section

starts out with a high-level analysis of the behavior of OS misses in

Subsection 4.1, then analyzes the sources of OS misses in Subsec-

tion 4.2, and finally cxxtsidem application misses induced by the OS

in Subsection 4.3. NexL Seztion 5 characterizes the synchronim-

tion performance of the OS. Section 6 cfkussea the implications of

our results for larger machines. Finally, we conclude in Section 7.
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2 Experimental Environment

In this section, we discuss the hardware and software infrastructure

used in our experiments.

2.1 Hardware Setup

Our reeults are based on the analysis of address traces generated by

a Silicon Oraphics POWER Station 4D/340 [4], a bus-based cache-

coherent multiprocessor with four CPUS. Each CPU is a MIPS

R3000 with a 64 Kbyte instruction cache and a two level data

cache a 64 Kbyte first-level and a 256 Kbyte second-level cache.

All caelm are physically-address~ direct-mappe& and have 16

byte blocks, The system is configured with 32 Mbytes of main

memory.

We use a hardware monitor to record ell bus activity without

affecting the machine. A buffer in the monitor stores the physical

address and ID of the originating processor for over 2 million bus

transactions. Synchronization accesses are not stored since they are

diverted to a special synchronix~ion bus and are therefore invisible

to the monitor. We discuss a scheme to address this problem later.

Time is measured with a granularity of 60 ns using a counter in the

monitor. For the machine’s cache configuration, bus transactions

till the trace buffer in 0.5 to 4 seconds, depending on the miss rate

of the workload.

To circumvent the constmint imposed by a trace buffer of limited

sixe, we periodically suspend and restart the programs that form the

workload being measured. A master process starts them and then

goes to sleep. At regular intervals, the master wakes up and checks

the trace buffer. If the fraction of the trace buffer that is empty is

less than a threshold value, then the master suspends all proccaae~

therefore sending the CPUs to the idle loop. Then, the master

dumps the trace to disk and restarts the processes. The value of

this ‘tieshold is chosen so that the buff& never overflows. With

this approach, we can trace an unbounded continuous stretch of the

workload instead of having to rely on samples interrupted when the

trace buffer is keing dumped.

This setup requires some extra supporL FirsL the master is given

real time priority, the highest priority possible. As a resttl~ when

the master wants to rum it is never held back by any other process.

Second, in the original OS, the OS checks for suspend signals only

in the code that schedules processes. To allow the CPUS to detect

the suspend signal immediately after the master issues it, rather

than on expiration of the time quanmm, we modified the system

call that sends the suspend signtd to force all CPUS to reschedule.

The resulting fast response to the suspend signal prevents the loss

of traces.

Irtsteadof dumping the trace onto a local disk, the master process

sends the trace to a remotely-mounted disk. In the remote machine,

another program postprocesses the trace in parallel while the next

segment of the trace is beiig generated and mnsferred. With this

setup, the activity of the postprocessing program does not pollute

the caches and memory of the system under meesure, In fat% in

the measured system, only two sources of perturbation occur. One

is the activity of the master process, which we optimized to require

as few cache blocks as possible when checking the status of the

trace buffer and when dumping the trace. The second is the activity

of the network deamons while the data is being transferred across

the network. These deamons partially destroy the I and D-cache

state of the processor on which they run (processor 1 on the SGI

4D/340), The perturbations caused by these deamons are negligible,

howevex, since the workload runs for 0.5-4 seconds once tracing is

resumw while tilling completely empty I and D-caches takes only

about 20 ms.

2.2 Software Suppoat
&

Inallof our experiments, we usc release 3.2 of IllIX, the OS that is

shipped with the multiprocessor. IRIX is in turn based on UNIX [3]

System V and is fully multithreaded except for network functions,

which run on CPU 1. All OS data is shared by all threads.

We instrument the OS code to record a variety of events:

●

●

4

●

●

Entries and exits from the OS.

ID of the processes that are currently running,

Changes in the per-CPU TLBs, to be able to translate the

physictd address traces back to virtual addresses. The virtual

addresses are reqttird for example, to determine whether an

application reference is an access to the instruction or data

cache.

Entries and exits from interrupts.

Cache flushing and other events that we need for particular

experiments.

In addition to all this information which is gathered at mn time,

we need to determine the state of the machine when tracing starts.

To this end a system call dumps the contents of the TLBs and

some process state onto the trace buffer when tracing starts.

Because our hardware monitor storea addresses only, and not

datg all the information listed above that we transfer to trace has to

be encoded as accesses to addresses that the postprocessing progratn

can distinguish. For our experiments, we devised an encoding that

allows us to transfer any information to the trace as cheaply es

one or more cache misses. This encoding is based on using two

hardware features. FirsL the MIPS address space allows the OS

to accem physical addresses directly, bypassing the TLB. Second

the hardware SI1OWScertain accesses to bypass the two levels of

caches. Therefor% we choose a range of physical addresses where

only OS code ever lives and generate ttncached byte reads to odd

(i.e. not even) addresses in that range. These escape references

cannot h confitaed with real code accesses because they read odd

addresses.

While some of these escape references may be as simple as a

single byte read - for example, reading the eddress that signals

Etuering the OS - others require more state, For instance, when

we want to record that a new entry is added to the TLB, we send

to the trace four pieces of informetiotx the index of the TLB entry,

the number of the virtual page added, the number of its correspond-

ing physical page, and the ID of the process that owns the page.

To transfer this information, we tit read the location that signals

TU entry change. Then, one at a timq we take each of the four

pieces of information to send shift them left one b$ set the least

significant bit to make the data * take the resulting value as an

uncachcd physical eddress, and then byte-read from it. Although

the resulting four addresses can be snywhae in the address apace,

the postprocessing program will easily distinguish each escape in

this escqoe sequence by looking for four loads from odd addresses

by this CPU in the trace following the TU entry chunge access

(remember that the CPU ID is included in the trace). AH other

misses generated by this CPU whfie sending the eacapea are in-

struction misses necessarily and henee aeeess even addresses only.

To ensure that process rescheduling does not interrupt the escape

sequen~ we disable interrupts while dumping escape sequences.

To summarizq we can transfer to the trace any amount of informa-

tion as cheaply and non-intrusively as one or more cache misses.
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Some extra instrumentation may be required when we want to

determine what OS data structure or OS code sequence causes a

given cache miss. In genera we compare the address missed on

with the entries in the symbol table of the OS image. This approach,

however, does not work for the date+smctures in the OS that are

dynamically tdlocated. To solve this problem, when we went to

measure the cache behavior of these data structures, we instrument

all entries and exits in all OS subroutines. This approach provides

the extra information of what subroutine was executing while a

data miss occttmed. With this information, we are usually able to

determine what dynamic data structure was involved in the miss.

Finally, we can also measure synchronization activity with little

intrusion. Since synchronizing accesses are diverted to a synchro-

nization buq they are invisible to our hardware monitor. To mea-

sure them, we do the following. First we modified the OS to keep

statistics on its synchronization activity while running. Secondi we

modified the (X3 to allow user processes to map the physical pages

that contain these statistics into the processes’ address space. As a

resulk if a user process maps these pages, it can, at any timq read

the statistics that the OS keeps on synchronization. Therefor$ to

measure the OS synchronization performartce of a worklod we

mn a special user process that maps these pages and compares the

synchronization statistics before end after an uninterrupted execu-

tion of the workload.

3 Workloads Evaluated

The choice of what workloads to use is a major issue for any study

of this type because of its impact on the results. We chose three

parallel workloads. ‘llvo of them are common engineering work-

loads: one is a parallel compile+ the other a parallel numeric pro-

gram mnning concurrently with a parallel compile and some screen

edit sessions. Our third choice is a typical commercial worldoatL

namely an Oracle database. We now describe each workload in

detail.

●

●

b

Pmake is a parallel make of 56 C tiles with, on avcrag~

480 lines of code each. The files are compiled such th~ at

the mosg 8 jobs can mn at once (J flag is 8). While this

workload has some compute-intensive periods when the opti-

mizing phase of the compiler runs, it usually exhibits heavy

I/O activity.

Multpgm is a timesharing load composed of a numeric pro-

gram plus Pmde and Eve screen edit sessions. All programs

are started at the same time. The numeric program, called

Mp3rf [11], is a 3-D particle simulator used in aeronautics

and mn using four processes and 50000 particles. Each edit

session is crested as follows. An input lile with ed commends

is fed to a program that simulates a user typing at a tertnin~

and the resulting command piped to an ed invocation. The

program that simulates the user simply sends the characters

in the input file to the screen and to the pipe in bursts of 1-15

chsractem at a time. A cdt to ra~) detwmines the number

of characters to be sent at a given time. At the most however,

25 characters can be sent every five seconds. The commands

in the input lile force the ed session to do character searches

end text editing.

Oracle is a scaled down instance of the TP1 database bench-

mark [8] running on an Oracle database. We do not run the

standard-sized benchmark because we have limited memory

and disk resources and I/O would be a heavy bottleneck. In-

ste~ we reduce the size of the kenchmark so that it fits in

main memory. The resulting benchmark is not standard it

has 10 branches, 100 tellers, 10,000 accounts, and achieves

59 transactions per second (TPS).

To see if the size of the database affects the cache performance

of the OS, we ran a subset of the experiments using a standard-

ized benchmark. We show in [18] that the characteristics of

the OS misses in the stand~d benchmark are qualitatively the

same as the once in Oracle.

3.1 Overview of the Cache Behavior

We traced each of the workloads for 1-2 minutes. Table 1 presents

some of the workload characteristics that show the importance of

the OS. FirsL in columns 2-4, we divide the execution time of the

workloads into user, system, end idle time. From the table, we

see that the OS accounts for as much as 32-47% of the non-idle

execution time in these workloads. NexL in column 5, we consider

the fraction of OS misses in the workloads. From the tablq we

observe that this fraction varies from 25 to 50%.

We now consider the performance impact of the cache misses.

The last three columns of Table 1 show the fktction of time pro-

cessors waste in stalls due to all application and OS misses, due to

OS misses only, and due to OS plus OS-induced application misses

respectively. OS-induced application misses result from the OS

displacing the application from the caches. We compare the stall

time against the non-idle execution time because the amount of

time that CPUS spend in the idle loop is a function of the memory

and disk resources in the machine. The stall time is estimated by

assuming that each bus access stalls the CPU for 35 cycles, a num-

ber slightly over the zero-contention latency of a memory access

in the machine. This estimate does not handle two situations that

occur in the real machine. FirsL processors can potentially overlap

a write miss with computation. Second processors may be stalled

on a miss and we may not be aware of it- This may happen when a

CPU misses in the tit level cache but the bus is not accessed be-

cause the miss hits in the second level data cache. In this situation

the CPU could be stalled for about 15 cycles. If the first situa-

tion dominates, our results on miss stall times are excessivg if the

second dominates, our results are conservative. These two effects,

however, only apply to data misses, which account for 45% of the

misses in the workloada. In addition, we will see that data misses

in the OS are often caused by the OS sweeping through blocks of

data (Section 4.2.2). This effect may cluster the misses in timq

fill the write buffer, and prevent writes from being overlapped with

other computation. For these reasons, we believe that our results

do not overestimate the amount of stall time.

We observe from column 6 of Table 1 that cache misses stall

CPUS for 40-60% of their time. Column 7 shows that the stall time

due to OS misses is as large as 17-21%. In the following section,

we analyze what causes this stall time. Finally, column 8 shows

that the stall time caused by both OS and OS-irtduced application

misses reschea 25%.

4 Characterization of the Cache Per-

formance of the Operating System

We start this section on the cache performance of the OS with

a high-level view of the behavior of OS misses. After tha~ the

bulk of this section characterizes the major sources of OS misses.

Finally, we consider the misses in the application caused by OS

interference.
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Table 1: Characteristics of the workloads.

Woddoad hxecutron Time 0s Misses I Appl. + CiS-Mrss 0s Mm o S+ OSlnduccd W Ss
V

User s Idl Total kfkkW Stall Tne / Stall Tne / Stall Tne /

(%) (Zj (%; (%) Non-Idle Tme Non-Idle Time Non-Idle Time

(%) (%) (%)

Pmllke 494 311 195 526 399 210 25.8

Mdtpgm 53:2 46:7 0:1 46.3 46:5

Oracle

21:5 24.9

624 29.4 8.2 26.6 625 16.6 26.8

Pmake

61800 Cyc (1.%ns)

m18300 31500 Cyc

268 a+D)tniss

154 l&s 20 UTLB Faults. Each:
141 Mm 14 Cyc, 0.02 Irniss,

0!10 Drniss.

Multpgm

11400 cyc (0.4ms)

m

4900 Cyc 6400 Cyc

81 ~+D)miss

30 hiss

39 Drniss
7 UTLB Faults. Each
15 Cyc, 0.00 hniss,
0.06 htiSS.

Oracle

66 hiss 30 UTLB Faults. Edr:
35 Drniss ~6&yf103 hniss,

~ OSinrhekileLoop — Application

m 0s , :$riieie&Intermptions

Figttre 1: Average times and cache misses in the basic pattern that repeats throughout the &ace. Time is measured in 30 ns

processor cycles. Withii each figur~ distances are drawn to scale.

4.1 High-Level Vkw of the Cache Activity of

the Operating System

To understand the cache performance of the OS we first need to

understand the interleaving of OS and application activity. In thii

section, we characterize the interleaving of OS and application in-

vocations the duration of these invocations, and the number of

misses involved. This data is also useful to build analytic models

of OS and application referencing activity.

Our measurements show that the OS interrupts the application

in two ways. FirsL with frequent spikes of activity that are nearly

miss-fr=, SCCON with relatively infrequent and long bursts of ac-

tivity where most of the OS misses occur. The former are generated

by TLB faults that only require copying a virtual to physical page

association from an OS data structure to the TLB (UTLB faults).

The latter we call OS invocations and are caused by system calls,

interrupts, and other TLB faults.

Figure 1 shows the average characteristics of the basic pattern

of execution that repeats throughout the trace. In the figure, the

execution time is divided into OS, OS in the Idle Loop, and Ap-

plication. In the upper part of the figure we show time duration

in cycles. In the lower part we show numbers of misses. Finally,

below the arrows, we show the number of UTLB faults that occur

in an application invocation, as well as their cost in cycles and

misses. In the figure, while the miss counts are exac~ the cycle

counts are distorted by our instrumentation: they are 1.5%, 5%,

and 7% larger than they should be in Pmake, kfultpg~ and Oracle

respectively.

Several observations may be made fmm Figure 1. First while

the UTLB fault handler is invoked t%kpmtly, it causes very few

cache misses and is very fast. 0ss average, one invocation causes

less than 0.1 misses. In addition, it can be shown that the distribu-

tions for the number of I- and D-misses generated in one invocation

are strongly skewed towards very small values [18]. Overall, from

the cost of UTLB faults shown in Figure 1, we compute that UTIJ3

fault handling takes the equivalent of 1.5% of application cycles.

Seco@ the OS is invoked on average as frequently as once every

1.9 ms in Pmake, 0,4 ms in Msdtpg~ and 0.7 ms in Oracle. These

intervals are an order of magnitude smaller than the 10 ms period

of the OS clock. The small size of these intervals is due to the

high frequency of several OS operations. For the case of Msdtpg~

Figure 2 shows the relative frequency of the operations executed

by the OS without including UTLB faults. Although more than one

operation can be performed per OS invocation, - for example two

nested interrupts - we see that several types of operations occur

more frequently than clock interrupts. We see that abut 50% of

the OS operations are system calls associated with synchronization

(sginap system calls), about 20% are TLB faults, about 20% are I/O

system calls, and only 5% are clock interrupts. The sginap system

call is issued by the synchronization library after 20 unsuccessful

attempts to acquire a lock. This call reschedules the CPU, in the

hope of giving the process that holds the lock a chance to run and

release the lock. As we will see in Section 4.2.3, the sginap system

call is not common in the other workloads. As a resul~ the time

between OS invocations is larger in the other workloads.

Finally, we note that art OS invocation replaces only a small

fraction of the cache contents. For exarnpl~ the average OS in-

vocation causes 154 I- and 141 D-misses in Prnuk (Figure 1), a

small number compared to the number of blocks in the I- or D-

caches. To see the complete Picturq Figure 3-(a) and (b) show the

distribution of the number of I-misses and D-misses respectively in

f%take’s OS invocations. In reality, the &action of the cache that

is replaced in an OS invocation is smaller than that suggested by

Figure 3, since from 10% to 25% of the OS misses replace blocks

that have already been missed on in the same OS invocation.

For completeness’ sake, Figure 3-(c) shows the distribution of
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.!3“oa-0.4

0.2

t)L
“Sgirtap TLB J/o Clock Other

System Faults ~y~stm kterpts.
calls

Figttre 2 Frequency of the operations executed by the

OS invocations in Mdtpgm.

the duration of Pmah’s OS invocations. Figure 3 can be used to

build an analytic model of the OS activity in Pmuke. The corre

spending charts for MuZlpgm and Oracle are shown in [18]. They

show tha~ aa in Pmake, art individual OS invocation has a small

impact on the cache contents. For completeness’ sake, [18] also

shows distributions for the number of misses and cycles in invoca-

tions of the application for Prrtake, kfdtpg~ and Oracle.

Number of Cycles

Figure 3: Characterization of the OS invocations in

Pmake. From left to right the charts show the diminution

of the number of I-misses per invocation, D-misses per in-

vocation, and cycles per invocation. The latter does not

include the time in the idle loop.

4.2 Analysis of the Cache Misses in the Op-

erating System

While the previous section showed the behavior of the OS misses, it

did not explain the causes for these misses. We focus on the causes

in this section. There are three main causes of cache misses in the

OS, namely first-time references, displacement of the cache blocks

fkom the cache by other OS references or application references,

and coherence activity. Coherence misses in the data cache are the

result of data sharing, coherence misses in the instruction cache

result horn the I-caches being invalidated when physical pages that

contain code are reallocated. In addition, we also distinguish a sub-

set of the misses that result Ikom displacement by OS references

the misses where the application was not invoked between the dis-

placing OS reference and the OS miss. These misses are interesting

because they can be reduced by restructuring the OS code. This

whole classification is summarized in Table 2. In the following,

we tirst analyze the I-misses and then the D-misses.

4.2.1 Analysis of the Instruction Misses

The instntction misses in the OS are classified into their subcompo-

nents in Figure 4-(a). In the figure, the total number of OS misses

is normalized to 100. The most striking fact in Figure 4-(a) is that

instruction misses constitute as much as 40-65% of all OS misses.

Instruction accesse$ therefore, are the tirst of the major sources

of OS misses that we identifjr. Using the same method as in Ta-

ble 1, we estimate that these OS misses stall CPUS for 10.9, 9.L

and 10.6% of their non-idle time in Pmake, Muitpgn and Oracle

respectively, This large impact contrasts with the behavior of engi-

neering or scientific applications, where instruction misses are leas

frequent than data misses and are often discounted in performance

studies. This relatively poor I-cache performance of the OS is due

to the scarcity of loops in the OS code.

Table 2 Classification of the cache misses in the OS

horn an architectural perspective. Except for Dispossame

misses, a given miss belortgs to only one class.

la Sss II Explsnatton 1

n Coid Misses generated when a processor accessesa

physical memory block for the processor’s first time.

Dkpas MISSCSthat occur when the requested data Wed

to beinthe cache buthasbeen distkedbvan

intervening OS reference.

D~Pw Mmws that occur when the data requested used

to be in the cache but has been displaced by an

intervening applicstimt reference.

Sharing D-cache misses resulting from OS data being shared

II or migrating among processors.

lnwl I-cache misses nzmdtine from invslidatiert of the H

I-cache when physical ~ages that contained mde

are mdlucsted. ‘lke reallocation of data pages

does not reuuite invalidating the D-cnches because

the snocpin~ hardware aut&atically rrpdstea them.

Urtcached OS accesses that bypass the caches.

Dispessame Dtipas misses that Ixcur when the a~liestiott was

not invcked betwecat the displacing OS reference

u II and the OS miss. u

A second observation is that the OS often interferes with itself

in the I-cache. This is shown by the sizable contribution of Dispos

misses in Figure 4-(a). To understand this self-interference better,

we measure what parts of the OS code cause Dispos misses. The

result of this experiment for Prrtake is shown in Figure 5. The figure

shows the number of Dispos misses as a function of the physical

address of the OS routine where these misses occur. In the figttr~

instead of measuring the X-axis in bytes, we measure it in multiples

of the I-cache size (64 Kbytes), We note that these self-interference

misses are concentrated in short address ranges artd therefore occur

mostly in a few routines. We will consider the implications of this

fact in the section that studies optimixatiorts.

We note that this self-interference often occurs within the same

OS invocation as opposed to aerosa OS invocation. ‘EMs makea

this interference easier to understand and eliminate. The misses

resulting horn self-interference within the same OS invocation are

called Dispossume misses. Figure 4-(b) shows the contribution of

the Dirpossurrte misses to the self-interference misses. We note

that the magnitude of this contribution is related to the duration

and frequency of the OS invocations. For example, Dispossame

misses are a larger fraction of Dispos misses in Pmuk.e than in

Mu!tpgm because Pmake has longer OS invocations than Muftpgm

(Figure 1).

Finally, the contributions of the remaining categories of I-misses

in Figure 4-(a) depend on the behavior of the user applications
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running. For example, Dispap misses dominate in Orucle because

the working set of the database code is large and therefore the

database interferes with the OS.

‘012345678910 111213 141516

Physical Address (Muhipies of the I-Cache Size)

Figure 5: Number of self-interference (Dispos) misses

in Pmake’s OS instructions as a function of the physical

address of the OS routine where the misses occur. The X-

axis is measured in multipIes of 64 Kbytes, the size of the

I-cache.

Removing Irtstr’uctlon Misses

One way to improve the hit rate of the OS instructions is to

reduce the amount of self-interference. This can be accomplished

by purposely laying out the basic blocks in the OS object code

to avoid cache conflicts, The thin spikes in Figure 5 suggest rhat

localized changes in this layout may achieve a reduction of misses.

The techrdquea used to optimize the basic block layou~ however,

should be slightly different from the existing ones. Current tech-

niques [12] we targeted towards code with ftequent loop nests.

They are baaed on identifying the most frequently executed loops

and then placing the rest of the code to avoid interference with

these loops. Tmhniqucs for the OS code, instea should take into

account that commonly-executed OS paths often eontsin a long se-

ries of loop-less operationa. It is beyond the scope of this paper to

considez these techniques.

A second way to reduce these self-interference misses and in

gener~ all displacement misses, is to increase the associativity

of the I-cache. Unfortunately, set-associative caches are slower.

Disregarding any speed considerations, however, we simulated the

effect of set-associative and larger caches on the I-misses of the

OS. The results of the simulation are shown in Figure 6. The

figure plots the miss rate of the OS instructions for direct-mapped

and two-way set-associative caches of different sizes relative to the

miss rate in the machine measured. In our simulations, we use the

references that miss in the caches of the real machine to simulate

larger caches. For this reaso~ we cannot simulate a two-way set-

aasociative cache of 64 Kbytes. Note that both application and

OS instruction tracea are sirnulati although only OS misses are

plotted in the figure.

We see in Figure 6 that increasing the associativity of the I-

cache to two produces a noticeable reduction in OS missca. The

effectiveness of set-associativity is not surprising given the amount

of cache interference prcaent in OS instructions.

A second observation tkom the plots is thatj naturally, larger

caches eliminate an increasing number of misses. The drop in the

number of misses is particularly steep in Oruck – all the way to 1

Mbyte caches. This effect is due to the large instruction working

set of the database. The curves for Pmake and kfultpg~ on the

other han~ saturare at 256 Kbytca. This behavior is caused mostly

by cache invalidations, which create Invul misses. This is illtts-

Izated by Figure 6, which shows the effect of the misses caused by

cache invalidations for direct-mapped caches. The dashed curve

bounds the drop of the relative miss rate curve for direct-mapped

caches. From the figure, we observe that both Pmuke and Mtdtpgm

are seriously limited by these misses. No% however, that the fig-

ure assumes that the algorithm used to invalidate caches does not

change as caches increase in size.

4.2.2 Analysis of tie Data Misses

The data misses in the OS are decomposed into their constituent

classes in Figure 7-(a). As in Figure 4, the total numbs of OS

misses is normalized to 100, From the figure, we note that the

dominant class of data misses is Sharing misses. The remaining

misses are caused by both cache displacement and cold references.

A large fkaction of these remaining misses - and a small amount

of Shuring misses as well - occur when the OS executes block

operations. In the following, we first analyze Shuring misses and

then the misses caused by block operations.

Sharing Misses

To understand what caueas Sharing misses, we start by dividing

these misses into their contributing data structures. ‘fhis is shown in

Figure 8. From the fignr% we note that .Wuring misses are spread

over a lot of different data structures. The size of these data struc-
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Figure 7: Classi6eation of the data misses in the OS.

Chart (a) shows the ccmtribution of each class of &ts misses

as a frsetion of the total number of OS misses. For com-

pleteness’ sake, Chart (b) shows the Dispossume component

of the Dispos misses.

tures and a brief description of their function are shown in Table 3.

From the tablq we see that these data structures vary widely. For

example, some of them are large and seemingly sparsely-shard

while others are small, frequently shar~ and can potentially cause

hot SpOtS.
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Figure 8: Classification of the Sharing misses in the OS

according to the data structures that cause them. Each of

the data structures under category Olher accounts for leas

than the smallest category in the figure.

The major contributing data structures are those that mostly store

per-process private statq namely the Kernel Stack the three com-

ponents of the User Structur% and the Process Table (See Table 3).

Together, they account for 40-65% of the Shuring misses. Except

for the Process Table in some cases, these data structures store

per-process state that is seeessed only by the CPU executing that

process. If these data structures appear to be sharq therefor% it

is because the process migrates among CPUS.

Process migration is our second major source of OS misses. Al-

though process migration possibly contributes to the Slurring misses

of most data structures of Figure 8 and also causes instruction

misses, we conservatively assume that it only causes the .!Maring

misses in the three data structures considered. We call these misses

migration misses. As shown in Table 4, these data misses account

for 10-44% of the data misses in the OS and slow down our work-

loads by up to 4%.

Migration misses often occur when the OS manages the run

queutz handles exceptions, or sets up read and write system calts.
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Table 5 shows the individual contributions of these three operations

to the number of migration misses. From the tablq we see that

these operations account for 25-5(WO of the migration misses. In

the tabl~ the Management of the Run Queue category includes the

contributions of the seven routines that form the core of the run

queue management. These routines save and restore the state of a

proces$ put a process in the run queue, find a process to run, and

manage &e scheduler.

Table 3: Data structures that conhibute the most to the

Sharing misses in the OS.

Dars .%lCtUt’e s Fonclten

(r&J)

Kernel Stack 4096 stack used by the OS while executinx

itsthecontex~ of the promss, -

PCB S@iCst 240 Place where the process registers are

of the saved when a context switch occurs.

User structure

Efrarne sectkxs 172 Place where the process registers arc

of the saved when the process gets so

User Stmcture II I exception.

Rest o the~

User Structure II by the process &d system L&ers

allocated for the mocess. maintains

Process Table

Bcopy

Bclear

Pfdat

Buffer

the return values “of syst& calls, etc.

46080 Contains the process state, prlorhy,

signals, scheduling parameters, etc.

— Pages or fragments of pages accessed

by the block copy routine.

— Pages or fragments of pages aco3sscd

by dre block clear routine,

T10944 Arrxy of descriptors to the physical

pages. Each descriptor contains the

disk block number cm-responding to

the page, a pointer to the related inode,

I links to various lists of pages, etc.

~

I
cache. Each buffer contains the disk

block number whose data the buffer

stores, a pointer to the actual data.

and processes.

hePgBuck 3072 Array of buck-s that start hash 1Ists

to which free physicaf pages are tied.

Hiadproe 1 Flag used to make some dcc lslons on

priority scheduling.

Table 4 Conservative estimate of the data misses and

stali time caused by process migration.

Workload

L 17(J
of OS Data Misses Pmt. Mlgr.

erne ser IPS ocess IT Otal D-MISS n

Stack Stme. Table Stalf Tme /

Non-Idle

Execution Time

(%)

P??ub 8 25 2.6 9.9 10

Muhpgm ;i.4 1i.6 7.8 33,8 4:2

Oracle 18.0 19.0 7.1 44.1 2.6

The second category in Table 5, namely Low-Level Exceptwn

Handling, groups the eontributiotts of the initial and final stages

of exception handling. These stages are coded in assembly for

higher performance and perform low-level operations like deter-

mining what class of exception occurred or saving and restoring

the registers, Exceptions include interrupts and TLB faults.

Table 5: Fraction of the migration misses accounted for

bv three common operations.. 1

operation

Management of
the Rmr Queue 11.5 20.5 14,3

Lo Leef

Ex:;ti: Hsndfing 7.3 12.9 14.5

Recognition and Setup of

Read and Write System Calls 6.4 13.2 20.7

, Total 25.2 46.6 49.5

Lastly, Table 5 shows the contribution of the recognition and

setup of the read and write system calls. We see that these op-

erations have a noticeable effect in workloads with frequent I/O

activity.

As a final note, we observe from Figure 8 that a significant

fraction of the migration misses occur while saving and restoring

registers in context switches and exceptions (PCB and Efrarne cate-

gories respectively). This implies that these two simple operations,

namely register saving and restoring, have a noticeable performance

impact.

Removing Sharhtg Misses

Larger data caches cannot eliminate Sharing misses. Conse-

quently, since Sharing misses are the majority of data misses, larger

data caches can only moderately ittereaae the data cache perfor-

mance of the OS.

one way to eliminate some of the Nsuring misses is to reetrict

process migration. Process migration not only causea the data

misses isolated above+ it also causes other data and instruction

misses in the OS as well as a (possibly larger) number of misses in

the application. Process migration should not be completely elitni-

natd however, for it ensures load balance in the machine. Affinity

scheduling [16, 19, 20] is one technique that removes misses by

encouraging processes to remain in the same CPU while still tol-

erating process migration for load balance.

Misses in Block Operations

The OS often sweeps through large arrays of da@ primarily in

block copy and clear operations and when traversing the physical

page descriptors (Pf&s). As an example, a block COPY occurs

when a child process writes on a non-shared page that belongs to

its parent. Its that CSS%a copy of the page is made for the child.

An example of block clear occurs when the OS allocates a page for

* The page has to be zeroed out before being used. Finafly, a

traversal of the array of page descriptors oceura when free memory

is needed. In this case+ the OS traverses the array to find out what

pages need to be written out to disk.

These three block operations constitute our third major source of

OS misses. Table 6 shows that they cause from 10 to 61% of the

data misses. These misses are mostly displacement misses (Di.rpap

or lXspos) or Cold misses, although Figure 8 showed that a few of

them appear as Sharing misses. As seen in Table 6, they stall the

CPUS by Up to 6%,

These operations are more hmrnful than Table 6 suggests for two

reasons. Firx~ by accessing large data structures, these operations

often wipe out a large fraction of the data cache. The data displaced

from the cache may have to be fetched again later on. Secmtd the
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Table 6 Data misses and stall time caused by the three

block operations.

Woddoad %Ofos 1)ata M ]sses Block

B1 k Block ‘Iravers. ‘loud

c: C2ear of Statt Time/

Descrip. Non-Idle

Execution Time

(%)

Pmab 176 237 197 610 62

Muftpgm 15:1 72 157 38:0 4;7

~ Oracle 8.6 1.0 1.0 10.6 0.6

data fetched by these operations is often not reused. As an example,

consider a page copy. The copy operation brings two pages into

the Cttchq one of the pages will probably not be accessed anymor%

and only a few words of the second page may be accessed in the

near future.

Removittg Misses in Block Operations

Block operations often access regular and relatively large blocks.

This fact makes potential optimization easier. As art examplq Ta-

ble 7 characterizes the sizes of the blocks copied or cleared in

Pmuke. The table classifies the operations according to the sire of

the data operated on. For the operations in a given category, the

table shows the relative tkquency of invocation and one or more

examples. From the table, we note that 50% and 70% of the in-

vocations of block copy and clear respectively operate on a full 4

Kbyte page or a larg% regular fraction of it.

Table 7: Characterization of the sizes of the blocks

copied or cleared in Pmake.

Block Sire. of Freq. of Example

Block hsvoc. (%)

Full Page 5 Update of a copy-on-write

page.

R @r pwe 45 Transfer of dSta IO/out of

F&ttent buffer cache.

(e.g. 114

II 111-of Page) I I
rregular 50 Copy of strings or system II

chunk call parameters.

clear Ftdl Page 70 Allocation of a page for

page table entries.

First referuscc to a
~-a.~..~m page.

asof structures

““l,. ”..” -

I ular 30 Inmakw

L%tt atlocated in the kernel II
hem or inode-rd

u II I I dat~ stmchrres. !2-u
One way to eliminate misses in block operations is to use special

hardware and software support to prefetch data. In this way, if the

data to be copied or cleared is prefetched in advance whale other

computation ia in progress, the lntency of the misacs is hidden.

A second technique is to bypass the cache when block transfer

operations are performed. In this case, we still pay the cost of the

cache miss latency, but do not wipe out other relevant state in the

cache with this seldom-reused data. The data accessed with cache

bypassing should not be fetched from memory one word at a time,

but in blocks of contiguous data. This helps exploit the spatial

locality of the reference stream and therefore reduces data transfer

costs. Finallyr more sophisticated support for block operations has

been suggested by Cheriton et al [6].

4.2.3 Analysis of the Operating System Cache Misses

from a Functional Perspective

For completeness’ sake, we now brietly analyze the OS misses from

a functional viewpoint. We classify them atxmrding to the high-

level operation that the OS was executing when the misses occurred.

The operations considered are expensive and cheap TLB faults, I/O

system calls, the sginap system call, the remaining system calls, and

interrupts. These operations are defined in Table 8, and the results

of measuring both the data and instruction misses are shown in

Figure 9. In the rest of this sectiotL we first analyze the observations

and then discuss the implications.

Table & High-level OS ommttiorts.

Operaticn II Explsnattorr

Exoensive I TLB faults that mouire the atlocstion of a ohvsical

TL’B page. ‘llsey may i;voive simply grabbing a“~ge from

Faults the list of free pages, sometimes performing a page

copy or clear, or they may also require ttcimg I/O to

II read or write pages to disk.

cheap Bf auks tha t require nenher ptsysicsl memory

TLB - IIallocation nor I/O. ‘Conceptually, sise OS simply

Faults copies sane information fmnr tzlobsl wagetables to

th~ TLB. ‘tltey include UTLB ~auhs.” -

I/O System System calls that revolve file system mad s or wrstes.

calls

Sginap System cdl used by a user process to rvschedtstethe

system CPU on which it is sunning. Sginap is catled by the

call syncbrortir.atiorr library stler a process has beers

II unsuccessfully spinning on a lock 20 times.

Other Remaining system catls.

sYs~ II
Caus

Interrupts ~ , utter-

CPU, or dock interrupts.

Analysis of the Data and Instruction Misses

Let us begin with the data misses, shown in the leftmost chart of

Figure 9. Clearly, the majority of them are caused by w system

calls and TLB faults. The latter are mostly of the expensive type. In

Orucle, the database requests allocation of pages itself and manages

its own tile activity. As a resul~ the expensive TLB fault activity

is lumped into the I/O system call categoty.

The sginap system call is another source of data misses if, as in

Muftpg~ lock activity is common in the workload. The rationale

under invoking sginap is that the process that currently holda the

lock may not be running. With a CPU reschedule, that process

may be picked up from the run queue and eventually release the

lock. We note that each invocation of sginap produces only 25

data misses on averag~ it is the frequent invocation of sginap what

makes these misses significant.

Turning to instruction misses in the rightmost chart of Figure 9,

we see that I/0 system calls tie the largest contributors. We also

note that, like I/O aystern catta, interrupts contribute more to the

instruction misses thao to the data misses in relative terms. The

reason is that these two operations execute long stretches of code

while referencing relatively few data items. In contrasg expensive

TLB activity shows the opposite behavior. The reason is that it is

composed of small kernels like Copy or Cfeur that reference large

chunks of daht

Dlscnssion of the Data and Instruction Misses

The numerous misses on the code executed in IjO system calls

suggest that should code layout optimization be attemp@ this

part of the OS should be studied first. Inti this part of the code
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Figure 9: Classification of the OS cache misses according to the high-level operation performed by the OS when the misses

occurred.

as it is now can quickly wipe out the whole cache. For exampl~

some I/O drivers have a size comparable to the instruction cache.

A second observation is that cheap faults in our 64-entry fttlly-

associetive TLB are responsible for a small fraction of the cache

misses only. This suggests th* even if we eliminated all entry

conflicts in the TLB by using an infinite TLB, the savings in cache

miss time would be small.

4.2.4 Summary

Table 9 consolidates the performance impact of the three major

sets of OS misses that we identilia namely instruction misses,

data miasea due to process mig@ion, and data misses in block op-

erations, We now summarize the optimization that we proposed.

Firs& to rcduee the number of instruction misses, we suggest exam-

ining associativity in the instruction cache or optimizing the layout

of the OS code. Secmt4 to eliminate migration-induced misses,

we suggest exploring cache affinity scheduling. This technique op-

timizes the combined cache performance. of application and 0S,

Finally, for misses in block operations, we suggest supporting data

prefetching and/or selective cache bypassing in machinea with a

high cache miss penalty,

Table 9: Components of the stall time directly caused

by OS misses.

workload OSM 1ssStall Tune/N on-Idle ExecutIcn Tune

(%)

Ibtat In Mlgrat]cn

0s Ml& “

M k R

D-Mkws Dg;a $::
Misses

Pmake 21!0 109 1.0 6.2 2.9

Muhpgm 21.5 92 4.2 4.7 3.4

(?rocle 16.6 10.6 2.6 0.6 2.8

AVERAGE 19.7 10.2 2.6 3.8 3.0

4.3 Application Misses Caused by Operating

System Interference

displacing its state from the caches. These application misses we

call Apdispos misses. Their contribution to the overall number of

application misses is shown in Figure 10. In the figurq the total

number of application misses in the workload is normalized to 100

end divided into data misses, labeled with D, and instruction misses,

labeled with I. overal~ Apdrpos misses account for 22-27% of

all application misses.
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Figure 10 Fraction of application misses induced by OS

interference (ApAspos). T13e total number of application

misses is normalized to 100 end divided into data misses,

labeled with D, and instruction misses, labeled with L

5 Characterization of the Synchroniza-

tion Performance of the Operating

System

After analyxing the cache performance of the OS, we now consider

its synchronization performance. We firat present the CPU stall

time caused by OS synchronization awesres and then analyze the

patterns of these acceasea.

To tittish this section on the cache performance of the OS, we

now consider the misses that the OS induces in the application by
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5.1 CPU Stall Time Due to Operating System

Synchronization

Since our hardware monitor does not capture the activity of the

synchronization bus, the CPU stall times presented so far do not

include the contribution of OS synchronization accesses, Using the

technique detailed in Section 2.Z however, we measure that the

stall time caused by OS synchronization accesses is 4.2-4.7% of the

CPU time (column ‘Current Machine’ of Table 10). This overhead

is largely the result of the protocol used in the synchronization bus,

which suffers from the processor’s lack of support for an atomic

read-modify-write operation.

Later in this section, we show that OS locks exhibit good lo-

cality and low contention. These two properties imply that locks

should perform well in a cache-based ti-val;dstion protc&l like the

one used for regular data in the machine. To illustrate this, we usc

traces of the lock wxe.ssea to simulate a machine where synchro-

nization accesses use the main bus and the same cache coheren~

protocol as regular accesses. In the simulation, we assume support

for atomically reading-modifying-writing lock variables using the

load-linked and store-conditional instructions of the MIPS R4000

processor [15]. The resulting stall time due to OS synchroniza-

tion misses is now only f).7-l,f)%o of the CPU time (last column of

Table 10). This indicates th@ with efficient synchronization sup-

p~ the stall time caused by OS synchronization accesses can 6s

negligible.

Table 10 Stall time caused by OS synchronization

aceeeaea, The last column corresponds to a simulated sGe-

nsrio where the processor supports atomic read-modify.

write (RMW) accesses to locks.

workbi Stall Time Doe to OS Synch. Accesses/

Non-Idle Execution TiInG

(%)

current Atomic KMW

Machine Main Bus + Caches

Pmakz 4.2 0.7

Lwtpgm 4.6 0.8

Oracle 4.7 1.1 u

5.2 Synchronization Access Patterns

A more detailed analysis of our measurements reveals characteristic

pattcms of access to OS locks. Due to lack of spacq we do not

present data for all of the workloads here. However, we show

in [ 17j that they all exhibit similar behavior.

overall, the OS synchronizes frequently. For exsmpl~ the rou-

tines that acquire and release locks and semaphores in the OS are

usually excatcd 3-5 times more frequently that-i the most popular

non-synchronizing routines in the OS. In addition, we note that a

kwge fraction of these acquire and release operations are directed to

a few locks. Table 11 explains the function of the most imprtant

of these locks. To get an idea of the frequency of access to these

locks, the second column of Table 12 shows the average number

of cycles between two consecutive successful acquires for the most

popular locks in Prrtake. From the table, we observe that these

locks are acquired once every 9000-36000 cycles. These cycles

include CPU idle time.

While OS locks are frequently access~ they show low con-

tention. We expected low lock contention bccaus~ at the mos~

only four OS threads arc active and therefore can pursue the same

Table 11: Functions performed by the most tYequently-

aquired locks. The postftx J means that the lock ia log-

ically part of an array of locks where each one protects a

similar data smtcture.

Ta--

Memlotk
Runqlk

Ifiee

Dfbrnaplk

Bfreelack

Calock

Shr-z
Stream-x

IU03

Semlock

What the Leek protects

Data StlUct, that allocate/d eallocate physical memory.

scheduler’s run queue.

List of free inodes.

Table of free blocks on the disk.

List of free buffers for the buffer cache.

Table of outstanding actions like rdrmns or timeouts.

Per-process page tables and related stmetures.

Managemmt of a character-cxiented device.

Operations a a given inode, like read or write.

Array of semaphores for the programmer to use.

Table 12 Characteristics of the most frequently squired

locks in Pmake.

Lock

Memiock

Runqlk

Ij?ee

Dylvnaplk

Bfreekrck

Calock

mI I I c. -.

m
lock in our four CPU machine. To see the degree of lock con.

. .
tention, column 3 of Table 12 preserm the fiactton or attempts to

acquire a lock that find it taken. To generate this dat% of amrs~

we ignore any spinning on the lock. Of all the locks studi~ we see

that the only one with significant contention with four processors

is Runqlk, In addition to exhibiting low contention, these locks are

not kept locked long enough to build up queues before their release.

This is shown in column 4 of Table 12. This column presents the

number of waiters when the lock is released if there is at least one

waiter. From the table, we note that this parameter is usually very

close to one.

Despite overall low lock contention with four CPUS, however,

we observe a steady increase in lock contention as the number

of CPUS increases. This effect is particularly obvious in Runqlk.

For examplq Figure 11 shows the number of failed acquires per

millisecond for the locks with the highest contention in hhkpgrn

as the number of CPUa increases. As beforq we do not include

the spins on a taken lock. This plot suggests that contention for

Runqlk will be significant for machines with more CPUa.

Finally, OS lock accesses have high locality. As ao example, the

second to last column of Table 12 shows the fmction of successful

lock acquires where the CPU that acquires the lock is the same as

the one that last acquired it and no other CPU tried to access the

lock in between. Except for Cafock and to a lesser exten~ Runqlk,

the numbers in the table are high, usually over 75%. This overall

high locality makes caching locks advantageous. By caching we

mean a cache coherence protocol where a CPU does not need an

off-cache access when acquiring a lock that has not been aeceaeed

by anyone since this same CPU released it. For exatnpl~ the

load-linked and store-conditional MIPS R4000 instructions provide

support for this protocol to work. The gains of caching are seen
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Figure 11: Lock contention as a function of the number

of CPUS. This figure plots the number of failed acquires

per millisecond for the locks with the highest contention in

MuZfpgm. The Y-axis includes idle time.

in the last column of Table 12 which shows the ratio between the

number of bus accesses in a machine that caches the locks and a

machine that does not.

To conclud~ the negligible stall time and low contention prop-

erties of OS locks imply tha~ if OS locks are cachable, then OS

synchronization has a low performance cost in these small multi-

processors.

6 Implications for Larger Machines

So far we have focused on the performance of the OS on a small

multiproeessor. In this sectio~ we dmcuss the implications of our

results for large shared-memory machines organized in clusters such

as DASH [10], Paradigm [5], or Encore’s Gigamax [21].

FirsL it may be appropriate to replicate the OS executable across

clusters in these machines. This optimization is suggested by the

numerous instruction misses in the OS. By storing a copy of the OS

image in each cluster, instruction misses are serviced locally and

therefore cache miss penalties are low. In addition, we avoid having

a hot spot in the memory module where the OS code resides. Of

course, this approach implies that a substantial chunk of memory

is made unavailable for general use.

Seco@ the mn queue should be distributed across clusters. As

the number of CPUS in the machine increases, the potential for

process migration increases too. One way to mitigate the effects

of process migration is to distribute the run queue across clusters.

Processes can then be encouraged to remain in the same run queue

and therefore mn mostly on the CPUS of one cluster. As a re-

SUIL process migration will be less frequent and will cause mostly

intmwluster misses.

In general, shared data structures should be distributed across

clusters and sharing limited to the CPUS within the cluster as much

as possible. Except for the structures that store per-prows private

stare most of the structures in Figure 8 can be investigated for

distribution.

Thir& block transfers across clusters should be supported effi-

ciently. For these machines, the fkcquent block operations studied

in this paper are costly if performed across clusters. ThereforG

memory should be allocated so that these operations access pages

in the Ioeal cluster only. However, since this is not always possible,

these machines benefit from support for efficient inter-cluster block

transfers.

Finally, contention for the active leeks will almost cestainly in-

crease with the number of CPUS. Table 11 showed the most setive

locks in the small mschineclutraeterized.To minimize the perfor-

mancedegradation,theselocks shouldbedistributed acrossclusters
or new synchronization algorithms designed. The distribution does

not apply, of course, to the leeks whose name finishes with ~ for

these belong to individual structures.

7 Summary

Understanding the cache performance of shared-memory multipro-

cessors is fundamental to continued success in speeding up these

machines. One aspect of the cache performance of these mechinw

that was not well understood is the cache performance of the OS.

In this study, we use a hardware monitor to intereept the activity of

the OS and are therefore able to characterize the cache performance

of the 0S,

The data shows that OS misses can slow down softwttre-

development and commercial workloads by 17-21%. The analysis

of the data reveals three major sources of these misses, namely

insmtctions fetches, process migration, and data accesses in block

operations. Among these sourcos, the role of instruction fetehea is

larger than previously suspected. In s&Wow we also show that OS

synchronization costs little if locks are cachttble. In our analysis,

we identify the most frequently acquired OS leeks and their high

locality and low contention properties.

One experience drawn from this study of the OS eaehe perfor-

mance is that there is no single dominant issue that overwhelms

the rest. While this is positive in that it suggests OS maturity, it

also implies that there is no simple fix that will boost performance

significantly.
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