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Ultralight bosons can form large clouds around stellar-mass black holes via the superradiance
instability and produce continuous gravitational wave signals with frequencies within the range of
LIGO and Virgo. Unlike continuous gravitational waves from neutron stars, boson annihilation
signals are clustered in frequency and have very small positive intrinsic frequency derivatives. We
characterize the expected spin-0 boson annihilation ensemble signal from synthetic populations
of isolated Galactic black holes. We explore how the different population parameters affect the
resulting signal and consider its detectability by recent searches for continuous gravitational waves.
A population of 108 black holes with masses up to 30M� and a flat dimensionless initial spin
distribution between zero and unity produces up to a thousand signals loud enough to be in principle
detected by these searches. For a more moderately spinning population the number of signals drops
by about an order of magnitude, still yielding up to a hundred detectable signals for some boson
masses. A non-detection of annihilation signals at frequencies between 100 and 1200 Hz disfavors
the existence of scalar bosons with rest energies between 2×10−13 and 2.5×10−12 eV. However, due
to the high signal density between 200 and 300 Hz, we urge caution when interpreting a null result
for bosons between 4 and 6× 10−13 eV. Finally, we emphasize that the ensemble signal morphology
would be the primary, perhaps sole, indicator that a continuous wave signal has a boson annihilation
origin.

I. INTRODUCTION

In the last few years, transient and rapidly evolving
gravitational waves have been observed from the merg-
ers of stellar-mass compact objects [1]. Persistent and
slowly evolving sources of gravitational waves have been
predicted as well and have yet to be detected. These
continuous gravitational waves (CWs) are expected to
be much weaker than the transient events and have du-
rations much longer than the typical observation time;
searches for CWs integrate over long periods of time to
extract signal from background.

Canonical sources of CWs include neutron stars with
mass deformations or internal fluid oscillation modes (see
[2] for a recent review). Scenarios involving more exotic
emitters of CWs are also being explored and can provide
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evidence for — or disfavor the presence of — new physics
beyond the Standard Model of particle physics [3–7]. A
particularly well-motivated target is the axion, proposed
to solve the strong-CP problem in particle physics [8–10];
axions and axion-like particles are also promising dark
matter candidates (see e.g. [11] for a review).

Bosons such as axions or axion-like particles can form
“clouds” with enormous occupation numbers around ro-
tating black holes, and do so rapidly on astrophysical
timescales when the black hole size is similar to the bo-
son’s Compton wavelength [3, 4]. These boson–black hole
systems can be thought of as gravitational “atoms,” and
within this scenario, boson annihilations and level transi-
tions source monochromatic gravitational-wave emission
[3, 4]. Annihilations in particular produce signals that
may be loud enough to be detected in standard CW
searches on data from the current generation of ground-
based interferometers [12–15]. Bosons with masses of
∼ 10−13 to 4 × 10−12 eV produce annihilation signals
with frequencies between ∼50 and 2000 Hz, in the LIGO
and Virgo band.

The boson cloud forms by extracting energy and an-
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gular momentum from the black hole, which loses a sig-
nificant fraction of its natal spin [3, 4]. Measurements of
the spins of several old, highly rotating black holes in X-
ray binaries [16, 17] have been used to disfavor the range
of masses 6 × 10−13 eV . µb . 2 × 10−11 eV [12, 18].
However, since the spin measurements come with a set of
systematic uncertainties, it is very important to under-
take complementary searches. Direct CW searches for
the annihilation signal in LIGO and Virgo data are an
independent test in the boson mass range disfavored by
rapidly rotating black holes, and may be able to extend
the reach to lower masses, as well as discover a new par-
ticle.

In order to disfavor a range of boson masses or char-
acterize a potential CW signal, it is crucial to consider
the ensemble signal from the population of sources as a
whole. The properties of the annihilation signal depend
strongly on the mass, spin, distance, and age of each
black hole, and so the properties of the ensemble signal
depend on the properties of the black hole population.
Moreover, to leading order, the annihilation signal fre-
quency is set by the boson rest mass, and so the emission
from all boson clouds falls within a small frequency range.
This is in contrast to CWs from neutron stars, which are
expected to span a broad range of frequencies depend-
ing on the rotation rates of the individual stars. The
clustering of signals in a narrow frequency band could
reduce the effectiveness of CW search methods — which
are optimized for weak, isolated signals — in identifying
the annihilations, and may recommend the use of other
methods entirely (e.g., [15, 19]).

In this paper, we study the expected boson annihila-
tion signal from the population of isolated black holes in
the Galaxy, of which there are expected to be up to∼ 108.
In order to take all effects into account, we use simulated
populations of 108 black holes and calculate the expected
signal from all of the systems for bosons with energies
between 1× 10−13 and 4× 10−12 eV, corresponding ap-
proximately to gravitational-wave frequencies between 50
and 2000 Hz. We investigate the detectability of the en-
semble signal in current LIGO data by broad continuous
gravitational wave surveys [20–23], and its dependence
on black hole population assumptions.

We review the theory of boson cloud formation and
CW emission in Section II and present the Galactic iso-
lated black hole population in Section III. We explore
the resultant ensemble signal from the entire population
in Section IV, study its detectability in Section V, com-
pare our results to current literature in Section VI, and
summarize in Section VII.

II. SIGNAL MODEL

“Gravitational atoms”—macroscopic, gravitationally-
bound states of ultralight bosons around astrophysical
black holes—form rapidly via the superradiance instabil-
ity. The bosons subsequently annihilate, sourcing coher-

ent, monochromatic, and long-lasting gravitational waves
[3, 4, 12]. The frequency of the signal at leading order is
given by twice the boson’s rest energy,

f0GW =
2µb

h
≈ 48.3 Hz

( µb
10−13 eV

)
, (1)

with µb = mbc
2, mb the boson mass, c the speed of

light, and h the Planck constant. In this work, we
focus on signals from gravitationally interacting scalar
(spin-0) bosons around stellar-mass black holes; we use
“black hole” to exclusively refer to stellar-mass black
holes throughout the text. The growth and annihilation
timescales of vector (spin-1) bosons are shorter [24–28]
and require a separate analysis. We only consider anni-
hilation signals from the fastest-growing bound state and
limit our analysis to isolated black holes without external
effects such as accretion or binary companions.

We summarize the necessary background below and
provide further details in App. A; see, e.g., [4, 12] for
more details and [29] for a review.

A. Cloud formation

Black hole superradiance is a purely kinematic pro-
cess [30] whereby a wave scattering off a rapidly rotating
black hole increases in amplitude by extracting some of
the black hole’s angular momentum [31, 32]. The gravi-
tational potential of the black hole enables massive par-
ticle bound states, and the amplitudes of bound states
that satisfy the “superradiance condition” increase [33–
36]. For bosons, the growth is exponential and results in
a “cloud” with a macroscopic number of particles all oc-
cupying the same state. The initial seed can be a vacuum
fluctuation, so the process need not rely on an existing
abundance of bosons in the black hole’s vicinity.

The bound states are approximated by hydrogenic
wavefunctions, characterized by radial, orbital and az-
imuthal quantum numbers (n, `,m) and the gravitational
analog of the “fine structure constant,” α,

α ≡ GMBHµb

~c
≈ 0.0075

(
MBH

10M�

)( µb

10−13 eV

)
, (2)

with G the gravitational constant, ~ = h/2π, M�
the mass of the Sun, and MBH the mass of the
black hole. For systems with stellar-mass black holes,
MBH ∈ [5, 30] M�, and bosons that produce signals in
the Advanced LIGO and Virgo band, µb ∈ [1×10−13, 4×
10−12] eV, α spans the range [0.01, 0.9] (Fig. 1). However,
only the range 0.03 . α . 0.2 contributes to signals that
are simultaneously loud enough to be detectable (Fig. 4)
and sufficiently long-lasting (Fig. 5).

Unless otherwise specified, we consider only the first
superradiant level, with (n, `,m) = (0, 1, 1).1 The level

1 Some literature uses the principal number, n̄ = n + ` + 1 with
(n̄, `,m) = (2, 1, 1) the fastest-growing state.
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FIG. 1. Gravitational “fine structure constant”
α ≡ GMBHµb/(~c). Given the superradiance condi-
tion, the (n, `,m) = (0, 1, 1) bound state cannot form for
α ≥ 0.5, shown in gray.

will grow if the initial spin of the black hole, χi, satisfies
the superradiance condition,

α .
1

2

χi

1 +
√

1− χ2
i

. (3)

The inequality is equivalent to the angular velocity of the
black hole exceeding the angular velocity of the cloud.
For a given α, this is true when the initial spin of the
black hole χi is greater than the critical spin χc,

χc ≈
4α

1 + 4α2
. (4)

See Eq. (A8) for gravitational potential energy correc-
tions and dependence on bound state quantum numbers.
For α ∈ [0.03, 0.2], χc ∈ [0.1, 0.7] (Fig. 2).

The (n, `,m) = (0, 1, 1) level has the largest annihila-
tion power and the fastest growth time, with e-folding
time for the number of particles τinst given by

τinst ≈ 14 days

(
MBH

10M�

)(
0.1

α

)9
1

χi
, (5)

at leading order in α, see also Eq. (A7). The instability
timescale is very sensitive to the boson and black hole
masses and systems with lighter bosons and lighter black
holes take longer to form.

The cloud extracts angular momentum from the black
hole until χ ' χc, at which point the cloud ceases to
grow. The black hole loses mass as well as spin in this
process, so the values of α and χc decrease slightly as
the cloud grows; we take this evolution into account as
described in App. A. At this point, the masses of the
black hole and of the cloud are approximately

MBH,f ≈MBH (1− α (χi − χc)) , (6)

Mcloud ≈MBHα (χi − χc) , (7)

FIG. 2. Critical spin χc for the (n, `,m) = (0, 1, 1) bound
state. The critical spin is a function of the gravitational fine
structure constant α and the bound state quantum numbers.
A cloud of bosons with rest energy µb will only form around a
black hole of mass MBH and initial spin χi if χi > χc (Eq. (4)).

where MBH is the black hole mass at the onset of
the cloud formation. For the systems of interest,
Mcloud ≈ 0.1–5% MBH, which corresponds to

N ' Mcloud

µb/c2
≈ 1077(MBH/10M�)2 (8)

particles in the cloud. The timescale to fully populate
the level is then ln(N)τinst ∼ 180 τinst.

B. Gravitational wave emission

We study gravitational-wave signals emitted from the
resultant bound state: two bosons within the cloud can
annihilate into a single graviton in the presence of the
black hole gravitational field. “Transition” signals can
also occur if multiple states are simultaneously popu-
lated, but are less promising at current sensitivities [12].
We assume the bosons only interact via gravity2. The
presence of self-interactions can change the evolution and
limit the size of the cloud [37, 38], or potentially cause the
collapse of the cloud in a “bosenova” [4, 39, 40]. The sig-
nal from the bosons in a single macroscopic bound state
is coherent, monochromatic, and evolves slowly, thus pro-
viding an ideal target for CW searches. For lighter bosons
and black holes, the signal properties are essentially un-
changed over a Hubble time.

The frequency fGW of the emitted gravitational wave
is given by

fGW = f0GW −∆fBH
GW −∆f cloudGW , (9)

2 For example, the QCD axion in this mass range has self-
interaction scale &1018 GeV so this assumption is valid.
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FIG. 3. Bottom: The leading-order gravitational-wave fre-
quency f0

GW is proportional to the boson rest energy µb

(Eq. (9)). Top: Systems with heavier black holes (orange
curves) produce GW signals with lower frequencies than do
systems with lighter black holes (blue curves) due to the
larger gravitational binding energy. Systems with larger spins
(dashed curves) result in slightly higher frequencies than
systems with smaller spins (solid curves) due to a positive
spin-orbit energy. The two solid curves — corresponding to
χi = 0.5 — stop at intermediate boson masses; for heavier
bosons, χc > 0.5, and the systems never form. The contribu-
tion from the cloud self-energy is of order 10−3 or less of the
black hole’s gravitational potential energy.

where the corrections to the leading order frequency,
Eq. (1), are due to the gravitational potential of the black
hole [41, 42], see Fig. 3, and the cloud itself,

∆fBH
GW ≈ f0GW

(
α2

8
+

17α4

128
− χiα

5

12

)
, (10)

∆f cloudGW ≈ f0GW

(
0.2α2Mcloud

MBH

)
. (11)

The power emitted in gravitational waves for α� 1 is
given by [43],

PGW ≈ 0.025
c5

G
α14M

2
cloud

M2
BH

. (12)

The corrections at larger α are significant, and the power
in this regime has been computed numerically [14, 44]
(see Eq. (A16)). The gravitational waves are produced
approximately in a background defined by the final black
hole mass, and we use the final value of α to evaluate the
power, strain, and timescale expressions.

The characteristic strain of the annihilation signal is
largest when the cloud first reaches its maximum occu-

FIG. 4. Maximum characteristic strain h0,peak for a rapidly
rotating black hole as a function of black hole mass MBH and
boson mass µb at a distance of d = 1 kpc. The peak strain
scales as 1/d.

FIG. 5. The gravitational-wave signal amplitude decay half-
time τGW (Eq. (14)) ranges from longer than the Hubble time
for lighter bosons to less than 100 years for heavier bosons.
The longer signals from lighter bosons are weaker compared
to shorter signals from heavier bosons (Eq. (13)).

pation number. At leading order,

h0,peak ≈ 3× 10−24
( α

0.1

)7(χi − χc
0.5

)(
MBH

10M�

)(
1 kpc

d

)
,

(13)

where h0 is the maximal intrinsic gravitational wave
amplitude (Eqs. (A17),(A18)). The strain h0,peak thus
rapidly increases for larger values of µb, MBH (Fig. 4).
For reference, recent all-sky continuous gravitational
wave searches have reported h0 upper limits of ≈ {2 ×
10−25, 3 × 10−25, 6 × 10−25, 1 × 10−24} at frequencies of
{180, 600, 1000, 2000} Hz, respectively [20, 21, 45, 46].

As the bosons annihilate and the cloud is depleted, the
signal strength h0(t) decreases from its peak as [4]

h0(t) =
h0,peak

1 + t/τGW
, (14)
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where τGW = Mpeak
cloudc

2/P peak
GW is the signal “half-time”,

τGW ≈ 5× 105 yr

(
MBH

10M�

)(
0.1

α

)15(
0.5

χi − χc

)
. (15)

The self-binding energy of the cloud decreases with
decreasing cloud mass (Eq. (10)), giving a small positive
first frequency derivative (also see Eq. (A20)),

ḟgw(t) ≈ 0.2α
fGW

τGW

(
Mcloud(t)

MBH

)2

. (16)

In the relevant part of parameter space, the frequency
drift ḟgw . 10−12 Hz/s (Figure 22) is smaller than what
typical all-sky CW searches can resolve [45, 46] and is
overall a minor effect in our regime. The frequency drift
is discussed further in Sec. IV A.

C. Next-fastest-growing bound state

The second-fastest-growing bound state with (n = 0,
` = m = 2) has parametrically longer growth and an-
nihilation timescales (App. A). It also corresponds to a
lower critical spin and thus will reduce the black hole spin
below the first level’s critical value χc. The black hole
then begins absorbing the first level bosons [4, 47], and
the “spin-up” rate of the first level absorption balances
the spin-down rate caused by the growth of the second
level. Ultimately, enough of the first level is absorbed
by the black hole that the annihilations effectively cease,
and CW emission shuts off [4]. We take this effect into
account by setting h0(t) = 0 when the second level fully
populates, ∼ ln(N) τ022inst after the black hole formation,
where

τ022inst ≈ 2× 105 yrs

(
MBH

10M�

)(
0.1

α

)13
1

χi(1 + 3χ2
i )
.

(17)

The cutoff time in the signal becomes important at α &
0.1, reducing the number of signals.

The second level also produces CWs, and given the
lower critical spin, clouds can form in systems with
smaller χi or larger boson masses. However, the strain is
significantly weaker than for the first level; as described
in App. A, h0110,peak/h

022
0,peak ∼ 90/α2 [44]. In addition, the

emission from the (n = 0, ` = m = 2) level is no longer
dominantly quadrupolar [44], which would require an ad-
hoc CW search. For these reasons, we do not consider
the gravitational-wave emission from the second-fastest-
growing state in our study, although it would be inter-
esting to do so in the future.

III. THE BLACK HOLE POPULATION

For a given boson mass, the annihilation signal prop-
erties depend on properties of the black hole: the dis-
tance d, velocity v, initial MBH, and initial spin χi

(Eqs. (9), (13)), and age τBH. The total number of
black holes in the Galaxy is estimated to be around 108

(e.g., [48, 49]); based on black hole formation rates of
∼ 0.1 − 0.9 per Milky-Way type galaxy per century, the
total number typically varies between 107 and 108 [50–
53]. The number of isolated black holes is unknown, but
is expected to be the same order of magnitude as the
total number of black holes (e.g., [54, 55]). We there-
fore take 108 as the benchmark number of isolated black
holes in the Galaxy; as the total number is uncertain,
our results can be rescaled to draw conclusions on differ-
ent total populations. To manage computation time, we
simulate the positions and velocities of 106 black holes
and perform a “resampling” to scale up to 108 isolated
black holes in the Galaxy (Sec. III A).

A. Simulating positions and velocities

The spatial and velocity distribution of the current
population of isolated Galactic black holes is not known.
However, since the black holes formed from massive stars
at an earlier time, we approximate the black holes’ spa-
tial distribution at birth with the current stellar distribu-
tion and evolve their trajectories, including initial bulk
velocities and natal kicks, though the Galactic gravita-
tional potential using the procedure described in Tsuna
et al. [56]. The Galactic gravitational potential is divided
into the bulge, disc, and halo components; the black holes
are born in the bulge and disc according to their respec-
tive birth rates in the regions, and their positions and
velocities are evolved through the Galactic gravitational
potential. (See [56] and references therein for more de-
tails.) Direct observation of isolated Galactic black holes,
such as by radio observations [56, 57], would significantly
reduce the uncertainties in their properties.

The disk is defined by a cylindrical coordinate sys-
tem with radial coordinate r, height z, and azimuth φ,
while the halo is defined by a spherical coordinate system
with radial coordinate R. The bulge is described by both
cylindrical and spherical coordinate systems. All coordi-
nates are defined with the Galactic Center at the origin.
The black hole birth rate per unit volume in the bulge
(subscript “b”) and disk (“d”) are given the following
prescriptions [58, 59]:

ρ̇b(R) ∝ exp(−R/Rb), (18)

ρ̇d(r) ∝ exp(−r/rd) (19)

where Rb = 120 pc and rd = 2.15 kpc; ρ̇d is uniform
along z for |z| < 75 pc. The proportionality factors in
Eqs. (18) and (19) are determined by requiring that the
total number of black holes born be 106, with 15% born
in the bulge and 85% in the disc [58]. ρ̇d is taken to
be constant over time, while ρ̇b is nonzero and constant
between 10 and 8 Gyrs ago [60].

When a black hole is first born, it is given an initial
velocity composed of a bulk velocity as well as an indi-
vidual kick. The bulk velocity in the disk is a piecewise
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function of distance from the Galactic center, in the φ
direction [61]:

vφ (km s−1) =


265− 1875(r − 0.2)2 r < 0.2

225 + 15.625(r − 1.8)2 0.2 < r < 1.8

225 + 3.75(r − 1.8) 1.8 < r < 5.8

240 r > 5.8

(20)

where r is in kpc. The bulk velocity in the bulge is taken
from a Maxwell-Boltzmann distribution with a mean of
130 km s−1 [62].

Any asymmetries in the supernova explosion can im-
part a “kick” to the newly formed compact object. The
natal kicks of Galactic neutron stars are known to be
as large as hundreds of km/s [63]. Since black holes are
many times heavier than neutron stars, relatively smaller
natal kicks are expected, depending on the kick mecha-
nism [64, 65]. Recent studies of known Galactic stellar-
mass black holes find that their properties are consistent
with much smaller natal kicks than the ones attributed
to neutron stars [66, 67] (although [68] finds similar natal
kick distributions for black holes and neutron stars).

The black holes’ initial kicks in our simulation follow
a Maxwell-Boltzmann distribution with average 3D ve-
locity of 50 km/s, the smallest average kick velocity used
in [56]. This means that black holes tend to stay in the
Galactic component in which they were born, and few
black holes migrate to high Galactic latitudes. We also
consider the impact of larger kick velocities in App. B,
finding that natal kicks of 100 km/s give reduced sig-
nal numbers due to black holes with larger kicks hav-
ing larger distance d from the solar system, on aver-
age; 〈1/d〉 ∼ (7.8 kpc)−1 for the 50 km/s population and
〈1/d〉 ∼ (8.3 kpc)−1 for the 100 km/s population, corre-
sponding to the signals from the latter population being
about 10% weaker on average. See Appendix B for fur-
ther discussion.

After a black hole is born in the simulation, its trajec-
tory is determined by the Galactic gravitational poten-
tial. The gravitational potential of the bulge, disc, and
halo (subscript “h”) are defined as follows [61]:

φb(r, z) = − GMb√
r2 +

(
ab +

√
z2 + b2b

)2 , (21)

φd(r, z) = − GMd√
r2 +

(
ad +

√
z2 + b2d

)2 , (22)

φh(R) = −GMh

Rh
ln

(√
R2 +R2

h +Rh
R

)
, (23)

where R ≡
√
r2 + z2, and the constants are,

Mb = 4.07× 109M� ab = 0 kpc bb = 0.184 kpc
Md = 6.58× 1010M� ad = 4.85 kpc bd = 0.305 kpc
Mh = 1.62× 1012M� Rh = 200 kpc

FIG. 6. Top-down (top panel) and edge-on (bottom panel)
view of the Galaxy, showing a random sample of 30,000 black
holes from our simulated population. The disc and bulge com-
ponents are visually distinct. Our simulations assume axial
symmetry, and so the results do not change if the position of
the Sun is chosen arbitrarily on the circle of distance ∼8 kpc
from the Galactic center (orange circle). As explained in the
text, we exploit this freedom to simulate 108 black holes start-
ing from a set of 106. The orange star marks one sample po-
sition and the arrow shows its velocity in the disk, tangential
to the circle.

FIG. 7. Radial velocities of the black holes of Fig. 6, as a
function of their distance from the Sun. The distribution is
symmetric around zero km/s and is widest at 8 kpc, corre-
sponding to the distance of the Galactic Center, as the bulk
velocity in the bulge is uniformly distributed in direction. In
contrast, since the bulk velocity in the disk is in the φ di-
rection within the Galactic plane, the radial velocity of black
holes in the disk (i.e., not near 8 kpc) has smaller magnitude.
The scatter in velocities at large distances from the Sun is
due to the black holes that have wandered into the halo.

as determined by fits to observed Galactic properties
(e.g., rotation curves) in [61].
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FIG. 8. Most black holes in our simulation are located close
to the Galactic center and at low Galactic latitudes. These
regions tend to be metal-rich, which can limit the maximum
black hole mass MBH,max that can form from stars.

With this procedure, we obtain the final positions and
velocities of 106 black holes with respect to the Galactic
Center, but require a full population of 108 black holes
with positions and velocities as measured from the Solar
System Barycenter (SSB). Since our simulations assume
axial symmetry (i.e., we do not include any structure like
the spiral arms), we are free to choose the position of the
SSB to be anywhere 8.12 kpc away from the center in the
disk, with a velocity prescribed by Eq. (20). We there-
fore randomly select 100 random points from the circle of
radius 8.12 kpc, as illustrated in Figure 6. Thus, we are
able to build up a sample of 108 black holes at minimal
computational cost increase, and for these black holes,
we compute the distances d and radial and tangential
velocities vrad and vtan as measured from the SSB.

We require that the individual black holes be indepen-
dent; to check that the distribution is not oversampled,
we estimate that on average, the distance between one
SSB position assignment and the next is 500 pc. In com-
parison, the average separation between black holes is
O(10 pc), assuming the 108 black holes are uniformly dis-
tributed in the Galactic plane. The average separation
between black holes is therefore over an order of magni-
tude smaller than the average separation between SSB

position assignments, and so the local black hole popula-
tions that are “seen” at given SSB position assignments
are largely independent of one another.

While this procedure effectively reproduces the spatial
and velocity distribution of 108 black holes using only
106 simulated objects, it does not accurately reproduce
the age distribution of young black holes. Given the as-
sumption of a constant formation rate in the last 8 Gyrs,
the 106 population underestimates the number of black
holes with age 104 years or less compared to the num-
ber that would be produced by a full simulation of 108

objects. This effect is relevant for heavier bosons, which
have short radiation timescales compared to the typi-
cal age of a black hole, and will be discussed further in
Sec. IV C.

B. Choice of mass distribution

For the mass distribution, we use the Salpeter function,
dN/dM ∝ M−2.35 [69], an empirically determined func-
tion that has been shown to apply to Galactic stars, espe-
cially those more massive than the Sun [70]. We choose
this distribution for simplicity, as the true mass distri-
bution for isolated black holes is unknown. In applying
the Salpeter function to black holes we implicitly ignore
effects such as mass loss due to stellar winds, which has
a larger effect on heavier stars. To better approximate
the true mass distribution, we introduce minimum and
maximum black hole masses for the population based on
both observational and theoretical arguments. We use
the same mass distribution for both the bulge and the
disk [71], and assume it is unchanged over the lifetime of
the Galaxy [70].

Two populations of stellar mass black holes have been
detected. All known Galactic black holes reside in bina-
ries, and most are observable in X-rays due to accreting
material from their stellar companions; these black holes
tend to have masses . 20M� (with the possible contro-
versial exception of LB-1 [72, 73]). In contrast, the mass
distribution of black holes in merging binaries detected
by LIGO and Virgo is consistent with a mass cutoff of
approximately MBH ∼ 40M� and a power-law index of
around 2 [74–76]; however, it is difficult to extrapolate
from the properties of the gravitationally detected black
holes, as these are found in other Galaxies with unknown
star formation histories and metallicities. Indeed, studies
suggest that low metallicity environments are required to
produce these more massive black holes [77, 78]. In con-
trast, most of the black holes in our simulation are at
low Galactic latitudes and close to the Galactic center
(Figure 8), where stars are metal-rich [79, 80], although
the metallicity could have been different in the past [81].

With these considerations in mind, we take
[5M�, 20M�] as the standard distribution of black
hole masses (Table I). This range includes the known
Galactic black holes. A maximum mass of 20M� is
also consistent with simulations, which suggest that
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MBH χi

standard population [5M�, 20M�] [0, 1.0]
heavy population [5M�, 30M�] [0, 1.0]
moderate spins [5M�, 20M�] [0, 0.5]
heavy with moderate spins [5M�, 30M�] [0, 0.5]
pessimistic spins [5M�, 20M�] [0, 0.3]

TABLE I. We consider five black hole populations. The black
hole mass MBH is drawn from an M−2.35 distribution with the
minimum and maximum masses given by the second column
(Sec. III B). The initial black hole spin χi is drawn from a
uniform distribution with limits given by the third column
(Sec. III C).

the heaviest black hole that can form at Galactic
metallicities is around 20M� [78].

Our results are not sensitive to the choice of min-
imum black hole mass for all but the heaviest boson
masses; the loudest signals come from the heavier black
holes, and bosons heavy enough to produce large strains
around light black holes source few observable signals.
See App. C for more discussion on the effect of decreas-
ing the minimum black hole mass.

The choice of maximum black hole mass more directly
impacts our simulated signals, as both the signal strength
and duration are highly sensitive to the black hole mass.
Since the loudest signals come from systems with the
heaviest black holes, our choice of 20M� is conserva-
tive. To evaluate the dependence of our conclusions on
the maximum mass, we also consider heavy distributions
with a maximum mass of 30M� (Table I).

C. Spin magnitude and orientation

The strain observed at the detector, h, will in general
be smaller than the characteristic strain, h0, by a factor
that depends on the geometry of the detector and the
source. Relevant parameters are the inclination angle ι
(or, more directly, cos ι) and the polarization angle θ,
defined by the orientation of the spin axis of the black
hole. We assume that the black hole spin axis is pri-
marily determined by the angular momentum axis of the
progenitor star. Since there is no known favored spin di-
rection of stars in the Galaxy, we choose cos ι and θ to be
uniformly distributed in [−1, 1] and [−π/4, π/4], respec-
tively. We take φ0 (the phase of the gravitational wave
at a chosen reference time) to be uniformly distributed
in [0, 2π].

The distribution of black hole spin magnitudes at birth
is not well understood; in particular, there is no ob-
servational data for the spins of isolated Galactic black
holes. Future analysis on the detectability of the bo-
son ensemble signal in binaries would be interesting, as
many high-spin channels are thought to occur in binary
systems. Some 1D stellar evolution models indicate that
a majority of black holes tend to be born with minimal
spins (e.g. [82]); this is also compatible with the measure-

ments of spins of pulsars extrapolated to their natal spins
[16, 83]. Models also predict a potentially small fraction
(order 10−3 – 10−2) of black holes to be born with very
high spins (χ > 0.9) through the chemically homogenous
channel, thought to be associated with gamma-ray bursts
[84, 85].

On the other hand, there are measurements of black
hole spins in binary systems. Black holes in binaries ob-
served to merge in LIGO have tended to low spins, al-
though the error on measurements of initial spins is quite
large; the inferred spin magnitudes of 90% of black holes
are found to be below 0.6+0.24

−0.28 or 0.8+0.15
−0.24 in the aligned

or isotropic spin scenarios, respectively [75], and typi-
cal spin magnitudes have a preferred low central value of
∼ 0.2± 0.2 [76, 86]. Black holes in X-ray binary systems
have a range of spin values, from low to χ > 0.9, with or-
der half with spin above 0.5 [16, 17, 87]. While accretion
can contribute to the spin-up of a black hole, the stellar
companions in most of these systems are not long lived
or not massive enough to substantially increase the black
hole spin from its natal spin [16, 17, 88].

Given these uncertainties and range of observations, we
take a distribution uniform in the range [0, 1] as a stan-
dard and χi,max = 0.5, 0.3 as moderate and pessimistic
spin distributions, respectively (Table I). We also discuss
our conclusions in the case in which a subpopulation of
black holes has moderate or high spin.

D. Frequency derivatives

Any astrophysical signal has a small apparent ḟ due to
the proper motion of the source as observed at the detec-
tor. For distances that are large compared to the distance
the black hole travels over the observational period (true
for all of the systems we are interested in, which are at
distances of at least a few pc and velocities of hundreds
of km/s), this gives ḟapp ≈ v2tanf/cd where vtan is the
black hole velocity tangential to the line of sight. At the
highest frequencies, ḟapp < 10−19 Hz/s for the black hole
population.

As discussed in Section II B, the decreasing mass of
the boson cloud also causes a small spin-up. For a
given MBH, the magnitude of ḟ is largest for large val-
ues of µb. For the detectable systems in our search,
the frequency derivatives fall in the range 10−14 Hz/s

. ḟ < 6 × 10−13 Hz/s for both the standard and heavy
black hole populations (Figure 22).

These ḟ values are smaller than the minimum |ḟ | sen-
sitivity of a typical semi-coherent all-sky search. In gen-
eral, an all-sky search for the boson annihilation signal
does not need to include frequency derivatives. On the
other hand, follow-up searches of interesting signal candi-
dates may need to take ḟ into account and could detect a
small positive frequency drift, pointing toward the signal
origin being a boson cloud.
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E. Systems outside the Milky Way

We have focused on the signal from Galactic black
holes, as they produce the loudest signals. We can also
ask whether the black holes in the closest neighboring
Galaxy, Andromeda, will produce a detectable signal.
The distance to Andromeda is around 770 kpc [89]. The
signal strains would drop by almost three orders of mag-
nitude compared to what is plotted in Figure 4, so that
systems in the top right corner of the plot (roughly
speaking, µb > 1.4 × 10−12 eV and MBH > 15M�
would produce detectable signals. These systems cor-
respond to α & 0.17 (Figure 1) which have timescales of
τGW < 104 years (Figure 5). It is therefore unlikely for
annihilation signals from Andromeda to be detectable by
the current generation of detectors.

Closer to home, the Large (LMC) and Small Mag-
ellanic Clouds (SMC) are potential sources of signals.
The contribution from either of these two dwarf galax-
ies would be an additional over-density of signals in a
particular part of the sky and within a small range of
Doppler shifts, since the black holes are traveling at the
respective galaxy’s bulk velocity (68 km/s for the LMC
and 5 km/s for the SMC [90]). The LMC and SMC are
an order of magnitude further than the Galactic Center
[91, 92], so the peak strains are an order of magnitude
below the peak of the Milky Way distribution. Since the
expected signal is small and the star formation histories
of the LMC and SMC are very uncertain, we do not in-
clude them in our simulations.

IV. THE ENSEMBLE SIGNAL

In this Section we consider the ensemble of signals pro-
duced by annihilations of bosons with masses in the range
1× 10−13 to 4× 10−12 eV, in clouds around Galactic iso-
lated black holes. To facilitate reproducibility and fur-
ther studies, we provide the full set of simulated signal
populations in an online repository3.

We focus here on the standard black hole population
(Table I).

A. Signal simulation procedure

Each of the 108 black holes is tagged with a unique po-
sition, velocity, and age. For a given run (i.e., choice of
µb), we randomly assign a mass and spin to each black
hole as described in Sec. III B and Sec. III C and sum-
marized in Table I. For each boson-black hole system, we
compare the initial spin χi to the critical spin χc (Eq. (4))
to determine whether the cloud forms. If χi > χc, we
calculate the instability timescale τinst (Eq. (5)) which

3 https://www.aei.mpg.de/continuouswaves/arxivXXXXX

defines the e-folding time for the cloud to grow, and take
ln(N)τinst ≈ 180τinst as the timescale for the cloud to
reach its maximum size (discussed in Sec. II A), keeping
systems for which this time is less than the black hole
age.

To check whether the second level has fully formed
and therefore caused the CW emission from the first
level to cease, we also calculate τ022inst for the (n = 0, `
= m = 2) level; for systems with black holes older than
ln(N022)τ022inst, we set h0 = 0 since the first level is no
longer radiating.

For systems that pass these checks, we calculate h0,peak
and τGW (Eqs. (A17), (A19)), and use the time evolution
of h0 (Eq. (14)) to determine its current value. The rel-
evant time t is the time since cloud formation minus the
time d/c required for the GW emission to travel the dis-
tance d to Earth; if the emission since cloud formation
has not yet reached Earth, we set h0 = 0. We com-
pute the frequency fGW at cloud formation, Eq. (9), and
apply the frequency drift (Eq. (16)) over the lifetime of
the cloud, which is the black hole age minus ln(N)τinst.
Finally, we determine the apparent signal frequency by
applying a Doppler shift

fGW,obs =
(

1− vrad
c

)
fGW ≈

(
1± 10−4

)
fGW, (24)

where fGW,obs is the observed gravitational-wave fre-
quency due to the source’s radial velocity as measured
at the SSB. The maximum value of |vrad/c| for our black
hole population is 0.0025, and 90% of black holes have
values of |vrad/c| < 6× 10−4.

B. Ensemble signal properties

Ensemble signal shape: The source-frame fre-
quency of the GW signal, fGW,source, has a small depen-
dence on MBH through α, resulting in different ‘potential
energy’ corrections for different black hole masses. For
a fixed boson mass, increasing the black hole mass pro-
duces a signal with a lower frequency (Eq. (10)) and a
higher peak strain (Eq. (13)). Thus, in a given ensem-
ble, the signals with lower frequencies have higher strains
at cloud formation. The signal half-time τGW decreases
rapidly with increasing black hole mass (Eq. (15)). If
τGW is shorter than the black hole age τBH, the signal
strain today is suppressed by τGW/τBH; increasing the
black hole mass above the value that gives τGW ∼ τBH

increases the peak strain but decreases the strain at the
current time. The current strain as a function of fre-
quency for a fixed black hole age and distance as seen in
the source frame is shown in the orange curves of Fig. 9.

The maximum frequency in an ensemble in the source
frame is f0GW, while the minimum value depends on mul-
tiple factors: there are no signals below a certain source
frequency if a) there are no heavier black holes due to
the imposed maximum black hole mass cutoff; b) heavier
black holes result in prohibitively large critical spins χc
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FIG. 9. The distribution of signal strains as a function of source frequency (gray dots) and observed frequency with Doppler
shift (blue dots). The strains are selected for signals with d ≥ 1 kpc to facilitate comparison to the strain as a function of
source frequency for a system at a distance d = 1 kpc: the upper envelope for two sets of black hole spin and age parameters
is shown in orange. The black vertical lines show the boundaries of the source frequency distribution: the vertical dotted line
shows the rest mass frequency f0

GW, and the thick and thin vertical lines correspond to fGW,source for (20M�, χi = 0.999) and
(20M�, χi = 0.5), respectively, yielding successively more negative potential energy corrections.

FIG. 10. The ensemble signals for the “standard” black hole population (Table I), and boson mass (left to right) µb = 2 ×
10−13, 4 × 10−13, 8 × 10−13, and 20 × 10−13 eV. Top row: Each point represents the annihilation signal from an individual
system, illustrating the range of strains and frequencies of the signals. The dashed horizontal red line corresponds to the
approximate upper limit at that frequency reported by recent all-sky CW searches [20, 21, 46, 93]. The thick dashed vertical
red line marks the values of f0

GW, and the dotted red line shows fGW calculated using the mode of the MBH distribution
(Figure 11). Second row: Distribution of strains as a function of distance and black hole mass. Smaller, whiter circles
correspond to lighter black holes (minimum 5M�) and larger bluer circles correspond to heavier black holes (maximum 20M�);
the differences in circle sizes are exaggerated for visual effect and do not scale linearly with MBH. The horizontal dashed red
line again represents current search upper limits.

(Eq. (4)) hence systems with heavier black holes never
form; or c) heavier black holes have short superradiance
times for the ` = m = 2 level, τ022inst (Eq. (A7)), cutting
off the signal before today. The ensemble-signal shape
as seen in the source frame is shown in the gray dots in

Fig. 9.

The line-of-sight BH velocity produces an additional
Doppler shift for each source, proportional to vrad/c,
which “smears” the ensemble signal’s distribution in fre-
quency (blue dots in Fig. 9). Nearby black holes produce
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FIG. 11. Each of the four panels shows the mass MBH and initial spin χi of the black holes that produce the ensemble signals
for the four boson masses from Figure 10, assuming the standard black hole population (Table I). In each panel, the scatterplot
shows MBH and χi for the systems that are detectable with the current search sensitivities (blue circles with orange outlines)
and a factor of 2 improvement in sensitivity (blue circles). The histograms show the distributions of MBH (top) and χi (right)
for these sets of systems. The black holes are assigned spins uniformly distributed in [0, 1] and only systems satisfying Eqn. (4)
will form clouds. The upper-left set of plots (µb = 2 × 10−13 eV) contains no signals at these values of h0, suggesting that a
larger increase in sensitivity is necessary to detect the annihilation signals produced by the lightest bosons.

stronger signals than farther ones, while farther black
holes tend to have larger line-of-sight velocities (Fig. 7).
This means that weaker (more distant) signals tend to
have larger relative Doppler shifts. The result is that,
at a fixed boson mass, the ensemble of signal frequencies
observed at the detector (fGW,obs) is shaped roughly like
a triangle, with a wider base and a central ‘peak’. In
Fig. 10 (top row) we show the ensemble signals from the
standard population of 108 black holes at a few illustra-
tive boson masses.

The spread of fGW,obs is greater for heavier bosons for
several reasons. First, heavier bosons produce GW emis-
sion with larger values of f0GW, and as both the Doppler
shift (Eq. (24)) and potential energy shift (Eq. (10))

terms are proportional to f0GW, higher frequencies re-
sult in a larger absolute frequency spread, ∆fGW. In
addition, increasing the boson mass from 2 × 10−13 eV
to 8 × 10−13 eV increases the relative frequency spread,
∆fGW/f

0
GW for two reasons: 1) heavier bosons form sys-

tems with a larger range of black hole masses (Fig. 11),
leading to a larger range of potential energy corrections
(Eq. (10)), and 2) heavier bosons produce detectable sig-
nals at larger distances (Fig. 10, bottom row), result-
ing in larger Doppler corrections. Increasing the boson
mass further starts to reduce these effects; the relative
frequency spread decreases while the absolute frequency
spread continues to increase. In all cases, the signal fre-
quencies lie in the range f ∈ f0GW×{1−0.01, 1+0.0025},
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FIG. 12. Each of the four panels shows the age τBH, and distance d of the black holes that produce the ensemble signals for
the four boson masses from Figure 10, assuming the standard black hole population (Table I). In each panel, the scatterplot
shows τBH and d for the systems that are detectable with the current search sensitivities (blue circles with orange outlines)
and a factor of 2 improvement in sensitivity (blue circles). The histograms show the distributions of τBH (top) and d (right)
for these sets of systems.

where the upper end of the range is given by the maxi-
mum Doppler shift in the ensemble and the lower end of
the range is given by the largest negative Doppler shift
plus the largest observed potential energy correction with
α ∼ 0.25.

Maximum signal strength: The power emitted by
the boson cloud in gravitational waves is set by the total
energy of the cloud, and the timescale τGW over which
the annihilations take place, P ∼Mcloud/τGW, providing

an estimate of the maximum strain in the detector today:

h0 .

(
10G~2Mcloud/τGW

c3 ω2
GWr

2

)1/2

. 10−23
(

Mcloud

0.05MBH

)1/2(
MBH

20M�

)1/2(
4× 10−13 eV

µb

)
×
(

105 years

τGW

)1/2(
2kpc

r

)
. (25)

Here we have chosen near-maximal parameters for the
cloud and black hole mass, as well as the lightest axion
mass that produces observable signals; note that Mcloud

and τGW are not independent parameters and cannot
reach the optimal values for most (µb, MBH) combina-
tions. In addition, given the finite birth rate of black
holes and their spatial distribution, the nearby black
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holes tend to be older, while the small number of young
black holes are on average farther away (Fig. 12). We also
see that black holes younger than 105 years contribute to
the potentially detectable signal for heavier bosons, but
the strain is reduced due to the higher signal frequency
and farther typical black hole distance. Thus it is very
unlikely to find strains larger than h0 ∼ 10−23. The typ-
ical distribution from black holes at & 1 kpc as well as
the analytical strain amplitudes for different black hole
age and spin parameter choices are shown in Fig. 9.

C. Properties of black holes in potentially
detectable systems

The detectability of a signal depends on the exact
search involved. As a guideline, we take the approximate
search sensitivities of recent all-sky searches in Advanced
LIGO data [20–22] at the relevant frequencies.

Black hole distances: By construction, all the sig-
nals in the ensemble arise from black holes within the
Milky Way (Fig. 12). The number of black holes in-
creases rapidly as a function of distance, and in general,
many distant black holes produce signals below the typ-
ical search sensitivity (Fig. 10).

If the maximum black hole mass MBH,max = 20M�,
then for the lighter bosons, the signals are very weak and
are only observable from short distances (e.g., less than
2 kpc for µb = 4× 10−13 eV). Increasing the boson mass
increases the signal power, and at µb = 8 × 10−13 eV,
signals at 10 kpc are observable, although most signals
are still produced by systems within 2 kpc. If we allow for
MBH,max = 30M�, systems as far as 15 kpc are detectable
for µb ≥ 8× 10−13 eV (Fig. 33).
Black hole masses: We consider black holes with

masses between 5M� and 20M� (30M�) in our stan-
dard (heavy) population. For lighter bosons, the signals
are weak and the distribution of black holes is therefore
peaked toward the heavier black holes (Fig. 11). The
signal strain increases with increasing black hole mass,
h0 ∝M9

BH (Eq. (13)), and the total number of signals is
thus sensitive to the upper cutoff of the mass distribu-
tion. This is especially evident for µb = 2 × 10−13 eV;
while the standard population produces no signals with
h0 > 1.5× 10−25 (Fig. 11), the heavy black hole popula-
tion produces tens of such signals (Fig. 32).

In contrast, for heavier bosons, there are fewer sig-
nals from heavier black holes because of prohibitively
high critical spins χc or short instability (τ022inst) and grav-
itational wave (τGW) timescales, as discussed in Sec-
tion IV B. Because of these effects, for µb & 8×10−13 eV,
the fraction of signals with black holes masses of 20M�
or above goes to zero (Fig. 11).

The effect of the minimum black hole mass is relatively
weak: we find that 5−6M� black holes do not contribute
any signals above current search sensitivities for boson
masses up to 8×10−13 eV. Black holes as light as 5M� can
form systems with α > 0.075 for µb & 2× 10−12 eV, and
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FIG. 13. The number of signals above h0 > 10−25 depends
on the maximum of the initial spin distribution, χi,max. For a
cloud to form, the initial spin must be larger than the critical
spin (Eq. (4)). Since χc increases with α, this also results in
fewer signals above a given strain for heavier bosons.

comprise ∼20% of the population of detectable signals at
µb ∼ 2×10−12 eV. Thus, decreasing MBH,min would give
a slightly larger number of signals for boson masses &
2×10−12 eV. However, the instrument sensitivity is lower
at the high frequencies corresponding to these heavier
bosons, and few clouds are radiating today (Fig. 14).
Black hole spins: We find that only systems with

initial spins of χi > 0.25 produce strains above current
search sensitivities (Figs. 11,13). Systems with χ < 0.25
require α . 0.06 for the cloud to form, producing signals
that are too weak to observe. For µb ≥ 8 × 10−13 eV,
there is a trend toward higher black hole spins as the
black hole mass increases (Fig. 11) due to the critical
spin increasing for larger α.

We show the number of signals with h0 > 10−25 as a
function of χi,max for six example boson masses in Fig. 13.
The lightest boson mass produces few to no signals with
h0 > 10−25; for the heavier five boson masses, the num-
ber of signals with h0 > 10−25 drops by at least an or-
der of magnitude in reducing the maximum spin from
χi,max = 1.0 to χi,max = 0.5 and two orders of magnitude
when χi,max decreases to 0.3. For µb = 2 × 10−12 eV
and 3.5 × 10−12 eV, there are no signals at or below
χi,max = 0.3 and 0.5, respectively, since these critical
spins would require black holes with mass below 5M� to
form clouds.
Black hole ages: Given the approximately constant-

in-time black hole formation rate, young black holes
are proportionally less common than old ones. For the
lighter bosons, e.g. µb = 4 × 10−13 eV, detectable sig-
nals arise from heavier black holes (Fig. 11) which are
relatively rare; since black holes that are both heavy
and young are doubly uncommon, the black holes that
produce detectable signals for this boson mass are pre-
dominantly 108–1010 years old, Fig. 12. Bosons with
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µb = 8 × 10−13 eV produce detectable signals around
black holes with masses across the entire range, and have
intermediate signal times, so these black holes span the
entire range of ages. Finally, for the heaviest bosons, e.g.
µb = 2 × 10−12 eV, the shortness of the gravitational-
wave timescale (Eq. (15)) and the instability timescale of
the second level (Eq. (17)) means that very old systems
have stopped radiating, so that only young black holes
produce detectable signals.

As discussed in Sec. III A, our method of producing 108

black holes results in fewer young black holes than the
population would statistically contain. Specifically, on
average we expect O(10) black holes of τBH ∼ 103 years,
and O(1) black holes of τBH ∼ 102 years. On the other
hand our example population overestimates the number
of 104 year black holes, as the initial population included
an upward fluctuation of the number of these black holes.
Thus our population includes 200 black holes that are
younger than 104 years old, compared to an average ex-
pectation of 62. This disproportionately affects heav-
ier bosons; at µb = 2 × 10−12 eV, of order half of the
signals that are detectable with current search sensitivi-
ties are produced by ∼ 104 year old black holes. There-
fore, our sampling procedure introduces an order-1 un-
certainty in the number of signals produced by bosons
with µb ≥ 2× 10−12 eV.

D. Number and density of signals as a function of
GW amplitude

Figure 15 shows the total number of signals with
characteristic strains above given values of h0 ∈
[10−26, 10−23] for six reference boson masses. For most
values of h0, the number of signals above a given h0 is
highest for µb = 8× 10−13 eV (fGW ≈ 400 Hz).

For the “standard” black hole population (MBH,max =
20M�), annihilation signals from the lightest bosons are
unlikely to be detectable by current CW searches: for
µb = 2×10−13 eV (corresponding to fGW ∼ 100 Hz) few
or no systems produce GW emission with intrinsic am-
plitude above 10−25. The loudest signal in our example
has a strain a factor of a few below the current sensitivity
thresholds (Fig. 10).

At fixed black hole mass, increasing the boson mass in-
creases the strain as µ9

b. Thus, increasing the boson mass
by a factor of 2 to µb = 4 × 10−13 eV (fGW ≈ 200 Hz),
greatly increases the number of signals that would be de-
tectable by current searches (h0 > 2 × 10−25 near this
frequency).

Although the peak strain increases with boson mass,
fewer signals are expected at heavier boson masses:
Fig. 14 illustrates that both the percentage of systems
with fully formed clouds and the percentage of systems
that are still radiating CWs today decrease with boson
mass. The further effect of the signal half-time is not
included in Fig. 14 as it depends on the search strain
sensitivity and the black hole’s age. Fig. 15 shows that
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FIG. 14. For a given boson mass, a fraction of black holes are
born with spins high enough to support cloud formation (filled
markers). Gravitational-wave emission stops when the second
level is fully populated, so a subset of the initial clouds are
still emitting today (unfilled markers). We consider the five
black hole populations of Table I: standard (black circles),
heavy (blue circles), moderate spins (gray squares), heavy
with moderate spins (blue squares), and pessimistic spins
(gray triangles) populations. The percentage of systems still
emitting today decreases rapidly with increasing boson mass;
at µb = 4 × 10−12 eV, only up to one in every million black
holes in the Galaxy is in a currently emitting system.
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FIG. 15. The number of signals with intrinsic amplitude
above a given h0 value. The signal number is largest at
µb = 8×10−13 eV (fGW ≈ 400 Hz) for the standard black hole
population (Table I). At higher frequencies, the number of sig-
nals decreases because both the signal half-time (Eq. 15) and
the signal cutoff time due to the formation of the second level
(Eq. (17)) decrease with increasing frequency. The contours
show Gaussian statistical uncertainties, an underestimate at
small signal number.

for bosons with µb > 8 × 10−13 eV, the number of sig-
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FIG. 16. The mean density of signals above a given h0. The
mean density is largest for µb = 5×10−13 eV (fGW ≈ 250 Hz)
for the standard black hole population (Table I). For heavier
bosons, the overall density decreases; the number of signals
above a given h0 drops due to the combination of effects de-
scribed in Fig. 15 while the frequency range spanned by the
ensemble signal continues to increase. The contours show the
uncertainty

√
N/∆f , where N is the number of signals and

∆f is the frequency range spanned by the N signals. Note
that this does not take into account the additional uncertainty
from ∆f , which is itself correlated with N .
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FIG. 17. The maximum density of signals above a given h0

is an order of magnitude larger than the mean density (Fig-
ure 16). Frequency ranges with sufficiently high signal den-
sities can cause complications for standard searches for CW
signals (Sec. V). The contours show the uncertainty

√
N/∆f ,

where N is the number of signals and ∆f = 0.01 Hz is the
size of the frequency bin over which the maximum density is
calculated.

nals above a given h0 begins to decrease with increasing
boson mass.

Figures 16 and 17 show the mean and maximum den-

sity of signals in frequency space above a characteristic
strain h0, for the same six reference bosons as in Fig-
ure 15. Both the mean and maximum signal density are
largest for µb = 5 × 10−13 eV. This is in contrast with
the fact that the number of signals is typically larger for
8 × 10−13 eV (Fig. 15). Signals from heavier bosons are
spread over a larger frequency range as described in Sec-
tion IV B, thereby decreasing the signal density.

V. SIGNAL DETECTABILITY

We now consider the signal detectability in the context
of the results of current CW searches with LIGO data,
using several black hole mass and spin distributions (Ta-
ble I ).

A. Number of detectable signals

For each boson mass in the range µb ∈ [1× 10−13, 4×
10−12] eV we calculate the number of detectable sig-
nals for the five black hole populations (Table I) at the
corresponding frequencies fGW,obs ∈ [50, 2000] Hz. For
a signal to be detectable, we require that its intrinsic
strain h0 is greater than the 95% upper limit value in
the {fGW,obs} frequency bin. Finally, we multiply the
total number of detectable signals for each boson mass
by 95%.

We use the 95% upper limits for the low-ḟ CW search
in the 20–600 Hz range [20, 21] and the upper limits for
the CW search in the 10–2048 Hz range [22]. For ease of
reading, we refer to the searches [20, 21] and [22] by their
nicknames “Falcon” and “Freq Hough,” respectively. For
bosons with µb < 1.2 × 10−12 eV we use the near-zero
spin-down upper limits from the Falcon searches and for
µb ≥ 1.2 × 10−12 eV we use the upper limits from the
very broad spin-down Freq Hough search.

For each boson mass, we calculate the number of de-
tectable signals for the five black hole populations (Ta-
ble I) at the corresponding frequencies {fGW,obs}. For
a signal to be detectable, we require that its intrinsic
strain h0 is greater than the 95% upper limit value in
the {fGW,obs} frequency bin. Finally, we multiply the
total number of detectable signals for each boson mass
by 95%.

The number of detectable signals for the five black hole
populations is shown in Fig. 18. All the curves peak at
intermediate values of µb. As discussed in Sections IV B
and IV D, the signal strength grows with boson mass but
the number of emitting systems decreases with increasing
boson mass. The two competing effects combined with
the sensitivity curve of the LIGO detectors (the noise is
smallest at ∼170 Hz) determine the boson mass µb with
the largest number of detectable signals.

For a given spin distribution, a heavier black hole pop-
ulation (MBH,max = 30M�) produces more signals for
light bosons (µb < 8 × 10−13 eV) than does a lighter
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FIG. 18. Number of signals with amplitudes above the detectability level of recent all-sky searches for continuous gravitational
waves [20–22], for bosons in the mass range 1× 10−13 eV to 4× 10−12 eV. The Falcon search [20, 21] provides 95% confidence
strict upper limits on CW emission with near-zero frequency derivative between 20 and 600 Hz. These upper limits are valid
for any sky position and polarization of the source, even the ones with the most unfavorable coupling to the detectors. In
contrast the upper limits from the Frequency Hough search [22] hold for 95% of the entire population. For this reason, even
at the same sensitivity, the Frequency Hough upper limits are lower than the Falcon upper limits. We use the Falcon upper
limits for bosons with µb < 1.2 × 10−12 eV and the Frequency Hough upper limits for bosons with µb ≥ 1.2 × 10−12 eV. We
consider the standard (black circles) and heavy (blue circles) black hole populations, as well as the moderate (gray squares),
heavy moderate (blue squares) and pessimistic (gray triangles) spin populations. The fluctuations are due to stationary lines
and other artifacts in the detectors, which decrease the CW search sensitivity in nearby frequency bins.

black hole population (MBH,max = 20M�). For the heavy
black hole population, the largest number of detectable
signals occurs for µb = 4 × 10−13 eV; for the lighter
black hole population, the largest number corresponds
to µb = 6× 10−13 eV.

In the case that MBH,max < 20M�, fewer signals would
be produced at the lightest boson masses. At a fixed
value of α, the strain is linearly proportional to black hole
mass, h0,peak ∝ MBH, so even decreasing the maximum
black hole mass by a factor of 1.5 (already in tension with
known Galactic black holes [94]) would shift the peak of
the detectable signals to bosons a factor of 1.5 heavier.

For µb > 8 × 10−13 eV, the two black hole popula-
tions produce the same number of detectable signals. For
these heavier bosons, systems with heavier black holes
form less frequently and have significantly shorter emis-
sion lifetimes and do not contribute to the event rates.

For a given black hole mass distribution, the number
of detectable signals is most sensitive to the black hole
spin distribution, through the superradiance condition of
Eq. (4). We consider three different uniform spin distri-
butions: a reference distribution with χi ∈ [0, 1], a mod-
erate distribution with χi ∈ [0, 0.5], and a pessimistic
distribution with χi ∈ [0, 0.3].

The reference and moderate spin distribu-
tions produce detectable signals for boson masses
2 × 10−13 eV . µb . 2.5 × 10−12 eV, although the
number of detectable signals decreases by an order
of magnitude from χi,max = 1 to 0.5, as fewer black
holes have initial spins above the critical spin. For
the pessimistic spin distribution, only a handful of
signals are detectable, and only for boson masses
4 × 10−13 eV . µb . 1.3 × 10−12 eV. This, in conjunc-
tion with Fig. 13, suggests that if all black holes are
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born with spins smaller than 0.3, no bosons will produce
signals detectable by current CW searches.

B. Density of signals

The number of detectable signals in a parameter space
search cell determines the best method for signal detec-
tion. If the total signal is an incoherent superposition of
many signals that cannot be resolved individually, then
the total signal is a stochastic process that can best be
detected with cross-correlation methods [95]. On the
other hand, if the signals are sparse enough that they can
be individually resolved, the matched filtering and semi-
coherent techniques that are commonly used to search
for CW signals should be applied [20, 96–98]. In between
these two extremes is a regime with some loud and resolv-
able signals on a background of weaker and unresolved
ones, that may act like confusion noise.

We now want to understand what situation applies
here. To address this question we consider the FreqHough
[22] and Falcon searches [20, 21].

We bin the signal frequency with the resolution of the
first stage of the respective CW search. We compute
the ensemble signal for a standard black hole population
and count the number of signals in each frequency bin
with amplitude equal to or greater than the amplitude
upper limit from the given CW search, as a function of
the signal frequency. For every bin we also determine the
mean and maximum signal amplitude over the ensemble
signals with frequency in that bin and amplitude greater
than the search upper limit amplitude. Figures 19,20
show these quantities for µb = 4 × 10−13 eV which is
close to the boson mass yielding the highest number of
detectable signals per bin. The maximum number of sig-
nals in a single FreqHough bin is ∼ 10, whereas for Falcon
it is 2. This difference is mostly due to the fact that the
FreqHough frequency bin is 14 times larger than the Fal-
con bin.

Although there are many FreqHough signal-frequency
bins that contain multiple signals, these signals are in
principle still resolvable by the search because they come
from different sky locations. However, the high concen-
tration of detectable signals in many neighboring fre-
quency bins calls for caution in applying standard CW
search techniques: Due to large-scale parameter correla-
tions of the detection statistics, sufficiently strong signals
produce high detection statistic values even at template
parameters far from the signal parameters. This is evi-
dent for instance in [99]; in spite of this being a search
aimed at the Galactic Center, it still detects very well
all LIGO hardware-injected fake signals at sky locations
far from the Galactic Center. This means that when the
ensemble signal comprises many loud signals in nearby
frequency bins, even if each signal comes from a different
sky location, it will contribute to the detection statistics
at the templates of other signals, giving rise to a sort of

FIG. 19. The x axes of these plots show the signal frequency
binned with the resolution of the two searches: 2.4× 10−4 Hz
for the FreqHough search and 1.7 × 10−5 Hz for the Falcon
search. From the bottom panel going up, the y axis shows
the number of detectable signals in each bin, their maximum
intrinsic amplitude and their average amplitude. The main
reason why there are fewer signals per frequency bin in the
Falcon searches [20, 21] than in the FreqHough search [22]
is that the frequency bin of FreqHough is significantly larger
(by a factor of 14) than the frequency bin of Falcon. The
maximum initial spin of the black hole population is taken to
be 1.

contamination/confusion noise.

A large signal density has consequences because the
complex all-sky CW search pipelines [20–23, 100] com-
prise several follow-up stages with increasing coherence
lengths, with vetoes and thresholds designed to reject
noise fluctuations and coherent disturbances while pre-
serving signal candidates. The procedures are carefully
calibrated with extensive Monte Carlos on fake isolated
signals added to real noise. It is unlikely that settings
that have been tuned to isolated signals would be equally
effective for the ensemble signals explored in this study,
especially in regions of high signal density. We expect
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FIG. 20. Same plots as those of Fig. 19 but having assumed
that the maximum initial spin of the black hole population is
0.5.

that the detection efficiency of searches for which the
density and number of detectable signals per bin is larger
will be impacted more severely; so, for example, the im-
pact will be greater for the Freq. Hough search [22] than
the Falcon search [20, 21].

We note that in Fig.19 the frequencies where the sig-
nals are the strongest are also the frequencies with the
highest density of signals. This is not the case in general.
As discussed in Section IV B, the signal strain tends to
increase toward lower frequencies; however, the number
of heavy black holes decreases due to the black hole mass
distribution, and the number of clouds formed decreases
as well, so the number of signals per frequency bin can
be larger for relatively lighter black holes (and thus rel-
atively higher frequencies). Thus the strongest signals
are at or below the frequencies of the densest signals, as
shown in Appendix E.

A high density of loud signals in a small frequency
range could also have a more subtle negative impact on
the ability of standard CW searches to detect signals

from the ensemble. The reason is that the average noise
level data is “normalized out” of the detection statis-
tic, but if this is not done carefully the danger is there
of removing the signal: To address the non-stationary
character of the noise, most CW search methods (and
all of the ones that we refer to in this paper) whiten
the data at an early point in the analysis by dividing
the Fast Fourier Transform of the data taken over some
short time-baseline with the amplitude spectral density
estimated from the data itself. Under the assumption
that the data is noise-dominated, with at most a single
detectable signal, the noise level is estimated through an
average of the amplitude spectral density in frequency:
since the signal is concentrated in a frequency bin or two,
the “average” over tens of bins is insensitive to its pres-
ence. For instance, FreqHough [22] searches use an au-
toregressive average on the power spectral density over
. 0.02 Hz [101, 102] and the Einstein@Home searches
[23, 100] use running medians over .0.06 Hz frequency
bins.

If the ensemble signal is a collection of many signals
distributed over multiple frequency bins loud enough to
increase the apparent noise level at those frequencies,
then the normalization procedure will down-weight the
signals and degrade the detection efficiency with respect
to when the signal is concentrated in a single frequency
bin. In Figure 21 we plot the amplitude spectral density
(ASD) expected for the ensemble signal corresponding to
µb = 7× 10−13 eV. There is a clear excess power due to
the ensemble signal extending over &1 Hz, which is much
larger than any of the frequency ranges used to estimate
the noise. This means that the normalization factors
would include the signal and would significantly impact
the detection ability of the search. More plots like that
of Fig. 21 are given in Appendix F, for different combina-
tions of boson mass, maximum black hole mass and max-
imum initial black hole spin. For 3 ≤ µb ≤ 7 ×10−13 eV,
this effect is certainly not negligible, except for ensembles
with initial maximum black hole spin 0.3 or less and the
maximum black hole mass of 20M�.

VI. EXISTING LITERATURE AND RESULTS

Several works have made projections of the detectabil-
ity of the boson annihilation signal at Advanced LIGO
and Virgo [12–14]. These studies predict tens to thou-
sands of signals detectable with Advanced LIGO/Virgo
CW searches, with a range of assumptions about black
hole mass and spin distributions in combination with of-
ten only idealized search concepts. Other works have
searched the gravitational wave data for boson annihi-
lation signals leveraging existing search pipelines and/or
results from other astrophysical searches.

All-sky O2 CW survey non-detection results of [22]
are used to exclude bosons with 1.1 × 10−13 eV < µb <
4×10−13 eV assuming all black holes are formed with spin
0.998, or 1.2×10−13 eV < µb < 1.8×10−13 eV assuming
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FIG. 21. The amplitude spectral density of the LIGO O2
data alone (dashed red line) and of an ensemble signal (top
green points) assuming µb = 7×10−13 eV and a galactic black
hole population with maximum mass 20 M� and max initial
spin of 1. The time-baseline assumed is 4096s as used by the
Freq.Hough search [22]

.

all black holes are formed with spin 0.6, and a range of
3–100 M� black hole masses in both cases. We find that
the number of signals below ∼3× 10−13 eV falls off very
rapidly for both Mmax,BH = 30M� to Mmax,BH = 20M�
(Figure 18), indicating that the excluded masses of [22]
rely on a speculative population of heavy black holes.
Our analysis of the ensemble signal shows that any bound
derived from a single spin or distance assumption can re-
sult in misleading conclusions. Furthermore, the ensem-
ble signal from bosons with mass between 3 and 4×10−13

eV would likely be detected with a lower efficiency than
that of an isolated signal and hence non-detections from a
standard CW search cannot automatically be translated
in exclusions for boson signals at the same frequency at
the same h0 level.

A cross-correlation search technique is considered in
[19]: the boson annihilation ensemble signal from outside
the Milky Way is treated as a stochastic background [15].
Based on their null results, [19] exclude the range 2.0–
3.8 ×10−13 eV under an “optimistic” black hole spin dis-
tribution (defined as unity maximum dimensionless spin
and letting the minimum vary) but not under a “pes-
simistic” one (zero minimum spin to and letting the max-
imum vary). The range of black hole masses considered
is 3–100M�. The amplitude spectral density estimates
based on our ensemble signal suggest that their null result
could exclude Galactic signals from some boson masses
even for maximum initial black hole spins of 0.5, as long
as the black hole masses go at least up to 30M�.

A way to bypass the uncertainties in the system’s pa-
rameters is to consider a known black hole, for example
the remnant of a merger of two compact objects [13].
For the LIGO black holes the formation time is precisely

known, and the spin and mass are measured with good
precision but the remnant is too far to yield a signal de-
tectable by the current interferometers [13, 103]. Turning
to galactic sources, [104] have searched for CW emission
from Cygnus X-1, a well known system: a black hole of
∼15M�, 5 million years old at a distance of 1.86 kpc. The
absence of a detection disfavors the existence of bosons
in the range 5.8–8.6× 10−13 eV. This result however as-
sumes a near-extremal initial black hole spin of 0.99 and
implies a low current spin, χ ∈ [0.25, 0.36], which is in
tension with continuum and reflection measurements of
the spin, χ & 0.95 [105, 106].

VII. CONCLUSIONS

In this work, we simulate the ensemble annihilation
signal from a population of isolated Galactic black holes
and predict the signal detectability using recent all-sky
CW searches. We study the dependence of the ensemble
signal on black hole population properties. We show how
population assumptions, in particular on black hole mass
and spin distributions, can strongly affect the detectabil-
ity of the ensemble signal. We propose that the results of
future boson annihilation signal searches are interpreted
using the ensemble-signal paradigm that we present here.
We make the ensemble signal population parameters used
in this work publicly available to facilitate future studies.

Our analysis is the first study to characterize the
unique shape of the ensemble signal — constructed from
a range of distributions of the underlying parameters —
and suggests a clear way to distinguish between these sig-
nals and the signals produced by rotating neutron stars.

We have considered the signals from five different
black hole populations. We use two mass distributions:
the ‘standard’ black hole mass distribution (maximum
black hole mass MBH,max = 20M�) covers the range of
masses for known Galactic black holes [94] and is there-
fore conservative, while the heavy black hole population
(MBH,max = 30M�) allows us to test how the proper-
ties of the ensemble signal depend on the heaviest black
holes. We also consider three different initial spin dis-
tributions: the optimistic spin distribution of χi ∈ [0, 1],
the moderate spin distribution of χi ∈ [0, 0.5], and the
pessimistic spin distribution of χi ∈ [0, 0.3]. For all pop-
ulations, we assume a total of 108 Galactic black holes.
The predicted number typically varies between 107 and
108 and is highly uncertain, as there are no direct ob-
servations; the number of signals scales proportionally to
black hole number.

Assuming there are 108 isolated black holes in the
Galaxy with MBH ∈ [5M�, 30M�] and initial spin χi ∈
[0, 1], bosons with masses ∼2.5–−17× 10−13 eV produce
100 or more signals with amplitude above the upper lim-
its in the O1/O2 CW searches, and masses ∼4.5× 10−13

eV produce over 1000 signals above those upper limits
[20, 21, 46, 93]. For a lighter population of black holes
(MBH ∈ [5M�, 20M�]), the boson mass range yielding
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signal amplitudes above existing upper limits is not sig-
nificantly different than the range for the heavier pop-
ulation — the lowest boson mass yielding 100 or more
signals increases to ∼3.5× 10−13 eV — and the highest
number of signals is a factor of ∼2 lower.

If we take the maximum black hole spin at birth to
be 0.5 rather than 1.0, keeping MBH,max = 20M�, we
find that the number of detectable signals drops by an
order of magnitude. This suggests that black holes with
χi > 0.5 produce 90% of the “detectable” signals, so
even if only 10% of black holes are born with χi > 0.5,
we predict tens to hundreds of “detectable” signals for
3 × 10−13 eV . µb . 17 × 10−13 eV. The number of
“detectable” signals drops by at least another order of
magnitude if the maximum spin at birth is 0.3, and black
holes with χi between 0.3 and 0.5 produce ≈ 10% of the
detectable signals. If instead all black holes are born
with spins . 0.3, we expect ten or fewer signals across
the entire frequency range. Given other uncertainties
such as the overall number of Galactic black holes, in
this regime even a single detectable signal is not assured.

We caution that for boson masses in the range ≈3–
10 × 10−13 eV, the sensitivity of standard CW search
methods has to be reassessed: Search methods that have
been carefully tuned for the regime of quiet and very
sparse signals should be characterized again on a dense
ensemble of loud signals. The interplay between the
down-weighting of the signal from the normalization of
the data and the overlap in parameter space of the detec-
tion statistic from different signals in the ensemble and
how these elements factor in a multi-stage follow-up pro-
cess, needs to be investigated. For boson masses between

4–6× 10−13 eV, even for moderately rotating black hole
populations, the GW ensemble signal is very prominent,
which is a dramatically different regime than the one as-
sumed by standard CW searches.

While the detection of a single particularly loud signal
from a nearby black hole could serendipitously occur
even with a highly “mismatched” search, ultimately
the identification of a boson annihilation signature —
as opposed to a CW signal from a compact rotating
object — lies in the identification of the ensemble
signal. Searches for gravitational-wave signals from
boson clouds around black holes are only starting to be
explored. This work lays the foundations for this type
of detectability study.
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Appendix A: General Formulae for Scalar
Superradiance

In this Appendix we provide the more general forms
for the equations that are used in the text. All analytic
formulae are valid for α/`� 1. We find that the signals
in this work arise from systems with 0.03 . α . 0.2.
We also comment on the assumptions and uncertainties
which enter in the signal calculations.

1. Signal Frequency

As the signal comes from the annihilation of two
bosons, the frequency of the emitted gravitational wave
fGW is given by twice the boson energy ωR:

fn`mGW =
2ωR
h
. (A1)

The energy of the boson is given by

ωn`mR ≈ µb −∆ωn`mR,BH −∆ωn`mR,cloud, (A2)

where ∆ωn`mR,BH is the gravitational potential energy and

∆ωn`mR,cloud the gravitational self-energy of the cloud. The

potential energy is given by [42],

∆ωn`mR,BH ≈ µb

(
α2

2(`+ n+ 1)2
(A3)

+
α4

8(`+ n+ 1)4
− 2`− 3(`+ n+ 1) + 1

(`+ n+ 1)4(`+ 1/2)
α4

− 2χimα
5

(`+ n+ 1)3`(`+ 1/2)(`+ 1)

)
,

and the uncertainty on the analytic calculation compared
to the numerical result was shown to be . 1% for α . 0.3,
becoming an excellent approximation for α . 0.2 [42].

The self-energy of the cloud depends on the mass of
the cloud in the non-relativistic limit as [38, 103],

∆ωn`mR,cloud ≈ µb

(
0.2α2Mcloud

MBH

)
. (A4)

The analogous calculation for a vector in the state n =
0, j = 1, ` = 0,m = 1 varies by up to 50% for α < 0.3
depending on whether the relativistic corrections of the
wavefunction are included [107]. We expect the uncer-
tainty on our calculation to be smaller, as the vector
states (with ` = 0) are localized closer to the black hole
than the scalar states (with ` = 1), and therefore are
more affected by relativistic effects.

For 0.01 . α . 0.3, we find that the self energy contri-
bution is much smaller than the black hole gravitational
potential contribution, 10−6 . ∆ωn`mR,cloud/∆ω

n`m
R,BH .

10−3. This is less than the error on the analytic es-
timate of (A3); nevertheless, as this quantity is time-
dependent, it determines the frequency drift of the signal,
see App. A 5.
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2. Superradiance rate

The instability rate of the boson is ([36], [18])

ωn`msr ≈ 2µbCn`m(α, χ)α4`+4

× (1 +
√

1− χ2)

(
mχ

2(1 +
√

1− χ2)
− αω

)
, (A5)

where χ the dimensionless black hole spin and
Cn`m(α, χ) � 1 is a numerical coefficient which is a
function of the bound state quantum numbers as well
as (α, χ),

Cn`m(α, χ) =
24`+2(2`+ n+ 1)!

n!(`+ n+ 1)2`+4

(
`!

(2`)!(2`+ 1)!

)2

×

∏̀
j=1

(
4
(√

1− χ2 + 1
)2( mχ

2
(√

1− χ2 + 1
) − αω)2

+

+ j2
(
1− χ2

))
(A6)

We define αω ≡ αωR/µ, i.e., the α corrected for the
potential energy contribution to the boson energy. The
fastest-growing level for a light scalar, the n = 0, ` =
m = 1 level, has ω011

sr ' 1
24χα

8µb.
The rate for ` = 1 is larger than that for ` = 2 by a

factor of ∼ C011/C022 α
−4 ∼ 103α−4.

The instability e-folding timescale is then given by

τn`minst =
~

ωn`msr

, (A7)

with ln(N) = ln(MBHc
2/µb) ∼ 180 instability timescales

required to fully saturate the cloud growth. The analyt-
ical form is accurate to within a factor of 2 for α . 0.25
and within 50% for α . 0.2 4.

3. Final cloud mass

Superradiance will start if the superradiance condition
is satisfied, i.e. the initial spin of the black hole is above
the critical spin,

χnlmc =
4MBHωRm

m2 + 4M2
BHω

2
R

≈ 4αm

m2 + 4α2
. (A8)

As the black hole loses mass and angular momentum,
the superradiance condition and thus the final spin are
affected. The equations governing the evolution are

Ṅ(t) = ωn`msr (t)N(t), (A9)

Ṁ(t) = −ωn`mR (t)Ṅ(t) (A10)

J̇(t) = −Ṅ(t) (A11)

4 We thank Horng Sheng Chia for providing the numerical rate
comparison.

where N(t) is the number of particles in the cloud, M(t)
is the black hole mass and J(t) = GM(t)2χ(t) is the
angular momentum of the black hole. The superradiance
rate and the energy of the boson depend on time through
their implicit dependence on α(t) = GµM(t) and χ(t) =
J(t)/(GM(t)2).

The process saturates when

χf =
4MfωR,f

1 + 4M2
f ω

2
R,f

. (A12)

By conservation of angular momentum, the number of
particles in the cloud is given by the angular momentum
lost by the black hole, Nf = Ji − Jf , with each particle
carrying one unit of angular momentum (for ` = m = 1).
The mass of the cloud is given by the number of particles
times their energies,

Mcloud = ωRNf = ωR(χiGM
2
i − χfGM2

f ). (A13)

In the limit α(χi − χc)� 1 this reduces to

Mcloud = α(χi − χc)Mi, (A14)

which is accurate to 1% for α < 0.03 and underestimates
the cloud mass by ∼ 50% for α ∼ 0.2, χ ∼ 1. We use
the numerical evolution of α and χ to establish the final
cloud mass.

4. Gravitational Wave Signal

The power emitted in gravitational waves for α � 1
has been computed analytically in the Schwarzschild
background and gives [43]

PGW ≈ 0.025
c5

G
α14M

2
cloud

M2
BH

. (A15)

At larger α > 0.1, we use the power calculated numeri-
cally in [14],

P (α) =
1

2π

c5

G

M2
cloud

M2
BH

(
~c3

ωn`mGWGMBH

)2

A2
˜̀m

(α, χi)

(A16)

where A˜̀m is a dimensionless function that contains in-
formation about the fraction of energy deposited in the
˜̀= m̃ = 2 spherical harmonics mode of the gravitational
radiation. The uncertainty in A ranges between ∼ 5%
at intermediate α up to ∼ 15% at α < 0.1 and/or large
spin5. We use a polynomial interpolation between the
low-α (eq. (12)) and large-α (eq. (A16)) regime.

5 We thank Richard Brito for discussions on the details of the
calculation and uncertainties.
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The maximal peak strain is related to the power emit-
ted by the axion cloud as,

h0,peak(α) =

(
10G~2 P (α)

c3 ω2
gwr

2

)1/2

, (A17)

where the two gravitational wave polarizations are given
by

h+(t) =
1

2
h0(1 + cos2 ι) cos Φ(t)

h×(t) = h0(cos ι) sin Φ(t). (A18)

As the power is emitted from the vicinity of a Kerr
black hole, the angular dependence is not exactly as
defined in Eq. (A18) but is instead specified by spin-
weighted spheroidal harmonics, which depend on α and
the black hole spin χ [14, 108]. However, for α, χf cor-
responding to α . 0.3 (0.2), the standard quadrupolar
emission is an excellent approximation to within 5% (3%)
or better in h× and to within 10% (5%) or better in h+.
Given that the exact angular power calculation is compu-
tationally intensive and the CW pipelines are optimized
for strain angular dependence according to Eq. (A18) we
neglect the extra effect of spin in our analysis. We also
focus only of the ˜̀ = m̃ = 2 gravitational wave mode,
which dominates the total power for χ ∼ χc and α . 0.35
[44].

We consider only the gravitational wave emission from
the n = 0, ` = m = 1 cloud; this bound state produces
the largest strain: using the values of [44], the strain
of the first level is larger than that of the second by
h0

011/h0
022 ∼ A011/A022α

−2 ∼ 90.
The time evolution of the signal as the cloud depletes

through GW radiation is also related to the power emit-
ted and is given by

τGW(α) =
Mcloudc

2

P (α)
. (A19)

The calculations of the power have been performed in
the point particle approximation, i.e. the back-reaction
of the cloud on the metric is neglected. During the pro-
cess of superradiance, the black hole spins down and loses
mass to the cloud; thus the emission is taking place ap-
proximately in a background defined by the final black
hole mass and we use the final, smaller, value of α to eval-
uate the strain and timescale expressions. The presence
of the cloud may be viewed as an additional contribution
to the mass in the Kerr metric, in which case the ini-
tial value of α could be used as an approximation [107].
Our expression is more conservative (as the final α is
smaller and thus the power is reduced) and is correct in
the limit when the cloud has and/or depletes to masses
much smaller than the black hole mass, as is the case
for much of our old, long-lasting signals. The difference
between using the initial and final α gives approximately
a 50% change in the total power, which is a conservative
estimate of the overall uncertainty in the rate.
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FIG. 22. The spin-up ḟ due to the decreasing binding energy
of the cloud (Eq. (16)) depends on µb and MBH. For both the
standard and heavy black hole populations, the largest value
of ḟ is 6× 10−13 Hz/s.

5. Frequency drift

As the cloud annihilates to gravitational waves, its
gravitational energy decreases, leading to a positive fre-
quency drift,

ḟGW(t) ≈ 5× 10−15Hz/s (A20)

×
( α

0.1

)19(10M�
M

)2(
χi − χc

0.5

)2(
Mcloud(t)

Mmax
cloud

)2

.

There is a larger, negative frequency drift at early times
as the cloud is growing, but we neglect this in our analysis
as the strain is small at these times.

In Figure 22 we check that the ḟ caused by the cloud’s
decreasing mass is still smaller than can be resolved by
the first stage of current all-sky CW searches. This is
true for both the standard (MBH,max = 20M�) and heavy
(MBH,max = 30M�) populations. In both cases, the max-

imum ḟ from the changing cloud mass is 6× 10−13 Hz/s.

Appendix B: Higher natal kicks

We examine the ensemble signals that would be pro-
duced by black holes assuming they are born with natal
kicks of average 100 km/s.

The black holes in the 100 km/s population move

somewhat faster on average, but the apparent ḟ due
to the proper motion is still many orders of magnitude
smaller than anything resolvable by CW searches and is
not a concern.

Black holes born with faster natal kicks are more likely
to have sufficiently high speeds to escape the Galactic
bulge and disk and travel further on average. Thus, they
are more likely to be found at larger distances from both
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FIG. 23. If black holes are born with slightly faster natal
kicks (100 km/s rather than 50 km/s), more of them have
sufficiently high speeds to escape the gravitational pull of the
Galactic bulge and disk. This causes a slight deficit of black
holes at small Galactic radii, which also means there are fewer
BHs close to Earth, thereby decreasing on average the number
of loud signals.

the Galactic Center and the Earth (Fig. 23). Fig. 24
shows the ratio of the sum of 1/d for all the black holes
within a distance d; this is smaller than one and decreases
with decreasing distances from Earth until very small
distances, which are dominated by small number fluctu-
ations. The ratio of the sum of 1/d approximates Fig. 25,
the ratio of the number of signals above a given value of
h0, which is in general less than one and decreases with
increasing h0 until the loudest signals (h0 > 10−24), a
regime that is dominated by the few closest black holes.

The smaller number of signals above a given h0 for the
population with larger natal kicks also produces smaller
maximum (Fig. 31) and mean densities (Fig. 30).

Appendix C: Light black hole population

We compare the ensemble signals from the standard
black hole population (MBH ∈ [5, 20]M�) with the
ensemble signals from a lighter black hole population
(MBH ∈ [3, 20]M�). We maintain the distribution shape
(Salpeter function) as well as the total number of black
holes (108); reducing the minimum black hole mass there-
fore reduces the number of black holes of all other masses.

For µb = 3.5 × 10−12 eV, the addition of the lighter
black holes results in a relatively larger number of signals
for signals with h0 . 3× 10−25; a similar but smaller ef-
fect is seen for µb = 2×10−12 eV. This is due to the fact
that at these heavy boson masses, lighter black holes can
more easily satisfy the critical spin condition while still
producing relatively large signals. However, the current
CW search upper limits are around 10−24 near the sig-
nal frequencies produced by these heavy bosons, so the
addition of the lighter black holes does not affect our es-
timates of the number of signals detectable by current
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FIG. 24. The ratio of the sum of 1/d for all the black holes
within a distance d gives a sense for how to compare the
number of signals between the two populations. Here, we plot
the ratio for the population with faster versus slower kicks.
(This ratio is affected by small number statistics at distances
much less than 1 kpc.) Overall, this ratio is smaller than unity
and decreasing until 1 kpc, consistent with the fact that the
population of black holes with faster kicks in general produces
fewer signals above a given h0 until h0 ∼ 10−24 (Fig. 24).

10 26 10 25 10 24

h0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ra
tio

, n
um

be
r 

of
 s

ig
na

ls
 a

bo
ve

 h
0

faster vs slower kicks
2 × 10 13 eV
5 × 10 13 eV
8 × 10 13 eV
15 × 10 13 eV
20 × 10 13 eV
35 × 10 13 eV

FIG. 25. The loudest signals in an ensemble are in general
produced by the closest black holes. A black hole popula-
tion with slightly faster natal kicks produces a slight deficit
of boson clouds close to Earth (Fig. 23), resulting in fewer
signals at larger values of h0. This effect is greater for heavier
bosons, as the louder signals are preferentially produced by
closer black holes.

CW searches.

The overall effect is that the total number of signals
decreases by about a factor of two for almost all boson
masses except for the heaviest ones (Fig. 28). In real-
ity, the black hole mass distribution should turn over at
the lightest masses [94, 109]. Therefore, Fig. 28 can be
considered a lower bound on the ratio of the number of
signals.
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FIG. 26. The ratio of maximum signal density above a given
h0 between the faster and slower kicks populations is consis-
tent with unity, when considering the uncertainties.
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FIG. 27. The ratio of mean signal density above a given h0

between the faster and slower kicks populations reflects the
number of signals above a given h0 (Fig. 25). In general,
the black holes with faster natal kicks produce signals with
larger Doppler shifts, thereby increasing the frequency range
spanned by the ensemble and decreasing the mean signal den-
sity further.

Appendix D: Heavy black hole population

We examine the ensemble signal for a heavy popula-
tion of black holes, with MBH,max = 30M�, and compare
the resultant ensemble signals with the signals from the
standard population.

We show the ratio of the heavy to the standard pop-
ulation in the number of signals (Fig. 29), mean den-
sity of signals (Fig. 30), and maximum density of signals
(Fig. 31). The ratios are generally consistent with one.
The exceptions are the number and density of signals for
the lightest boson mass of 2×10−13 eV, which is a factor
of several hundred larger for the heavy population, and
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FIG. 28. Increasing the number of light black holes (MBH <
5M�) while maintaining the same number of black holes effec-
tively reduces the number of black holes at all other masses.
Therefore, the number of signals above a given h0 decreases
by a factor of two for most of the boson masses. The excep-
tion is the heaviest boson (µb = 3.5 × 10−12 eV), for which
the number of signals is larger with the light black hole pop-
ulation for signals with h0 < 3× 10−25.

for 5×10−13 eV, a factor of approximately two larger. In
addition, the mean density of signals is reduced by ∼ 20%
for the intermediate boson mass of 8× 10−13 eV, due to
the larger range of frequencies covered by the heavier
black hole population for a fixed black hole number.

Appendix E: Ensemble signal: signals above the
detection threshold

We show here statistics of the signals with amplitude
h0 above the upper limit value set by two recent CW all-
sky searches as explained in V B for a set of boson masse
and assuming various population parameters.
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FIG. 29. The ratio of the number of signals above a
given h0 for the heavy (MBH,max = 30M�) versus standard
(MBH,max = 20M�) populations. For the two lightest bosons
(µb = 2 × 10−13 eV and 5 × 10−13 eV), we can see that the
number of signals for the lighter bosons (µb ≤ 3× 10−13 eV)
increases in going from the standard to the heavy black hole
population, while the number of signals for the heavier bosons
stays roughly the same. The discussion of this effect can be
found in Section V A. For µb = 2 × 10−13 eV, the signals
from the heavy black hole population extend to strains of
h0 ≈ 10−24 (indicated by the light, thick bar) while the signals
from the standard black hole population have h0 ≤ 10−25.
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FIG. 30. The ratio of the mean signal density above a given
h0 for the heavy versus standard black hole populations is
approximately unity for the five heavier boson masses. For
the lightest mass (µb = 2 × 10−13 eV), the mean density is
over ten times larger for the heavier black hole population due
to the .
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FIG. 31. For the six boson masses plotted here, the ratio of
the maximum signal density above a given h0 for the heavy
versus standard black hole populations is similar to the ratio
of the mean signal density. The maximum signal density for
the lightest boson (µb = 2×10−13 eV) is over a hundred times
larger for the heavier black hole population.

Appendix F: Contribution to the noise amplitude
spectral density from the ensemble signal

These plots show the expect amplitude spectral den-
sity from the ensemble signal from a Fourier transform
of varying time-baseline (TSFT ), under different assump-
tions on the population parameters, in particular the
maximum black home mass and maximum initial spin.
The TSFT at the different frequencies is chosen to reflect
existing search strategies. The values of these parameters
is indicated in the plot title.
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FIG. 32. Mass and spin properties of the heavy black hole population. For the two heavier boson masses (µb = 8× 10−13 eV
and 2× 10−12 eV, the black holes that produce the potentially detectable ensemble signals have similar properties as the black
holes that produce the signals in Figure 10 (the standard population), due to the fact that systems with large values of α have
dramatically shortened lifetimes. For the two lighter boson masses (µb = 2×10−13 eV and 4×10−13 eV), the addition of black
holes with MBH > 20M� greatly increases the number of detectable signals.
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FIG. 33. Ages and distances of the heavy black hole population. As in Fig. 32, the addition of black holes with MBH > 20M�
increases the number of detectable systems for the lighter bosons (µb = 2× 10−13 and 4× 10−13 eV) but has little to no effect
on the heavier bosons.
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FIG. 34. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 35. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 36. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 37. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 38. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 39. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 40. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 41. The x-axes of these plots show the signal frequency binned with the resolution of the two searches: Freq Hough,
2.4 × 10−4 Hz [22] (left) and Falcon [20, 21], 1.7 × 10−5 Hz (right). From the bottom panel going up, the y-axis shows the
number of detectable signals in each bin, their maximum intrinsic amplitude and their average amplitude.
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FIG. 42. The amplitude spectral density of the LIGO O2 data alone (dashed red line) and of an ensemble signal (top green
points) assuming µb = 3 × 10−13 eV and a galactic black hole population with maximum mass 20 M� (top plots) and max
initial spin of 0.3, 0.5 and 1; and maximum mass 30 M� (bottom plots) and max initial spin of 0.5 and 1. The time-baseline
assumed is 4096 s as used by the Freq.Hough search in this frequency range [22].

FIG. 43. The amplitude spectral density of the LIGO O2 data alone (dashed red line) and of an ensemble signal (top green
points) assuming µb = 4 × 10−13 eV and a galactic black hole population with maximum mass 20 M� (top plots) and max
initial spin of 0.3, 0.5 and 1; and maximum mass 30 M� (bottom plots) and max initial spin of 0.5 and 1. The time-baseline
assumed is 4096 s as used by the Freq.Hough search in this frequency range [22].
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FIG. 44. The amplitude spectral density of the LIGO O2 data alone (dashed red line) and of an ensemble signal (top green
points) assuming µb = 7 × 10−13 eV and a galactic black hole population with maximum mass 20 M� (top plots) and max
initial spin of 0.3, 0.5 and 1; and maximum mass 30 M� (bottom plots) and max initial spin of 0.5 and 1. The time-baseline
assumed is 4096 s as used by the Freq.Hough search in this frequency range [22].

FIG. 45. The amplitude spectral density of the LIGO O2 data alone (dashed red line) and of an ensemble signal (top green
points) assuming µb = 1.5 × 10−12 eV and a galactic black hole population with maximum mass 20 M� or 30 M� and max
initial spin of 0.5 and 1. The time-baseline assumed is 1800 s close to what is used by the Freq.Hough search in this frequency
range [22]. The distinct excess at low frequencies arises from an exceptionally young and nearby black hole.
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FIG. 46. The amplitude spectral density of the LIGO O2 data alone (dashed red line) and of an ensemble signal (top green
points) assuming µb = 3×10−12 eV and a galactic black hole population with maximum mass 20 M� or 30 M� and max initial
spin of 0.5 and 1. The time-baseline assumed is 1800 s close to what is used by the Freq.Hough search in this frequency range
[22].
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