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Abstract

Since the pioneering paper of Rosenthal a lot of work has beendone in order to determine
classes of games that admit a potential. First, we study the existence of potential functions for
weighted congestion games. LetC be an arbitrary set of locally bounded functions and letG(C)
be the set of weighted congestion games with cost functions inC. We show that every weighted
congestion gameG ∈ G(C) admits an exact potential if and only ifC contains only affine
functions. We also give a similar characterization for weighted potentials with the difference
that hereC consists either of affine functions or of certain exponential functions. We finally
extend our characterizations to weighted congestion gameswith facility-dependent demands
and elastic demands, respectively.

1 Introduction

In many situations, the state of a system is determined by a large number of independent agents,
each pursuing selfish goals optimizing an individual objective function. A natural framework for an-
alyzing such decentralized systems are noncooperative games. It is well known that an equilibrium
point in pure strategies (if it exists) need not optimize thesocial welfare as individual incentives are
not always compatible with social objectives. Fundamentalgoals in algorithmic game theory are to
decide whether a Nash equilibrium in pure strategies (PNE for short) exists, how efficient it is in the
worst case, and how fast an algorithm (or protocol) converges to an equilibrium.

One of the most successful approaches in accomplishing these goals is the potential function
approach initiated by Rosenthal [24] and generalized by Monderer and Shapley in [22]: one defines
a functionP on the set of possible strategies of the game and shows that every strictly improving
move by one defecting player strictly reduces (increases) the value ofP. Since the set of outcomes
of such a game is finite, every sequence of improving moves reaches a PNE. In particular, the global
minimum (maximum) ofP is a PNE.
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A function P with the property above is called apotential functionof the game. If one can
associate a weightwi to each player such thatwi P decreases about the same value as the private
cost of the defecting playeri, thenP is called aweighted potential. If, in addition,wi = 1 for each
player, thenP is called anexact potential.

1.1 Framework

The first part of this paper studies the existence of potential functions in weighted congestion games
(Definition 3.2). Congestion games, as introduced by Rosenthal [24], model the interaction of a
finite set of strategic agents that compete over a finite set offacilities. A pure strategy of each
player is a set of facilities. We consider cost minimizationgames. Here, the cost of facilityf
is given by a real-valued cost functioncf that depends on the number of players usingf and the
private cost of every player equals the sum of the costs of thefacilities in the strategy that she
chooses.1 Rosenthal [24] proved in a seminal paper that such congestion games always admit a
PNE by showing these games posses an exact potential function.

In a weighted congestion game, every player has a demanddi ∈ R>0 that she places on the
chosen facilities. The cost of a facility is a function of thetotal demand of the facility. In contrast to
unweighted congestion games, weighted congestion games, even with two players, do not always
admit a PNE, see the examples given by Fotakis et al. [12], Goemans et al. [15], and Libman and
Orda [18].

On the positive side, Fotakis et al. [12, 13] proved that every weighted congestion game with
affine cost functions possesses an exact potential function andthus, a PNE. Panagopoulou and Spi-
rakis [23] proved existence of a weighted potential function for the case that all costs are determined
by the exponential function.

The results of [12, 13] and [23] are particularly appealing as they establish existence of a poten-
tial function independentof the underlying game structure, that is,independentof the underlying
strategy set, demand vector, and number of players, respectively. To further stress this independence
property, we rephrase the result of Fotakis et al. as follows: Let C be a set of affine cost functions
and letG(C) be the set ofall weighted congestion games with cost functions inC. Then,everygame
in G(C) possesses an exact potential.

A natural open question is to decide whether there are further functions guaranteeing the exis-
tence of an exact or weighted potential. We thus investigatethe following question: How large is
the classC of (continuous) cost functions such that every game in the set of weighted congestion
gamesG(C) with cost functions inC does admit a potential function and hence a PNE?

Before we outline our results we present related work and explain, why it is important to char-
acterize weighted congestion games admitting a potential function.

1.2 Related Work

Fundamental issues in algorithmic game theory are the computability of Nash equilibria and the
design of distributed dynamics (for instance best-response) that provably converge in reasonable
time to a Nash equilibrium (in pure or mixed strategies).

Monderer and Shapley [22] formalized Rosenthal’s approachof using potential functions to
determine the existence of PNE. Furthermore, they show thatone-side better response dynamics al-

1Since we allow the cost of a facility to be positive or negative, we also cover the maximization games.

2



ways converge to a PNE provided the game is finite and admits a potential. In addition, they proved
that weighted potential games have other desirable properties, e.g., the Fictitious Play Process con-
verges to a PNE [21]. For recent progress on convergence towards approximate Nash equilibria
using potential functions, see Awerbuch et al. [4] and Fotakis et al. [11].

Fabrikant et al. [10] proved that one can efficiently compute a PNE for symmetric network con-
gestion games with nondecreasing cost functions. Their proof uses a potential function argument,
similar to Rosenthal [24]. Fotakis et al. [12] proved that one can compute a PNE for weighted net-
work games with affine cost (with nonnegative coefficients) in pseudo-polynomial time (again using
a potential function).

Milchtaich [20] introduced weighted congestion games withplayer-specific cost functions. He
presented, among other results, a game on 3 parallel links with 3 players, which does not possess a
PNE. On the other hand, he proved that such games with 2 players do possess a PNE. Ackermann et
al. [1] characterized conditions on the strategy space in weighted congestion games that guarantee
the existence of PNE. They also considered the case of player-specific cost functions.

Gairing et al. [14] derive a potential function for the case of weighted congestion games with
player-specific linear latency functions (without a constant term). Mavronicolas et al. [19] prove
that every unweighted congestion game with player-specific(additive or multiplicative) constants
on parallel links has an ordinal potential. Even-Dar et al. [9] consider a variety of load balancing
games with makespan objectives and prove among other results that games on unrelated machines
possess a generalized ordinal potential function. For related results, see the survey by Vöcking [25]
and references therein.

Potential functions also play a central role in Shapley costsharing games with weighted players,
which are special cases of weighted congestion games, see Anshelevich et al. [3] and Albers et
al. [2]. In the variant with weighted players, each playeri has a demanddi that she wishes to place
on each facility of an allowable subset of facilities (e.g.,a path in a network connecting her source
nodesi to her terminal nodeti). When facility f ∈ F is stressed with a load ofℓ f (x) in strategy
profile x, there exists a cost ofkf (ℓ f (x)). Under Shapley cost sharing, this cost is shared fairly with
respect to the demands among the users. Thus the cost of player i for using facility f is defined
asci, f (x) = kf (ℓ f (x)) di/ℓ f (x) and clearly, the private cost of playeri in strategy profilex is given
asπi(x) =

∑

f∈xi
ci, f (x). For the unweighted case (di = 1, i ∈ N), Anshelevich et al. [3] proved

existence of PNE and derived bounds on the price of stabilityusing a potential function argument.
This argument fails in general for games with weighted players, see the counterexamples given by
Chen and Roughgarden [6]. Determining subclasses of Shapley cost sharing games with weighted
players that admit a potential, however, is an open problem that we address in this paper.

1.3 Our Results for Weighted Congestion Games

Our first two results provide a characterization of the existence of exact and weighted potential
functions for the set of weighted congestion games with locally bounded and continuous cost func-
tions, respectively. LetC be an arbitrary set of locally bounded functions and letG(C) be the set
of weighted congestion games with cost functions inC. We show that every weighted congestion
gameG ∈ G(C) admits an exact potential if and only ifC contains only affine functions. For an
arbitrary setC of continuous functions, we show that every weighted congestion gameG ∈ G(C)
possesses a weighted potential if and only if exactly one of the following cases hold: (i) C contains
only affine functions; (ii ) C contains only exponential functions such thatc(ℓ) = ac eφ ℓ+bc for some
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ac,bc, φ ∈ R, whereac andbc may depend onc, whileφmust be equal for everyc ∈ C.
We additionally show that the above characterizations for exact and weighted potentials are valid

even if we restrict the setG(C) to two-player games (three-player games for weighted potentials),
three-facility games (four-facility games for weighted potentials), games with symmetric strategies,
games with singleton strategies, games with integral demands. Moreover, we derive a result for two-
player weighted congestion games, showing that every such game with cost functions inC admits
a weighted potential ifC = {(c : R>0→ R) : c(x) = a m(x) + b, a,b ∈ R}, wherem : R>0 → R is a
strictly monotonic function.

Our results have a series of consequences. First, using a result of Monderer and Shapley [22,
Lemma 2.10], our characterization of weighted potentials in weighted congestion games carries
over to the mixed extension of weighted congestion games.

Second, we obtain the following characterizations for Shapley cost sharing games. LetK be
a set of continuous functions. Then, the setS(K) of Shapley cost sharing games with weighted
players and construction cost functions inK are weighted potential games if and only ifK contains
either quadratic construction cost functionsk(ℓ) = ak ℓ

2 + bk ℓ or functions of typek(ℓ) = ak eφ ℓ ℓ +
bk ℓ for someak,bk, φ ∈ R, whereak andbk may depend onk, while φ must be equal for every
k ∈ K . Notice that these results hold for arbitrary coefficientsak,bk, φ ∈ R. Thus, we obtain the
existence of PNE for a family of games with nondecreasing andstrictly concave construction costs
modeling the effect of economies of scale.

After the initial publication of this paper, Harks and Klimm[16] explored the existence of PNE
in weighted congestion games. For a classC of twice continuously differentiable cost functions,
they showed that the conditions given in Theorem 3.9 are in fact necessary for the existence of PNE
in all weighted congestion games contained inG(C). Their characterization, however, requires new
techniques based on the analysis of generic improvement cycles, see [16] for details.

1.4 Our Results for Extended Models

In the second part of this paper, we introduce two non-trivial extensions of weighted congestion
games.

First, we study weighted congestion games withfacility-dependentdemands, that is, the demand
di, f of playeri depends on the facilityf . These games contain, among others, scheduling games on
identical, restricted, related and unrelated machines. Incontrast to classical load balancing games,
we do not consider makespan objectives. In our model, the private cost of a player is a function of
the machine load multiplied with the demand of the player.

We show the following: LetC be a set of continuous functions and letG f d(C) denote the set
of weighted congestion games with facility-dependent demands. EveryG ∈ G f d(C) has a weighted
potential if and only ifC contains only affine functions. In this case the weighted potential is an
exact potential. To the best of our knowledge, our characterization establishes for the first time the
existence of an exact potential function (and hence the existence of a PNE) for affine cost functions
andarbitrary strategy sets and demands, respectively.

Second, we study weighted congestion games withelastic demands. Here, each playeri is
allowed to choose both a subset of the set of facilities and her demanddi out of a compact set
Di ⊂ R>0 of demands that are allowable for her. This congestion modelcan be interpreted as a
generalization of Cournot games [8], where multiple producers strategically determine quantities
they will produce. The cost of a producer is given by her offered quantity multiplied with the
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market price, which is usually a decreasing function of the total quantity offered by all producers.
Weighted congestion games with elastic demands generalizeCournot games in the sense that there
are multiple markets (facilities) and each player may offer her quantity on allowable subsets of these
markets.

Weighted congestion games with elastic demands have several additional applications: they
model, e.g., routing problems in the Internet, where each user wants to route data along a path in the
network and adjusts the injected data rate according to the level of congestion in the network. Most
mathematical models for routing and congestion control rely on fractional routing, see Kelly [17]
and Cole et al. [7]. In practice, however, routing protocolsuse single path routing, see, e.g., the
current TCP/IP protocol. Weighted congestion games with elastic demands model both congestion
control and unsplittable routing. Yet another applicationis that of Shapley cost sharing games with
players that may vary their requested demand.

Let Ge(C) be the set of weighted congestion games with elastic demands where each player
may chose her demand out of a compact space and where the cost of each facility is determined by
a function inC. Our main contribution is to show that all gamesG ∈ Ge(C) are weighted potential
games if and only ifC contains only affine functions. For this important class of games, this result
also establishes for the first time the existence of PNE.

2 Preliminaries

A finite strategic gameis a tupleG = (N,X, π) whereN = {1, . . . ,n} is the non-empty finite set
of players,X =

�
i∈N Xi whereXi is the finite and non-empty set of strategies of playeri, and

π : X→ Rn is the combined private cost function.
We will call an elementx ∈ X strategy profile. ForS ⊂ N, −S denotes the complementary set of

S, and we define for convenience of notationXS =
�

j∈S X j . Instead ofX−{i} we will write X−i , and
with a slight abuse of notation we will write sometimes a strategy profile asx = (xi , x−i) meaning
thatxi ∈ Xi andx−i ∈ X−i .

The following definition is due to Monderer and Shapley [22].

Definition 2.1 (Weighted and exact potential games). A strategic gameG = (N,X, π) is called
weighted potential gameif there is a vectorw = (wi)i∈N ∈ R

n
>0 and a functionP : X → R such

thatπi(xi , x−i) − πi(yi , x−i) = wi (P(xi , x−i) − P(yi , x−i)) for all i ∈ N, x−i ∈ X−i , and allxi , yi ∈ Xi .
The functionP together with the vectorw is then called a weighted potential of the gameG. The
functionP is called anexactpotential ifwi = 1 for all i ∈ N.

We sometimes call a weighted potential functionP a (wi)i∈N-potential. Monderer and Shap-
ley [22, Theorem 2.8] characterized exact potentials in a very convenient way. For this, let a fi-
nite strategic gameG = (N,X, π) be given. Apath in X is a sequenceγ = (x0, x1, . . . xm) with
xk ∈ X, k = 0, . . . ,m, such that for allk ∈ {1, . . . ,m} there exists a unique playerik ∈ N such that
xk = (xk

ik
, xk−1
−ik

) for somexk
ik
, xk−1

ik
, xk

ik
∈ Xi . A path is called closed ifx0 = xm and is called simple

if xk
, xl for k , l. The length of a closed path is defined as the number of its distinct elements. For

a set of strategy profilesX let Γ(X) denote the set of all simple closed paths inX that have length
4. For a finite pathγ = (x0, x1, . . . , xm) let the discrete path integral ofπ alongγ be defined as
I (γ, π) =

∑m
k=1

(

πik(x
k) − πik(x

k−1)
)

whereik is the deviator at stepk in γ, that isxk
ik
, xk−1

ik
.
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Theorem 2.2(Monderer and Shapley). Let G= (N,X, π) be a finite strategic game. Then, G is an
exact potential game if and only if I(γ, π) = 0 for all γ ∈ Γ(X).

In the following, we will use this characterization in orderto study the existence of potentials in
weighted congestion games.

3 Weighted Congestion Games

Definition 3.1 (Congestion model). A tupleM = (N, F,X =
�

i∈N Xi , (cf ) f∈F) is called aconges-
tion model, whereN = {1, . . . ,n} is a non-empty, finite set of players,F is a non-empty, finite set
of facilities, for each playeri ∈ N, her collection of pure strategiesXi is a non-empty, finite set of
subsets ofF and (cf ) f∈F is a set of cost functions.

In the following, we will define weighted congestion games similar to Goemans et al. [15].

Definition 3.2 (Weighted congestion game). LetM = (N, F,X, (cf ) f∈F) be a congestion model
and(di)i∈N ∈ R

n
>0 be a vector of demands. The correspondingweighted congestion gameis the

strategic gameG(M) = (N,X, π), whereπ is defined asπ =
�

i∈N πi , πi(x) =
∑

f∈xi
di cf

(

ℓ f (x)
)

and
ℓ f (x) =

∑

j∈N: f∈x j
d j .

We callℓ f (x) theload on facility f in strategyx. In case there is no confusion on the underlying
congestion model, we will writeG instead ofG(M).

A slightly different class of games has been considered by (among others) Fotakis et al. [12, 13],
Gairing et al. [14] and Mavronicolas et al. [19]. They considered games that almost coincide with
Definition 3.2 except that the private cost of every player isnot scaled by her demands. We call
such gamesnormalizedif they comply with Definition 3.2 except that the private costs are defined
asπ̄i(x) =

∑

f∈xi
cf

(

ℓ f (x)
)

for all i ∈ N.
Fotakis et al. [12] show that there are normalized weighted congestion games withcf (ℓ) = ℓ

for all f ∈ F that are not exact potential games. They also show that any normalized weighted
congestion game with linear costs on the facilities admits aweighted potential.

We state the following trivial relations between weighted congestion games and normalized
weighted congestion games: LetG = (N,X, π) andḠ = (N,X, π̄) be a weighted congestion game
and a normalized weighted congestion game with demands (di)i∈N, respectively. Moreover, let them
share the same congestion model and the same demands. ThenG andḠ coincide in the following
sense: (i) A strategy profilex ∈ X is a PNE inG if and only if x is a PNE inḠ; (ii ) A real-valued
functionP : X → R is a (wi/di)i∈N-potential forG if and only if P is a (wi)i∈N-potential forḠ; (iii )
A real-valued functionP : X → R is an ordinal potential forG (see [22] for a definition) if and
only if P is an ordinal potential for̄G; (iv) The real-valued functionP : X→ R is an exact potential
for G if and only if P is a (di)i∈N-potential forḠ; (v) The real-valued functionP : X → R is an
exact potential forḠ if and only if P is a (1/di)i∈N-potential forG. All proofs rely on the simple
observation thatπi(x) = di π̄i(x) for all i ∈ N, x ∈ X.

3.1 Characterizing the Existence of an Exact Potential

In the following, we will examine necessary and sufficient conditions for a weighted congestion
gameG to be a potential game. The criterion in Theorem 2.2 states that the existence of an exact
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potential forG = (N,X, π) is equivalent to the fact thatI (γ, π) = 0 for all γ ∈ Γ(X). In such paths,
either one or two players deviate. It is easy to verify thatI (γ, π) = 0 for all pathsγ with only one
deviating player. Considering a pathγ with two deviating players, sayi and j, each of them uses two
different strategies, sayxi , yi ∈ Xi andx j , y j ∈ X j . We denote byz−{i, j} ∈ X−{i, j} the strategy profile of
all players excepti and j that remains constant inγ. Then, a generic pathγ ∈ Γ(X) can be written as
γ =

(

(xi , x j , z−{i, j}), (yi , x j , z−{i, j}), (yi , y j , z−{i, j}), (xi , y j , z−{i, j}), (xi , x j , z−{i, j})
)

. The following lemma
provides an explicit formula for the calculation ofI (γ, π) for such a path.

Lemma 3.3. LetM = (N, F,X, (cf ) f∈F) be a congestion model and G(M) a corresponding weighted
congestion game with demands(di)i∈N. Moreover, let

γ =
(

(xi , x j , z−{i, j}), (yi , x j , z−{i, j}), (yi , y j , z−{i, j})(xi , y j , z−{i, j}), (xi , x j , z−{i, j})
)

be an arbitrary path inΓ(X) with two deviating players. Then,

I (γ, π) =
∑

f∈F1∪F11

(d j − di)cf (di + d j + r f ) − d jcf (d j + r f ) + dicf (di + r f )

+
∑

f∈F3∪F9

(di − d j)cf (di + d j + r f ) − dicf (di + r f ) + d jcf (d j + r f ),
(1)

where F1 = (xi\yi)∩(x j\y j), F3 = (xi\yi)∩(y j\x j), F9 = (yi\xi)∩(x j\y j), and F11 = (yi\xi)∩(y j\x j).

Proof. We fix i, j ∈ N, xi , yi ∈ Xi , x j , y j ∈ X j , andz−{i, j} ∈ X−{i, j} arbitrarily and consider the path
γ =

(

(xi , x j , z−{i, j}), (yi , x j , z−{i, j}), (yi , y j , z−{i, j})(xi , y j , z−{i, j}), (xi , x j , z−{i, j})
)

.We compute straightfor-
wardly that

I (γ, π) = πi(yi , x j , z−{i, j}) − πi(xi , x j , z−{i, j}) + π j(yi , y j , z−{i, j}) − π j(yi , x j , z−{i, j})

+ πi(xi , y j , z−{i, j}) − πi(yi , y j , z−{i, j}) + π j(xi , x j , z−{i, j}) − π j(xi , y j , z−{i, j}).
(2)

For a facility f ∈ F, we definer f =
∑

m∈N\{i, j}: f∈(z−{i, j})m
dm as the sum of the demands onf in the

partial strategy profilez−{i, j}. For fixedxi , yi , x j andy j , every facility f ∈ F can be chosen by player
i in both strategyxi and strategyyi , in one of these strategies or not at all. The same holds for player
j and strategiesx j andy j . We can thus decomposeF into 16 disjoint setsF1, . . . , F16. The first
set,F1, comprises all facilities that are in (xi \ yi) ∩ (x j \ y j). F2 contains all facilities that are in
(xi \ yi) ∩ (x j ∩ y j), and so on. The comprehensive description of all 16 cases isgiven in Table 1.

x j \ y j x j ∩ y j y j \ x j F \ (x j ∪ y j)
xi \ yi F1 F2 F3 F4

xi ∩ yi F5 F6 F7 F8

yi \ xi F9 F10 F11 F12

F \ (xi ∪ yi) F13 F14 F15 F16

Table 1: Decomposition ofF into 16 disjoint subsetsFk, k = 1, . . . ,16.

In order to compute for instance the first term of equation (2), we notice that in strategy profile
x = (yi , x j , z−{i, j}) the load on each facilityf ∈ F5∪ F6∪ F9∪ F10 equalsℓ f (x) = di + d j + r f , while
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the load on each facilityg ∈ F7 ∪ F8 ∪ F11∪ F12 equalsℓg(x) = di + rg. These considerations lead
to the following equation. We will use the notation

∑

F,G for
∑

f∈F∪G.

I (γ, π) =

di

















∑

F9,F10

cf (di+d j+r f ) +
∑

F11,F12

cf (di+r f ) −
∑

F1,F2

cf (di+d j+r f ) −
∑

F3,F4

cf (di+r f )

















+ d j

















∑

F7,F11

cf (di+d j+r f ) +
∑

F3,F15

cf (d j+r f ) −
∑

F5,F9

cf (di+d j+r f ) −
∑

F1,F13

cf (d j+r f )

















+ di

















∑

F2,F3

cf (di+d j+r f ) +
∑

F1,F4

cf (di+r f ) −
∑

F10,F11

cf (di+d j+r f ) −
∑

F9,F12

cf (di+r f )

















+ d j

















∑

F1,F5

cf (di+d j+r f ) +
∑

F9,F13

cf (d j+r f ) −
∑

F3,F7

cf (di+d j+r f ) −
∑

F11,F15

cf (d j+r f )

















.

By reordering the summation many terms cancel out and we obtain

I (γ, π) =
∑

f∈F1∪F11

(d j − di)cf (di + d j + r f ) − d jcf (d j + r f ) + dicf (di + r f )

+
∑

f∈F3∪F9

(di − d j)cf (di + d j + r f ) − dicf (di + r f ) + d jcf (d j + r f ),

establishing the result. �

Using Lemma 3.3, we can derive a sufficient condition on the existence of an exact potential in
a weighted congestion game.

Proposition 3.4. LetM = (N, F,X, (cf ) f∈F) be a congestion model and G(M) a correspond-
ing weighted congestion game with demands(di)i∈N. For each facility f ∈ F, we denote by
N f = {i ∈ N : (∃xi ∈ Xi : f ∈ xi))} the set of players potentially using f , and byR f

−{i, j} =
{

∑

k∈P dk : P ⊆ N f \ {i, j}
}

the set of possible residual demands by all players except i and j. If for

all f ∈ F and all i, j ∈ N f

(d j − di)cf (di + d j + r f ) − d jcf (d j + r f ) + dicf (di + r f ) = 0 ∀r f ∈ R
f
−{i, j}, (3)

then G admits an exact potential.

Proof. Using the criterion of Monderer and Shapley, it is enough to prove thatI (γ, π) = 0 for all
γ ∈ Γ(X). By Lemma 3.3,I (γ, π) evaluates to

I (γ, π) =
∑

f∈F1∪F11

(d j − di)cf (di + d j + r f ) − d jcf (d j + r f ) + dicf (di + r f )

+
∑

f∈F3∪F9

(di − d j)cf (di + d j + r f ) − dicf (di + r f ) + d jcf (d j + r f ),
(4)

for somei, j ∈ N f and r f ∈ R
f
−{i, j}. Using (3) each summand of (4) equals 0, establishing the

result. �
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It is a useful observation that we can write the condition of Proposition 3.4 as

cf (di + d j + r f ) − cf (d j + r f )

di
=

cf (d j + r f ) − cf (di + r f )

d j − di
(5)

for all i, j ∈ N f and r f ∈ R
f
−{i, j}. Thus, the difference quotients ofcf between the pointsdi + r f

andd j + r f as well asd j + r f anddi + d j + r f must have the same value. It follows easily that
the above condition is satisfied if all demands are equal (this corresponds to unweighted congestion
games, see Rosenthal’s potential [24]). Forarbitrary demands (weighted congestion games) and
affinecost functions, one can check that the above condition is also satisfied, see the positive result
of Fotakis et al. [12].

For a single weighted congestion game, the linearity condition on cost functions, however, is
only sufficient but not necessary. In Example 3.5, we show that it is possible to construct a non-
affine cost function that satisfies the condition of Proposition3.4 for all 3 player games with demand
vector (1,2,5).

Example 3.5. LetM =
(

N = {1,2,3},X, F, (cf ) f∈F

)

be an arbitrary congestion model with three
players and let G(M) be a corresponding weighted congestion game with demands d1 = 1,d2 =

2,d3 = 5.
We want to construct a non-linear cost function that gives rise to an exact potential in G. To this

end, we consider an arbitrary4-cycleγ. We apply Lemma 3.3 and obtain that I(γ, π) evaluates to

I (γ, π) =
∑

f∈F1∪F11

(d j − di)cf (di + d j + r f ) − d jcf (d j + r f ) + dicf (di + r f )

+
∑

f∈F3∪F9

(di − d j)cf (di + d j + r f ) − dicf (di + r f ) + d jcf (d j + r f ),
(6)

Regarding(6), only the following realizations of(di ,d j , r f ) are possible:

(1,2,0), (1,5,0), (2,5,0),
(1,2,5), (1,5,2), (2,5,1).

(7)

Note that only realizations with di < d j are considered, the others are symmetric and, thus, omitted.
Proposition 3.4 establishes that it is sufficient for the existence of an exact potential that in each cost
function cf , the values to the arguments shown in(7) lie on a straight line. It is easy to construct
a non-linear cost function c: R>0 → R satisfying this property. An example of such a function is
given in Fig. 1.

We derive that I(γ, π) = 0 for any4-cycleγ in any such game regardless of the structure of the
set of strategies.

There is, however, an important question left: Are there non-affine cost functions that give
rise to an exact potential inall weighted congestion games? Under mild assumptions on feasible
cost functions, we will give in Theorem 3.7 a negative answerto this question. First, we need the
following lemma.

Lemma 3.6. LetC be a set of functions and letG(C) be the set of all weighted congestion games
with cost functions inC. Every G∈ G(C) has an exact potential if and only if for all c∈ C

(x− y) c(x+ y+ z) − x c(x+ z) + y c(y+ z) = 0 (8)

for all x, y ∈ R>0 and z∈ R≥0.
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Figure 1: A non-linear cost functioncf that gives rise to an exact potential in all weighted congestion
games with demandsd1 = 1,d2 = 3 andd3 = 5.

Proof. SupposeG = (N,X, π) ∈ G(C) is a weighted congestion game with cost functions inC. First,
we will show thatG has an exact potential. To this end, letγ ∈ Γ(X) be an arbitrary simple closed
path inX of length 4.I (γ, π) evaluates to (1), which is zero using (8).

For the opposite direction suppose that there is a ˜c ∈ C that does not satisfy equation (8). This
implies that there arex, y ∈ R>0 andz ∈ R≥0 such that

(x− y)c̃(x+ y+ z) − xc̃(x+ z) + yc̃(y+ z) , 0.

Now consider the congestion modelM = (N, F,X, (cf ) f∈F) whereN = {1,2,3}, F = { f ,g,h},
X1 =

{

{ f }, {g}
}

, X2 =
{

{ f }, {h}
}

, X3 =
{

f
}

, andcf = cg = ch = c̃. LetG = (N,X, π) be a corresponding
weighted congestion game with demandsd1 = y, d2 = x andd3 = z. We will investigate the value
of I (γ, π) for γ =

(

({g}, {h}, { f }), ({ f }, {h}, { f }), ({ f }, { f }, { f }), ({g}, { f }, { f }), ({g}, {h}, { f })
)

. This value
equals (x − y)c̃(x + y + z) − xc̃(x + z) + yc̃(y+ z) , 0 implying that this game does not possess an
exact potential function. �

We will now solve the functional equation (8) in order to characterize all cost functions that
guarantee an exact potential in all weighted congestion games. We require the following property:
A function c : R>0 → R is locally bounded, if for every compact setK ⊂ R>0, |c(x)| < MK for all
x ∈ K and a constantMK ∈ R>0 potentially depending onK.

Theorem 3.7. Let C be a set of locally bounded functions and letG(C) be the set of weighted
congestion games with cost functions inC. Then, every G∈ G(C) admits an exact potential function
if and only ifC contains affine functions only, that is, every c∈ C can be written as c(ℓ) = ac ℓ + bc

for some ac,bc ∈ R.

Proof. It is straightforward to check that affine functions fulfill functional equation (8) and we may
conclude that they give rise to an exact potential. We will prove the reverse direction in two steps.

In Step 1, we prove the following: Letc fulfill (8). Then, c is differentiable andc′(x + z) =
(

c(x+ z) − c(z)
)

/x holds for allx ∈ R>0 andz ∈ R≥0.
First, we will show continuity ofc onR>0. Let x ∈ R>0 andz ∈ R≥0 be arbitrary and let (yn)n∈N

be a sequence inR>0 such thatyn
n→∞
−→ 0 and bothyn + z > 0 andyn + x > 0 for all n ∈ N. Then,

using (8) we getx (c(x+ z+ yn) − c(x+ z)) = yn (c(x+ z+ yn) − c(z+ yn)) . As c is bounded on any
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compact set, the right hand side goes to 0 asn goes to infinity and hencex limn→∞ c(x + z+ yn) −
c(x+ z) = 0. This shows continuity inx+ z.

Moreover, (8) implies thatx
(

c(x+z+yn)−c(x+z)
)

/yn = c(x+z+yn)−c(z+yn). As c is continuous
we know that the limits on the right hand side exist and, thus,c′(x+ z) =

(

c(x+ z) − c(z)
)

/x holds
for all x ∈ R>0.

Soc satisfies the differential equationc′(x+ z) =
(

c(x+ z)− c(z)
)

/x. We will show in Step 2 that
only affine functions solve this differential equation. To see this, we sett = x+ z, which leads to the
differential equationc′(t) =

(

c(t) − c0
)

/
(

t − t0
)

, t ∈ R>0, wherec0 = c(z) andt0 = z are constants.
Standard calculus shows that for every initial valuec1 for the initial timet1 > t0, this ordinary linear
differential equation admits a unique solutionc(t) = (t− t0) C+c0, whereC = (c1−c0)/(t1− t0). �

3.2 Characterizing the Existence of a Weighted Potential

Our next aim is to determine whether weaker notions of potential functions will enrich the class
of cost functions giving rise to a potential game. The idea ofa weighted potential allows a player
specific scaling of the private costπi by a strictly positivewi . It is a useful observation that the
existence of a weighted potential function is equivalent tothe existence of a strictly positive-valued
vectorw = (wi)i∈N such that the gameGw with private costs ¯π :=

�
i∈N πi/wi has an exact potential.

Using this equivalent formulation and Theorem 2.2 it follows that the existence of an exact
potential function for the gameGw = (N,X, π̄) is equivalent toI (γ, π̄) = 0 for allγ ∈ Γ(X) suggesting
thatGw has an exact potential if and only if there arewi ,w j ∈ R>0 such that

(

di

wi
−

d j

w j

)

cf (di + d j + r f ) =
di

wi
cf (di + r f ) −

d j

w j
cf (d j + r f )

for all i, j ∈ N and all r f ∈ R
f
−{i, j}. In particular it is necessary that eithercf (di + d j + r f ) =

cf (d j + r f ) = cf (di + r f ) or the valueα(di ,d j) defined as

α(di ,d j) =
wi

w j
=

di

d j
·

cf (di + d j + r f ) − cf (di + r f )

cf (di + d j + r f ) − cf (d j + r f )
(9)

is strictly positive and independent of bothf and r f . This observation leads us to the following
lemma.

Lemma 3.8. Let C be a set of functions. LetG(C) be the set of weighted congestion games with
cost functions inC. Every G∈ G(C) has a weighted potential if and only if for all x, y ∈ R>0, there
exists anα(x, y) ∈ R>0 such that

α(x, y) =
x
y
·

c(x+ y+ z) − c(x+ z)
c(x+ y+ z) − c(y+ z)

(10)

for all z ∈ R≥0 and non-constant c∈ C.

Proof. Let G = (N,X, π) be a weighted potential game in which allcf are constant or satisfy equa-
tion (10). Let (di)i∈N,di ∈ R>0, be an arbitrary vector of demands. We will show that this game
possesses a weighted potential. For an arbitraryc ∈ C, we setα(di ,d j) = di/d j ·

(

c(di + d j) −
c(di)

)

/
(

c(di + d j) − c(d j)
)

for i, j ∈ N with i , j. The requirements of Lemma 3.8 imply that

α(di ,d j) =
di

d j
·

c(di + d j + z) − c(di + z)

c(di + d j + z) − c(d j + z)
(11)
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for all z ∈ R≥0 andc ∈ C. As α(di ,d j) is required to be strictly positive we may choose a vector of
weights (wi)i∈N ∈ R>0 such thatα(di ,d j) = wi/w j for all i, j ∈ N with i , j. Using Monderer and
Shapley’s criterion we will show that the corresponding gameGw = (N,X, π̄) has an exact potential.
For this, we consider an arbitrary pathγ ∈ Γ(X). Without loss of generality only two players, say
i and j, change their strategies inγ while the sum of the demands of all other players is equal to
a facility-specific valuer f . We remark that facilities with constant cost function cancel out in the
calculation of the integral. Analogously to the proof of Lemma 3.6, we get

I (γ, π̄) =
∑

f∈F1,F11

(

d j

w j
−

di

wi

)

cf (di+d j+r f ) −
d j

w j
cf (d j+r f ) +

di

wi
cf (di+r f )

+
∑

f∈F3,F9

(

di

wi
−

d j

w j

)

cf (di+d j+r f ) −
di

wi
cf (di+r f ) +

d j

w j
cf (d j+r f ).

We multiply withwi , useα(di ,d j) = wi/w j and obtain

wi I (γ, π̄) =
∑

f∈F1,F11

α(di ,d j)d j

(

cf (di+d j+r f ) − cf (d j+r f )
)

− di

(

cf (di+d j+r f ) + cf (di+r f )
)

+
∑

f∈F3,F9

−α(di ,d j)d j

(

cf (di+d j+r f ) − cf (d j+r f )
)

+ di

(

cf (di+d j+r f ) − cf (di+r f )
)

.

Using equation (11) shows thatI (γ, π̄) = 0 proving the first result.
To show the other direction, assume that the condition onC does not hold. In particular we can

find two functions ˜c1, c̃2 ∈ C, z1, z2 ∈ R≥0 andx, y ∈ R>0 such that at least two of the following four
values are distinct

α(x, y)s,t =
x
y
·

c̃s(x+ y+ zt) − c̃s(x+ zt)
c̃s(x+ y+ zt) − c̃s(y+ zt)

, wheres= 1,2 andt = 1,2.

We show the result for the caseα(x, y)1,1
, α(x, y)2,2 only. The other cases are similar. For this, we

consider the congestion modelM = (N, F,X, (cf ) f∈F), whereN = {1,2,3}, F = { f1, f2,g1,g2,g3},
X1 =

{

{g1}, { f1}, { f2}
}

, X2 =
{

{g2}, { f1}, { f2}
}

, X3 =
{

{g3}, { f1}, { f2}
}

, andcf1 = cg1 = cg2 = cg3 =

c̃1, cf2 = c̃2. Now we regard the gamesG1(M) = (N,X, π) with demandsd1 = x,d2 = y,d3 = z1

andG2(M) = (N,X, µ) with demandsd1 = x,d2 = y,d3 = z2. As both games admit a weighted
potential we can find two vectors of weights (wi)i∈N and (vi)i∈N for G1 andG2, respectively, such that
Gw

1 = (N,X, π/w) andGv
2(N,X, µ/v) admit exact potentials. To this end, we will apply the criterion

of Monderer and Shapley to the path

γ =
(

({g1}, {g2}, {g3}), ({ f1}, {g2}, {g3}), ({ f1}, { f1}, {g3}), ({g1}, { f1}, {g3}), ({g1}, {g2}, {g3})
)

in the gamesGw
1 andGv

2. One verifies easily that the following equations hold

I (γ, π/w) =

(

y
w2
−

x
w1

)

c̃1(x+ y) −
y

w2
c̃1(y) +

x
w1

c̃1(x) = 0, (12)

I (γ, µ/v) =

(

y
v2
−

x
v1

)

c̃1(x+ y) −
y
v2

c̃1(y) +
x
v1

c̃1(x) = 0. (13)
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We defineα(x, y) = w1/w2 andξ(x, y) = v1/v2. The equations (12) and (13) imply that

α(x, y) = ξ(x, y) =
x
y
·

c̃1(x+ y) + c̃1(x)
c̃1(x+ y) − c̃1(y)

. (14)

Considering the path

γ1 =
(

({g1}, {g2}, { f1}), ({ f1}, {g2}, { f1}), ({ f1}, { f1}, { f1}), ({g1}, { f1}, { f1}), ({g1}, {g2}, { f1})
)

for Gw
1 and the path

γ2 =
(

({g1}, {g2}, { f2}), ({ f2}, {g2}, { f2}), ({ f2}, { f2}, { f2}), ({g1}, { f2}, { f2}), ({g1}, {g2}, { f2})
)

for Gv
2, we can compute that

I (γ1, π/w) =

(

y
w2
−

x
w1

)

c̃1(x+ y+ z1) −
y

w2
c̃1(y+ z1) +

x
w1

c̃1(x+ z1) = 0, (15)

I (γ2, µ/v) =

(

y
v2
−

x
v1

)

c̃2(x+ y+ z2) −
y
v2

c̃2(y+ z2) +
x
v1

c̃2(x+ z2) = 0. (16)

We derive from equations (15) and (16) that

α(x, y) =
x
y
·

c̃1(x+ y+ z1) + c̃1(x+ z1)
c̃1(x+ y+ z1) − c̃1(y+ z1)

,

ξ(x, y) =
x
y
·

c̃2(x+ y+ z2) + c̃2(x+ z2)
c̃2(x+ y+ z2) − c̃2(y+ z2)

.

Together with equation (14) this implies that

α(x, y)1,1=
x
y
·
c̃1(x+y+z1) − c̃1(x+z1)
c̃1(x+y+z1) − c̃1(x+ z1)

=
x
y
·
c̃2(x+y+z2) − c̃2(x+z2)
c̃2(x+y+z2) − c̃2(x+z2)

=ξ(x, y)=α(x, y)2,2,

which contradicts the assumption. �

Although condition 10 seems to be similar to the functional equation (8) characterizing the
existence of an exact potential, it is not possible to proceed using differential equations. Asα(x, y)
need not be bounded it is not possible to prove continuity anddifferentiability ofc. Instead, we will
use the discrete counterpart of differential equations, that is, difference equations.

Theorem 3.9. LetC be a set of continuous functions. LetG(C) be the set of weighted congestion
games with cost functions inC. Then every G∈ G(C) admits a weighted potential if and only if
exactly one of the following cases holds:

1. C contains only affine functions,

2. C contains only exponential functions c(ℓ) = ac eφℓ + bc for some ac,bc, φ ∈ R, where ac and
bc may depend on c, whileφ must be equal for every c∈ C.
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Proof. First, we will prove that these functions guarantee the existence of a weighted potential in
all such games. We have shown in Section 3.1 that affine cost functionscf give rise to an exact
potential. As every exact potential function is also a weighted potential forw = (1, . . . ,1), we may
conclude that affine cost functions give rise to a weighted potential in weighted congestion games.

So let us check the casec(ℓ) = ac eφ ℓ + bc for φ , 0. It is easy to verify that

α(x, y) =
x
y
·

aceφ(x+y+z) + bc − aceφ(x+z) − bc

aceφ(x+y+z) + bc − aceφ(y+z) − bc
=

x
y
·

eφ (x+y) − eφ(x)

eφ (x+y) − eφ (y)
> 0.

Note in particular thatα(x, y) does neither depend onac,bc, norz. Thus, it is unambiguously defined
and strictly positive. Theorem 3.8 then yields the result.

To show the opposite direction, we assume that the conditions onC do not hold but that every
G ∈ G(C) admits a weighted potential.

First, suppose that there is a function ˜c ∈ C that is neither affine nor exponential. This implies
that there are four pointsp1 < p2 < p3 < p4 following neither an exponential nor a affine law, that
is, there are neithera, b andφ ∈ R such that

c̃(p1) = aeφp1 + b, . . . , c̃(p4) = aeφp4 + b,

nor are theresandt ∈ R such that

c̃(p1) = sp1 + t, . . . , c̃(p4) = sp4 + t.

As c̃ is continuous, we may assume without loss of generality thatthe above conditions hold for
rational p1, . . . , p4 and we can write them asp1 = 2m1/(2k), . . . , p4 = 2m4/(2k) for some
m1,m2,m3,m4, k ∈ N.

We regard a congestion modelM = (N = {1,2,3}, F,X, c) and a series of gamesGm(M) =
(N,X, π),0 ≤ m ≤ 2m4. We set the demands of the players asd1 = 1/(2k), d2 = 2/(2k) and
d3 = m/(2k). By assumption each gameGm admits a weighted potential. By Lemma 3.8 this
implies that for each game

α(d1,d2) =
d1

d2
·

c̃(d1 + d2 + d3) − c̃(d1 + d3)
c̃(d1 + d2 + d3) − c̃(d2 + d3)

=
d1

d2
·

c̃(d1 + d2) − c̃(d1)
c̃(d1 + d2) − c̃(d2)

.

In particularα(d1,d2) is the same for each gameGm. Now, we introducefn = c̃(n/(2k)) and consider
the sequence (fn)n∈N. Thus, we can write

α(d1,d2) =
1
2
·

fm+3 − fm+1

fm+3 − fm+2
.

If α(d1,d2) = 1/2, we conclude that ˜c is constant, which contradicts our assumption. So we may
assume thatα(d1,d2) , 1/2 and we obtain

fm+2 −
2α(d1,d2)

2α(d1,d2) − 1
fm+1 +

1
2α(d1,d2) − 1

fm = 0. (17)

Equation (17) defines a recursively defined sequence on{1, . . . ,2m4}.
The main result in [[5], Chapter 4] gives sufficient conditions on the uniqueness of the general

solution of such sequences. First, we define the characteristic equation of a general second-order
recurrence relationam+2 + β2am+1 + β1am = 0 asx2 + β2x+ β1 = 0.
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Now letx1 andx2 be the distinct and real roots of the characteristic equation. Then every general
solutionam of the recurrence relation is a linear combination of powers(xi)m of the solutionsxi , i =
1,2. In addition, ifx is the double root of the characteristic equation, every general solutionam of the
recurrence relation is a linear combination ofxm andm xm. In both cases, if two consecutive initial
valuesak andak+1 of the recurrence relation are known, a solution can be obtained by evaluating the
two constants of the linear combination using the two initial values and the fact that this solution is
unique.

The characteristic equation of the recurrence relation (17) equals

x2 −
2α(d1,d2)

2α(d1,d2) − 1
x+

1
2α(d1,d2) − 1

= (x− 1)

(

x−
1

2α(d1,d2) − 1

)

.

So if α(d1,d2) , 1, two different roots occur andfm can be computed explicitely and uniquely for
evenm as

fm = b · 1m+ a ·

(

1
2α(d1,d2) − 1

)m

= b+ a · exp

(

mln

(

1
2α(k1, k2) − 1

))

for some constantsa andb ∈ R. If α(k1, k2) = 1, we can evaluatefm as

fm = t · 1m+m s· 1m = t + s m

for some constantss, t ∈ R showing that ˜c follows either an exponential or affine law onp1, . . . , p4.
So it remains to show that neither affine and exponential functions nor exponential function with
different exponents can occur simultaneously. Assume on the contrary thatc̃1, c̃2 ∈ C are two such
functions and consider two players using both facilitiesf1 and f2 with cost functions ˜c1 and c̃2,
respectively. It is easy to show that these functions give rise to an ambiguously definedα(d1,d2)
contradicting Theorem 3.8. �

3.3 Implications of Our Characterizations

It is natural to ask whether these results remain valid if additional restrictions on the setG(C) are
made. A natural restriction is to assume that all players have an integral demand. As we used
infinitesimally small demands in the proof of Lemma 3.6, our results for exact potentials do not
apply directly to integer demands. With a slight variation of the proof of Theorem 3.9, where only
the caseα(·, ·) = 1 is considered, however, we still obtain the same result providedC contains only
continuous functions.

Another natural restriction onG(C) are games with symmetric sets of strategies or games with a
bounded number of players or facilities. Since the proofs ofLemma 3.6 and 3.8 and Theorems 3.7
and 3.9 rely on mild assumptions, we can strengthen our characterizations as follows.

Corollary 3.10. LetC be a set of continuous functions. LetG(C) be the set of weighted congestion
games with cost functions inC satisfying one or more of the following properties

1. Each game G= (N,X, π) ∈ G(C) has two (three) players.

2. Each game G= (N,X, π) ∈ G(C) has three (five) facilities.
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3. For each game G= (N,X, π) ∈ G(C) and each player i∈ N the set of her strategies Xi

contains a single facility only.

4. Each game G= (N,X, π) ∈ G(C) has symmetric strategies, that is Xi = X j for all i , j ∈ N.

5. In each game G= (N,X, π) ∈ G(C), the demands of all players are integral.

Then, every G= (N,X, π) ∈ G(C) has an exact (a weighted) potential if and only ifC contains only
affine functions (only affine functions or only exponential functions as in Theorem 3.8).

Yet, we are able to deduce an interesting result concerning the existence of weighted potentials
in weighted congestion games, where each facility can be chosen by at most two players. As we
can setz = 0 in (10), the conditions of Lemma 3.8 are fulfilled by more than affine or exponential
functions.

Theorem 3.11.Let m: R>0 → R be a strictly monotonic function and letCm = {a m(x) + b : a,b ∈
R}. Then every two-player weighted congestion game G∈ G2(Cm) admits a weighted potential.

Proof. By adapting the proof of Lemma 3.8 for two-player games, we establishes the following
lemma.

Lemma 3.12. LetC be a set of functions. LetG2(C) be the set of two-player weighted congestion
games with cost functions inC. Every G∈ G2(C) has a weighted potential if and only if for all
x, y ∈ R>0 there exists anα(x, y) ∈ R>0 such that

α(x, y) =
x
y
·

c(x+ y) − c(x)
c(x+ y) − c(y)

(18)

for all non-constant c∈ C.

Let c̃ ∈ C be arbitrary. By the definition ofC, we can write ˜c(ℓ) = ac̃ m(x) + bc̃ for some
ac̃,bc̃ ∈ R. If ac̃ = 0, the function ˜c is constant and thus fulfills the requirements of Lemma 3.12.If
ac̃ , 0, it is easy to check that

α =
d1

d2
·

c̃(d1 + d2) − c̃(d1)
c̃(d1 + d2) − c̃(d2)

=
d1

d2
·

ac̃ m(d1 + d2) + bc̃ − (ac̃ m(d1) + bc̃)
ac̃ m(d1 + d2) + bc̃ − (ac̃ m(d2) + bc̃)

=
d1

d2
·

m(d1 + d2) −m(d1)
m(d1 + d2) −m(d2)

> 0

for all c̃ ∈ C and hence the conditions of Lemma 3.12 are fulfilled implyingthe existence of a
weighted potential. �

This result generalizes a result of Anshelevich et al. in [3], who showed that a weighted con-
gestion game with two players andcf (ℓ) = bf /ℓ for a constantbf ∈ R>0 has a potential. Moreover,
this result shows that the characterization of Corollary 3.10 is tight in the sense that weighted con-
gestion games with two players admit a weighted potential even if cost functions are neither affine
nor exponential.
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4 Extensions of the Model

In the last section, we developed a new technique to characterize the set of functions that give rise
to a potential in weighted congestion games. In this section, we will introduce two generalizations
of weighted congestion games and investigate the set of costfunctions that assure the existence of
potential functions.

Definition 4.1 (Facility-dependent demands). LetM = (N, F,X, (cf ) f∈F) be a congestion model and
let

(

di, f

)

i∈N, f∈F
be a matrix of facility-dependent demands. The correspondingweighted congestion

game with facility-dependent demandsis the strategic gameG(M) = (N,X, π), whereπ is defined
asπ =

�
i∈N πi , πi(x) =

∑

f∈xi
di, f cf

(

ℓ f (x)
)

andℓ f (x) =
∑

j∈N: f∈x j
d j, f .

Restricting the strategy sets to singletons, we obtain scheduling games. In a scheduling game,
players are jobs that have machine-dependent demands and can be scheduled on a set of admissible
machines (restricted scheduling on unrelated machines). In contrast to the classical approach, where
each job strives to minimize its makespan, we consider a different private cost function: Machines
charge a price per unit given by a load-dependent cost function cf and each job minimizes its cost
defined as the price of the chosen machine multiplied with itsmachine-dependent demand.

Theorem 4.2. Let C be a set of continuous functions and letG f d(C) be the set of weighted con-
gestion games with facility-dependent demands and cost functions inC. Then, every G∈ G f d(C)
admits a weighted potential if and only ifC contains only affine functions, that is, every c∈ C can
be written as c(ℓ) = ac ℓ + bc for some ac,bc ∈ R. For a game G with affine cost functions, the
potential function is given by P(x) =

∑

i∈N
∑

f∈xi
cf

(

∑

j∈{1,...,i}: f∈x j
d j, f

)

di, f .

Proof. For any set of functionsC, the setG(C) of weighted congestion games with cost functions in
C is contained in the set of weighted congestion games with facility-dependent demands. Thus, we
can restrictC to the set of affine functions or exponential functions as in Theorem 3.9. By varying
the demands between two facilities with exponential costs it is easy to verify that the weightswi and
w j are ambiguously defined and we may derive thatC does not contain any exponential functions.
We thus proceed by showing thatP(x) is an exact potential for affine costs.

Cost functions are affine, that is,cf (ℓ) = af ℓ + bf , af ,bf ∈ R. We define the functionc≤i
f (x) :=

cf

(

∑

j∈{1,...,i}: f∈x j
d f

j

)

and rewriteP(x) as P(x) =
∑

i∈N Pi(x), wherePi(x) =
∑

f∈xi
c≤i

f (x)d f
i . Let

G = (N,X, π) be an arbitrary weighted congestion game with facility-dependent demands and let
x, y ∈ X be two strategy profiles such thatx = (xk, x−k) andy = (yk, y−k) with x−k = y−k for some
xk, yk ∈ Xk andx−k ∈ X−k. We notice thatPi(x) = Pi(y) for all i < k. Now consider a playeri > k.
When computingPi(x) − Pi(y), we observe that all costs corresponding to facilities notcontained
in xk ∪ yk cancel out. For each facilityf ∈ (xi ∩ xk) \ yk, we see thatc≤i

f (x) − c≤i
f (y) = af d f

k .

Analogously, for each facilityf ∈ (xi ∩ yk) \ xk, it holds thatc≤i
f (x) − c≤i

f (y) = −af d
f
k . For each

facility f ∈ xi ∩ xk ∩ yk, we havec≤i
f (x) = c≤i

f (y). Hence,

Pi(x) − Pi(y) =
∑

f∈xi∩xk

af d f
k d f

i −
∑

f∈xi∩yk

af d f
k d f

i .

Moreover, we can calculate straightforwardly that

Pk(x) − Pk(y) =
∑

f∈xk

cf

(
∑

j∈{1,...,k}: f∈x j

d f
j

)

d f
k −

∑

f∈yk

cf

(
∑

j∈{1,...,k}: f∈y j

d f
j

)

d f
k .

17



We thus obtain

P(x) − P(y)

=
∑

i∈N

Pi(x) −
∑

i∈N

Pi(y)

=

n
∑

i>k

(
∑

f∈xi∩xk

af d
f
k d f

i −
∑

f∈yi∩yk

af d
f
k d f

i

)

+
∑

f∈xk

af

(
∑

j∈{1,...,k}: f∈x j

d f
j

)

d f
k −

∑

f∈yk

af

(
∑

j∈{1,...,k}: f∈y j

d f
j

)

d f
k + d f

k

∑

f∈xk

bf − d f
k

∑

f∈yk

bf

=
∑

f∈xk

af

(
∑

j∈{1,...,n}: f∈x j

d f
j

)

d f
k −

∑

f∈yk

af

(
∑

j∈{1,...,n}: f∈y j

d f
j

)

d f
k + d f

k

∑

f∈xk

bf − d f
k

∑

f∈yk

bf

= πk(x) − πk(y).

�

We will now introduce an extension to weighted congestion games allowing players to also
choose their demand.

Definition 4.3 (Elastic demands). LetM = (N, F,X, (cf ) f∈F) be a congestion model. Together with
D =
�

i∈N Di , whereDi ⊂ R>0 are compact for alli ∈ N, we define theweighted congestion game
with elastic demandsas the strategic gameG(M) = (N, X̄, π) with X̄ := (X,D), π =

�
i∈N πi , and

πi(x̄) =
∑

f∈xi
dicf

(

ℓ f (x̄)
)

andℓ f (x̄) =
∑

j∈N: f∈x j
d j .

In our definition of weighted congestion games with elastic demands, we explicitly allow for
positive and negative, and for increasing and decreasing cost functions. Thus, an increase in the
demand may increase or decrease the player’s private cost. Note that in weighted congestion games
with elastic demands, the strategy sets are topological spaces and are in general infinite. By restrict-
ing the setsDi to singletonsDi = {di}, i ∈ N, we obtain weighted congestion games as a special case
of weighted congestion games with elastic demands. The proof of the following result is omitted as
it is similar to the case of facility-dependent demands.

Theorem 4.4.LetC be a set of continuous functions and letGe(C) be the set of weighted congestion
games with elastic demands and cost functions inC. Then, every G∈ Ge(C) admits a weighted
potential function if and only ifC contains only affine functions. For a game G with affine cost
functions, the potential function is given by the function P(x̄) =

∑

i∈N
∑

f∈xi
cf

(

∑

j∈{1,...,i}: f∈x j
d j

)

di .

As an immediate consequence, we obtain the existence of a PNEif cost functions are affine.
Note that the existence of a potential is not sufficient for proving existence of a PNE as we are
considering infinite games. However, as̄X is compact andP is continuous,P has a minimum
x̄∗ ∈ X̄ andx̄∗ is a PNE.

Corollary 4.5. Let C be a set of affine functions and letGe(C) be the set of weighted congestion
games with elastic demands and cost functions inC. Then, every G∈ Ge(C) admits a PNE.
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