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Abstract

Since the pioneering paper of Rosenthal a lot of work has Hear in order to determine
classes of games that admit a potential. First, we studyxisée@ce of potential functions for
weighted congestion games. l@be an arbitrary set of locally bounded functions an@jl&t)
be the set of weighted congestion games with cost functio@s We show that every weighted
congestion gam& € G(C) admits an exact potential if and only @ contains only fine
functions. We also give a similar characterization for viséégl potentials with the ffierence
that hereC consists either offéine functions or of certain exponential functions. We finally
extend our characterizations to weighted congestion gamtasfacility-dependent demands
and elastic demands, respectively.

1 Introduction

In many situations, the state of a system is determined byge laumber of independent agents,
each pursuing selfish goals optimizing an individual oliyedunction. A natural framework for an-
alyzing such decentralized systems are noncooperativegdiris well known that an equilibrium
point in pure strategies (if it exists) need not optimizegbeial welfare as individual incentives are
not always compatible with social objectives. Fundamegals in algorithmic game theory are to
decide whether a Nash equilibrium in pure strategies (PMBHort) exists, howf@icient it is in the
worst case, and how fast an algorithm (or protocol) convetgan equilibrium.

One of the most successful approaches in accomplishing theals is the potential function
approach initiated by Rosenthal [24] and generalized bydéoer and Shapley in [22]: one defines
a functionP on the set of possible strategies of the game and shows thgt strictly improving
move by one defecting player strictly reduces (increasesyalue ofP. Since the set of outcomes
of such a game is finite, every sequence of improving movehessa PNE. In particular, the global
minimum (maximum) ofP is a PNE.

*An extended abstract of this paper appeared in the Proggedirthe Second International Symposium on Algorith-
mic Game Theory (SAGT), 2009.
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A function P with the property above is called@otential functionof the game. If one can
associate a weight; to each player such that P decreases about the same value as the private
cost of the defecting playérthenP is called aweighted potentiallf, in addition,w; = 1 for each
player, therP is called arexact potential

1.1 Framework

The first part of this paper studies the existence of poteftigtions in weighted congestion games
(Definition 3.2). Congestion games, as introduced by Rosgf24], model the interaction of a
finite set of strategic agents that compete over a finite séailities. A pure strategy of each
player is a set of facilities. We consider cost minimizatgames. Here, the cost of facilitly

is given by a real-valued cost functian that depends on the number of players usingnd the
private cost of every player equals the sum of the costs ofabidities in the strategy that she
chooses. Rosenthal [24] proved in a seminal paper that such congeghmes always admit a
PNE by showing these games posses an exact potential fanctio

In a weighted congestion gamevery player has a demamkl € R.o that she places on the
chosen facilities. The cost of a facility is a function of teéal demand of the facility. In contrast to
unweighted congestion games, weighted congestion gawves with two players, do not always
admit a PNE, see the examples given by Fotakis et al. [12]naas et al. [15], and Libman and
Orda [18].

On the positive side, Fotakis et al. [12, 13] proved that ywegighted congestion game with
affine cost functions possesses an exact potential functiothasgda PNE. Panagopoulou and Spi-
rakis [23] proved existence of a weighted potential funcfmr the case that all costs are determined
by the exponential function.

The results of [12, 13] and [23] are particularly appealiagreey establish existence of a poten-
tial functionindependenbf the underlying game structure, thatiisgdependenof the underlying
strategy set, demand vector, and number of players, regplgciTo further stress this independence
property, we rephrase the result of Fotakis et al. as folldwet C be a set of fiine cost functions
and letG(C) be the set oéll weighted congestion games with cost function€.imhen,everygame
in G(C) possesses an exact potential.

A natural open question is to decide whether there are fuftimetions guaranteeing the exis-
tence of an exact or weighted potential. We thus investitfedollowing question: How large is
the clas<C of (continuous) cost functions such that every game in th@fsereighted congestion
gamegz(C) with cost functions irC does admit a potential function and hence a PNE?

Before we outline our results we present related work anda@xpwhy it is important to char-
acterize weighted congestion games admitting a potemnitmaition.

1.2 Related Work

Fundamental issues in algorithmic game theory are the ctabpity of Nash equilibria and the
design of distributed dynamics (for instance best-respptigat provably converge in reasonable
time to a Nash equilibrium (in pure or mixed strategies).

Monderer and Shapley [22] formalized Rosenthal’s appra#clising potential functions to
determine the existence of PNE. Furthermore, they shovwotieside better response dynamics al-

1Since we allow the cost of a facility to be positive or negatiwe also cover the maximization games.



ways converge to a PNE provided the game is finite and admitsemtial. In addition, they proved
that weighted potential games have other desirable piepgeetg., the Fictitious Play Process con-
verges to a PNE [21]. For recent progress on convergencedevegproximate Nash equilibria
using potential functions, see Awerbuch et al. [4] and Fstakal. [11].

Fabrikant et al. [10] proved that one cafia@ently compute a PNE for symmetric network con-
gestion games with nondecreasing cost functions. Theofprees a potential function argument,
similar to Rosenthal [24]. Fotakis et al. [12] proved thaé @an compute a PNE for weighted net-
work games with fiine cost (with nonnegative cfiients) in pseudo-polynomial time (again using
a potential function).

Milchtaich [20] introduced weighted congestion games withyer-specific cost functions. He
presented, among other results, a game on 3 parallel links3nplayers, which does not possess a
PNE. On the other hand, he proved that such games with 2 gldpgrossess a PNE. Ackermann et
al. [1] characterized conditions on the strategy space ighted congestion games that guarantee
the existence of PNE. They also considered the case of pépgsific cost functions.

Gairing et al. [14] derive a potential function for the cageveighted congestion games with
player-specific linear latency functions (without a constgrm). Mavronicolas et al. [19] prove
that every unweighted congestion game with player-spe@tiditive or multiplicative) constants
on parallel links has an ordinal potential. Even-Dar et @.donsider a variety of load balancing
games with makespan objectives and prove among othergekattgames on unrelated machines
possess a generalized ordinal potential function. Foteeleesults, see the survey byking [25]
and references therein.

Potential functions also play a central role in Shapley sbating games with weighted players,
which are special cases of weighted congestion games, ssleelsich et al. [3] and Albers et
al. [2]. In the variant with weighted players, each playkas a demand, that she wishes to place
on each facility of an allowable subset of facilities (eagpath in a network connecting her source
nodes to her terminal nodd). When facility f € F is stressed with a load df(x) in strategy
profile x, there exists a cost & (€1 (x)). Under Shapley cost sharing, this cost is shared fairtip wi
respect to the demands among the users. Thus the cost of playausing facility f is defined
asci 1 (x) = K¢ (€¢(x)) di/£5(x) and clearly, the private cost of playein strategy profilex is given
asmi(X) = Xtex Cif(X). For the unweighted caséli(= 1,i € N), Anshelevich et al. [3] proved
existence of PNE and derived bounds on the price of stalifityg a potential function argument.
This argument fails in general for games with weighted playsee the counterexamples given by
Chen and Roughgarden [6]. Determining subclasses of Shap#t sharing games with weighted
players that admit a potential, however, is an open probletwe address in this paper.

1.3 Our Results for Weighted Congestion Games

Our first two results provide a characterization of the exise of exact and weighted potential
functions for the set of weighted congestion games withllpteunded and continuous cost func-
tions, respectively. Le€ be an arbitrary set of locally bounded functions and3éf) be the set
of weighted congestion games with cost functionginWe show that every weighted congestion
gameG € G(C) admits an exact potential if and onlydf contains only ffine functions. For an
arbitrary setC of continuous functions, we show that every weighted cotmgegameG € G(C)
possesses a weighted potential if and only if exactly onaefdllowing cases holdi)C contains
only affine functions; i) C contains only exponential functions such tb@) = a. €’ ¢ + b for some



ac, be, ¢ € R, wherea; andb; may depend o, while ¢ must be equal for evenye C.

We additionally show that the above characterizations{aceand weighted potentials are valid
even if we restrict the sg(C) to two-player games (three-player games for weightedniats),
three-facility games (four-facility games for weightedentials), games with symmetric strategies,
games with singleton strategies, games with integral demavioreover, we derive a result for two-
player weighted congestion games, showing that every sacte gvith cost functions i@ admits
a weighted potential i® = {(c: R.o @ R) : ¢c(X) =am(x) + b, a,b e R}, wherem: R.g - Risa
strictly monotonic function.

Our results have a series of consequences. First, usingilh oé8/onderer and Shapley [22,
Lemma 2.10], our characterization of weighted potentialsveighted congestion games carries
over to the mixed extension of weighted congestion games.

Second, we obtain the following characterizations for $#apost sharing games. L& be
a set of continuous functions. Then, the $K) of Shapley cost sharing games with weighted
players and construction cost functionsknare weighted potential games if and onlyifcontains
either quadratic construction cost functidé) = ay £2 + by £ or functions of typek(¢) = ax e?‘ £ +
by ¢ for someay, b, ¢ € R, whereax and by may depend ork, while ¢ must be equal for every
k € K. Notice that these results hold for arbitrary ffa@entsay, b, # € R. Thus, we obtain the
existence of PNE for a family of games with nondecreasingsanckly concave construction costs
modeling the &ect of economies of scale.

After the initial publication of this paper, Harks and Klim{t6] explored the existence of PNE
in weighted congestion games. For a cl@ssf twice continuously dferentiable cost functions,
they showed that the conditions given in Theorem 3.9 aredirfecessary for the existence of PNE
in all weighted congestion games contained:{i’). Their characterization, however, requires new
techniques based on the analysis of generic improvemel@s;\see [16] for details.

1.4 Our Results for Extended Models

In the second part of this paper, we introduce two non-trieidensions of weighted congestion
games.

First, we study weighted congestion games Maitility-dependenilemands, that is, the demand
d; ¢ of playeri depends on the facility. These games contain, among others, scheduling games on
identical, restricted, related and unrelated machinesoirast to classical load balancing games,
we do not consider makespan objectives. In our model, thatercost of a player is a function of
the machine load multiplied with the demand of the player.

We show the following: LeC be a set of continuous functions and &%(C) denote the set
of weighted congestion games with facility-dependent deisaEvenG € G'9(C) has a weighted
potential if and only ifC contains only ffine functions. In this case the weighted potential is an
exact potential. To the best of our knowledge, our chareeton establishes for the first time the
existence of an exact potential function (and hence theemnds of a PNE) forfane cost functions
andarbitrary strategy sets and demands, respectively.

Second, we study weighted congestion games efifisticdemands. Here, each playeis
allowed to choose both a subset of the set of facilities amddeenandd; out of a compact set
D; c R, of demands that are allowable for her. This congestion modelbe interpreted as a
generalization of Cournot games [8], where multiple pradacstrategically determine quantities
they will produce. The cost of a producer is given by h&ed quantity multiplied with the



market price, which is usually a decreasing function of titaltquantity dfered by all producers.
Weighted congestion games with elastic demands genefadinenot games in the sense that there
are multiple markets (facilities) and each player mégicher quantity on allowable subsets of these
markets.

Weighted congestion games with elastic demands have $edgdional applications: they
model, e.g., routing problems in the Internet, where eaehwants to route data along a path in the
network and adjusts the injected data rate according tcetled 6f congestion in the network. Most
mathematical models for routing and congestion contrgl oel fractional routing, see Kelly [17]
and Cole et al. [7]. In practice, however, routing protoagde single path routing, see, e.g., the
current TCP protocol. Weighted congestion games with elastic demamadel both congestion
control and unsplittable routing. Yet another applicai®that of Shapley cost sharing games with
players that may vary their requested demand.

Let G°(C) be the set of weighted congestion games with elastic desnahére each player
may chose her demand out of a compact space and where thd eashdacility is determined by
a function inC. Our main contribution is to show that all gantese G°(C) are weighted potential
games if and only i€ contains only fine functions. For this important class of games, this result
also establishes for the first time the existence of PNE.

2 Preliminaries

A finite strategic gamés a tupleG = (N, X, ) whereN = {1,...,n} is the non-empty finite set
of players,X = Xjeny Xi WhereX; is the finite and non-empty set of strategies of playend
rm: X — R"is the combined private cost function.

We will call an elemenk € X strategy profile. Fo8 c N, —S denotes the complementary set of
S, and we define for convenience of notatig = Xjes Xj- Instead ofX_;;; we will write X_j, and
with a slight abuse of notation we will write sometimes atstgg profile asx = (X, X_j) meaning
thatx € Xj andx_j € X_j.

The following definition is due to Monderer and Shapley [22].

Definition 2.1 (Weighted and exact potential gameg) strategic gameés = (N, X, ) is called
weighted potential gamié there is a vectow = (w)ien € RY and a functionP : X — R such
that (X, X_i) — 7 (i, X5) = w; (P(xi, X)) — P(yi, x;)) forall i € N, x_j € X, and allx,y; € X.
The functionP together with the vectaw is then called a weighted potential of the ga@®eThe
functionP is called arexactpotential ifw; = 1 for alli € N.

We sometimes call a weighted potential functidra (w;)icn-potential. Monderer and Shap-
ley [22, Theorem 2.8] characterized exact potentials inrg eenvenient way. For this, let a fi-
nite strategic gam& = (N, X, 7) be given. Apathin X is a sequencg = (X°, x%,...x™) with
xXe X k=0,...,m such that for alk € {1,..., m} there exists a unique playare N such that
X = (x¢, XS T) for somext # X1, X € X;. A path is called closed #° = x™ and is called simple
if X< # X! for k # |. The length of a closed path is defined as the number of itsdisilements. For
a set of strategy profileX let I'(X) denote the set of all simple closed paths<ithat have length
4. For a finite pathy = (X%, x%,...,x"™) let the discrete path integral afalongy be defined as
1(.7) = Sty (i, (X) — i, (1)) wherei i the deviator at stepin y, that isxX # X2,



Theorem 2.2(Monderer and Shapleylet G = (N, X, 7) be a finite strategic game. Then, G is an
exact potential game if and only ifjl, 7) = O for all v € T'(X).

In the following, we will use this characterization in orderstudy the existence of potentials in
weighted congestion games.

3 Weighted Congestion Games

Definition 3.1 (Congestion model)A tuple M = (N, F, X = Xien Xi, (Ct)ter) is called aconges-
tion mode] whereN = {1,...,n} is a non-empty, finite set of players,is a non-empty, finite set
of facilities, for each player € N, her collection of pure strategie§ is a non-empty, finite set of
subsets of and €¢):<F is a set of cost functions.

In the following, we will define weighted congestion gameasitar to Goemans et al. [15].

Definition 3.2 (Weighted congestion gamebet M = (N,F, X, (ct)ieg) be a congestion model
and(d)ien € RY, be a vector of demands. The correspondiveghted congestion ganie the
strategic gam&(M) = (N, X, x), wherer is defined ag = Xy 7i, 7i(X) = X tex i Ct(££(X)) and
tr(x) = ZjEN:fEXj dj-

We call#¢(X) theload on facility f in strategyx. In case there is no confusion on the underlying
congestion model, we will writ& instead ofG(M).

A slightly different class of games has been considered by (among otheakisrt al. [12, 13],
Gairing et al. [14] and Mavronicolas et al. [19]. They comsiEl games that almost coincide with
Definition 3.2 except that the private cost of every playends scaled by her demands. We call
such gamesormalizedif they comply with Definition 3.2 except that the private tare defined
asmi(X) = Y tex Ci(£(x)) foralli € N.

Fotakis et al. [12] show that there are normalized weight@testion games witbs () = ¢
for all f € F that are not exact potential games. They also show that ampatized weighted
congestion game with linear costs on the facilities admitegghted potential.

We state the following trivial relations between weightemhgestion games and normalized
weighted congestion games: L@&t= (N, X,7) andG = (N, X, r) be a weighted congestion game
and a normalized weighted congestion game with demaijis\( respectively. Moreover, let them
share the same congestion model and the same demandsGEreG coincide in the following
sense: i) A strategy profilex € X is a PNE inG if and only if x is a PNE inG; (ii) A real-valued
functionP : X — R is a (i /di)ien-potential forG if and only if P is a (v)ien-potential forG; (iii)

A real-valued functiorP : X — R is an ordinal potential foG (see [22] for a definition) if and
only if Pis an ordinal potential foG; (iv) The real-valued functioR : X — R is an exact potential
for G if and only if P is a (di)ien-potential forG; (v) The real-valued functio? : X — R is an
exact potential foG if and only if P is a (1/d,)ien-potential forG. All proofs rely on the simple
observation thati(x) = dj mij(x) foralli € N, x € X.

3.1 Characterizing the Existence of an Exact Potential

In the following, we will examine necessary andfstient conditions for a weighted congestion
gameG to be a potential game. The criterion in Theorem 2.2 statastitte existence of an exact



potential forG = (N, X, z) is equivalent to the fact thafy, ) = 0 for all y € I'(X). In such paths,
either one or two players deviate. It is easy to verify gt ) = O for all pathsy with only one
deviating player. Considering a pathwith two deviating players, sayandj, each of them uses two
different strategies, say, yi € Xj andx;, y; € Xj. We denote by ;i j; € X_; j, the strategy profile of
all players exceptand j that remains constant yn Then, a generic pathe I'(X) can be written as
y = (% X Z-i 1)y O X Z4i,j)s O Vi Zoijy)s (K3 Y Z-40.j)> (%65 X Z-4i,jy))- The following lemma
provides an explicit formula for the calculation kffy, 7r) for such a path.

Lemma3.3.LetM = (N, F, X, () tcr) be a congestion model and &) a corresponding weighted
congestion game with deman@k)icn. Moreover, let

¥ = (%6 Xjs Z-4i. ) Ois X Z-4ij1)> Vs Vi -4, 1) (65 Vi Z-4i1)> (%5 X5 Z4ij))
be an arbitrary path i’ (X) with two deviating players. Then,

Iom) = > (dj—d)er(dh +dj +re) = dice(d + re) + dice (di ++)

feF1UF11

+ ) (di—dper(d +dj + o) = dice(d: +re) + djce (dj + 1),

feF3UFg

(1)

where F = (x\Yi)N(Xj\yj), F3 = (X \Y)N(Yj\Xj), Fo = (yi\x)N(Xj\y;), and Fi1 = (yi\x)N(y;\X;).

Proof. We fixi, j € N, X,y € Xi,Xj,yj € Xj, andz_j; € X_ j; arbitrarily and consider the path

¥ = (%, X}, Z-4i)s O Xjs 240 ) O Yo Z-, i) (%, Y5 Z-4ijy)» (Xis X, Z-4i,jy))- We compute straightfor-
wardly that

[(y, ) = mi(Yi, Xj» i jy) — 7 (%o X, 240 jy) + 71V Vs Z-4i,jy) — (s X 243, jy)
+ (%, Yis Zijy) — 7Y Yis Z-gi,jy) + (%, Xj, Zogisjy) — (6, Y Z-i,))-

(2)

For a facility f € F, we definers = 2meN\iij):fe(z )., dm as the sum of the demands énn the
partial strategy profile_; j,. For fixedx;, i, X; andyj, every facility f € F can be chosen by player
i in both strategy; and strategy;, in one of these strategies or not at all. The same holds &yepl

j and strategies; andy;. We can thus decomposeinto 16 disjoint setd=1,...,Fis. The first
set,F1, comprises all facilities that are inx(\ yi) N (Xj \ y;). F2 contains all facilities that are in
(% \'yi) N (xj Nnyj), and so on. The comprehensive description of all 16 caggses in Table 1.

Xi\Yi | XNy [ Yi\x | FA(XUy))
Xi \'Yi F1 F2 Fs Fa
Xi NYi Fs Fe F7 Fs
Yi \ X Fo Fio F11 F12
FA(XUy) | Fis Fi4 Fis Fis

Table 1: Decomposition df into 16 disjoint subsetb,k=1,..., 16.

In order to compute for instance the first term of equationy®) notice that in strategy profile
X = (Yi, Xj, Z-(i,j) the load on each facility € Fs U Fg U FgU F1o equalsts(x) = d; +dj +r¢, while



the load on each facilitg € F7 U Fg U F11 U F12 equalsty(X) = d; + rg. These considerations lead
to the following equation. We will use the notatidh: g for Y ¢cr G-

I(y,m) =
di Z Cf(di+dj+l’f) + Z cf(di+rf) - ZCf(di+dj+rf) - ZCf(di+l’f)J

Fo,F10 F11,F12 F1,F2 F3,Fsa

+dj ZCf(di+dj+rf)+ ZCf(dj-l‘rf)— ZCf(di-l‘dj-l‘rf)— ZCf(dj+l’f)]
F7,F11 F3,F1s Fs,Fo F1,F13

+d ZCf(di+dj+rf)+ ZCf(di+rf)— ZCf(di+dj+rf)— ZCf(di+rf)
F2,F3 F1,Fa Fi0.F11 Fo,F12

+dj ZCf(di+dj+rf)+ ZCf(dj+rf)— ZCf(di+dj+rf)— ZCf(dj'l‘rf)].
F1,Fs Fo,Fi3 Fs3,F7 F11.F15

By reordering the summation many terms cancel out and werpbta

I(y,m) = Z (dj — di)ce(di +dj +r¢) —djce(dj +r¢) + dice(di +r¢)

feF1UF11

+ Z (di - dj)Cf(di +dj + rf) - din(di + rf) +def(dj + I’f),

feF3UFg
establishing the result. m|

Using Lemma 3.3, we can derive afScient condition on the existence of an exact potential in
a weighted congestion game.

Proposition 3.4. Let M = (N,F, X, (cf)tcr) be a congestion model and(®() a correspond-
ing weighted congestion game with demaid$icn. For each facility f € F, we denote by
Nf ={ie N:@x € X : f e x)) the set of players potentially using f, and ﬁi{ij} =
{Zkep de: PC NP\ (i, j}} the set of possible residual demands by all players excepd ijalf for
all f e Fandalli,j e Nf

(dj - di)Cf(di + dj + I’f) - def(dj + I’f) + din(di + rf) =0 Vrfe Ri{i,j}’ (3)
then G admits an exact potential.

Proof. Using the criterion of Monderer and Shapley, it is enoughrtave thatl (y,7) = 0 for all
v € I'(X). By Lemma 3.3])(y, n) evaluates to

|()/,7T) = Z (dj - di)Cf(di +dj + I’f) - def(dj + rf) +din(di + I‘f)
feF1UF11

4)

+ Z (di - dj)Cf(di +dj + I’f) - din(di + I’f) +def(dj + rf),

feF3UFg

for somei, j € Nf andrs € Ri{i i Using (3) each summand of (4) equals 0, establishing the
result. ’ O



It is a useful observation that we can write the conditionmid®@sition 3.4 as
ci(di + dj +rf)— Cf(dj +rf) _ Cf(dj +r¢)—ce(di +r¢)

d dj—d ®)

foralli,j € Nf andr; € Rii .. Thus, the dterence quotients af; between the pointd; + r¢
anddj + rf as well asdj + ri andd + dj + rf must have the same value. It follows easily that
the above condition is satisfied if all demands are equa (thiresponds to unweighted congestion
games, see Rosenthal’s potential [24]). Bdoitrary demands (weighted congestion games) and
affine cost functions, one can check that the above condition éssaltisfied, see the positive result
of Fotakis et al. [12].

For a single weighted congestion game, the linearity caordibn cost functions, however, is
only suficient but not necessary. In Example 3.5, we show that it isiptesto construct a non-
affine cost function that satisfies the condition of Proposi@i@rfor all 3 player games with demand
vector (12,5).

Example 3.5. Let M = (N ={1,2,3}, X, F, (Cf)feF) be an arbitrary congestion model with three
players and let GM) be a corresponding weighted congestion game with demandsHYd, =
2,d3 =5.

We want to construct a non-linear cost function that gives tb an exact potential in G. To this
end, we consider an arbitrad-cycley. We apply Lemma 3.3 and obtain th&,Ir) evaluates to

Iy = Y (dj—d)c(d +dj + 1) = dici(dj + ) + dicy (d + 1)
feF,UF1
+ Z (di—dj)Cf(di+dj +rf)—din(di+rf)+def(dj+I’f),

feF3UFg

(6)

Regarding(6), only the following realizations dfi;, dj, r¢) are possible:

(1,2,0, (1,50), (250), ,
(1L,2,5), (L52), (251). (7)

Note that only realizations with & d; are considered, the others are symmetric and, thus, omitted
Proposition 3.4 establishes that it isfBaient for the existence of an exact potential that in eaclh cos
function g, the values to the arguments showrn(7) lie on a straight line. It is easy to construct
a non-linear cost function ¢ R.g — R satisfying this property. An example of such a function is
givenin Fig. 1.

We derive that(y, ) = 0 for any4-cycley in any such game regardless of the structure of the
set of strategies.

There is, however, an important question left: Are there-affine cost functions that give
rise to an exact potential iall weighted congestion games? Under mild assumptions orbfeasi
cost functions, we will give in Theorem 3.7 a negative ansiwehis question. First, we need the
following lemma.

Lemma 3.6. LetC be a set of functions and I€X(C) be the set of all weighted congestion games
with cost functions ir©. Every Ge G(C) has an exact potential if and only if for alleC

(X=-y)ec(X+y+2 - Xxc(x+2+ycdy+2 =0 (8)
for all X,y € R.g and ze Ro.
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Figure 1: A non-linear cost functiarn that gives rise to an exact potential in all weighted corigast
games with demand$j = 1,d, = 3 anddz = 5.

Proof. Supposé& = (N, X, 7) € G(C) is a weighted congestion game with cost functionS.iffrirst,
we will show thatG has an exact potential. To this end, Je¢ I'(X) be an arbitrary simple closed
path inX of length 4.1(y, x) evaluates to (1), which is zero using (8).

For the opposite direction suppose that thereds=aC that does not satisfy equation (8). This
implies that there arg,y € R.g andz € R such that

(X=Y)E(X+Yy+2) —XC(X+2) +yc(y+2 #0.

Now consider the congestion mod® = (N, F, X, (ct)ter) whereN = {1,2,3}, F = {f,g,h},

Xy = {{fh{g}}, Xo = {{f}, {h}}, X3 = {f}, andcs = ¢y = ch = €. LetG = (N, X, 7) be a corresponding
weighted congestion game with demarnids= y, d, = x andds = z. We will investigate the value
of I(y, ) for y = (({gh, thi, {F3), ((F 1 {h}, {F), (AL {F1 {F1), ({9 { £}, {F}), ({9}, {h}, { f})). This value
equals K- y)&(X+ Yy + 2) — x€(X + 2) + y&(y + 2 # 0 implying that this game does not possess an
exact potential function. m]

We will now solve the functional equation (8) in order to chaterize all cost functions that
guarantee an exact potential in all weighted congestioregaWe require the following property:
A functionc : R.g — R islocally boundedif for every compact seK c R.q, [c(X)] < Mk for all
x € K and a constantlk € R.q potentially depending oK.

Theorem 3.7. Let C be a set of locally bounded functions and &) be the set of weighted
congestion games with cost functionginThen, every G G(C) admits an exact potential function
if and only ifC contains gfine functions only, that is, everyecC can be written as (@) = a. £ + b
for some @, b; € R.

Proof. Itis straightforward to check thaffine functions fulfill functional equation (8) and we may
conclude that they give rise to an exact potential. We wiMprthe reverse direction in two steps.
In Step 1, we prove the following: Let fulfill (8). Then, c is differentiable ana’(x + 2) =
(c(x+ 2) — c(2))/x holds for allx € R.o andz € Rxp.
First, we will show continuity ot onR.q. Letx € R.g andz € Rq be arbitrary and letyg)nen
be a sequence iR.q such thaty, N 0 and bothy, + z > 0 andy, + x > O for alln € N. Then,
using (8) we gek (c(X + z+ Yn) — ¢(X+ 2) = Yo (c(X+ 2+ Yn) — c(z+ Yn)) . As ciis bounded on any
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compact set, the right hand side goes to @ gees to infinity and hencelimp_,. ¢(X + Z+ y,) —
c(x + 2) = 0. This shows continuity irx + z

Moreover, (8) implies that (c(X+z+Yn)—C(X+2))/Yn = C(X+Z+Yn)—C(Z+Yn). AS Cis continuous
we know that the limits on the right hand side exist and, t{(,+ 2) = (c(x + 2) — ¢(2))/x holds
for all x € R.o.

Soc satisfies the diierential equation’(x+ 2) = (c(X+ 2) — ¢(2))/x. We will show in Step 2 that
only afine functions solve this ffierential equation. To see this, we tet x + z, which leads to the
differential equatior’(t) = (c(t) — co) /(t — to),t € R.o, Wherecy = ¢(2) andty = z are constants.
Standard calculus shows that for every initial vaduéor the initial timet; > to, this ordinary linear
differential equation admits a unique solutift) = (t —tg) C + co, whereC = (¢ — Cp)/(t1 —tp). O

3.2 Characterizing the Existence of a Weighted Potential

Our next aim is to determine whether weaker notions of pakftnctions will enrich the class
of cost functions giving rise to a potential game. The idea wfeighted potential allows a player
specific scaling of the private cost by a strictly positivew;. It is a useful observation that the
existence of a weighted potential function is equivalerihtexistence of a strictly positive-valued
vectorw = (W;)ien such that the gam@Y with private costs ;= Xy 7i/W; has an exact potential.

Using this equivalent formulation and Theorem 2.2 it folfotihat the existence of an exact
potential function for the gan@" = (N, X, x) is equivalent td (y, 7) = 0 for ally € I'(X) suggesting
thatG" has an exact potential if and only if there afew; € R.q such that

4 _d4 ce(di +dj+r )—ﬂc (di+r )—ﬂc (dj +r¢)
Wi Wj fA4i j f) = Wi fAUi f Wj fAYj f
foralli,j € Nand allr; € Rf{i - In particular it is necessary that eithey(d; + dj + r¢) =

ce(dj +r¢) = c¢(di +r¢) or the Vaiu&l(di,dj) defined as

ad.d) = M - dicr(di+dj+re)—ce(di+rv)
v Wi - dj cr(dh +dj +rf)—Cf(dj +rf)

(9)

is strictly positive and independent of bothandr¢. This observation leads us to the following
lemma.

Lemma 3.8. LetC be a set of functions. Lg(C) be the set of weighted congestion games with
cost functions irC. Every Ge G(C) has a weighted potential if and only if for all xe R.q, there
exists amx(X,y) € R.g such that

X c(X+y+2)—c(X+2
y c(X+y+2—-cly+2
for all z € Ry¢ and non-constant € C.

a(x.y) = (10)

Proof. Let G = (N, X, 7) be a weighted potential game in which eflare constant or satisfy equa-
tion (10). Let @)icn, di € R.g, be an arbitrary vector of demands. We will show that this gam
possesses a weighted potential. For an arbitcagy C, we seta(d;, d;) = di/d; - (c(di + d;) —
c(di))/(c(d; + dj) — c(dj)) for i, j € N with i # j. The requirements of Lemma 3.8 imply that

d; c(d + dj +2) —c(di + 2

a(d. dj) = d_J Co(di + dj+2 —c(dj + 2

(11)
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forall ze Ryp andc € C. As a(d;, d;) is required to be strictly positive we may choose a vector of
weights (v)ien € R-o such thaix(di, dj) = wi/wj for alli, j € N with i # j. Using Monderer and
Shapley'’s criterion we will show that the corresponding @&t = (N, X, 7) has an exact potential.
For this, we consider an arbitrary pathe I'(X). Without loss of generality only two players, say

i and j, change their strategies nwhile the sum of the demands of all other players is equal to
a facility-specific value ;. We remark that facilities with constant cost function agraut in the
calculation of the integral. Analogously to the proof of Lima 3.6, we get

I(y,7) =
—_— - — Cf(di+dj+rf) - —Cf(dj+rf) + —Cf(di+l’f)
f Wi W Wi Wi
€F1,F11
; 9 ) ci@rdiarn - Sy + Do+
f Wi W AU jTif Wi A I W fidjrls).
€F3,F9

We multiply withw;, usea(d;, dj) = w;/w; and obtain

wil(y,n) =
D a(d, dy)dj (cr(di+di+re) - cr(dj+r1)) - di (Cr(di+dj+re) + Cr(di+r))
feF1,F11
+ > —a(d,d)d; (cr(di+dj+re) = cr(dj+r1)) + di (i (di+dj+11) - cr(di+r1)).

fGFg,Fg

Using equation (11) shows thHty, 7) = 0 proving the first result.

To show the other direction, assume that the conditio@ almes not hold. In particular we can
find two functionsci, &, € C, 71,2 € Rsg andx,y € R, such that at least two of the following four
values are distinct

X Cs(X+y+2z)-C(X+27)

~ — , Wheres=12andt=1 2
y Cs(X+y+2z)-Cy+2z)

a(xy)* =

We show the result for the caaéx, y)>* # a(x, y)>? only. The other cases are similar. For this, we
consider the congestion mod#&l = (N, F, X, (Cf)ter), WwhereN = {1,2, 3}, F = {f1, f2, 01, 02, 03},

X1 = Houh (T {f2}), Xo = ({2}, {1}, {f2}}, X3 = {{ga}, {f1},{f2}}, andcy, = ¢y, = Cg, = Cg; =
C1.cr, = C2. Now we regard the gamé3; (M) = (N, X, ) with demandsl; = x,dx = y,d3 = 74
andGo(M) = (N, X, u) with demandsd; = x,d2 = y,d3 = 2. As both games admit a weighted
potential we can find two vectors of weightg Jicn and §;)ien for G1 andG,, respectively, such that
G} = (N, X, m/w) andG}(N, X, u/v) admit exact potentials. To this end, we will apply the cida

of Monderer and Shapley to the path

v = ({91}, {92}, {93}), ({ 1), {92}, {9a)), ({ f1}, { f1}. {9a)), ({91}, { f), {9s)), ({91}, {92}, {G3)))

in the game&]’ andG}. One verifies easily that the following equations hold
_(Y _ X)a Y a0
i) = (% - 2o - Zion+ gt = 12

) = (Vl2 _ V—Xl) Gu(x+9) - 2610) + 2109 = 0. (13)
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We definea(Xx,y) = wi/W, andé(x,y) = vi/vo. The equations (12) and (13) imply that

i _x Bx+y) +ax)
a(xy) = £(xY) = y Ci(x+y)—&uy)’

(14)

Considering the path
y1 = ({92}, {92}, (1)), ({fa), {92}, (F1)), ({fa), {Fa), {T1)), ({@a), {fa), {T1)), ({9}, {92}, { 1))

for G}’ and the path

y2 = ({91}, (92}, { f2)), ({2}, (g2}, { f2}), ({2}, {f2), {f2)), (fou}. { 2}, { f2}), ({01}, {2}, { f2}))

for G}, we can compute that

(Y _ X\« _ Y= X _
[(y1, /W) = (Wz Wl)Cl(X+ y+271) W Gy +z)+ W Ci(x+2z1) =0, (15)

X\ . - X .
2 = (L= K)oty 2 - Loy +z+ Seaxrzy =0 (19
2 W1 Vo V1

We derive from equations (15) and (16) that

CiX+y+2z79)+ Cr(X+2z)
Cix+y+2z1) - C(y+z)
G(X+Yy+2)+C(x+2)
G(X+y+2)-C(y+2z)

a(Xy) =

E(Xy) =

<IX <X

Together with equation (14) this implies that

11_ X CGi(x+y+z1) — Cu(X+21) _ X Ca(x+y+2p) — Ep(X+2)
Ty G(x+y+71) - C(X+71) Y Eo(X+Y+2) — Eo(X+20)

Cl(X,y =§(X’ y)=a(x’ y)2,2’

which contradicts the assumption. m|

Although condition 10 seems to be similar to the functior@hation (8) characterizing the
existence of an exact potential, it is not possible to prdaesing diferential equations. As(X,Y)
need not be bounded it is not possible to prove continuitydafidrentiability ofc. Instead, we will
use the discrete counterpart offdrential equations, that is,ftérence equations.

Theorem 3.9. Let C be a set of continuous functions. I@C) be the set of weighted congestion
games with cost functions 0. Then every Ge G(C) admits a weighted potential if and only if
exactly one of the following cases holds:

1. C contains only #ine functions,

2. C contains only exponential function&’y = a. € + b for some @, b, ¢ € R, where @ and
b, may depend on ¢, whilemust be equal for everyeC.
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Proof. First, we will prove that these functions guarantee theterize of a weighted potential in

all such games. We have shown in Section 3.1 tlfiteacost functiongs give rise to an exact

potential. As every exact potential function is also a widgtpotential fow = (1,...,1), we may

conclude that fiine cost functions give rise to a weighted potential in weightongestion games.
So let us check the caséf) = ace’¢ + b for ¢ # 0. Itis easy to verify that

X aCe¢;ﬁ(x+y+z) +be - aCe¢(x+z) —b. X e (x+y) _ gh(x)
a(xy) = =5 >
Y a0y 1 b, —aef0D b, y et —ep®)

Note in particular thak(x, y) does neither depend @g, be, norz. Thus, itis unambiguously defined
and strictly positive. Theorem 3.8 then yields the result.

To show the opposite direction, we assume that the condittar® do not hold but that every
G € G(C) admits a weighted potential.

First, suppose that there is a functior C that is neither fiine nor exponential. This implies
that there are four points; < p2 < p3 < p4 following neither an exponential nor d&iae law, that
is, there are neithex, b and¢ € R such that

&(p1) = a¢’P + b, &(pa) = ae’™ + b,
nor are theres andt € R such that

&(p1) = spL+t, &(pa) = Spu + t.

As € is continuous, we may assume without loss of generality ttimiabove conditions hold for
rational py, ..., ps and we can write them ap; = 2m/(2K),...,ps = 2my/(2k) for some
m, Mp, Mg, My, k € N.

We regard a congestion mod8l = (N = {1,2, 3}, F, X,c) and a series of gam&s,(M) =
(N,X,71),0 < m < 2my. We set the demands of the playersdas= 1/(2k), d» = 2/(2k) and
ds = m/(2k). By assumption each gant&, admits a weighted potential. By Lemma 3.8 this
implies that for each game

a(dy. dy) = di Cdi+dp+0d3) —C(dy+dg) di €(dy+0dp) —Edy)
’ dz é(dl + d2 + d3) - E(dz + d3) d2 é(dl + dz) - E(dz).

In particulara(dy, dy) is the same for each gartg,. Now, we introducd;,, = ¢(n/(2Kk)) and consider
the sequenceff)nen. Thus, we can write

1 f fme
a(dy, 6p) = 5 - TP
1:m+3 - fm+2
If a(d1,d2) = 1/2, we conclude that iS constant, which contradicts our assumption. So we may
assume that(ds, dy) # 1/2 and we obtain

2a(dy, d2) 1

fez = 2a(dy,d2) — 1 fme1. + 2a(dy,dp) - 1 fm = 0. (1

Equation (17) defines a recursively defined sequendé,on. , 2my}.

The main result in [[5], Chapter 4] givesfiigient conditions on the uniqueness of the general
solution of such sequences. First, we define the charaitezpuation of a general second-order
recurrence relatioBm.2 + B28m+1 + B18m = 0 asx? + BoX+ 1 =0
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Now letx; andx, be the distinct and real roots of the characteristic eqnafiben every general
solutionap, of the recurrence relation is a linear combination of povgns' of the solutions;, i =
1, 2. Inaddition, ifx is the double root of the characteristic equation, everggarsolutiora,, of the
recurrence relation is a linear combinationx8fandm X". In both cases, if two consecutive initial
valuesay anday, 1 of the recurrence relation are known, a solution can be obteby evaluating the
two constants of the linear combination using the two ihitedues and the fact that this solution is
unique.

The characteristic equation of the recurrence relatioh €tjdals

2a(dy, db) 1 1

2

- =(x-1[x- ——).
2 ) -1 Zaldnd) -1 )(X 2a(d1,dz)—1)

So if a(dy, d2) # 1, two different roots occur anth, can be computed explicitely and uniquely for
evenmas

1

o . m . ————————————————————————
fm=b- 17+ a (Za(dl,dz)—l

m—b I ___1
| =b+a-explmin( 5ot )|

for some constantsandb € R. If a(ki, k2) = 1, we can evaluaté,, as
fn=t-1"+ms- 1M=t+sm

for some constants t € R showing thatTollows either an exponential offene law onpy, . .., pa.

So it remains to show that neitheffiae and exponential functions nor exponential function with
different exponents can occur simultaneously. Assume on theacpthatc;, €, € C are two such
functions and consider two players using both facilitiesand f, with cost functionscy and ¢,
respectively. It is easy to show that these functions gise t© an ambiguously definedd;, d2)
contradicting Theorem 3.8. m]

3.3 Implications of Our Characterizations

It is natural to ask whether these results remain valid ifitamlthl restrictions on the sg(C) are
made. A natural restriction is to assume that all playersrayv integral demand. As we used
infinitesimally small demands in the proof of Lemma 3.6, oesults for exact potentials do not
apply directly to integer demands. With a slight variatidnie proof of Theorem 3.9, where only
the casex(:,-) = 1 is considered, however, we still obtain the same resultigealC contains only
continuous functions.

Another natural restriction og(C) are games with symmetric sets of strategies or games with a
bounded number of players or facilities. Since the proofiseshma 3.6 and 3.8 and Theorems 3.7
and 3.9 rely on mild assumptions, we can strengthen our cteizations as follows.

Corollary 3.10. LetC be a set of continuous functions. IEiC) be the set of weighted congestion
games with cost functions (satisfying one or more of the following properties

1. Each game G (N, X, 7) € G(C) has two (three) players.
2. Each game G (N, X, n) € G(C) has three (five) facilities.
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3. For each game G= (N, X,n) € G(C) and each player ie N the set of her strategies; X
contains a single facility only.

4. Each game G= (N, X, ) € G(C) has symmetric strategies, that is XX for all i, j € N.
5. In each game G (N, X, 7) € G(C), the demands of all players are integral.

Then, every G= (N, X, 7) € G(C) has an exact (a weighted) potential if and onlgitontains only
affine functions (only gine functions or only exponential functions as in Theorem 3.8

Yet, we are able to deduce an interesting result concerhmexistence of weighted potentials
in weighted congestion games, where each facility can beeshby at most two players. As we
can setz = 0 in (10), the conditions of Lemma 3.8 are fulfilled by morertlafiine or exponential
functions.

Theorem 3.11.Let m: R.g — R be a strictly monotonic function and I€t, = {am(X) +b: a,b e
R}. Then every two-player weighted congestion gameds (Cn,) admits a weighted potential.

Proof. By adapting the proof of Lemma 3.8 for two-player games, wal#ishes the following
lemma.

Lemma 3.12. LetC be a set of functions. L&*(C) be the set of two-player weighted congestion
games with cost functions . Every Ge G%(C) has a weighted potential if and only if for all
X, ¥ € Ry g there exists am(X,y) € R.g such that

X c(x+y)-c(X)

y X y) —c) (18)

a(X.y) =

for all non-constant & C.

Let € € C be arbitrary. By the definition of, we can writec(¢) = azm(x) + bz for some
ag, bz € R. If az = 0, the functiorc’is constant and thus fulfills the requirements of Lemma 3/fL2.
a: # 0, itis easy to check that

o di &(di+dp) —&(d1) _ i am(ds +dyp) + be — (8 m(dy) + be)
dy C(dy+dp) - C(d2) dp azm(dy +d2) + bz — (az m(dz) + be)

_ dr m(di +dp) —m(dy) 0
dz  m(dy + dg) — m(dy)

for all € € C and hence the conditions of Lemma 3.12 are fulfilled implyiihg existence of a
weighted potential. O

This result generalizes a result of Anshelevich et al. iny#jo showed that a weighted con-
gestion game with two players aog(¢) = b /¢ for a constanb; € R, has a potential. Moreover,
this result shows that the characterization of Corollafy03s tight in the sense that weighted con-
gestion games with two players admit a weighted potentiahéf/cost functions are neitheffane
nor exponential.
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4 Extensions of the Model

In the last section, we developed a new technique to chaizethe set of functions that give rise
to a potential in weighted congestion games. In this secti@will introduce two generalizations
of weighted congestion games and investigate the set ofwostions that assure the existence of
potential functions.

Definition 4.1 (Facility-dependent demandd)et M = (N, F, X, (Ct) <) be a congestion model and
let (di,f)ieN fer be a matrix of facility-dependent demands. The correspmnaeighted congestion

game with facility-dependent demarndshe strategic gam@(M) = (N, X, x), wherer is defined
asm = Xien T, 7i(X) = Zgex di Cr (€1 (X)) andls(X) = Xjen:rex; djt-

Restricting the strategy sets to singletons, we obtaindsdimgy games. In a scheduling game,
players are jobs that have machine-dependent demandsabeé saheduled on a set of admissible
machines (restricted scheduling on unrelated machinespritrast to the classical approach, where
each job strives to minimize its makespan, we consideffarént private cost function: Machines
charge a price per unit given by a load-dependent cost fumcti and each job minimizes its cost
defined as the price of the chosen machine multiplied witmashine-dependent demand.

Theorem 4.2. Let C be a set of continuous functions and &%(C) be the set of weighted con-
gestion games with facility-dependent demands and costifms inC. Then, every Ge G'(C)
admits a weighted potential if and onlyGfcontains only #ine functions, that is, everye C can
be written as ¢) = ac £ + b, for some @ b, € R. For a game G with fine cost functions, the
potential function is given by(®) = Sien X tex Cf (2 jert...ix fex; dit) it

Proof. For any set of functiong, the setz(C) of weighted congestion games with cost functions in
C is contained in the set of weighted congestion games witlitfadependent demands. Thus, we
can restrictC to the set of &ine functions or exponential functions as in Theorem 3.9. &ywng
the demands between two facilities with exponential castssiasy to verify that the weightg and
w; are ambiguously defined and we may derive (haloes not contain any exponential functions.
We thus proceed by showing tha¢x) is an exact potential forfne costs.

Cost functions areféine, that isc¢(¢) = as¢ + bs, as, by € R. We define the functionfi(x) =

cf(zje{lwi}:fexj de) and rewriteP(x) as P(X) = N Pi(X), wherePi(X) = Xy c?i (x)dif. Let

G = (N, X, 7) be an arbitrary weighted congestion game with facilitpeledent demands and let
X,y € X be two strategy profiles such that= (xx, Xx_x) andy = (Y, Y-k) With X_x = y_x for some
Xk, Yk € Xk andx_x € X_x. We notice thaP;(x) = P;(y) for all i < k. Now consider a playdr> k.
When computind?;(x) — P;i(y), we observe that all costs corresponding to facilitiesawottained
in Xx U Yk cancel out. For each facility € (% N xx) \ Yk, we see thatfi(x) - c?i(y) = aj d;.
Analogously, for each facilith € (x N yi) \ X, it holds thatcs'(x) — ¢§'(y) = —ard,. For each
facility f € x N X Ny, we havecs' (x) = c3'(y). Hence,

PO-PY= > ardid - > ardid
fexiNXi fexiny
Moreover, we can calculate straightforwardly that

PP =y e > d)ai-Ye( > d)al.

fexk jefd,.. k) fex; feyk jell,.. k) fey;

17



We thus obtain

P(x) - P(y)
= > P - D Pi)
ieN ieN
n
=3 (D ardgd' - > arded)
i>k  fexinxg feyinyk
+>a( > d)gi- > a( DL d)dg+dg > br—dg Y by
fexk jefd,... k) fex; feyk jefd,... k) fey; fexg feyk
= a2, dd- el D di)dord ) br-d ) by
fexy je{l,...n}:fex; feyk je{l,....n}:fey; fexy feyk

= mk(X) — k(Y)-
O

We will now introduce an extension to weighted congestiomgs allowing players to also
choose their demand.

Definition 4.3 (Elastic demands)Let M = (N, F, X, (ct)tcr) be a congestion model. Together with
D = Xien Di, whereD; c R are compact for all € N, we define thaveighted congestion game
with elastic demandas the strategic gan@(M) = (N, X, 7) with X := (X, D), 7 = Xjen i, and
7i(X) = Xtex dict (£1(X) andls(X) = Xjen:fex; dj-

In our definition of weighted congestion games with elasémdnds, we explicitly allow for
positive and negative, and for increasing and decreasiagfanctions. Thus, an increase in the
demand may increase or decrease the player’s private cost.that in weighted congestion games
with elastic demands, the strategy sets are topologicabsgend are in general infinite. By restrict-
ing the set®; to singletond; = {d;},i € N, we obtain weighted congestion games as a special case
of weighted congestion games with elastic demands. Thd pfabe following result is omitted as
it is similar to the case of facility-dependent demands.

Theorem 4.4.LetC be a set of continuous functions andd®(C) be the set of weighted congestion
games with elastic demands and cost function€.inThen, every Ge G%(C) admits a weighted
potential function if and only i€ contains only #ine functions. For a game G withfame cost
functions, the potential function is given by the functig®)P= iy X tex Cf (Zje{l ..... i):fex; dj) di.

As an immediate consequence, we obtain the existence of aifRfd&t functions are fline.
Note that the existence of a potential is noffimient for proving existence of a PNE as we are
considering infinite games. However, Xsis compact and? is continuous,P has a minimum
X* € Xandx® is a PNE.

Corollary 4.5. LetC be a set of fine functions and leg®(C) be the set of weighted congestion
games with elastic demands and cost functiorG.iithen, every G G%(C) admits a PNE.
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