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We have performed a systematic study of the statistical behavior of non-Poissonian template
fitting (NPTF), a method designed to analyze and characterize unresolved point sources in general
counts datasets. In this paper, we focus on the properties and characteristics of the Fermi-LAT
gamma-ray data set. In particular, we have simulated and analyzed gamma-ray sky maps under
varying conditions of exposure, angular resolution, pixel size, energy window, event selection, and
source brightness. We describe how these conditions affect the sensitivity of NPTF to the presence
of point sources, for inner-galaxy studies of point sources within the Galactic Center excess, and for
the simplified case of isotropic emission. We do not find opportunities for major gains in sensitivity
from varying these choices, within the range available with current Fermi-LAT data. We provide
an analytic estimate of the NPTF sensitivity to point sources for the case of isotropic emission and
perfect angular resolution, and find good agreement with our numerical results for that case.

I. INTRODUCTION

Recent years have seen a number of efforts to apply
photon pixel count statistics to gamma-ray data, in order
to characterize populations of point sources (PSs) too
faint to be individually detected at high significance (e.g.
[1–11]). The general idea of these methods is to exploit
the fact that an unmodeled PS population gives rise to
non-Poissonian fluctuations in the number of photons per
pixel, with “hot spots” corresponding to the locations
of sources. Even if no individual hot spot is significant
enough to be established as a PS with high probability,
the distribution of fluctuations can be used to infer the
properties of the population. These methods have been
applied to characterize contributions to the extragalactic
gamma-ray background (e.g. [5, 7, 8]) and to study inner
Galaxy PS populations (e.g. [3, 4, 12]); they have also
been applied to other datasets, e.g. crowded optical fields
[10] and high-energy neutrinos [13].

Initially these methods focused on the case of isotropic
PS populations, which is likely to be a good approxi-
mation for all-sky background radiation generated by a
large ensemble of faint extragalactic sources. However,
subsequent studies [3, 9, 11] extended this approach to
the case of source populations with an arbitrary spatial
distribution.

In this work we focus on one such method, Non-
Poissonian Template Fitting (NPTF) [2, 3, 14], which
has been applied in a range of contexts but particularly
to study the Galactic Center Excess (GCE) in public data
from the Fermi Gamma-Ray Space Telescope (hereafter
Fermi). The GCE is an extended and roughly spheri-
cal (not disk-like) source of GeV-scale gamma rays filling
the region within 1.5 kpc of the Galactic Center (GC)
[15–21].

The origin of the GCE has been the subject of active

∗ lbariuan@mit.edu
† tslatyer@mit.edu

controversy for the past decade, with two explanations
receiving the most attention. One possibility is that the
GCE originates from diffuse particle dark matter (DM)
undergoing annihilation (e.g. [15, 19, 22]), as the flux,
energy spectrum, and spatial morphology of the GCE
appear broadly consistent with a DM origin. If this hy-
pothesis were confirmed, it would be a discovery of pro-
found importance, representing the first evidence of non-
gravitational interactions between DM and visible par-
ticles. However, the energy spectrum of the GCE also
closely resembles that of gamma-ray pulsars observed by
Fermi, and a number of studies have found that the spa-
tial morphology of the GCE is a closer match to the stel-
lar bulge than to a DM annihilation signal [23–26].1 For
these reasons, it seems plausible that the GCE represents
the detection of a pulsar population in the Galactic bulge
(e.g. [29–40]). If this population includes sources with
brightness approaching the Fermi sensitivity threshold,
then NPTF methods have the potential to characterize
at least the bright end of this new population, and pro-
vide strong evidence against the DM hypothesis.

Previous NPTF studies have claimed evidence for a
GCE source population comprised of relatively bright
and rare PSs [3], but recent studies have found that those
claims may have been premature due to unaccounted-for
systematic errors [41–45]. Other analyses have found a
preference for a significant diffuse emission component
[12, 46], although this does not exclude the pulsar hy-
pothesis, since the sources might simply be too faint to be
detected with current methods. At the same time, work
on modeling the pulsar population in the bulge has sug-
gested that plausible pulsar luminosity functions could
generate very few Fermi detected sources, while yielding
an appreciable number of sources in the flux range po-
tentially detectable by NPTF methods [47–49] or related
approaches using machine learning [50, 51].

1 However, other recent studies [27, 28] have found the opposite
preference; the result appears to be sensitive to how the Galactic
background emission is modeled.
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Given this uncertain situation, it is timely to under-
stand how well NPTF can be expected to perform in de-
tecting faint PS populations, and how this performance
can be optimized by analysis choices. For example, many
previous studies have chosen Fermi event selections to op-
timize angular resolution, at the cost of exposure. While
several studies have explored the effect on their results
of varying the event selection (e.g. [5, 44, 45]), this has
not yet been done in a systematic way.

In this work, we systematically explore the ability of
the public NPTFit algorithm (as described in Ref. [14])
to reconstruct faint sources in simulated data, as a func-
tion of the instrument capabilities and analysis choices.
We focus primarily on the analysis of the inner Milky
Way, as relevant for the GCE, but also provide results for
the simpler case where signal and background are both
isotropic.

We begin in Sec. II by discussing how we expect the
likelihood ratio in favor of a point-source population to
behave, in a simplified approximate context that can be
treated analytically, by approximating some or all of the
relevant Poisson distributions as Gaussian. This approx-
imation is not expected to hold in detail in the cases of
greatest interest to us, but it is helpful for building intu-
ition.

In Sec. III, we then move on to our numerical study,
starting by discussing the procedure by which we perform
fits to the real Fermi data to derive reasonable baseline
estimates for the properties of the background model and
PSs. We use these results to generate simulated data
that is similar to the true gamma-ray sky as observed
by Fermi, using the public code NPTFit-Sim, a package
designed to simulate populations of unresolved PSs.2 In
this section we also discuss our methodology for fitting
to simulated data, and the test statistic we will use to de-
scribe the sensitivity of NPTF methods to faint sources.

In Sec. IV we lay out the parameters we will vary
in our simulations: exposure, angular resolution, energy
window, pixel size, and source brightness. We describe
the procedure for varying each of these parameters using
NPTFit and NPTFit-Sim, including any associated mod-
ifications to the prior ranges.

In Sec. V we perform an initial analysis and compari-
son between simulated data and our analytic approxima-
tions, in the simplified scenario where the PS and smooth
contributions to the gamma-ray sky are both isotropic.

We then move on to a full realistic inner Galaxy analy-
sis; conduct variations of the various analysis parameters,
singly and in combination; and present the (numerical)
results in Sec. VI. In particular, we explore the individ-
ual effects of varying the exposure level and the point
spread function (PSF), and map out the tradeoff when
exposure level is increased (reduced) with the effect of
worsening (improving) angular resolution, using the spe-
cific examples of Fermi event classes sorted by angular

2 https://github.com/nickrodd/NPTFit-Sim

resolution. Modifying the energy window varies the ef-
fective exposure, the PSF, and also (in real data) the
relative amplitude of the various background and signal
components; we explore these effects independently. We
then demonstrate the effect of varying the brightness of
the PSs while keeping the total flux of the population
constant (as appropriate for hypothetical source popu-
lations that explain the bulk of the GCE). Finally, we
examine the question of the optimal pixel size for NPTF
analyses, exploring both the sensitivity to faint PSs and
accuracy of the parameter reconstruction.

In Sec. VII we summarize our results and discuss some
implications for NPTF analyses of Fermi gamma-ray
data in the inner Galaxy.

In Appendix A we present further details of our simula-
tion parameters and fitting methodology; in Appendix B
we discuss the degree to which our source count func-
tions model a single-brightness PS population; in Ap-
pendix D we show additional results for the simpler case
where both signal and background are isotropic; and in
Appendix E we show the results of using an alternative
Galactic diffuse model as the basis for our simulations.

II. ANALYTIC APPROXIMATIONS FOR
NON-POISSONIAN TEMPLATE FITTING

Let us begin by building some intuition for how the de-
tectability of PSs is likely to scale in a NPTF-like setup.
We will initially follow the approach of Ref. [45], essen-
tially replacing the Poisson distributions with Gaussians;
this will be a good approximation when the number of
sources per pixel and number of counts/source are both
large, and can more generally provide qualitative insights
into how various inputs affect the PS sensitivity.

Here we will compute likelihoods and likelihood ra-
tios as a measure of sensitivity, whereas in the numerical
analysis of later sections we will perform a Bayesian anal-
ysis and evaluate Bayes factors. The Bayesian evidence
is an integral of the likelihood weighted by the priors,
and so loosely speaking we expect them to have quali-
tatively similar properties under variations of the source
brightness, exposure, etc. However, our expressions for
the likelihood ratios should not a priori be expected to
accurately approximate the Bayes factors, since Bayes
factors incorporate information from the priors (includ-
ing the number of free parameters in the model), and the
likelihood ratios do not.3 We summarize the key results
within this section in Table I.

3 However, in practice, we will find that for our default choice of
priors, the differences between the likelihood ratios and Bayes
factors are small compared with other differences between the
analytic and numerical results.

https://github.com/nickrodd/NPTFit-Sim
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A. Pixel likelihood to observe N photons

Let us first review some relevant results from Ref. [45].
Consider a simplified scenario where our PS population
model predicts n0 sources per pixel, and all sources are
identical, with an expected number of photons per source
of s. For the moment, we will ignore leakage out of the
pixel due to the non-trivial angular resolution, but as a
first approximation the effect of such leakage would be to
reduce s. We are interested in calculating the probability
to observe N photons in a pixel.

If we fix the number of observed sources (in a given
pixel) to be n, then the total number of photons in the
pixel will follow a Poisson distribution with mean ns.
For ns � 1, we can approximate this distribution as a
Gaussian with a mean and variance of ns, via the Cen-
tral Limit Theorem. Then the probability to observe N
photons is given approximately by:

P (N |{n, s}) =
1√

2πns
e−(N−ns)2/(2ns) (1)

As a note, this expression can be thought of as a con-
tinuous probability density function (PDF), but also as
a measure of the finite probability to observe N photons
by integrating the PDF over a bin of width dN = 1 (i.e.
the difference between adjacent values of N). Provided
the PDF does not vary rapidly over the bin, this integral
can simply be approximated by the value of the PDF at
the center of the bin. We will use both interpretations of
P (N |{n, s}) and similar quantities in the following cal-
culations.

This distribution function is convolved with P (n|n0),
a distribution that describes the probability of drawing n
sources given that the expected number of sources is n0.
The resulting function, which we denote P (N |n0, s), de-
scribes the likelihood of obtaining N photons given that
the number of sources is described by a Poisson distri-
bution with an expectation value of n0. If the number
of sources is large, we can also approximate the distribu-
tion that describes the number of sources with a Gaussian
with mean and variance n0. Furthermore, the integrand
is dominated by the region where ns ≈ N , so we can set
ns ≈ N except where N − ns appears in an exponent.

These approximations yield the following equation for
the probability to observe N photons given n0 and s:

P (N |{n0, s}) =

∫
dnP (N |{n, s})P (n|n0)

≈
∫
dn

1√
2πN

e−(ns−N)2/(2N)

× 1√
2πn0

e−(n0−n)2/(2n0) (2)

The integral over n can be performed analytically and
takes a simple form, if we assume the peak in the in-
tegrand is sufficiently far away from the limits of inte-
gration that we can take those limits to ±∞ without

affecting the result. Furthermore, around the peak of
the probability distribution we have N ≈ n0s, so we can
approximate N ≈ n0s except when N − n0s appears in
an exponent. These approximations yield:

P (N |{n0, s}) ≈
1√

2π(N + n0s2)
e

−(N−n0s)2

2(N+n0s2)

≈ 1√
2πn0s(1 + s)

e
−(N−n0s)2

2n0s(1+s)

(3)

That is, under these approximations the probability
of observing N photons takes a Gaussian form (at least
near the peak of the distribution), but with an inflated
variance of n0s(1+s), a factor of (1+s) greater than the
expectation value of n0s.

If s� 1, our model corresponds to a very faint source
population that should be indistinguishable from diffuse
emission. In this case, we recover the standard Gaussian
approximation to the Poisson distribution, with equal
mean and variance of n0s,

P (N |{n0, s}) ≈
1√

2πn0s
e

−(N−n0s)2

2n0s (4)

Thus the characteristic feature of a PS population
(within these approximations) is an enhanced variance,
by a factor of 1 + s.

In the event that the number of counts per source sat-
isfies s � 1 but the number of sources per pixel n0 . 1,
a more refined approximation for the distribution may
be useful (going beyond the results of Ref. [45]). If i
sources are drawn in a given pixel (i being an integer),
the number of counts from those sources will be Poisson-
distributed with expectation si; for s� 1 and i > 0, we
can approximate each of these individual distributions
as a Gaussian with mean and variance si, so overall we
have:

P (N |{n0, s}) ≈ p0(n0)δN,0 +

∞∑
i=1

pi(n0)
1√

2πsi
e

−(N−si)2

2si ,

(5)
where pi(n0) is the Poisson probability of drawing i
sources when n0 are expected.

B. Likelihood ratio between models (Gaussian
approximation)

Now suppose the true underlying model for a given
pixel yields a Gaussian distribution for N with mean X
and variance σ2. We wish to evaluate the expected log
likelihood ratio between the correct model and an al-
ternative model that predicts mean Y and variance τ2.
We will denote these models respectively as (X,σ2) and
(Y, τ2). This result has been computed previously in
Ref. [45]; we review it here.

For context, the correct model might represent a lin-
ear combination of a PS population and a diffuse signal,
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while the alternative model allows only for a diffuse sig-
nal; the expected log likelihood ratio in this case then
gives a measure of how well we will be able to exclude
the all-diffuse model and thus detect the PS population.
We will work out the case for general (X,Y, σ2, τ2) first,
under the approximation where all the relevant probabil-
ity distributions are Gaussian, and then apply this gen-
eral result to several scenarios in which we might wish to
detect PS populations.

For a single pixel, the probability of finding N photons
predicted by the model (Y, τ2)) is:

L = P (N |{Y, τ2}) = e[−(N−Y )2]/(2τ2)/
√

2πτ2 (6)

corresponding to a log likelihood of lnL = − (N−Y )2

2τ2 −
1
2 ln 2πτ2. To get the expected value of the log likelihood
with respect to the true model, we can integrate against
the true distribution ofN , i.e. P (N |{X,σ2}). This yields
[45]:〈

lnL(Y, τ2)
〉

= −
[
(X − Y )2 + σ2

]
2τ2

− 1

2
ln(2πτ2) (7)

Note we use the 〈〉 notation generally to denote expected
values with respect to the true model.

Now we diverge from Ref. [45], which focused on de-
termining the best-fit choice for τ2 given a discrepancy
between X and Y . Let us instead simply examine the
expected ∆ lnL between the fitted model (Y, τ2) and the
best-fit model (X,σ2), which is given by:

〈∆ lnL〉 ≡
〈
lnL(X,σ2)− lnL(Y, τ2)

〉
=

[
(X − Y )2 + σ2

]
2τ2

+
1

2
ln(2πτ2)− 1

2
− 1

2
ln(2πσ2)

=

[
(X − Y )2 + σ2

]
2τ2

− 1

2

[
1 + ln

(
σ2

τ2

)]
(8)

If both models produce a very similar expected number
of photons, i.e. X ≈ Y , and differ only in their variances,
then this result can be simplified to:

〈∆ lnL〉 =
σ2

2τ2
− 1

2

[
1 + ln

(
σ2

τ2

)]
(9)

Note however that if Y and τ2 are allowed to vary
within certain limits or while satisfying certain condi-
tions, then it is not guaranteed that the best-fit point
lies at Y = X; if the global likelihood maximum (at
Y = X, τ2 = σ2) cannot be attained, then the best-
fit value of Y will depend on the value of τ2 (and vice
versa). Most simply, this can occur when the model is
Poissonian, in which case τ2 is fixed to Y , but the data
has non-Poissonian components and so σ2 differs from X
in the true underlying model. A related scenario, stud-
ied in Refs. [44, 45], occurs when the model requires the
same value of Y in multiple pixels but the true underlying
model varies across those pixels; this leads to a best-fit
model variance τ2 that differs from the true underlying
variance σ2 (possibly leading to misattribution of the en-
hanced variance to a PS population).

C. Variance between realizations (Gaussian
approximation)

In addition to working out the expected log likelihood
ratio as a measure of sensitivity to incorrect modeling
(such as attempting to describe PSs with a Poissonian
template), it is helpful to understand the expected vari-
ability in this ratio between different realizations. In the
limit where the number of pixels is large, the total ∆ lnL
for the image is the sum of many independent random
variables (∆ lnL for each pixel), and so is expected to
follow a Gaussian probability distribution by the Central
Limit Theorem (even if the probability distribution for
∆ lnL in a single pixel is highly non-Gaussian). Conse-
quently, in this limit, we expect the distribution of the to-
tal ∆ lnL (summed over pixels) to be well-characterized
by its expectation value and variance.

As in the previous subsection, we will work out the re-
sult initially for general choices of the PDF parameters
for the true and alternative hypotheses, (X,Y, σ2, τ2).
We will then apply these results to specific scenarios, in
particular where the true model (described by (X,σ2))
includes a PS component but the alternative model (de-
scribed by (Y, τ2)) does not.

We can estimate the variance of ∆ lnL by evaluating
Var(∆ lnL) ≡ 〈(∆ lnL)2〉 − 〈∆ lnL〉2. Let us first focus
on the case where σ � τ and 〈∆ lnL〉 � 1 and so the
first term dominates in Eq. 9. This can occur, for ex-
ample, where there is a bright PS population inducing
a large variance σ2 � X, which cannot be replicated
by an alternative model based solely on diffuse emission
with Poissonian statistics; in that sense this is a high-
detectability limit.

Then using the estimates above and again taking X ≈
Y , we find that:

〈(∆ lnL)2〉 ≈
∫
dN

[
− (N −X)2

2τ2
+

(N −X)2

2σ2

]2

× P (N |{X,σ2})

≈ 3

4

(σ
τ

)4

, (10)

and thus:

Var(∆ lnL) ≈ 3

4

(σ
τ

)4

− 1

4

(σ
τ

)2

=
1

2

(σ
τ

)4

. (11)

Thus we expect the standard deviation in this regime to
be:

std(∆ lnL) ≈ 1√
2

σ2

τ2

≈
√

2〈∆ lnL〉. (12)

We see that we generically expect the scatter in ∆ lnL
(from a single pixel) to be of the same order as its ex-
pected value. When combining npix pixels, the expecta-
tion value and variance are both enhanced by a factor
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of npix, so the standard deviation should be suppressed
relative to the expectation value by a factor of 1/

√
npix.

In this high-detectability, purely Gaussian case, there
is actually a simple analytic expression for the full PDF
of ∆ lnL, which we derive in detail in Appendix F:

P (∆ lnL = x) =
1√
πxδ

e−x/δ, x ≥ 0, (13)

where δ ≡ (σ2/τ2) − 1. It can be readily checked that
this distribution reproduces the expectation value and
variance given above for δ � 1. Note that this distribu-
tion is not at all Gaussian; however, as discussed above,
combining a large number of pixels and summing their
∆ lnL contributions is expected to give an approximately
Gaussian PDF by the Central Limit Theorem.

If we instead consider the low-detectability case where
τ2 ≈ σ2, i.e. δ = (σ2/τ2) − 1 � 1, then we instead
obtain:

〈(∆ lnL)2〉 ≈
∫
dN

[
− (N −X)2

2τ2
+

(N −X)2

2σ2

−1

2
ln
τ2

σ2

]2

P (N |{X,σ2})

≈ δ2

∫
dN

[
− (N −X)2

2σ2
+

1

2

]2

P (N |{X,σ2})

≈ δ2/2 (14)

where we have used the approximation ln (1 + δ) ≈ δ,
and taken the limits of integration to ±∞. In the same
limit,

〈∆ lnL〉 ≈ δ2/4. (15)

Thus for δ � 1, the first term dominates the variance
and we have:

Var(∆ lnL) ≈ δ2/2 ≈ 2〈∆ lnL〉. (16)

Thus in this case the square root of the variance is para-
metrically enhanced (by a factor of 1/δ) relative to the
expectation value. The variance and expectation value
are parametrically similar and will both be enhanced by
a factor of npix when multiple pixels are combined, and
so in this regime the standard deviation (square root of
the variance) should be of the same order as the square
root of the expectation value.

Now we will apply these results to estimate the ex-
pected log likelihood ratio between a model containing
PSs and one that omits them, when a real population of
PSs is present in the data. This ∆ lnL will tell us the
confidence level with which we expect to be able to ex-
clude the model with no PSs, and hence the confidence
level for PS detection. It is similar to the metric we will
use for sensitivity to a PS population in our numerical
studies.

D. Single component (100 % PS emission)

Let us begin by assuming that the data is completely
described by a PS population (of identical sources, as
described above) without any contribution from a smooth
background source. The PS emission has a mean and
variance approximated by (X,σ2) = (N,N(1+s)), where
s is the number of photons per source and N the total
number of photons.

Let us consider the expected ∆ lnL between the correct
PS-based model, and a model that includes only smooth
emission, but which correctly predicts the expected num-
ber of photons N . Such a smooth model must have equal
mean and variance, so we must have (Y, τ2) = (N,N).

Using Eq. 9, we plug in these parameters and obtain:

〈∆ lnL〉 ≈ 1

2
[s− ln (1 + s)] (17)

Note that all dependence on the total number of pho-
tons N has canceled out; only the number of photons per
source is relevant. In particular, this property ensures the
likelihood ratio will go to 1 when s� 1 as required (since
this corresponds to the limit of many very faint sources,
at which point the smooth model is perfectly adequate),
even if the number of sources is very large. Specifically,
at small s we have 〈∆ lnL〉 ≈ (s/2)2.

However, this behavior also has the perhaps-surprising
implication that having more sources (and hence more
photons) of fixed brightness in a single pixel neither in-
creases nor decreases the PS sensitivity based on the pixel
likelihood, at least once the numbers are large enough
that the relevant likelihoods can be approximated as
Gaussian.

The leading order behavior of this function at large s
is 〈∆ lnL〉 ≈ s/2, i.e. the log likelihood in favor of PSs
grows linearly with the brightness of the sources. Since
the number of photons seen from a given source is di-
rectly proportional to the exposure (i.e. time viewing
the source multiplied by the effective area of the instru-
ment), we expect that (at least in this background-free
case) 〈∆ lnL〉 will also grow linearly with exposure. The
normalization factor here is also familiar. 2∆ lnL ≈ s is
often used as a test statistic, whose square root trans-
lates to the significance in sigma; thus roughly speaking,
we expect the detection significance of the PS population
(measured in sigma) from a given pixel to approach

√
s

for large s.
If we do not impose the condition that the expected

number of photons is N , we can maximize the likelihood
for this model under the condition Y = τ2, obtaining:

Yoptimal =
1

2

(√
4X2 + 4σ2 + 1− 1

)
. (18)

For the case at hand, this yields Yoptimal =
1
2

(√
4N2 + 4N(1 + s) + 1− 1

)
. If N � s, N � 1

(i.e. the number of both sources and photons is large,
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consistent with our Gaussian approximations), then to
a good approximation Yoptimal ≈ N and the estimates
above should be reasonable. It is also true in practice,
in NPTF analyses of the GCE, that the total photon
flux associated with the best-fit GCE model is typically
very similar when comparing the fits with and without a
model for GCE PSs (e.g. [3]).

E. Generalization to arbitrary ratio of PS and
smooth emission

Now let us consider the scenario in which a fraction k
of the emission is associated with PSs and the remain-
der with smooth emission. We seek to evaluate 〈∆ lnL〉
between the best-fit model (corresponding to the truth)
and the model with only smooth emission.

The total number of predicted photons is the sum of
the predicted photons associated with each component.
The sum of two Gaussian-distributed random variables is
also Gaussian-distributed, with mean (variance) given by
the sum of the means (variances) for the individual dis-
tributions. Thus within our approximations, the best-fit
model (matching the truth) has a Gaussian probability
distribution for the number of photons N with parame-
ters (X,σ2) = (kN + (1− k)N, kN(1 + s) + (1− k)N).

The model with only smooth components that matches
the total number of photons has (as in our previous ex-
ample) (Y, τ2) = (N,N).

Using Eq. 9, we obtain:

〈∆ lnL〉 ≈ 1

2
[ks− ln (1 + ks)] (19)

Thus the effect of a non-zero background fraction on
the sensitivity is equivalent to rescaling the photon flux
of individual sources. In this case, the change in scaling
behavior from 〈∆ lnL〉 ∝ s2 to 〈∆ lnL〉 ∝ s will occur
parametrically around ks ∼ 1. It is worth noting that if
there are a large number of pixels, a significant detection
may be consistent with ks � 1 from every individual
pixel, and in this case we should expect a faster-than-
linear scaling of the log likelihood ratio with increasing s
(or k).

F. A more accurate probability distribution:
accounting for rare sources

We can also compute the expected value of the likeli-
hood ratio and its variance, between two Gaussian mod-
els, if the underlying “true” probability distribution is
given by Eq. 5, for the case n0 . 1 where the Gaussian
approximations break down. For a Gaussian distribu-
tion that describes the expected counts with mean X
and variance σ2, we find:

〈lnL〉 =

∫
dN

[
− (N −X)2

2σ2
− 1

2
ln(2πσ2)

]
P (N |n0, s)

= p0(n0)

[
−X

2

2σ2
− 1

2
ln(2πσ2)

]
+

∞∑
i=1

pi(n0)

∫
dN

[
− (N −X)2

2σ2
− 1

2
ln(2πσ2)

]
× 1√

2πis
e−(N−is)2/2is

= −1

2

∞∑
i=0

pi(n0)

[
(is−X)2 + is

σ2
+ ln(2πσ2)

]
,

(20)

where again we have made the approximation of taking
the limits of integration to ±∞, relying on is � 1 for
i ≥ 1 (so that the Gaussians are centered well away from
the limits of integration). Now the infinite sums over
i can be computed by using the fact that the Poisson
probabilities pi(n0) = ni0e

−n0/i! satisfy
∑∞
i=0 pi(n0) = 1.

In particular, by relabeling dummy indices the following
identities can easily be proved:

∞∑
j=0

jpj(n0) = n0,

∞∑
j=0

j2pj(n0) = n0(n0 + 1).

∞∑
j=0

j3pj(n0) = n3
0 + 3n2

0 + n0,

∞∑
j=0

j4pj(n0) = n4
0 + 6n3

0 + 7n2
0 + n0. (21)

Applying these results we find:

〈lnL〉 = −1

2

[
ln(2πσ2) +

X2 + s2n0(n0 + 1) + sn0(1− 2X)

σ2

]
(22)

In particular, if we hold the variance constant then
the likelihood is maximized for X = n0s, and if we set
X = n0s (i.e. the model matches the expected total
number of photons), then we obtain:

〈lnL〉 = −1

2

[
ln(2πσ2) +

n0s(1 + s)

σ2

]
(23)

The likelihood is then maximized for σ2 = n0s(1 + s),
which is the same variance we found when we directly
approximated the probability distribution for the point-
source population as Gaussian.

If we examine the expected ∆ lnL between this best-fit
Gaussian model and a Gaussian model with σ2 = X =
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n0s (representing a purely diffuse signal), we find:

〈∆ lnL〉 = −1

2

[
ln(1 + s) +

n0s(1 + s)

n0s(1 + s)
− n0s(1 + s)

n0s

]
=

1

2
[s− ln(1 + s)] (24)

Remarkably, this is exactly the same result we found un-
der the Gaussian approximation for the underlying prob-
ability distribution (Eq. 17), suggesting that this result
is quite robust even when the assumptions needed to jus-
tify the Gaussian approximation break down. We will
see in future sections that this result works fairly well
to explain scaling relationships for the (numerically com-
puted) sensitivity as we vary the properties of the sources
and diffuse background.

As previously, we can generalize to the case where PSs
constitute a fraction k of the total emission, so the total
expected photon count is n0s/k with an expected num-
ber of (1−k)n0s/k photons originating from diffuse emis-
sion. In this case the probability distribution for N given
in Eq. 5 must be updated accordingly. As previously, we
approximate the probability distribution for the number
of photons from diffuse emission as a Gaussian with mean
and variance (1−k)n0s/k; for each choice i for the num-
ber of sources drawn, the emission from sources (mean
and variance si) can be added to that from diffuse emis-
sion by the usual prescription for the sum of normally-
distributed random variables (i.e. the means and vari-
ances add). Thus the overall distribution becomes:

P (N |n0, s, k) ≈
∞∑
i=0

pi(n0)
e−{N−s[i+n0(1/k−1)]}2/2s[i+n0(1/k−1)]√

2πs[i+ n0(1/k − 1)]
, (25)

where as previously pi(n0) is the Poisson probability of
drawing i sources when n0 are expected.

Under this distribution, if we compute the expected
likelihood of a Gaussian model with meanX and variance
σ2, we find (by the same methods as previously):

〈lnL〉 = −1

2

[
1

σ2

(
X2 − 2Xn0s

k

+
n0s(k + s(k2 + n0))

k2

)
+ ln(2πσ2)

]
(26)

For fixed σ2, this is maximized for X = n0s/k (as ex-
pected, when the model matches the total number of
counts); if we fix X = n0s/k, then we obtain:

〈lnL〉 = −1

2

[
1

σ2

(
n0s(ks+ 1)

k

)
+ ln(2πσ2)

]
. (27)

The expected log likelihood difference between the purely
diffuse Gaussian model with σ2 = X = n0s and the
Gaussian model with σ2 = (n0s/k)(ks + 1) (matching
our previous prescription in the case of mixed PS and

smooth emission) is then given by,

〈∆ lnL〉 =
1

2

[
ks+ ln

1

1 + ks

]
, (28)

exactly as previously.
However, while the expected log likelihood is un-

changed by shifting to this modified probability distri-
bution, the variance differs. Working in the limit where
the log terms in the delta log likelihood can be ig-
nored, let us examine the variance of the delta log like-
lihood between the Gaussian models with σ2 = n0s and
σ2 = (n0s/k)(ks+ 1). In both cases we take X = n0s/k.
Then using the identities in Eq. 21, we obtain:

Var(∆ lnL) = 〈(∆ lnL)2〉 − 〈∆ lnL〉2

≈ k2 s(s+ 6) + 3

4n0

(
ks

ks+ 1

)2

+
1

2
(ks)2

→ 〈∆ lnL〉2
(

1

n0
+ 2

)
, ks� 1. (29)

In particular, we observe that there is now an addi-
tional term in the variance which scales as 1/n0. Con-
sistently with our previous calculation, this term will be
negligible when n0 � 1 and our original Gaussian ap-
proximation holds, but it can lead to a significant en-
hancement to the variance when n0 � 1. In particular,
for ks� 1 and n0 � 1, we expect that the variance over
the full dataset can be approximated as:

Var(∆ lnL)overall ≈ npix〈∆ lnL〉2per pixel/n0

≈ 〈∆ lnL〉2overall/n0npix,

⇒ std(∆ lnL)overall ≈
〈∆ lnL〉overall√

n0npix
. (30)

Thus we see that in this case, rather than the suppression
of 1/

√
npix that we found earlier (for the high-ks case),

instead the suppression is only 1/
√
ntot, where ntot =

n0npix is the total number of PSs in the image.
Broadly speaking, the standard deviation in ∆ lnL is

always related to 〈∆ lnL〉 by a factor of 1/
√
A, but A

can be either the number of pixels, the number of PSs
(when the number of sources per pixel is small), or the
test statistic 〈∆ lnL〉 itself (when the contribution to the
test statistic per pixel is small). In the examples we have
checked, it is always the smallest of these three param-
eters that dominates the variance, which is intuitively
sensible.

Note that in particular this means the variance can be
much larger than one might naively estimate from the
square root of the test statistic; if the number of sources
is only O(100), then the variance in the test statistic will
be consistently at the O(10%) level even if the sources
are bright and the significance of detection is very high.
Furthermore, we have so far neglected contributions to
the variance from the width of the source count function
(SCF) (which will modify the effective s entering these
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calculations from realization to realization, and hence in-
crease the variance), the presence of a non-zero point
spread function (likewise), and cross-talk and degenera-
cies with other background components.

G. Implications for analysis choices

If the overall number of photon counts increases, due to
increased exposure (i.e. increased observation time or ef-
fective area), the signal fraction k remains constant while
s varies linearly. Consequently, we expect 〈∆ lnL〉 to de-
pend linearly on exposure for sufficiently large s, with
the transition from quadratic to linear scaling beginning
around s ∼ 1/k.

Suppose a non-zero angular resolution for the instru-
ment causes the expected number of photons from a sin-
gle source in a pixel to be reduced, due to leakage into
neighboring pixels. Then 〈∆ lnL〉 will be reduced by the
same factor, in the regime where the delta log likelihood
scales linearly with s. The signal fraction k should not
be affected by this leakage unless the overall distribution
of either the signal or background varies rapidly relative
to the angular resolution scale; if there is such a rapid
variation, there may also be a correction corresponding
to the change in k.

The fact that the sensitivity depends only on ks sug-
gests that it is generally more important to have a low
background fraction (high k) than a high density of
sources (since the latter has no effect on the expected
sensitivity in the regimes of validity of our analytic ap-
proximations). This suggests that the sensitivity is likely
to be dominated by pixels where the expected PS sig-
nal is brightest as a fraction of all diffuse backgrounds
(which may not be the pixels with the largest number of
sources).

We have derived these results for the contribution to
〈∆ lnL〉 from a single pixel, but the overall log likelihood
is simply the sum of the results for the individual pix-
els. We can thus apply these results even to the realistic
case where the background and signal models can have
quite different spatial distributions: we simply calculate
the appropriate k-value in each pixel and estimate the
contribution to 〈∆ lnL〉 accordingly. Also note that the
smooth model can be arbitrarily complicated; the only
information we have used is that it has Poissonian statis-
tics.

III. INPUTS AND METHODOLOGY FOR
NUMERICAL CALCULATIONS

A. Data selection

To calibrate our simulations to the real gamma-ray sky,
we employ eleven years of the Pass 8 public Fermi data.
The data were collected over 573 weeks from August 4,
2008 to June 19, 2019. To employ the most stringent

cosmic-ray rejection criteria, we restrict our selection to
the ULTRACLEANVETO event class. For most tests,
except those that varied energy range, we limited the en-
ergy range to 2−20 GeV, following the default in NPTFit
and previous NPTF analyses. We restrict ourselves to an
analysis of the top three quartiles of the data graded by
angular resolution, as this provides enough range in an-
gular resolution to explore the tradeoff with exposure,
and the angular resolution degrades significantly in the
bottom quartile.

B. NPTFit scan setup

We employ v.0.2 of NPTFit, together with MultiNest,
a Bayesian inference tool that implements a nested sam-
pling algorithm [14, 52]. For fits of the simulated data,
the number of live points is described within the indi-
vidual procedure sections; when not otherwise specified
we used nlive=100. At each experiment, we checked the
recovered evidences at different nlive values to determine
if the scans were reasonably converged. We found that
changes in 〈ln BF〉 at nlive values beyond 100 were consis-
tently very small, and thus the scans are well-converged.

When fitting to simulated data, our region of interest
(ROI) is centered on the GC and has a radius of 15◦. We
exclude the band with galactic latitude |b| < 2◦. This
ROI is chosen for computational efficiency and to min-
imize contamination from background emissions, while
preserving sensitivity to the GCE, motivated by a recent
study finding that sensitivity to GCE PSs plateaus for
ROIs with radii between 15◦ and 20◦ [43]. Our expecta-
tion is that shifting to a modestly different ROI would
not significantly affect the scaling with exposure, angu-
lar resolution, etc, that we study in this work, although
the overall sensitivity would change and so should not be
compared directly between analyses with different ROIs.

During NPTFit scans, the non-Poissonian components
of the sky maps must be exposure corrected at each
pixel (a computationally-costly process) since the expo-
sure map (a map that reflects the duration of observa-
tion and the stringency of data selection) is non-uniform
[14, 52]. In order to optimize computational efficiency
(and consistent with the recommendations in NPTFit),
we set nexp = 5 to divide the ROI into 5 distinct regions
within which the exposure is treated as uniform.

C. Modeling the gamma-ray sky

We conducted a Bayesian NPTFit analysis of the (real
data) Fermi sky map at nlive = 500, modeling the sky
as a linear combination of spatial templates character-
ized by parameters and prior distributions that are de-
scribed in Appendix A. For this analysis, and subsequent
fits to real data (which were used only to choose pa-
rameters for the subsequent simulations), we extended
the radius of the ROI from 15◦ to 30◦, but retained
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〈∆ lnL〉 Var(∆ lnL)
General Gaussian Model Comparison

High Detectability δ � 1
1

2
[δ − ln (1 + δ)] 2 〈∆ lnL〉2

Low Detectability δ � 1
δ2

4
2 〈∆ lnL〉

PS Signal + Diffuse Background, ks� 1

Gaussian probability distribution
1

2
[ks− ln (1 + ks)] 2 〈∆ lnL〉2

More accurate probability distribution: accounting for rare sources
1

2
[ks− ln (1 + ks)] 〈∆ lnL〉2

(
2 +

1

n0

)

TABLE I. Summary of 〈∆ lnL〉 and Var(∆ lnL) for a single pixel (as calculated in Sec. II), where the log likelihood difference is
evaluated between two Gaussian models for P (N) with parameters (X,σ2) and (Y, τ2). In the upper part of the table, the true
model is assumed to be the Gaussian with parameters (X,σ2), and we consider two regimes characterized by the detectability
parameter δ ≡ σ2/τ2 − 1. In the lower part of the table, we rewrite σ, τ,X and Y in terms of parameters describing the PS
population (see text), where k denotes the proportion of the total emission that is attributed to the PS population, s denotes
the expected number of photons per source, and n0 is the number of sources per pixel. In this part of the table we assume
δ = ks� 1. In the final line, we furthermore employ a more accurate approximation for the true model for P (N) rather than
assuming it to be Gaussian (see Sec. II F).

the mask of the Galactic plane (consistent with defaults
in NPTFit). Smooth/diffuse templates were included
for the Fermi Bubbles (“Bub”), smooth isotropic emis-
sion (“Iso”), smooth GCE (“GCE”), and Galactic diffuse
emission (“Dif”). Templates were included for PS popu-
lations associated with the GCE (“GCE PS”), isotropic
/ extragalactic sources (“Iso PS”), and the Galactic disk
(“Disk PS”). Smooth/diffuse templates each have one
associated parameter, Asmooth, controlling their overall
normalization in the model; PS population templates
(hereafter “PS templates”) are associated with an overall
normalization parameter APS which controls the number
of sources, and with a SCF which describes the number
of sources as a function of their flux. We use a singly-
broken power law model for the SCF, as is the default in
NPTFit:

dN

dS
= APSTPS


(
S
Sb

)−n1

S ≥ Sb(
S
Sb

)−n2

S ≤ Sb
, (31)

where APS is an overall normalization factor, and TPS is
the position-dependent template with the fixed normal-
ization given in the NPTFit code (see Appendix A for
details). Note the parameter Sb controls the expected
number of photon counts per source at the position of
the break in the power law. The expected number of
sources in a given pixel is then set by:

Ntot = APSTPSSb

(
1

n1 − 1
+

1

1− n2

)
(32)

whereas the expected number of photons is set by:

Stot = APSTPSS
2
b

(
1

n1 − 2
+

1

2− n2

)
. (33)

Note that in the main text of the paper we employ
the default Galactic diffuse emission model from NPTFit,

constructed from the Fermi Collaboration’s p6v11 dif-
fuse model. This model is known to have features that
can bias the results [43] when it is used directly to re-
construct PS populations from the real data; however, it
should provide a reasonable description of the data when
we are only interested in constructing and analyzing sim-
ulations (where the model is correct by construction). To
check this assertion, in Appendix E we recalculate our
results with a different Galactic diffuse emission model
and comment on the differences. Either of these Galac-
tic diffuse emission models reconstruct the GCE as be-
ing 100% PSs, with the smooth GCE component being
negligible: consequently, our simulations will generally
explore the sensitivity of NPTF methods to a PS popu-
lation bright enough to explain the full GCE. (However,
note that there are other models of the Galactic fore-
grounds where the flux attributed to the smooth GCE
component is not negligible [43, 44].)

After performing this fit, we extracted the posterior
median parameters associated with each template, which
were then used as the baseline inputs to simulations for
the rest of the paper. These simulation parameters are
displayed in Table V in Appendix A. Note in particu-
lar that (consistent with previous NPTF studies) the in-
ferred shape of the SCF for the GCE PS is quite sharply
peaked around Sb, so we will generally be simulating
GCE PS populations where the PSs all have roughly the
same brightness as observed at Earth (fixed by Sb). This
is likely not a realistic luminosity function, but serves as
a convenient basis for understanding the sensitivity of
NPTF methods. We discuss the sharpness of the SCF
peak further in Appendix B.
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D. Producing simulated sky maps

For each template, we generated realizations based on
the posterior median parameters from the real data. For
the smooth/diffuse emission components, we performed a
Poisson draw from the associated template (with normal-
ization given by the simulation parameters taken from
the fit to real data). To obtain realizations of PS popu-
lations, we employed NPTFit-Sim.

To obtain the full skymaps, the individual components
were summed. All skymaps were binned using HEALPix,
a package designed to allow equal-area pixelization of the
sky [53]. The nside value controls the pixel size, with the
sky having a total of 12 × nside2 equal-area pixels. By
default we set nside to 128, which is also the NPTFit
default, and corresponds to roughly a 0.5◦ mean spacing
between individual pixel centers in the region toward the
GC. For nside=128, there are 2808 pixels within our ROI.

E. Sensitivity figure of merit

A NPTFit analysis returns posterior probability distri-
butions for each of the parameters, and an estimate of the
overall Bayesian evidence for the model. Comparing two
NPTFit analyses, with different template choices, allows
us to evaluate the Bayes factor (BF) between the two
scenarios, as the ratio of their evidences. In particular,
we can define the sensitivity to a GCE PS population
in terms of the BF in favor of a model that contains
the complete set of templates (Dif, Bub, Iso, GCE, GCE
PS, Disk PS, Iso PS) compared with a model that ex-
cludes the GCE PS template. A high value of this BF
corresponds to a high-significance detection of the GCE
PS template, over and above the smooth GCE template.
For convenience, we will generally work with ln BF rather
than the BF itself. Where BF . 1 and so ln BF is nega-
tive, there is no detection of GCE PSs.

The BF directly gives the ratio of Bayesian probabili-
ties that the model with the GCE PS template is correct,
compared to the model without that contribution. For
those more accustomed to frequentist statistics, it may
be helpful to think of the BF as comparable to a like-
lihood ratio L1/L2, with additional terms that penal-
ize models with more degrees of freedom. In this sense
2 ln BF is broadly analogous to the commonly-used test
statistic 2∆ lnL, which for a likelihood that is Gaussian

near its maximum (L(x) ∝ e−x
2/(2σ2)) can be written

as 2∆ lnL ≈ (x/σ)2, and thus can be thought of as the
“number of sigma” squared associated with the deviation
from the best-fit point.

The ln BF in favor of a GCE PS population can vary
widely between realizations. For our main figure of merit
for sensitivity, we will use the expected value of ln BF ob-
tained by taking the average across realizations, 〈ln BF〉,
although we will also show the scatter between realiza-
tions.

IV. PROCEDURES FOR PARAMETER
VARIATION

Within each subsection below, we describe the general
procedure for varying different inputs: exposure, angular
resolution, source brightness, and pixel size. We describe
the method for adjusting parameters in the simulation of
skymaps as well as how to account for these variations
through the priors when analyzing the skymaps using
NPTFit. If the test involves combinations of these vari-
ations, then the priors must be modified by simultane-
ously implementing the adjustment factors to the priors
for each alteration performed.

A. Exposure

Although Fermi is a space-based telescope, it does not
observe every part of the sky simultaneously. As a result,
an exposure map is needed to keep track of how long
Fermi observed a particular region of the sky and with
what effective area. The exposure map provided by the
Fermi -LAT Collaboration and implemented in NPTFit
has units of cm2s [14].

Increasing the amplitude of the exposure map could
describe longer observations with Fermi or less stringent
cuts on photons as part of the data selection. We de-
fine an exposure rescaling factor χ, which allows us to
vary the intensity of the exposure map through a scalar
multiplicative factor, hence rescaling the expected num-
ber of photons present in simulated data. In our baseline
case, χ = 1. In general, the exposure rescaling could be
position-dependent (e.g. corresponding to longer obser-
vations of only part of the ROI). However, we expect such
position-dependent variations to be modest for the inner
Galaxy region, as the size of our ROI is smaller than the
field of view of Fermi.

We implemented the variation of exposure in the simu-
lated data by modifying the template parameters as fol-
lows. For smooth/diffuse templates, the template nor-
malization Asmooth is multiplied by the rescaling factor χ,
since Asmooth determines the mean photon counts within
each pixel. For non-Poissonian templates, when the other
parameters are held fixed, APS determines how many
sources are present, which is not a function of exposure.
Therefore, we instead multiply the counts break Sb by χ,
as Sb controls the expected number of photons emitted
by a source lying at the break in the SCF; as discussed
previously, for the fits we perform, Sb corresponds to the
typical number of photons per source. To ensure that the
total number of sources does not change, we divide APS

by χ following Eq. 33.
When performing NPTFit analyses on these modified

skymaps, the input exposure map must be multiplied by
χ. Furthermore, we adjust the range of priors govern-
ing Asmooth for Poissonian sources and APS and Sb for
non-Poissonian sources, so that they correspond to the
same underlying physical emission parameters as in the
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original χ = 1 analysis. For example, the boundaries of
a uniform prior on logAsmooth are shifted by + logχ; the
boundaries of a log prior on logAPS are shifted by− logχ;
and the boundaries of the linear prior on Sb are multiplied
by χ. (The original values of all priors are displayed in
Table VI in Appendix A.) For simulated data, the num-
ber of live points we utilized in the scans is nlive=300.
We checked that the relative changes in the recovered ev-
idences (under variations to nlive) are negligible for all
individual realizations.

B. Angular resolution

Angular resolution, characterized by the Point Spread
Function (PSF), represents how well a telescope such as
Fermi is able to reconstruct the original direction of a de-
tected photon. A non-delta-function PSF represents an
uncertainty in the direction of a photon’s origin. As a re-
sult, the image produced of a photon source is “smeared”
across one or more pixels. Since the NPTFit implementa-
tion does not account for correlations between neighbor-
ing pixels (see e.g. [11] for a discussion), this smearing
has the potential to bias the recovered SCF.

Modifications to the photon direction reconstruction,
or construction of future gamma-ray telescopes, may al-
low for better angular resolution (equivalently, a nar-
rower PSF) than Fermi can currently achieve. However,
even within the Fermi dataset photons can be separated
by the quality of their directional reconstruction, allow-
ing us to improve angular resolution at the cost of ex-
posure. Specifically, Fermi photons are divided into four
quartiles ranked by angular resolution, and separate PSF
estimates are provided for each of the quartiles. Further-
more, lower-energy photons have intrinsically worse an-
gular resolution, so a cut on photon energy has the effect
(among others) of modifying the effective PSF.

Fermi ’s PSF is modeled by a pair of King functions
(defined in Eq. 35) and is characterized by a set of several
parameters. The PSF is approximately Gaussian near
the core, with larger non-Gaussian tails. Eq. 34 displays
the full functional form of Fermi ’s PSF. 4

P (x, ~αP ) = fcoreK(x, σcore, γcore)+(1−fcore)K(x, σtail, γtail)
(34)

K(x, σ, γ) =
1

2πσ2

(
1− 1

γ

)[
1 +

x2

2γσ2

]−γ
(35)

Here x is a rescaled distance from the center of the source,

4 https://fermi.gsfc.nasa.gov/ssc/data/analysis/

documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html

with an energy-dependent scale factor Sp(E):

x =
δp

Sp(E)

δp = 2 sin−1

(
|p̂′ − p̂|

2

)
, (36)

where p̂ and p̂′ are the unit vectors corresponding respec-
tively to the true and reconstructed directions of the pho-
ton. The parameters that define the PSF (Sp(E), fcore,
and γ and σ for the two King functions in Eq. 34) are
provided with the Fermi dataset as functions of energy
and event selection.

Note that because of the rather complex form of the
Fermi PSF, different event selections may have PSFs that
are not related simply by an overall shift in scale (e.g. by
a modification to Sp(E)), but are different in shape. To
maximize the practical applicability of our work, rather
than simply rescaling the PSF, we test the effect of using
the true PSFs for different quartiles of the Fermi data
ranked by PSF, and for different energy ranges. However,
we will show that within the range of event selections we
study, the effect on sensitivity of changing the PSF can
be quite well described by the variation of a summary
parameter such as the 68% containment angle, suggesting
that the detailed form of the Fermi PSF is not a crucial
ingredient.

We divide the dataset into 40 log-spaced energy bins
spanning the range from 0.2 GeV to 2000 GeV (i.e. 10
bins per decade). For each quartile and energy bin, we
re-simulate the data with the same underlying model pa-
rameters but different PSF parameters. We stack these
simulations together where appropriate (e.g. when test-
ing multiple quartiles simultaneously, or when consider-
ing a broad energy range). When we analyze the simu-
lated data, we use the worst PSF for any subset of the
simulated data, which is consistent with what has been
done in previous studies on the real data [3, 45]. For ex-
ample, if the simulated data involved photons from the
top three PSF quartiles and a range of energies from Emin

to Emax, the PSF parameters used will correspond to the
third-best PSF quartile and the energy Emin (since the
angular resolution of Fermi improves monotonically with
increasing energy).

C. Energy range

Varying the energy range of the data selection has
multiple effects. Including a wider range of energies ef-
fectively increases the exposure; including lower-energy
photons worsens the angular resolution. As mentioned
above, we use the real PSF of Fermi for different en-
ergy ranges as one way to probe the effects of varying
angular resolution. However, changing the energy range
has additional effects that are not reducible to changes
to angular resolution and exposure: low-energy photons
are more abundant than high-energy ones in general, but

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html
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also the spectra of the various emission components are
different. Consequently, changing the energy range will
modify the flux fraction associated with the GCE (and
all other components). The choice of energy range thus
needs to be optimized depending on the signal of interest.

To address the specific question of the optimal en-
ergy range for GCE studies, we change our energy cut
on the real data and then repeat the analysis described
in Sec. III. That is, we re-fit the templates to the real
data with the new energy range, simulate the data based
on these new template parameters, and determine the
sensitivity to PSs as a function of energy range.

D. Pixel size

Another somewhat ad-hoc choice in the standard
NPTF analysis is the choice of spatial binning for the
photons, i.e. the size of the equal-area HEALPix pixels
(or equivalently, their number). Following previous stud-
ies such as [3, 14, 41], we utilized nside = 128 for the
majority of our analysis. The reason for this choice is
the similarity between the nside = 128 pixel radius and
Fermi ’s angular resolution in the energy range of interest.

If the pixel size chosen is substantially smaller than
the angular resolution, PSs will always occupy multiple
pixels, and the fact that NPTFit does not model correla-
tions between neighboring pixels could lead to a loss of
sensitivity. In the extreme limit of small pixel size, where
all pixels contain either 0 or 1 photons, all sensitivity to
PS populations would be lost. On the other hand, pix-
els much larger than the angular resolution increase the
background from diffuse signals in any given pixel, and
again this might be expected to reduce the sensitivity to
PSs.

To examine these effects in detail, we use the same tem-
plate parameters derived from the data for nside = 128
(without any adjustment of parameters or priors) but
simulate skymaps at nside = 512 using the procedure de-
scribed in Sec. III. After generating simulated skymaps
at this higher resolution, we can increase the pixel size
for each realization as desired, using a HEALPix pack-
age that combines “children” pixels to create a super-
pixel, while accounting for proper normalization of pho-
ton counts [53]. This preserves the distribution of sources
in the individual realizations as we explore different pixel
sizes.

For variations in pixel size, priors do not need to be
adjusted. Instead, the templates must be properly nor-
malized within the ROI to ensure accurate scaling during
parameter retrieval (see Appendix A).

E. Source brightness

The previously-discussed parameters describe instru-
mental properties and analysis choices. In this section,

we discuss how the template model parameters are ad-
justed to describe a genuinely different source popula-
tion. In analyses of sensitivity as a function of source
brightness, our goal is to understand the potential of the
NPTFit algorithm to detect faint sub-threshold sources.

The brightness of PSs can be varied by adjusting the Sb
and APS parameters of the SCF (Eq. 31). We tested the
effect of varying the brightness of individual PSs while
keeping the total flux in the PS population fixed (as ap-
propriate for a PS population making up most or all of
the GCE). Using Eq. 33, this requirement can be satisfied
by simultaneously varying Sb and APS as follows:

Sb → nSb, APS →
1

n2
APS (37)

For example, if n = 1/2, the number of photons each
source emits is reduced by half, however, the number of
sources increases by a factor of 2 to compensate. This
equates to a factor of 4 increase in the template normal-
ization factor APS, since the number of sources scales as
APSSb.

As for the exposure tests, when we rescale the simu-
lated parameters we also rescale the priors in the fit to
simulated data. For example, if Sb → nSb and there
was initially a linear prior on Sb in the range [0.05, 80],
the new prior is linear with range [0.05n, 80n]. If the
prior on log10APS is initially [−6, 1], it is adjusted to
[−6− 2 log10 n, 1− 2 log10 n]. We also checked the effect
of keeping the priors fixed; except in situations where the
true parameters approached the edge of the prior (or fell
outside it), the effect was minimal.

For all simulations involved in the variation of source
brightness, the number of live points we used to scan the
data was set to nlive=100 for computational efficiency.

V. A SIMPLIFIED ISOTROPIC SCENARIO

Before analyzing the results with all templates, we per-
form a simplified analysis including only isotropic com-
ponents in our simulations, and approximating the ex-
posure map as uniform. This analysis serves as a test
of our analytic predictions. We describe some additional
studies under this simplified scenario in Appendix D.

In this case, our normalization convention for the emis-
sion templates requires that the templates T and TPS are
both 1 in all pixels within the ROI. The normalization
of the simulated signals was determined by matching the
parameters for the PS component (APS, n1, n2 and Sb)
to the isotropic PS component extracted from the real
Fermi data. For our baseline analyses, the smooth com-
ponent normalization was chosen such that the total flux
contributions of the smooth isotropic and PS components
are equal. Explicitly, given our normalization convention
for the templates T and TPS, this means that A(θ)smooth

is given by:

A(θ)smooth = A(θ)PSS
2
b

[
(n1 − n2)

(n1 − 2)(2− n2)

]
(38)
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where (as previously) A(θ)PS is the template normaliza-
tion for the emission associated with the isotropic PS
population, Sb is the break of the source-count function,
and n1, n2 are the slope of the source count functions
defined by a singly-broken power law.

As previously, we use NPTFit-Sim to simulate PSs and
a Poisson draw to simulate the smooth component. The
priors on the various parameters are set as discussed in
Sec. IV and Appendix A. (Note that if the simulated
value of Asmooth was outside the prior range on Aiso in
the main analysis, we would need to adopt different priors
for this isotropic study, but in fact it lies well within the
prior range so this is not a problem.)

A. Variation of exposure (narrow PSF)

The analytic approximations we derived in Sec. II as-
sumed that the PSs were not smeared by the PSF. Thus
as a cross-check of the scaling behavior estimated from
our analytic results, we performed an initial set of simu-
lations where the PSF was taken to be extremely narrow
(i.e. the angular reconstruction was effectively perfect),
covering a range of exposure levels χ. Specifically, we
sampled exposure rescaling factors χ between 10−2 and
10 (recall χ = 1 corresponds to the baseline exposure),
and for each case generated and scanned skymaps that
employed a Gaussian PSF with a tiny variance 10−20. For
each choice of χ we ran the analysis for 10 simulated real-
izations, and for each realization evaluated the ln BF be-
tween models with and without isotropically distributed
PSs (both models allow for an isotropically distributed
smooth component).

Fig. 1 plots the Bayes factor preference in favor of PSs
as a function of exposure, together with the analytic so-
lution for the likelihood ratio in the case where PSs and
background are equally bright (Eq. 19 with k = 1/2 and
s = Sb). We also show the result of including only the
linear ks/2 term in the analytic estimate of Eq. 19.

For each choice of exposure, we evaluate 〈ln BF〉(χ)
by taking the average of ln BF across realizations at each
exposure level; we also compute the standard error of the
mean across the realizations for this quantity at each χ
value (indicated by magenta vertical bars in Fig. 1).

We work by default (here and in the remainder of this
work) with the log of the Bayes factor between models,
rather than the likelihood ratio; however, in this specific
example we also evaluated the log likelihood ratio and
found that it was generically quite close to the log Bayes
factor (and in particular the difference between the two
was not responsible for the difference between the numer-
ical results and the analytic approximation for 〈∆ lnL〉).
Thus we treat our analytic approximation as a rough es-
timate for 〈ln BF〉.

For these parameter choices, we observe that the ana-
lytic form mildly overestimates the sensitivity, by a factor
of roughly 20-30% in 〈ln BF〉 at high exposure, but accu-
rately captures the fall-off of the detection sensitivity at

low exposure, and the scaling at high exposure. The re-
maining discrepancy is likely due to the approximations
we have made in deriving our analytic results (e.g. re-
lating to the shape of the probability distribution, and
assuming we can treat all integrals as having limits ±∞,
as well as approximating the SCF as a delta-function).

We observe a consistent scatter at the O(10%) level
in 〈ln BF〉 between different realizations, which does not
obviously decrease at large χ. (Note that here we are
discussing the standard deviation across realizations, not
the standard error of the mean; the latter is smaller by
a factor of 1/

√
nrealizations.) This can be understood in

terms of our variance calculations in Sec. II. The param-
eters we have simulated correspond to 5.61χ photons/-
source, 2808 pixels, and an average of 0.11 sources/pixel;
thus we expect a total number of sources in the ROI
around 280, and a standard deviation in the log likeli-
hood ratio that is of order 〈ln BF〉/

√
280 ∼ 0.06〈ln BF〉

or
√
〈ln BF〉, whichever is larger. This is consistent with

the O(10%) scatter we observe at high exposure.
In addition to the comparison to the analytic predic-

tion, we can parameterize the scaling of the sensitivity
with χ as a power law and fit for the parameters (al-
though power-law behavior should be expected to break
down at sufficiently small χ, where ln BF can attain neg-
ative values). The fitting function we use is:

〈ln BF〉(χ) = αχβ + γ, (39)

where the offset parameter γ serves to correct the behav-
ior at small χ where there is not enough data to detect
a significant signal. For each value of χ we took the
central value of 〈ln BF〉(χ) to be the average over real-
izations, with an error bar determined by the standard
error of the mean, and performed a least-squares fit. The
resulting best-fit model is also plotted in Fig. 1.

B. Variation of exposure (realistic PSF)

In a realistic scenario, we will always have to deal with
a PSF that is not arbitrarily narrow. We repeat the
simulation and analysis described above using the full
PSF appropriate to the real Fermi dataset (for the top
PSF quartile), and show results in Fig. 2. We compare
these results to the same analytic solution (i.e. with no
allowance for the PSF) as in the previous analysis, and
again perform a least-squares fit to a simple power law
fitting function.

We observe that the analytic solution still describes the
shape of 〈ln BF〉 as a function of χ quite well, but now the
discrepancy in our sensitivity metric is more pronounced
(a factor of a few at high χ). At least qualitatively, this
discrepancy can be largely absorbed by taking s/Sb to
be a constant other than unity; Fig. 2 shows the effect
of using the analytic approximation with s replaced by
Sb/3. The variance remains O(10%) at high χ, which
can be understood as discussed above.
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FIG. 1. ln BF across 10 realizations (circle markers), and 〈ln BF〉 with error bars obtained from the σ/
√

10 standard error of
the mean (magenta), for varying values of χ/exposure. Signal and background are isotropic and both simulations and scans
employ a narrow Gaussian PSF. The green dashed line denotes the modified power law fit defined in Eq. 39. The orange dotted
line denotes the first (linear) term of the analytic form Eq. 19, while the blue dash-dot line denotes the full analytic solution
described in Eq. 19.
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FIG. 2. ln BF across 10 realizations (circle markers), and 〈ln BF〉 with error bars obtained from the σ/
√

10 standard error
of the mean (magenta), for varying values of χ/exposure. Signal and background are isotropic and both simulations and
scans employ a realistic PSF model. The green dashed line denotes the modified power law fit defined in Eq. 39. The orange
dotted line denotes the first (linear) term of the analytic form in Eq. 19, while the blue dash-dot line denotes the full analytic
approximation from the same equation with s→ Sb. The black dash-dot line shows the analytic approximation with s→ Sb/3.

In this more realistic case, we thus recommend using
the analytic estimate only to understand scaling behavior
rather than as a quantitative estimate of the expected
sensitivity, although a reasonably good description can
be obtained by fitting a constant rescaling factor to be
applied to s.

C. Variation of relative flux contributions

We can also test the effects of varying the relative flux
contributions of the smooth and PS components while
allowing the total flux to remain constant. Fig. 3 demon-
strates how the sensitivity changes as the PS flux fraction
is varied, for both the narrow PSF and realistic PSF (top
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quartile) cases. For comparison, we also overlay the pre-
dictions given by our analytic approximations, Eq. 19,
with s→ Sb and s→ Sb/3. We find that as the relative
contribution of the PS component increases, the sensitiv-
ity of NPTFit to PSs naturally increases with a shape con-
sistent with the analytic prediction provided by Eq. 19,
and in the narrow-PSF case the s→ Sb substitution pro-
vides quantitatively accurate results. Although the case
where the map is simply produced with a smooth compo-
nent is not shown in the figure due to the log-scaling, the
result averages to −0.54±0.067 in the realistic-PSF case
and −0.56± 0.14 in the narrow-PSF case, both of which
are small, as expected. In the regime where there is no
significant preference for PSs, we expect the Bayes factor
in favor of the model without PSs to be highly dependent
on the choice of priors (as also discussed in e.g. [11, 42]).
We explore this point further in Appendix C.

0 20 40 60 80 100
% of PS component relative to the total emission
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102

103
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BF

Variation of the Subdominant Component

Analytical Prediction <  ln >
Analytical Prediction <  ln > , Sb/3
Average (narrow PSF)
Average (realistic PSF)

FIG. 3. ln BF across 10 realizations (circle markers), and
〈ln BF〉 with error bars obtained from the σ/

√
10 standard

error of the mean (magenta, brown), as the relative contribu-
tions between a smooth and PS component within an isotropic
map are varied, for realistic and narrow PSF prescriptions.
Dashed lines indicate the analytic prescription of Eq. 19 with
the replacements s→ Sb (black) and s→ Sb/3 (red).

VI. RESULTS OF SIMULATED PARAMETER
VARIATIONS IN THE FULL INNER GALAXY

ANALYSIS

In this section we now proceed to a numerical analysis
using simulated Fermi data for the inner Galaxy, employ-
ing the complete set of templates discussed in Sec. III.
The results of this section can thus be used directly to
optimize NPTFit-based approaches to studies of the inner
Galaxy and GCE.

A. Varying the exposure

As in the isotropic case, we sampled exposure rescaling
factors χ between 10−2 and 10. For each choice of χ
we ran the analysis for 20 simulated realizations, and for
each realization evaluated the ln BF between models with
and without the GCE PS template.

Fig. 4 shows the resulting values of ln BF for each expo-
sure level. We evaluate 〈ln BF〉(χ) by taking the average
of ln BF across realizations at each exposure level (indi-
cated by magenta vertical bars in the figure along with er-
ror bars that denote the σ/Nrealizations (where Nrealizations

is the number of realizations in a given sample) standard
error of the mean across all the realizations within a par-
ticular case).

As discussed in Sec. V, we fit a power-law function
(Eq. 39) to the data for 〈ln BF〉(χ). The resulting best-fit
parameters are given in Table II, and the best-fit model is
plotted in Fig. 4 (solid blue line). We find approximately
that 〈ln BF〉 ∝ χ0.8 at large BF. This is broadly consis-
tent with our expectation from the analytic estimate in
Sec. II that 〈ln BF〉 should scale ∼linearly in χ.

Recovered Parameters p6v11

α (coefficient) 11.30± 0.69
β (power) 0.76± 0.04
γ (shift) −0.62± 0.20

TABLE II. Best-fit parameters obtained using least-squares
regression method along with the 1σ error for the power law
fit of 〈ln BF〉 to χ, as defined in Eq. 39.

B. Varying the angular resolution

1. PSF models for different quartiles

We begin by examining how the sensitivity of NPTFit
varies when the top three quartiles of data by PSF are
analyzed separately, keeping the energy range fixed at
its default value of 2− 20 GeV. Quartiles are labeled in
order of decreasing angular resolution (so e.g. “PSF 01”
represents the best quartile).

Within each quartile, we simulated and analyzed 20
realizations. All simulations are generated at a rescal-
ing factor of χ = 1. Fig. 5 shows a striking decline in
sensitivity in the quartiles with worse angular resolution.
As previously, we display both the scatter between real-
izations and the average 〈ln BF〉 across realizations for a
given quartile.

2. PSF models for different energies

Another practical way to vary the angular resolution
in Fermi data is to modify the energy window. We first
examined the (theoretical) case where the angular resolu-
tion is varied while keeping all other parameters constant.
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FIG. 4. ln BF across 20 realizations (circle markers), and 〈ln BF〉 with error bars obtained from the σ/
√

20 standard error of
the mean (magenta), for varying values of χ/exposure. Left : realizations with χ < 1. Right : realizations with χ ≥ 1. The
best-fit line is a standard power law with an additive shift defined in Eq. 39.
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FIG. 5. ln BF across 20 realizations (circle/star/diamond
markers), and 〈ln BF〉 with error bars obtained from the
σ/
√

20 standard error of the mean (magenta), for the top
three PSF quartiles.

We re-simulated the data with the original exposure map
(χ = 1) but with PSF corresponding to the appropriate
Fermi PSF for energies between 0.6 GeV and 3.2 GeV
(recall that the baseline analysis uses the Fermi PSF at
2 GeV), in the top PSF quartile. In each case we per-
formed 20 realizations.

In Fig. 6 we plot the resulting values of ln BF, against
the value of the 68% containment angle associated with
each PSF model (in degrees), which we denote η. We

also include the results for the 2 GeV PSF in all three
quartiles (discussed above).

To summarize the results, we fit the data with a power
law, 〈ln BF〉(η) = aηb, using the same least-squares anal-
ysis as described above for the case of 〈ln BF〉(χ). Tab. III
displays the resulting best-fit parameters. We find that
〈ln BF〉(η) ∝ η−1, i.e. the sensitivity appears to scale
approximately inversely with the containment radius, at
least while holding the pixel size constant at nside = 128.

Parameter p6v11

a (coefficient) 2.5± 0.6
b (power) −1.0± 0.2

TABLE III. Recovered parameters and the 1σ error for the
power-law fit to 〈ln BF〉 as a function of 68% containment
angle.

Thus as a rule of thumb, we expect an increase in the
exposure by a factor of n to be approximately compen-
sated by an increase in the containment radius (not the
containment area) by a factor of n; if the exposure can
be more than doubled while worsening the containment
angle by less than a factor of two, this will generally be
a beneficial tradeoff.

Note that our choice of nside = 128 corresponds to a
mean pixel spacing (0.46◦) that exceeds or is comparable
to the 68% containment angle for all but the widest en-
ergy range (0.6-20 GeV) that we consider. We will show
in Sec. VI C that decreasing the pixel size below the PSF
does not appear to have large effects on the expected
sensitivity (although it can increase the variance), but
studies focusing on a broader energy range might still
wish to test smaller nside values to reduce leakage of PSs
into neighboring pixels.
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FIG. 6. ln BF across 20 realizations (circle markers), and 〈ln BF〉 with error bars obtained from the σ/
√

20 standard error of
the mean (magenta), as a function of the 68% containment angle of the PSF. Realizations are obtained by considering the top
PSF quartile for different energy ranges; for the baseline 2− 20 GeV range, we test each of the top three quartiles individually.
The best-fit line (black) is the power-law fit to the 〈ln BF〉 obtained using least-squares. The baseline case (blue vertical line)
denotes the baseline case 2-20 GeV for quartile 1, typically used in previous Fermi analyses.

3. Simultaneous variation of exposure and angular
resolution

To check the stability of the scaling rules we have found
so far and the validity of this simple estimate, we now ex-
plicitly test the effect of simultaneously varying the an-
gular resolution and the exposure. In many realistic situ-
ations, and in particular for Fermi data, relaxing cuts on
photon quality will simultaneously increase the effective
exposure and worsen angular resolution.

We repeat the analysis described in Sec. VI A for sim-
ulated data using the appropriate PSF model for PSF
quartiles 2 and 3, with 20 realizations for each combina-
tion of χ and quartile. We scanned the realizations at
nlive = 300. Our results for 〈ln BF〉(χ) for each quartile
are summarized in Fig. 7. As in Eq. 39, we fit the data
for each quartile with a power law with a constant offset,
and provide the best-fit parameters in Tab. IV.

In general we observe that the slope appears to become
steeper (more rapid increase in sensitivity with exposure)
in quartiles with worse angular resolution. This reflects
that significant detection of PSs requires a higher χ value
when the angular resolution is worse, but for sufficiently
large χ factors, the significance becomes almost indepen-
dent of angular resolution. This may be related to the
pixels surrounding a PS becoming bright enough to be
individually detected as significant PSs.

We can also test the effect of stacking together the
simulated data corresponding to the different quartiles,
which has the effect of increasing the effective exposure
χeff > χ relative to the one-quartile case. The sum of the
first and second quartile has χeff = 2, and the combined
top three quartiles have χeff = 3.

Fig. 8 shows the sensitivity based on 20 realizations for
each of these three cases scanned at nlive=300. We find
that to quite a good approximation, the increased num-
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ber of photons simply cancels out the effects of wors-
ening the angular resolution on average. As a sim-
ple estimate we calculated the combined effects of the
predictions of varying the exposure and angular reso-
lution. To do so, we define a rescaling factor r =
rexposure(χ)rPSF(Quartile), where rexposure(χ) is the ratio
of the expected log BF at exposure χ, denoted 〈ln BF〉(χ),
to the baseline expected log BF 〈ln BF〉(χ = 1), as ob-
tained from Eq. 39 and Table II. Thus rexposure(χ) char-
acterizes the increase in sensitivity with enhanced expo-
sure. rPSF(Quartile) is the ratio of the expected log BF
for a specified single quartile, denoted 〈ln BF〉(Quartile),
to the baseline expected log BF 〈ln BF〉(Quartile = 1),
obtained from Fig. 5. Thus rPSF(Quartile) characterizes
the decline of sensitivity with worsening angular resolu-
tion. 〈ln BF〉(χ) and 〈ln BF〉(Quartile) are denoted as
blue stars and orange pentagons on Fig. 8, respectively.
To obtain the combined estimate denoted by the black
filled “X”, we multiplied the calculated r factor with the
baseline value 〈ln BF〉(Quartile 1) obtained from the re-
alizations for the baseline case in Fig. 8. We find that
this estimate agrees with the simulation results that on
average adding quartiles with worse angular resolutions
to gain exposure does not yield large increases (or de-
creases) in the average sensitivity to PSs.

Quantitatively, Q3 has a containment angle slightly
more than twice that of Q1 (see Fig. 6), while includ-
ing Q2 and Q3 triples the exposure. The scaling of the
sensitivity with exposure is slightly sublinear whereas for
containment angle it is linear to a good approximation,
and in practice we find that these two effects almost com-
pletely cancel out. Thus the overall sensitivity is (per-
haps surprisingly, and somewhat coincidentally) insensi-
tive to the inclusion of additional quartiles.

We might wonder if by approximating the PSF in the
stacked dataset as the PSF of the worst quartile, we in-
troduce biases in the recovered parameters. We checked
this explicitly over our sample of 20 realizations. On
average, we find that the median parameter deviations
were rather small, mostly at < 1σ level, with some ex-
ceptions for components such as the isotropic emission.
However, we also checked cases where we stacked differ-
ent realizations of the same quartile, so that the PSF was
the same between different subpopulations and was thus
modeled in the same way for the simulated data and the
fit. We found, on average, that the biases were similar in
these cases; they were not obviously worsened by stack-
ing maps with different PSFs, while modeling with the
worst PSF. Thus, the mis-reconstruction cannot be at-
tributed to mismodeling of the PSF in a subset of the
data.

4. Varying the energy range

While we have previously explored the effect of chang-
ing the PSF to one appropriate for other energy ranges,
we now explore the effect of changing the energy range it-
self. We kept the upper limit of the energy range fixed at
20 GeV, since high-energy photons are rare and their in-
clusion/exclusion is unlikely to qualitatively change the
results. We varied the low-energy limit of the energy
range between 0.6-3.2 GeV, spanning the peak of the
GCE, by including or excluding low-energy bins. As dis-
cussed previously, the bin boundaries are log-spaced in
energy, with 10 bins per decade, starting at 0.2 GeV.

As a first test, we sought to understand how the sen-
sitivity could be expected to vary just as a result of



19

1 2 3
eff

0

5

10

15

20

25

30
ln

BF
Superposing Maps from Different PSF Quartiles

Average
Variation of Exposure
Variation of PSF Quartile
Combined Estimate
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10 standard error of the mean (magenta), stacking in-
creasing numbers of skymaps generated with different angular
resolutions (corresponding to the PSF quartiles). All scans as-
sumed the angular resolution of the worst included quartile.
The blue triangles indicate the increased sensitivity as pre-
dicted by varying the exposure, while the orange pentagons
indicate the expected worsening of sensitivity due to angular
resolution degradation. The black filled “X” symbols display
an estimate for the overall sensitivity change from combining
the two (see text for details).

the modified angular resolution combined with the larger
number of photons in low-energy bins. To explore this
question, we held the underlying physical model fixed,
and treated the enhanced number of photons as an effec-
tive exposure factor χeff, while using the appropriate PSF
for the lowest-energy photons in the analysis. Specifi-
cally, we took χeff to be the ratio of the total number
of photons in the real data (over the whole sky) in the
modified energy range, to the total number of photons in
the original energy range.

Fig. 9 shows the results of this test. The results indi-
cate that due to the worse angular resolution obtained
by including data from lower energy ranges, we expect
at best a mild increase in the (expected) sensitivity,
compared with a substantial increase in the case where
only the exposure is varied. As a first-order comparison
to our simulated results, we analyzed the combination
of the effects of varying the exposure and PSF as dis-
cussed in Sec. IV A, VI B 1. Similar to Sec. VI B 4, we
define a rescaling factor r = rexposure(χ)rPSF(η), where
rexposure(χ) is the ratio of 〈ln BF〉(χ) to 〈ln BF〉(χ = 1),
obtained from Eq. 39 and Table II. rPSF(η) is the ratio
of 〈ln BF〉(η) to 〈ln BF〉(η[2 − 20 GeV]) (baseline case),
obtained from Fig. 6. 〈ln BF〉(χ) and 〈ln BF〉(η) are de-
noted as red stars and orange diamonds on Fig. 9, re-
spectively. To obtain the combined estimate denoted by
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FIG. 9. ln BF across 20 realizations (circle markers), and
〈ln BF〉 with error bars obtained from the σ/

√
20 standard

error of the mean (magenta), varying minimum energy while
holding the parameters constant. All scans employ the angu-
lar resolution of the lowest-energy photons in the range. The
increase in photon counts is captured through an effective ex-
posure factor χeff. The red stars display the predicted effect
of this exposure variation, while the orange diamonds predict
the effect of changing the containment angle. The black filled
“X” symbols display an estimate for the overall sensitivity
change from combining the two (see text for details).

the black filled “X”, we multiplied the calculated r to
the 〈ln BF〉[2− 20 GeV] obtained from the simulations in
Fig. 9. The estimates indicate a fairly flat scaling behav-
ior of sensitivity across different energy ranges. This sug-
gests that the beneficial effects of increasing sensitivity
are canceled out by the worsening of angular resolution
at lower energy ranges.

As an example, consider varying the minimum energy
of the event selection from 2.0 to 1.0 GeV. The 68% con-
tainment angle of the PSF increases from the baseline
0.23◦ to 0.40◦. As shown in Fig. 6, this change in PSF
induces a decrease in 〈ln BF〉 by a factor of 0.58. How-
ever, the larger number of photon counts with a minimum
energy of 1.0 GeV corresponds to an effective rescaling
factor of χeff = 2.75 relative to the case with minimum
energy 2.0 GeV (ignoring differences in the spectrum be-
tween the different components). Therefore, based on
Tab. II, the value of ln BF should increase by a factor
of ∼ 2.10, if this exposure change were the only factor.
The combined effect would correspond to only a ∼ 22%
increase in ln BF. Thus in this case, we would expect the
increase in sensitivity from additional photons to come
close to offsetting the loss of angular resolution, leading
to very little net change in sensitivity (with perhaps a
slight advantage for a 1.0 GeV minimum energy). This
resembles the roughly flat behavior with energy we actu-
ally observe in Fig. 9.
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FIG. 10. ln BF across 20 realizations (circle markers), and
〈ln BF〉 with error bars obtained from the σ/

√
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error of the mean (magenta), varying the minimum energy
and updating the template parameters to match the posterior
median parameters from fits to the real data in the same
energy range. All scans employ the angular resolution of the
lowest-energy photons in the range.

This is how the sensitivity would behave if the signal
and backgrounds had identical spectra, but of course this
is not the case for the GCE. For a specific signal, such
as the GCE in this case, we need to either input a theo-
retical spectrum for each component, or re-fit the model
parameters from the real data in each energy band. We
take the latter approach here, and then repeat the sen-
sitivity analysis on data simulated using these updated,
energy-dependent parameters.

Fig. 10 shows the result of these simulations and anal-
yses. If only photon number and angular resolution were
relevant, there would be a strong argument for extending
the energy range for the analysis all the way down to 0.6
MeV (or lower), but for the actual GCE spectrum we ob-
serve that the highest expected sensitivity is obtained for
a minimum energy of 1.0 or 1.6 GeV. This energy scale
roughly coincides with the peak of the GCE distribution.

One might ask if features in Fig. 10 simply reflect fluc-
tuations in the total GCE flux inferred from the real data
in different energy ranges (used to fix the simulation pa-
rameters). We checked this explicitly and found no evi-
dence of such an association; the parameters controlling
the simulated GCE PS flux vary smoothly over the rele-
vant range of threshold energies, and the fluctuations in
Fig. 10 are thus likely to be statistical.

C. Pixel size variation

We examined a wide range of pixel size to determine
an optimal value for analysis. We started at an nside
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FIG. 11. ln BF across 20 realizations (circle markers), and
〈ln BF〉 with error bars obtained from the σ/

√
20 standard

error of the mean (magenta), varying the nside parameter.
The pixel area varies inversely with nside.

value of 512 and downgraded to nside values of 256, 128,
64, 32. At each pixel level, we computed ln BF across 20
realizations.

Fig. 11 shows the recovered sensitivity as a function
of nside. We find that there is a slight increase in the
sensitivity to a population of PSs as resolution is im-
proved. However, the scatter between individual real-
ization is also increased. It is plausible that this occurs
because with small pixel sizes there is a greater risk that
a relatively-bright source happens to land near a pixel
boundary and consequently loses significance. In realiza-
tions where this behavior happens to be rare, the signif-
icance is naturally higher than for smaller nside (as the
likelihood contributions from a larger number of pixels
are summed), but in other realizations this effective dim-
ming of the sources will markedly decrease the inferred
significance of the population. (An alternative way to
think about this is that pixels much smaller than the
PSF are not independent data points, and so by treating
them as independent we may artificially enhance the ap-
parent significance of the result [11],5 but may also miss
correlations that could reveal a signal.) In the regime
where the pixel size is significantly larger than the PSF,
we expect the significance to be reduced because we have
reduced the number of independent data points (pixels),
discarding information in the process.

It appears that nside 128 and 256 are likely the optimal
values: nside 256 has a slightly higher average sensitivity
but with considerably more scatter between realizations.
The relative insensitivity of NPTF methods to pixel size,

5 We thank Nicholas Rodd for pointing out this effect.
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in a simpler context, was previously studied in Ref. [1].
On the other end of the spectrum, low nside values

cause severe discrepancies in the recovered flux fraction
for Galactic diffuse emission and PS populations associ-
ated with the Galactic disk (Disk PS). At an nside value
of 32, for example, a significant portion of the injected
Galactic diffuse emission is absorbed into the Disk PS
template. In contrast, at the standard choices of pixel
size (such as nside = 128), the recovered flux fractions
are fairly consistent with the injection values. The left
panel of Fig. 12 shows the recovered flux fractions and
the injected values (dashed lines) for nside = 128 for the
Fermi bubbles, diffuse, GCE PS, and disk PS contri-
butions. The right panel of Fig. 12 displays the mis-
reconstruction of the diffuse and disk PS emissions due
to a large pixel size (nside = 32). The recovered flux
fractions are systematically biased across all realizations,
even in this case where the model is correct by construc-
tion. Thus low-nside analyses should be treated with
considerable caution, in addition to their lack of sensitiv-
ity.

D. Source brightness

Finally, we would like to understand how sensitivity
scales with the brightness of the sources. This is im-
portant both for understanding the prospects for future
detection of a bulge PS population with Fermi, and in
understanding the likely sensitivity of future telescopes
with different exposure and angular resolution.

We perform the same test as described in Sec. VI B 3,
where the default source brightness parameter for the
GCE PS component Sb = 17.11 is multiplied by a factor
of n = 1/2 or 1/4 (and the number of sources is modified
to keep the total flux constant). Fig. 13 shows the results,
while Table IV shows the corresponding best-fit parame-
ters and uncertainties obtained from the power-law fit in
Eq. 39, using the least-squares method.

Our results indicate that the parameter (of the power-
law fit) α increases at higher values of n. Since α corre-
sponds to the sensitivity at χ = 1, it is expected to ob-
serve an increase as the brightness of the sources increase.
On the other hand, β decreases modestly as n increases.
Assuming that 〈ln BF〉 has the same functional behavior
as 〈∆ lnL〉, our expectation from the analytic results is
β ≈ 1, at least if the fit is dominated by the region where
the expected number of counts/source and hence 〈ln BF〉
is large. However, at low brightness levels, as predicted
by the analytic equations, we expect a quadratic scaling,
β ≈ 2. Thus it is reasonable to see a stronger scaling
for smaller values of n, where the quadratic behavior is
relevant for a larger range of χ. In other words, increased
exposure is more important for fainter sources.

To clearly demonstrate the effect of varying the
source brightness on the overall sensitivity, we plotted
〈ln BF〉(χ = 1) across 20 realizations as a function of Sb,
for the top three PSF quartiles, in Fig. 14. Within the

Sb range we tested, we find that, on average, sensitivity
increases as the PS population brightens. The decrease
in sensitivity qualitatively matches expectations based
on the theoretical results presented in Sec. II, where the
expected ∆ lnL monotonically decreases as s is lowered,
although we observe significant scatter across the differ-
ent quartiles.

We eventually expect to lose all sensitivity to point
sources as their brightness becomes sufficiently small; as
Sb → 0, it becomes impossible to distinguish the PS flux
and the smooth emission, and we expect the effects of pri-
ors to dominate the results (see Appendix C for a study
of the prior dependence). Roughly speaking, we expect
the onset of this regime to occur around Sb ∼ 1 (as for
sources with counts s� 1 it will be rare to observe multi-
ple photons from a single source); more quantitatively, we
observe from the analytic approximations (Eq. 19) that
the log likelihood difference per pixel becomes rapidly
smaller once ks drops below 1. (Nonetheless, given a
sufficiently large number of pixels, it may still be pos-
sible to probe the properties of sources with s . 1, as
discussed in e.g. [50].)

Approximating the sensitivity-exposure relation by the
power law with an additive shift as in Eq. 39, we can
estimate the χ value that corresponds to ln BF ≥ 1 for
Quartile 1, as a function of the brightness of the source
population (indicating some sensitivity to the sources; we
could increase this threshold to require a more significant
detection). Using the best-fit parameters in Table IV,
we find that for n = 1, this threshold corresponds to
χ ≥ 0.08; for n = 1/2, to χ ≥ 0.18; and for n = 1/4,
to χ ≥ 0.45. As expected, a higher level of exposure is
required to detect fainter populations of PSs.

VII. CONCLUSIONS

We have investigated the statistical behavior of non-
Poissonian template fitting, as implemented in the
NPTFit public code, when characterizing unresolved
point sources. In particular we have explored the sensi-
tivity to point sources both analytically and numerically,
in a simplified isotropic-emission scenario and a realistic
scenario relevant to gamma rays from the inner Galaxy.
We define the sensitivity to point sources (or detectability
of point sources) as the ratio of the maximum likelihood
(analytic case) or Bayesian evidence (numerical case) be-
tween the true underlying model versus a model that
excludes point sources associated with the signal compo-
nent. We first derived analytic estimates of the sensitiv-
ity for point sources with a delta-function SCF, where all
sources have the same expected number of photons per
source s. We found that the expected contribution to the
log likelihood ratio from a given pixel is a function only
of ks, where k is the fraction of the emission that is at-
tributed to point sources; the scaling of the log likelihood
with ks is linear for ks � 1 and quadratic for ks � 1.
We also examined the variance in this sensitivity, reflect-
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FIG. 12. Left : Flux fraction plot at the common pixel size employed in previous analyses (nside = 128) of certain emissions:
Fermi bubbles (purple), diffuse emission (red), GCE PS (blue), disk PS (orange). Right : Flux fraction plot demonstrating
mis-reconstruction of the diffuse (red) and disk PS (orange) components at a low nside value (nside = 32). The recovered flux
fraction are obtained from 20 simulations. The vertical dashed lines denote the flux fraction injected into the simulations.

n = 1/4 n = 1/2 n = 1
Quartile 1
α (coefficient) 3.18± 0.70 7.35± 0.49 11.30± 0.69
β (power) 1.43± 0.13 0.97± 0.05 0.76± 0.04
γ (shift) 0.0003± 0.31 −0.40± 0.14 −0.62± 0.20
Quartile 2
α (coefficient) 0.48± 0.18 3.97± 0.48 6.14± 0.78
β (power) 2.24± 0.20 1.22± 0.07 1.01± 0.08
γ (shift) 0.11± 0.26 −0.34± 0.18 −0.002± 0.37
Quartile 3
α (coefficient) 0.02± 0.02 0.88± 0.39 2.44± 0.96
β (power) 3.67± 0.40 2.01± 0.22 1.50± 0.21
γ (shift) 0.18± 0.30 −0.23± 0.19 0.30± 0.37

TABLE IV. Best-fit parameters obtained using least-squares regression method for the power law fit to the ln BF values (based
on 20 realizations for each point) as we varied the source brightness of the GCE PS component in p6v11. Parameter uncertainties
obtained from the standard error of the mean across 20 realizations are also displayed.

ing the expected scatter between realizations. By ex-
ploring a range of scenarios, we found that the standard
deviation of our sensitivity metric was generically smaller
than the expectation value by a factor of

√
A, where A

can be the total number of sources in the ROI, the total
number of pixels in the ROI, or the log likelihood ratio
itself; in general, whichever parameter is smallest domi-
nates the variance. This behavior can lead to a relatively
large scatter between the sensitivity inferred from differ-
ent simulations, which we indeed observe in the numerical
data. We tested our analytic predictions using numerical
simulations in a simplified case where both point sources
and smooth emission are isotropic (detailed in Sec. V and
Appendix D), and found that the analytic results were
quantitatively quite accurate in the case where the PSF
is very narrow, and provide a good description of vari-
ous scaling relations even with a more realistic PSF. The

analytic and isotropic results may be relevant to other
analyses employing non-Poissonian template fitting, e.g.
the analysis of the neutrino background presented in [54].

We then numerically investigated the role of several
key parameters in the NPTFit analysis of a population
of point sources associated with the Fermi gamma-ray
skymap. The parameters we tested included exposure,
angular resolution, source brightness and pixel size. This
analysis was performed within the full Fermi scenario
using both p6v11 templates and Model A templates for
the Galactic diffuse emission (detailed in Appendix E).
The results we quote below are based on simulations with
the default p6v11 template from the public NPTFit code,
but we found consistent results using an alternative back-
ground model denoted Model A.

For the cases we tested, we found the following general
relationships between exposure, angular resolution, and



23

10 2 10 1 100

2

0

2

4

6

8

10
ln

BF
n = 1/2, < 1 (p6v11)

Q1
Q2
Q3

100 10110 1

100

101

102

ln
BF

n = 1/2, 1 (p6v11)
Q1
Q2
Q3

10 3 10 2 10 1 100

2

0

2

4

6

8

ln
BF

n = 1/4, < 1 (p6v11)
Q1
Q2
Q3

100 10110 1

100

101

102

ln
BF

n = 1/4, 1 (p6v11)
Q1
Q2
Q3

FIG. 13. 〈ln BF〉 and the σ/
√

20 standard error of the mean across 20 realizations at different χ values for the top three quartiles
graded by angular resolution. Left : realizations with χ < 1. Right : realizations with χ ≥ 1. In the upper panels we simulated
the sources at half of the baseline brightness (Sb = 17.11 from Table V), but doubled the number of sources, in accordance with
Eq. 33; in the lower panels we simulated the sources at 1/4 of the baseline brightness but quadrupled the number of sources.
The dashed, dotted, and dash-dotted lines correspond to the shifted power law (Eq. 39 for quartiles 1, 2, and 3, respectively).

sensitivity:

• Gaining exposure alone induces an increase in sen-
sitivity that is roughly linear for the exposure range
and analysis choices we focused on. The analytic
approximation predicts a scaling between linear
and quadratic; our results are broadly consistent
with this expectation, but in complex/realistic sky
models involving multiple templates with different
morphologies, we have observed both slightly sub-
linear scaling and stronger-than-quadratic scaling,
the latter in quartiles with poor angular resolution.

• Worse angular resolution results in lower sensitivity

(as expected) such that the third-highest-quality
angular resolution quartile has average sensitivity
approximately 60% lower than of the highest qual-
ity quartile (although the degree of degradation
can vary depending on the exposure level and the
brightness of the sources, with the loss of sensitiv-
ity being more pronounced for fainter sources and
lower exposure).

• As a simplified parametrization of the angular reso-
lution (which varies according to quartile selection
and included energy range), we examined how the
sensitivity varies according to the 68% containment
angle radius η, and found that sensitivity has an
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FIG. 14. 〈ln BF〉 and the σ/
√

20 standard error of the mean
(obtained from 20 realizations at each point) across the top
three quartiles at varying brightness level for the full Fermi
case, with the baseline exposure. The best-fit Sb in the real
data is 17.11; we test the effect of reducing Sb by a factor of
2 or 4. The baseline case was scanned using nlive=300, while
the other cases were performed using nlive=100 for computa-
tional efficiency.

approximate inverse proportionality relation to η.

• With these results, we tested the effects of increas-
ing exposure at the expense of angular resolution
in practical situations relevant to Fermi data, by
varying the quartile selection and energy range. We
find, on average, that the increase in sensitivity
from a larger exposure is offset by the degraded
angular resolution to a good approximation.

• Hence, this tradeoff only produces a small net
change in sensitivity; there is a broad range of pos-
sible analysis choices that yield similar expected
sensitivity. The large scatter in sensitivity between
realizations means that some caution is needed
when interpreting changes in the Bayes factor in
real data upon addition of extra quartiles, energy
bins, ROI, etc; it appears possible for changes in
the analysis choice that modify the dataset to have
a large apparent effect on the Bayes factor purely
due to this scatter.

Note that the properties (for the exposure vs angular
resolution tradeoff) identified above are specific to the
current implementation of NPTFit, which assumes that
all photons share the same angular resolution (fixed by
the worst angular resolution in the dataset). It is possi-
ble that a more sophisticated approach that tracks angu-
lar resolution separately for different categories of pho-
tons could lead to a greater benefit from including lower-
angular-resolution quartiles or lower-energy photons.

We also examined the role of source brightness to the
sensitivity of NPTFit to point sources to understand how
the sensitivity falls off as the source brightness declines.
For sufficiently faint point sources, as expected, NPTFit
is unable to distinguish point sources from background
smooth emission. More specifically, in the top graded
quartile for angular resolution, the minimum exposure
(in relation to the baseline exposure) required to achieve
any hint of detection (defined somewhat arbitrarily as
an average Bayes factor ln BF ≥ 1) scales as O(S−1.28

b ),
where Sb is the peak number of photons per Galactic
Center Excess point source.

We explored simulations with different pixel sizes, and
found that pixel size was not a crucial factor in deter-
mining the sensitivity of NPTFit, except in the case of
extremely large or small pixel sizes. Very large pixel sizes
induced inaccurate recovery of the various physical emis-
sion components; small pixel sizes led to higher variance
across realizations.

These results serve as a systematic demonstration of
the behavior of NPTFit under a range of conditions rel-
evant to analyses of Fermi data from the inner Galaxy
(and potentially more broadly).
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Appendix A: Detailed Methodology

1. Analysis templates

In this appendix we detail the spatial templates we
used in our analyses, and the physical processes they at-
tempt to capture. For our primary (p6v11) analysis we
largely used the templates that were publicly released
with the NPTFit code package, as we summarize below.
In Appendix E we test the effects of using an alternative
pair of templates to describe the Galactic diffuse emission
(vs a single template in the p6v11 analysis), collectively
denoted Model A.

http://iaifi.org/
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• Fermi Bubbles
The Fermi Bubbles are large lobes of extended hard
gamma-ray emission that appear to be emanating
from the vicinity of the GC [55]. The exact origin
of this large structure is currently unknown. The
default template in NPTFit is based on Ref. [55] and
has a uniform intensity within the Bubbles region
(prior to exposure effects). This template has a sin-
gle associated degree of freedom, its normalization
parameter Abub.

• Isotropic Background
An appreciable fraction of the overall gamma-ray
emission is expected to originate from extragalac-
tic sources and possess an approximately isotropic
distribution [56–59]. We thus include a template
for emission that is isotropic across the full sky
(prior to applying exposure effects). This emis-
sion includes photons from both relatively bright
sources and much fainter sources, so we include
two isotropic components, one representing smooth
emission and one representing PSs.

The smooth isotropic template has a single de-
gree of freedom: its template normalization pa-
rameter Aiso. The non-Poissonian template for
isotropic PSs has one degree of freedom for its
normalization (APS

ISO) and three degrees of freedom
associated with its SCF, as described by Eq. 31,
{nISO-PS

1 , nISO-PS
2 , SISO-PS

b }. Note that we label PS
templates with capital letters and Poissonian tem-
plates with lower-case letters.

• Galactic Center Excess (NFW Profile)
The template for the GCE is constructed from the
line-of-sight projection of the square of a gener-
alized Navarro-Frenk-White (NFW) profile [9, 60,
61]. The explicit form of the density profile of the
generalized NFW for the Milky Way is:

ρ(r) ∝ (r/rs)
−γ

(1 + r/rs)3−γ (A1)

where rs = 20 kpc, γ = 1.25. The line of sight pro-
jection to determine the 2D spatial flux distribution
is:

J(ψ) =

∫ ∞
0

ρ2(r)ds (A2)

where ψ is the angle away from the GC, s is the
line-of-sight distance, and r2 = R2 + s2− 2Rs cosφ
where R is the distance between the Earth and the
GC.

As for the isotropic emission, we use this spatial
morphology for two different emission components,
one smooth and one representing a PS population.
The smooth isotropic template has a single degree
of freedom: its template normalization parame-
ter Agce. The non-Poissonian template for GCE-
distributed PSs has one degree of freedom for its

normalization (APS
GCE) and three degrees of freedom

associated with its SCF, as described by Eq. 31,
{nGCE-PS

1 , nGCE-PS
2 , SGCE-PS

b }.

• Galactic Diffuse Emission
The Galactic diffuse emission is the dominant con-
tributor to the total gamma-flux in the energy
range relevant to Fermi. There are three main
contributors to this emission: (1) Proton collisions
with the gas, which produce pions that decay to
photons, pp→ X+π0 → X+γγ, (2) Inverse Comp-
ton Scattering (ICS) driven by cosmic ray electrons
upscattering abundant low-energy photons in the
interstellar radiation field, and (3) cosmic ray elec-
trons scattering on the ambient gas, which pro-
duces photons via bremsstrahlung. The first two
processes generally dominate the total emission.

In our default analysis, the diffuse emission is mod-
eled as a single smooth template similar to the
p6v11 diffuse model packaged with the public ver-
sion of NPTFit, but accounting for 573 weeks of
data. This template has a single degree of freedom:
its template normalization parameter Adif-p6v11.
This template is quite old and is known to have
significant deficiencies for modeling the real Galac-
tic sky (e.g. [43]), so in Appendix E we tested the
effect of replacing this template with two separate
templates based on the Model A of Ref. [20]. One
template corresponds to the π0 and bremsstrahlung
emission (which traces the gas), the other to the
ICS component. Each template has a single degree
of freedom corresponding to its normalization pa-
rameter; these parameters are denoted Apibrem and
Aics respectively.

• Disk-Correlated Sources
The galactic disk of the Milky Way contains many
gamma-ray PSs, which we model as having a dou-
bly exponential thick-disk source distribution [3].
The 3D number density of sources is approximated
as:

n(z,R) ∝ exp

[
−R

5 kpc

]
exp

[
−|z|
1 kpc

]
(A3)

where R and z are respectively the radial distance
from the GC and the height above the Galactic
disk. This number density function is then inte-
grated along the line of sight as described for the
GCE template.

• Template Normalization
We normalize each of these templates according to
the standard NPTFit convention. For smooth/Pois-
sonian components, we store counts templates de-
noted by T , which include a factor of the exposure
map (i.e. they are in counts not flux), are smoothed
by the PSF, and are normalized to have an aver-
age of one count/pixel in the region within 30◦ of
the GC where |b| > 2◦. The maps of expected
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FIG. 15. The singly-broken power law form (median and
the 68% and 95% containment bands) that characterizes the
source count functions for the Disk PS, GCE PS, and Isotropic
PSs components obtained from Fermi data collected until
2019. These functions were also used to describe and gen-
erate simulated data.

counts per pixel for a smooth/Poissonian compo-
nent are thus given by AsmoothT for each compo-
nent, and Asmooth describes the average number of
counts/pixel in the normalization region. For PS
components, the templates TPS denote the num-
ber of sources per pixel rather than the number of
photon counts per pixel, and so do not include the
instrument response functions (i.e. PSF smooth-
ing and multiplication by the exposure map). The
TPS templates are normalized so that when TPS is
multiplied by the exposure map, the mean of the
resulting map is equal to the mean of the exposure
map (in the same normalization region as discussed
above). The map of expected sources per pixel is
proportional to this normalized TPS map, with the
normalization controlled by APS and the properties
of the SCF, as in Eq. 31.

2. Analysis parameters

The baseline analysis parameters we used to create
the sky map simulations were obtained by fitting the
real Fermi data (with the data selection described in
Sec. III A) using NPTFit. We perform the fit at nlive
= 500 for greater accuracy, and we choose the ROI as
described in Sec. III B. The priors used in this fit, which

are also used to analyze simulation data, are given in
Table VI. In Fig. 15, we plot the best fit source count
functions (SCF) we obtained, which describe PSs we in-
jected into our skymap simulations. Note, however, that
these source count functions are quite peaked in flux, and
the GCE SCF in particular can be treated approximately
as a delta function (as we discuss in Appendix B).

The resulting posterior median parameters, which are
used to generate simulations, are given in Table V. As we
will discuss shortly, we repeated the analysis for two dif-
ferent choices of Galactic diffuse emission model, labeled
p6v11 and Model A, which include different numbers of
templates; consequently, some templates are only rele-
vant for one of the two diffuse models.

Parameters p6v11 Model A

log10 Abub 0.03 −0.03

log10 Aiso −2.16 −1.17

log10 Agce −2.31 −2.09

log10 Adif-p6v11 1.22 -

log10 Apibrem - 0.97

log10 Aics - 0.84

log10 A
PS
GCE −2.47 −1.32

nGCE-PS
1 4.39 4.48

nGCE-PS
2 −1.57 −1.37

SGCE-PS
b 17.11 5.56

log10 A
PS
DSK −3.73 −2.53

nDSK-PS
1 2.40 2.28

nDSK-PS
2 −1.23 0.08

SDSK-PS
b 48.64 12.86

log10 A
PS
ISO −1.60 −4.92

nISO-PS
1 4.25 3.69

nISO-PS
2 −1.24 −0.57

SISO-PS
b 5.61 27.41

TABLE V. Posterior median parameters extracted from data
collected until 2019 by Fermi, and used to generate simulated
data. The two columns correspond to (left) use of a single
diffuse Galactic emission template, labeled “dif-p6v11”, and
(right) use of two diffuse Galactic emission templates, labeled
“pibrem” and “ics”.
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Parameter p6v11 Model A

log10 Abub [−3,1] [−3, 1]

log10 Aiso [−3, 1] [−3, 1]

log10 Agce [−3, 1] [−3, 1]

log10 Adif-p6v11 [−3, 1] -

log10 Apibrem - [−2, 2]

log10 Aics - [−2, 2]

log10 A
PS
GCE [−6, 1] [−6, 1]

nGCE-PS
1 [2.05, 5] [2.05, 5]

nGCE-PS
2 [−3, 1.95] [−3, 1.95]

SGCE-PS
b [0.05, 80] [0.05, 80]

log10 A
PS
DSK [−6, 1] [−6, 1]

nDSK-PS
1 [2.05, 5] [2.05, 5]

nDSK-PS
2 [−3, 1.95] [−3, 1.95]

SDSK-PS
b [0.05, 80] [0.05, 80]

log10 A
PS
ISO [−6, 1] [−6, 1]

nISO-PS
1 [2.05, 5] [2.05, 5]

nISO-PS
2 [−3, 1.95] [−3, 1.95]

SISO-PS
b [0.05, 80] [0.05, 80]

TABLE VI. Prior ranges employed for analyses of both real
and simulated data, unless specified otherwise in the text.

3. Simulation procedure

We generated exposure maps for our event selection
using the Fermi Science Tools, and then simulated re-
alizations of the gamma-ray sky using the parameters
of Table V, modified by any variations that we wanted
to test. When we performed variations that shifted the
simulated values of individual parameters, we shifted the
relevant priors to ensure they were still appropriate; see
the sections relevant to individual analyses for details.

We worked in Python 3.6.4. For templates represent-
ing smooth emission, we performed a standard random
Poisson draw to obtain the counts per pixel; for non-
Poissonian templates, we simulated sky realizations using
the public code package NPTFit-Sim.

All simulations were done using HEALPix with nside =
128, with the exception of tests described in Sec. VI C
and analogous tests in the appendices). We simulated
and saved realizations of each individual template, and
then summed them to obtain mock realizations of the
Fermi dataset.

Appendix B: Degree to which the SCF approximates
a delta-function

To demonstrate the sharpness of the peak of the
SCF, we studied how the sensitivity of our NPTFit-based
pipeline to GCE PSs varies as the SCF width of the GCE
PS component narrows. In the SCF described by Eq. 31,
we varied the value of n2 while constraining n1 to its pos-
terior median value (4.39), which corresponds to a steep

drop at high flux. We adjusted APS to preserve the total
number of photons across each scenario.

We began by testing very negative values of n2 =
−30,−20,−10, corresponding to near-delta-function
forms for the SCF. The left panel of Fig. 16 displays the
resulting ln BF values (with 10 realizations at each n2

value and nlive=300). The sensitivity results were very
stable as we varied n2 in this range, indicating that our
baseline choice of SCF is not meaningfully different from
a delta function for the purpose of sensitivity calcula-
tions. We then continued increasing n2 to larger values
(up to 0.8), as shown in the right panel of Fig. 16; the
results remained relatively stable for n2 < 0, but the sen-
sitivity dropped off after that point, by approximately a
factor of 2.

Our ability to test even broader SCFs is limited by our
functional form for the SCF, which only has one break
in the power law; increasing n2 above 1 would mean the
sources are predominantly low-luminosity, but in the ab-
sence of a low-end break in the SCF, this would yield
an infinite number of sources. We attribute the lack of
a precipitous sensitivity decline to the fact that we are
restricted to n2 < 1, where consequently both the num-
ber of sources and the overall photon flux are dominated
by relatively bright sources, with fluxes in the neighbor-
hood of Sb. For example, at n2 = 0, 45% of flux comes
from sources above Sb, and even at the highest n2 value
we tested n2 = 0.8, 33% of flux is drawn from sources
above Sb. To see a very large decrease in sensitivity from
increasing n2 (rather than lowering Sb), we would likely
need to allow for more flexible SCF prescriptions with a
large n2 but a low-luminosity cutoff.

Appendix C: Effects of Priors on ∆ lnL and ln BF

Since we work in a Bayesian framework, we expect our
results for the sensitivity to depend on the priors to some
degree. Especially where the PSs are faint enough that
the data cannot effectively discriminate between PSs and
diffuse emission, the flux attribution to PSs vs Poissonian
components may also be significantly influenced by the
choice of priors (see also discussions in [11, 42]). In this
appendix we discuss the effect of changing selected priors
from log to linear: specifically, we modify the priors that
correspond to the normalization factors of the smooth
GCE component Agce and the GCE PS population APS

GCE.
We keep the prior boundaries fixed.

We compared the ln BF in favor of PSs for a set of sim-
ulations of the full Fermi skymap, across exposure factors
χ = 0.01 to χ = 10, for both the case of the best-fit Sb
from the real data, and with Sb reduced to 1/4 of its
baseline value (corresponding to fainter point sources).
Fig. 17 shows the effect of changing the priors for the
faint (1/4 baseline brightness) sources, where the impact
is most pronounced. In this figure we also plot the re-
sults of evaluating ∆ lnL between the posterior median
parameters obtained from the runs with/without GCE
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FIG. 16. ln BF across 10 realizations (circle markers), and 〈ln BF〉 with error bars obtained from the σ/
√

10 standard error of
the mean (magenta), varying n2 of the SCF for the GCE PS component in the case with all Fermi templates.

PSs; the likelihood itself does not depend on the priors,
but since the posterior distribution is prior-dependent,
we observe a small residual difference at the level of the
likelihoods as well. (Note that the posterior median pa-
rameters do not generally correspond to the maximum
likelihood point; evaluating the likelihood ratio between
the maximum likelihood points should of course give a
prior-independent result.)

We observe that in general using linearly uniform pri-
ors on A leads to a smaller sensitivity figure of merit com-
pared to the use of log uniform priors (this also holds for
point sources with the baseline brightness level); the lin-
early uniform priors also give rise to a modestly steeper
power-law slope in 〈ln BF〉 with increasing χ, as the dif-
ference between log and linear priors becomes less pro-
nounced at high exposure. For sufficiently faint sources
and/or low exposures, the use of linear priors can lead
to an apparent preference for the model with no GCE
PSs even when they are present in the simulation (this
is as expected; in the absence of data favoring PSs, the
Bayesian approach should prefer the simpler model).

Appendix D: Additional analyses for the simplified
isotropic scenario

In this appendix we discuss several additional analyses
of the simplified isotropic case discussed in Sec. V, to test
the degree to which results from the full inner Galaxy
analysis (Sec. VI) carry over to this simpler scenario.

1. Tradeoffs between PSF and exposure

We apply the same procedure as described in the main
text (Sec. VI) to test the response of NPTFit to a si-
multaneous variation of angular resolution and exposure
level, in the presence of a population of PSs. Note that
for these simulations, the number of live points we used
for the scans is set to nlive=500.

Fig. 18 shows the results of the simulations and analy-
sis. We fitted the exposure dependence for the three sep-
arate quartiles using a power law with a constant additive
shift; results are given in Table VII (the n = 1 column).
We find similar patterns as those described in Sec. VI B 3,
although the overall sensitivity is higher (presumably
because the signal-to-background ratio is much higher)
and the sensitivity increases modestly faster than linearly
with exposure in this case, with a slope of ∼ 1.4 − 1.5.
We observe that moving from Quartile 1 to Quartile 2,
and Quartile 2 to Quartile 3, produces a fairly exposure-
independent degradation in sensitivity of roughly a factor
of two.

2. Detection limit for faint sources

Similarly to the inner Galaxy analysis in the main text,
we also tested the faintest isotropic PSs NPTFit is able
to detect. The following graphs show the results of this
analysis. In the panels of Fig. 19, n is used in the same
way as in Eq. 37. Aside from testing fainter PSs, we
also tested brighter PSs. The flux remained constant
by reducing the number of sources present. Similar to
the approach described in the main text, we model the
dependence of 〈ln BF〉 on the exposure as a power law
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FIG. 17. 〈ln BF〉 and 〈∆ lnL〉, with error bars obtained from the σ/
√

10 standard error of the mean across 10 realizations,
varying the χ/exposure factor. We show results for log uniform and linearly uniform priors on the normalization of the GCE
components, and likelihoods are evaluated at the posterior median parameters.
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FIG. 18. 〈ln BF〉 and the σ/
√

10 standard error of the mean across 10 realizations sampled at each quartile across varying levels
of χ. Left : realizations with χ < 1. Right : realizations with χ ≥ 1. The parameters that describe the best-fit lines (dashed,
dotted, and dot-dashed) are located in Table VII.

with a constant additive shift, separately for n varying
from 1/16 to 2.

Note that at lower values of χ, especially for faint
sources, the data is not well-described by the best-fit
curve. As in the main text, this is most likely just a
signal that the power-law fit is inappropriate when the
sensitivity to PSs is low.

We also plotted 〈ln BF〉(χ = 1) across 10 realizations
for varying levels of Sb for the isotropic scenario as shown
in Fig. 20. The baseline case corresponds to Sb = 5.61.

Similar to the full Fermi case the sensitivity increases as
the population of PSs brightens. In the isotropic case,
the increase in sensitivity is more stable and consistent,
likely due to a lack of cross-talk with other templates
that can occur (and impact the sensitivity especially for
faint signals) in the baseline case. For comparison, we
also plotted the analytic solution of Eq. 19 and we find
that the power law scaling behavior of the simulated data
is well-captured by the estimate.

Comparing the full baseline case with the isotropic
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FIG. 19. 〈ln BF〉 and the σ/
√

10 standard error of the mean across 10 realizations sampled across different χ values for each
of the top three quartiles graded by angular resolution, in the simplified isotropic analysis. Each plot is labeled with the χ
(to denote which exposure rescaling factor range is covered) and n values, where n corresponds to the source brightness as
described in Eq. 37.
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n = 1/16 n = 1/8 n = 1/4 n = 1/2 n = 1 n = 2
Quartile 1
α (coefficient) 3.77± 0.69 18.21± 2.47 71.90± 7.07 189.36± 14.38 438.79± 30.71 941.70± 47.79
β (power) 2.04± 0.11 1.78± 0.07 1.60± 0.06 1.48± 0.04 1.41± 0.04 1.34± 0.40
γ (shift) −0.37± 0.05 −0.39± 0.07 −0.56± 0.28 −1.50± 1.22 −1.23± 0.44 −2.49± 1.21
Quartile 2
α (coefficient) 1.01± 0.34 6.16± 0.96 25.63± 2.54 97.05± 7.25 240.09± 19.31 554.90± 43.34
β (power) 2.16± 0.16 1.93± 0.09 1.73± 0.05 1.53± 0.06 1.45± 0.05 1.36± 0.05
γ (shift) −0.37± 0.11 −0.35± 0.12 −0.50± 0.06 −0.58± 0.23 −1.40± 1.75 −1.67± 1.87
Quartile 3
α (coefficient) 0.23± 0.08 1.70± 0.64 9.83± 0.87 32.16± 5.70 113.91± 9.10 287.81± 19.51
β (power) 2.44± 0.17 2.17± 0.19 1.86± 0.05 1.73± 0.09 1.45± 0.04 1.48± 0.04
γ (shift) −0.28± 0.04 −0.49± 0.10 −0.35± 0.05 −0.70± 0.26 −0.58± 0.29 −1.02± 0.66

TABLE VII. Best-fit parameters and the 1σ errors obtained using least-squares regression method for the power law fit to the
ln BF values of the isotropic scenario where we varied the source brightness while keeping the overall flux and the flux ratio
between the PS and smooth component constant.

case, we find qualitatively similar patterns within the co-
efficients. At higher source brightness (increased n), the
parameter α (corresponding approximately to the sensi-
tivity at χ = 1) increases. More quantitatively, we fitted:

〈ln BF〉|χ=1 = aSpb , (D1)

where a, p are numerical constants. We find that 〈ln BF〉
scales as O(S1.4

b ), O(S1.7
b ), O(S1.9

b ), for quartiles 1, 2, and
3 respectively. We plotted the results of this fit in Fig. 20
and find that the scaling behavior is approximately the
same as the analytic form Eq. 19, if we allowed s, the
number of photons per source to vary. The β parameter,
describing the rate at which sensitivity increases with re-
spect to exposure, is enhanced at lower values of n for the
range of exposure values we test, rising to ∼ 2 (compared
to∼ 1.3 for the brightest sources). This is consistent with
our analytic estimates, where we found that we expected
the significance to scale with the square of the exposure
in the faint-source limit.

Similar to the analysis performed in Sec. VI D, if we
assume that Eq. 39 is a reasonable description of the
underlying relation of sensitivity to exposure, we can
use this fit to determine χ values at each brightness
level (for PSFQ1) that correspond to ln BF & 1, indi-
cating the first hint of evidence for a detection. Using
the best-fit parameters in Table VII, we find that for
n = 1/16, n = 1/8, n = 1/4, n = 1/2, n = 1 and n = 2
these “exposure thresholds” correspond respectively to
χ ≥ 0.61, 0.24, 0.091, 0.054, 0.024, 0.015, scaling roughly
inversely with n.

3. Pixel size variation

As in the main text, we tested the effect of varying
the pixel size. In this simplified (isotropic) scenario, we
also considered the interplay between choosing smaller or
larger pixel sizes and having fainter or brighter PSs – for
example, we might ask whether different pixel sizes are
more or less optimal depending on the source brightness.
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FIG. 20. 〈ln BF〉 with error bars obtained from the σ/
√

10
standard error of the mean across 10 realizations at each of
the top three quartiles and narrow PSF at varying brightness
level for the isotropic case, with the baseline exposure. The
best-fit Sb in the real data is 5.61; we test the effect of reducing
and increasing Sb. All cases were scanned at nlive=500. The
dashed lines represent the results of a power-law fit to 〈ln BF〉
as a function of Sb (holding exposure fixed at χ = 1). The
explicit form of the equation is Eq. D1. For comparison, we
also plot the analytic description of Eq. 19 as a function of s.

Fig. 21 shows the results of our analysis; similarly to
our previous results, we found that the ideal pixel size
for optimizing sensitivity to PSs lies in the intermediate
range around nside=128. The relative enhancement at
the intermediate range, however, decreases with fainter
sources.

An interesting feature present across the plots in
Fig. 21 is the sudden spike in sensitivity at large pixel
sizes (low nside). Upon closer inspection of the returned
flux fraction, NPTFit incorrectly recovers the flux frac-
tion for both smooth and PS isotropic emission (simi-
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lar to the misattribution at low nside in the main text).
Specifically, the fit attributes most of the emission to
the isotropic PS population instead of distributing the
flux equally to both sources. Examining the flux frac-
tion plots for smaller pixel sizes, on the other hand, the
correct flux fraction ratio is recovered.

4. Tests with an overly conservative PSF

The convention in the literature (which we have gen-
erally followed in this work, e.g. in Fig. 8) has been to
use the PSF associated with the worst-angular-resolution
photons in the dataset, for the purpose of NPTFit scans.
In this section we test the impact of using an overly con-
servative (i.e. too large) PSF on data with a better an-
gular resolution, in the simplified isotropic scenario.

We simulated narrow-PSF isotropic data as previously
discussed. We then performed three sets of NPTFit scans
of the same data set: (1) using the narrow PSF, (2) us-
ing the realistic Fermi PSF appropriate to the top PSF
quartile, Q1 and (3) using the realistic Fermi PSF ap-
propriate to the third PSF quartile, Q3.

Fig. 22 displays the results of this test. We find that
the three cases are generally consistent with each other.
Thus, utilizing an overly conservative PSF within the
NPTFit scan does not significantly impact the resultant
sensitivity to PSs, at least in the cases we have tested.
However, it is possible that assuming an isotropic back-
ground and signal reduces the effect of PSF mismodeling;
the sensitivity to PSF mismodeling may also depend on
the pixel size.

Appendix E: Tests with an Alternative Diffuse
Model

In this appendix we repeat selected analyses with a
different model for the Galactic diffuse emission. Model
A [20] splits the diffuse emission amongst two different
components: π0 decay from proton-proton collisions plus
bremsstrahlung (“Pibrem”) and inverse Compton scat-
tering (“ICS”). Separating the diffuse emission into two
different components grants an extra degree of freedom
during the fitting process, and allows for a better fit. We
note that we scanned all realizations for this subsection
at nlive=100 for computational efficiency.

1. Variation of exposure

We began by repeating the exposure-variation analysis
of Sec. VI A. Fig. 23 shows the sensitivity as a function of
the exposure rescaling factor χ. As previously, we fit this
curve with a power law with a constant additive offset,
and plot the resulting best-fit parameters in Tab. VIII.

The behavior of 〈ln BF〉 as a function of the rescal-
ing factor χ is quite similar between p6v11 and Model A

Parameter Model A

α (coefficient) 6.0± 0.7
β (power) 1.0± 0.1
γ (shift) −0.4± 0.2

TABLE VIII. Best-fit parameters obtained using least-squares
regression method for the power law fit (Model A). Parameter
uncertainties obtained from the standard error of the mean
across 10 realizations are also displayed.

Parameter Q1 Q2 Q3
α (coefficient) 6.0± 0.7 1.8± 0.5 0.1± 0.1

β (power) 1.0± 0.1 1.4± 0.1 3.1± 0.5
γ (shift) −0.4± 0.2 −0.4± 0.2 −0.4± 0.3

TABLE IX. Model A power law parameters across the top
three quartiles.

analyses, but the power-law slope in the current analysis
is 1.0, corresponding to a slightly steeper scaling than
the slope of 0.76 found in the main text. Both are quali-
tatively similar to the expectation of linear scaling from
the analytic estimates for the behavior of the delta log
likelihood.

2. Variation of PSF quartile

We performed the same PSF variation test described in
VI B 1 using the alternative (Model A) diffuse templates.
The results are shown in Fig. 24; we find the sensitivity is
somewhat degraded in the other PSF quartiles relative to
the best quartile. For Model A, even in the top quartile
the sensitivity is rather modest, and so an inverse scaling
with the containment angle would be expected to lead to
low sensitivity in the other quartiles, which is observed
(but with substantial uncertainties).

3. Trade-offs in sensitivity between exposure and
angular resolution

We repeated the exposure variation test for each of
the PSF quartiles, to test the tradeoff between increased
exposure and improved angular resolution. Fig. 25 shows
the results. Best-fit parameters for the power-law fits to
each set of results are given in Tab. IX. The power-law
slope with respect to exposure steepens slightly in the
second quartile relative to the first. In Q3, the apparent
best-fit slope is substantially steeper than in the other
two quartiles, but the quality of the power-law fit is quite
poor; the steep slope is driven by a high sensitivity at χ =
10 combined with a relatively low and stable sensitivity
at χ = 2− 5.

We examine the effect of “stacking” skymaps gener-
ated at different PSF quartiles to increase the effective
exposure. We perform the same comparison described in
Sec. VI B 3 to obtain the combined estimate of varying
exposure and angular resolution. Similar to the results
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FIG. 21. ln BF across 10 realizations (circle markers), and 〈ln BF〉 with error bars obtained from the σ/
√

10 standard error
of the mean (magenta), sampling different pixel sizes (nside) at various brightness levels of an isotropic PS population. Note
that the anomalously high significance values attached to the largest pixel size (nside = 32) are associated with a failure to
correctly reconstruct the input parameters.
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FIG. 22. 〈ln BF〉 with errors obtained from the σ/
√

10 standard error of the mean across 10 realizations across different levels
of exposure χ. The data was simulated using a narrow PSF and scanned in three separate ways: (1) using the narrow PSF
that matches the simulation, (2) using the realistic Fermi PSF at Q1, and (3) using the realistic Fermi PSF at Q3.

obtained from p6v11, the 〈ln BF〉 across the three lev-
els of χeff are consistent with each other to within 1σ.
Hence, we find that the increase in sensitivity from a
larger dataset is offset by the worsening of angular resolu-
tion. Fig. 26 displays the results along with the combined
estimate.

4. Pixel size variation

Finally, we tested the effects of varying the pixel size
when using Model A for the Galactic diffuse emission.
We applied the same procedure as described in Sec. VI C.
Fig. 27 shows the sensitivity level as a function of pixel
size.

A first look at this figure seems to indicate that the
optimal pixel size is the smallest value tested, nside=32.

However, this high apparent sensitivity turns out to
be accompanied by a failure to correctly reconstruct
the various template fluxes, similar to the effect dis-
cussed for isotropic emission in Appendix D. In partic-
ular, the diffuse component of Model A which is com-
prised of the inverse Compton scattering (ICS) and the
pion plus bremsstrahlung (Pibrem) component appears
to be degenerate with the disk PS component, and the
flux associated with these components is frequently mis-
reconstructed, as shown in Fig. 28. Taking this into ac-
count, it appears that the ideal pixel size remains at in-
termediate values, nside=128-256.
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FIG. 23. ln BF across 10 realizations (circle markers), and 〈ln BF〉 with error bars obtained from the σ/
√

10 standard error of
the mean (magenta), sampling across various levels of exposure χ with Model A as the diffuse template. Left : realizations with
χ < 1. Right : realizations with χ ≥ 1. The best-fit line is a standard power law with an additive shift, defined in Eq. 39.
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FIG. 24. ln BF across 20 realizations (circle markers), and
〈ln BF〉 with error bars obtained from the σ/

√
20 standard

error of the mean (magenta), at each PSF quartile, using
Model A.

Appendix F: Derivation of the PDF for the test
statistic in the Gaussian and high-detectability limit

To derive Eq. 13, we first evaluate the log likelihood
between two Gaussian models, parameterized by (X,σ2)
and (Y, τ2), as a function of the observed number of

counts N :

∆ lnL = P (N |{X,σ2})− P (N |{Y, τ2})

= − (N −X)2

2σ2
− 1

2
ln(2πσ2) +

(N − Y )2

2τ2
+

1

2
ln(2πτ2)

=
−(N −X)2

2σ2
− −(N − Y )2

2τ2
− 1

2
ln(σ2/τ2).

(F1)

In the high-detectability limit, we can make the ap-
proximation that the log term is small and can be ig-
nored. Furthermore, we are interested in the compari-
son of two distributions that have the same expectation
value but different variances (parameterizing the degree
to which the distribution is non-Poissonian), so we can
set X = Y . Writing δ = (σ2/τ2)− 1 as in the main text,
we then have τ2 = σ2/(1 + δ), and so:

∆ lnL ≈ − (N −X)2

2

(
1

σ2
− 1

τ2

)
= δ

(N −X)2

2σ2
. (F2)

Note that under these approximations, ∆ lnL is always
non-negative for δ > 0. Now we can evaluate the proba-
bility that this expression takes some value x > 0 under
the true distribution of N , which we take to be given by
P (N |{X,σ2}).
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FIG. 25. 〈ln BF〉 and the 1σ standard error of the mean across 10 realizations for top three quartiles graded in angular resolution
sampling different values of χ using an alternative diffuse template (Model A). Left : realizations with χ < 1. Right : realizations
with χ ≥ 1. The best-fit lines show the Eqn 39 fit to the data.
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FIG. 26. ln BF and 〈ln BF〉 with error bars obtained from
the σ/

√
10 standard error of the mean (magenta) across 10

realizations that stacked skymaps generated with different an-
gular resolutions (PSF quartiles) for skymaps simulated using
the Model A diffuse template. The scans assumed the worst
angular resolution. The blue triangles indicate the increased
sensitivity as predicted by varying the exposure, while the or-
ange pentagons indicate the worsening of sensitivity due to
angular resolution degradation. The black filled “X” display
the combined estimate from varying the two parameters.
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where in the second-last line we have evaluated:∣∣∣∣ ddN (x− δ(N −X)2/(2σ2)

∣∣∣∣ = |(N −X)| δ/σ2

=

√
2xσ2

δ
δ/σ2

=
√

2xδ/σ2 (F4)

on the support of the delta function. Eq. F3 matches
Eq. 13 and is the desired result.
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