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ABSTRACT

We present a method to characterize statistically the parameters of a detached binary sample –
binary fraction, separation distribution, and mass ratio distribution – using noisy radial-velocity data
with as few as two, randomly spaced, epochs per object. To do this, we analyze the distribution of
∆RVmax, the maximum radial-velocity difference between any two epochs for the same object. At low
values, the core of this distribution is dominated by measurement errors, but for large enough samples
there is a high-velocity tail that can effectively constrain the parameters of the binary population.
We discuss our approach for the case of a population of detached white-dwarf (WD) binaries with
separations that are decaying via gravitational wave emission. We derive analytic expressions for
the present-day distribution of separations, integrated over the star-formation history of the Galaxy,
for parametrized initial WD separation distributions at the end of the common-envelope phase. We
use Monte Carlo techniques to produce grids of simulated ∆RVmax distributions with specific binary
population parameters, and the same sampling cadences and radial velocity errors as the observations,
and we compare them to the real ∆RVmax distribution to constrain the properties of the binary pop-
ulation. We illustrate the sensitivity of the method to both the model and observational parameters.
In the particular case of binary white dwarfs, every model population predicts a merger rate per star
which can easily be compared to specific type-Ia supernova rates. In a companion paper, we apply
the method to a sample of ∼ 4000 WDs from the Sloan Digital Sky Survey. The binary fractions and
separation distribution parameters allowed by the data indicate a rate of WD-WD mergers per unit
stellar mass in the Galactic disk, ∼ 1 × 10−13 mergers yr−1M−1

⊙ , remarkably similar to the rate per
unit mass of Type-Ia supernovae in Milky-Way-like galaxies.
Subject headings: binaries:close, spectroscopic — white dwarfs — supernovae: general

1. INTRODUCTION

Stellar multiplicity is a fundamental piece in our cur-
rent picture of stellar formation and evolution. Mod-
ern studies of stellar multiplicity aim to constrain the
fraction of stars with companions (or multiplicity frac-
tion, fm), the distribution of separations, and the depen-
dence of these parameters on variables like stellar mass,
age, and metallicity. Different observational techniques
are used to probe different separation and flux contrast
regimes (Duquennoy & Mayor 1991; Makarov & Kaplan
2005; Mason et al. 2009; Metchev & Hillenbrand 2009;
Raghavan et al. 2010). Short-period binary systems are
of particular interest as the ancestors of future interact-
ing binaries, from cataclysmic variables to novae, high
and low-mass X-ray binaries, supersoft X-ray sources,
and Type Ia supernovae. However, the fundamental
properties of short-period binaries in the Galaxy are still
poorly constrained. This has important implications
for testing specific scenarios for the formation of mul-
tiple stellar systems (Tohline 2002; Goodwin & Kroupa
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2005; Bressert et al. 2010; Marks et al. 2011), stel-
lar population synthesis models (Bruzual & Charlot
1993; Conroy et al. 2009; Marks & Kroupa 2011), and
birth rate calculations for their interacting descendants
(Belczynski & Taam 2004; Ruiter et al. 2009).
The first modern spectroscopic survey for close stellar

binaries was performed by Duquennoy & Mayor (1991),
who examined 164 F and G-type stars, taking more
than 4200 individual radial velocity (RV) measurements.
Such surveys are extremely labor intensive, because they
need to obtain enough RV measurements of each tar-
get to either confidently discard multiplicity up to a
certain period threshold, or to derive an orbital solu-
tion of sufficient quality. For example, the recent study
by Raghavan et al. (2010) examined 454 solar-type stars
with different techniques (including RVs), only a factor
3 improvement over Duquennoy & Mayor (1991) in al-
most twenty years. The advent of large spectroscopic
data bases like the Sloan Digital Sky Survey (SDSS,
York et al. 2000) opens the possibility to take RV sur-
veys to the next level, allowing millions of RV measure-
ments of hundreds of thousands of different stars with
well-calibrated and stable instrumental set-ups.
In this paper, we present a method to characterize bi-

nary populations statistically based on large samples of
noisy RVs, with only a few epochs per target, but with-
out followup observations, confirmations of real binaries,
and derivations of orbital parameters for individual sys-
tems. The observable that we analyze is the distribution
of maximum RV differences, ∆RVmax, which is straight-
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forward to obtain from a set of RV measurements for a
sample of stars. This distribution contains information
about the orbital velocity amplitudes of some members
of some of the close binaries in a sample of stars. The use
of velocity differences assures that the (uninteresting in
the present context) systemic velocities of the stars are
subtracted out of the dataset, along with any other time-
constant velocity offsets (wavelength calibration errors,
gravitational redshifts, etc.). Naturally, the more times a
system is observed, the higher the chances of catching its
full orbital RV variation amplitude, but even with only
two epochs per system, some fraction of that amplitude
will be probed. Apart from the observed RVs themselves
and their sampling times, accurate knowledge of the dis-
tribution of RV measurement errors is essential. We il-
lustrate how the sensitivity of the method depends on
these observational characteristics.
Tutukov & Yungelson (1986) outlined such an ap-

proach schematically, as a way to discover close binary
white dwarfs (WDs). The first application of this kind
of technique (though in a more rudimentary way) was
by Maxted & Jeffries (2005). A slightly different ap-
proach that has been applied to SDSS data is described
in Clark et al. (2011). Here, we present the method in
the context of the problem of characterizing a population
of detached WD binaries whose separations are decaying
via gravitational wave emission. In a companion paper
(Badenes & Maoz 2012; Paper II), we apply the method
to a sample of∼ 4000WDs from the SDSS with multiple-
epoch spectra, we constrain the sample’s binary popula-
tion parameters, and we estimate its gravitational-wave-
driven merger rate.

2. MONTE CARLO SIMULATION OF THE
∆RVmaxDISTRIBUTION OF A BINARY POPULATION

We now simulate the ∆RVmaxdistribution of an as-
sumed binary population. Our methodology can be ap-
plied to any binary population, but we will focus here on
detached binary WDs in the Galactic disk, with the aim,
in Paper II, of finding the regions of parameter space
that describe a binary population that are allowed by
the observed ∆RVmax distribution for a sample of SDSS
WDs. We simulate WD binaries with properties drawn,
in a Monte-Carlo process, from possible families of distri-
butions of these properties, as detailed below. We then
“observe” the simulated systems with the sampling se-
quences and the velocity error distributions of the real
data, to produce each model ∆RVmaxdistribution. A
detached WD binary will merge, due to loss of energy
and angular momentum to gravitational wave emission,
within a time dictated by its separation and its compo-
nent masses. A corollary of every population model will
therefore be a prediction of the model’s WD merger rate
(whether sub-Chandrasekhar or super-Chandrasekhar),
which can be directly compared to observed type-Ia su-
pernova rates, or to the rates of other transient events
that are candidates for the outcomes of such mergers.
We describe below each step in this modeling process.
Our modeling approach is distinct from that

of “binary population synthesis” (BPS) calculations
such as Toonen et al. (2011), Mennekens et al. (2010),
Wang et al. (2010), or Ruiter et al. (2009). In BPS, one
begins by simulating a population of main-sequence bina-
ries, with a chosen mass and separation distribution, and

one then attempts to follow the complex stages of stel-
lar and binary evolution of each system, including mass
transfer, mass loss, common envelope evolution, and so
on. BPS calculations have many free parameters. Apart
from the parameters that specify the initial conditions,
there is a variety of parametrized ways to approximate
the physics of various stages of evolution, particularly
the common-envelope phases. Because of this variety
and freedom, there is a great range among the predic-
tions of different BPS calculations for the characteristics
of the final WD populations. Instead, our approach is
to parametrize in a simple mathematical way the prop-
erties of the binary population at the end of its complex
physical evolution – for binary WDs, at the end of the
last common-envelope phase. Beyond that phase, there
is only well-understood and easily modeled orbit decay
due to gravitational wave emission. The general forms
of our parametrizations for the component masses and
separations at this evolved stage are guided by direct ob-
servations, by BPS results, or by educated guesses. They
are thus more realistic than those based solely on a par-
ticular BPS realization, but they also allow investigating
a larger parameter space for what the binary population
might actually be like. The real RV measurements can
then select the particular allowed regions of this param-
eter space.

2.1. WD primary mass

For every simulated WD system (either single or bi-
nary) we begin by assigning a primary mass (‘primary’
and ‘secondary’ refers here to the larger and smaller
mass, respectively, not to which star will dominate the
spectral energy distribution). We draw the primary
mass, m1, from the observed distribution of WD masses
determined by Kepler et al. (2007) for 1859 hot (effective
temperature Teff > 12000 K) and bright (g ≤ 19 mag)
DA WDs in the DR4 SDSS catalog. We do not use the
mass functions implied for the cooler WDs in each class,
as Kepler et al. (2007) point out and discuss the uncer-
tainty in the atmospheric modeling of those cool WD,
which likely leads to a systematic over-estimate of their
masses. The mass distribution is composed of four Gaus-
sian components – a main, narrow, component centered
at 0.58 M⊙ with 1σ width of 0.047 M⊙, and three weaker
components centered at lower and higher masses. The
latest version of the SDSS WD catalog, corresponding
to DR7, has over 17000 entries (Kleinman et al. 2009)5.
The Kepler et al. (2007) sample is a subset of the DR7
WD sample that we actually analyze in Paper II, and so
its mass distribution is likely quite representative of that
of the WDs that we see in our sample. As a consistency
check, we have measured the mass distribution for hot
and bright DA WDs in the DR7 catalog, using the Teff

and effective gravity, log g, values fitted by Kleinman et
al., and the cooling curves of Fontaine et al. (2001) 6.
We have confirmed with a KS test that this distribution
is very close to the one obtained by Kepler et al. for the
DR4 WDs.

5 The catalog has not been published yet, but it was kindly
made available to us by S. Kleinman (private communication). The
version that we use here is from July 2010, and it has 17371 entries.

6 We obtained an updated version of these cooling curves from
http://www.astro.umontreal.ca/~bergeron/CoolingModels/.

http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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It is likely that, contrary to our assumption above,
WD primaries do not have the same mass distribution
as single WDs. Mass transfer and mass loss in close bi-
naries can lead to either an increase or a decrease in the
primary WD’s final mass. In the BPS calculations of
Claeys et al. (2011), based on the code of Izzard et al.
(2006), the primaries in WD pairs with separations of
< 14R⊙ have a broad mass distribution, between 0.3
and 0.9 M⊙ (J. Claeys 2011, private communication).
However, we find that even rather drastic changes in the
primary mass function have only a small effect of the
∆RVmax distribution and on the merger rate. We have
changed the center of the main Gaussian mass compo-
nent to as low as 0.4 M⊙ or as high as 0.8 M⊙, and find a
negligible effect of the ∆RVmax distribution. Increasing
the 1σ width to 0.2 M⊙ also has only a small effect on
∆RVmax (at the level of, e.g., increasing the distribution
by ∼ 20% at ∆RVmax=300km s−1; see below). Our con-
clusions will therefore not depend on the particular form
we have assumed for the WD primary mass distribution.
The weak dependence of ∆RVmax, in general, on the de-
tails of the binary mass components, is discussed further
in Section 3.

2.2. Binary fraction

One major binary population parameter to be con-
strained by data is the fraction of objects of a class that
is in binary systems. As we will see below, an analysis
of a ∆RVmax distribution can be sensitive only to binary
systems with velocities in the tail of the distribution, be-
yond a “core” that is dominated by single systems and
random velocity errors. For example, for the SDSS WD
sample analyzed in Paper II, this threshold is at ∆RVmax

&250 km s−1. For the range of possible binary com-
ponent masses in a population, this velocity-difference
threshold effectively puts an upper limit on the binary
separations that can be probed. In an extreme-mass-
ratio WD binary with massesm1 = 1.2 M⊙ andm2 = 0.2
M⊙, the secondary (m2) will achieve such orbital peak-
to-trough velocity amplitude if the separation is .0.05
AU. For individual WDs with low-noise measurements
and long temporal baselines, the SDSS data might be
able to detect binaries with larger separations, but our
analysis does not single out such systems. Therefore, we
will define the binary population parameter, fbin, as the
fraction of all WD systems (both single systems and bi-
nary systems) that are binary systems with separations
a < 0.05 AU. The length of an individual exposure deter-
mines the minimum separation that we can detect. For
the SDSS sample, the individual exposure times are ∼15
min. For the lowest WD masses, ∼ 0.2 M⊙, this cor-
responds to separations of ∼ 105 km, or only about 10
WD radii. Thus, the SDSS data can probe binary sep-
arations ranging from close to Roche-lobe overflow, and
out to 0.05 AU, which corresponds to periods of about 4
days for typical WD masses. Since all double-degenerate
(DD) systems that merge within a Hubble time have pe-
riods shorter than ∼ 12 hours, this is more than adequate
to provide an estimate of the local WD merger rate.
However, the binary fraction cannot be considered in-

dependent of the masses of the WD components. From
the initial-final mass relation for stars and WDs (e.g.
Williams et al. 2009), it is known that WDs with masses
less than mlim ≈ 0.45 M⊙ have not had enough time

to form in isolation over the age of the Universe, and
therefore such WDs must be in binaries, with separa-
tions that permit interactions in the course of the stellar
evolution of the components. This was first shown di-
rectly by Marsh et al. (1995), who found that five out
of the seven WDs that they studied, with masses below
0.45 M⊙ had WD companions with periods P < 5 d.
Rebassa-Mansergas et al. (2011) have shown that, in bi-
naries composed of a main-sequence star and a WD of
mass . 0.5 M⊙, the period is generally . a few days.
Most recently, Brown et al. (2012) mined the SDSS pho-
tometrically for WDs with masses < 0.25 M⊙. After
follow-up spectroscopy, they found that such low-mass
WDs are always, or almost always, in close binaries, with
periods of less than 1 day, and often with a relatively
massive WD (or possibly neutron star) companion. The
extremely low-mass WDs actually found and followed
up by Brown et al. (2012) turn out to have even lower
masses, always < 0.20 M⊙. It is not known at what pre-
cise mass the close (P . 1 d) binary fraction becomes
100%.
To account for this effect, we adopt a limit mlim =

0.25 M⊙, such that when our simulated primary WD
mass is smaller than mlim, we always assign it to be in
a binary. The fraction of the Kepler et al. mass func-
tion that is below this mass means that, effectively, we
assign 0.07% of the WDs in the simulated sample to
be in binaries in which one of the WDs is less massive
than 0.25 M⊙. Naturally, close companions likely exist
also around all WDs with somewhat higher masses, e.g.,
< 0.35 M⊙ (which constitute 2.5% of the Kepler et al.
2007 WDs) or < 0.45 M⊙ (9%). However, we do not
know for a fact, for those higher masses, that the orbits
are within the 0.05 AU limit that we have set above, when
defining close binarity. Indeed, the high-∆RVmax tail of
our observed sample in Paper II is not dominated by low-
mass objects, but rather by typical, ∼ 0.6 M⊙, WDs, as
shown in Fig.1. Thus, fbin in our simulations is the frac-
tion of systems with separations a < 0.05 AU, and with
both components with masses above mlim = 0.25 M⊙.
Every simulation includes an additional population of
extremely-low-mass (m < mlim) WDs that are all in bi-
naries and are not counted in fbin. To investigate how
our results depend on the choice of mlim, we have also
calculated models with mlim = 0.35 M⊙ and 0.45M⊙. As
was the case, above, with variations in the primary WD
mass function, we find only weak effects on the ∆RVmax

distribution, as long as the total fraction of binaries is
equal (e.g., a model with mlim = 0.25 M⊙ and fbin=0.05
gives a very similar ∆RVmax distribution as a model with
mlim = 0.35 M⊙ and fbin=0.025, for which the total
binary fraction (including systems with a WD of mass
< mlim) equals 0.05. Thus, our conclusions will not de-
pend on the exact choice of mlim.
For the fraction fbin of the simulated WDs, as well

as the extremely-low-mass WD binaries, we assign ad-
ditional binary parameters, as described below. To the
remaining 1−fbin WDs, we assign an orbital velocity of
zero, and skip directly to the allocation of random ve-
locity errors at several observing epochs (Section 2.6).
The maximum difference between these random errors
for each such non-close-binary WD will then constitute
the simulated ∆RVmax for that WD.
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Fig. 1.— Mean and rms (shown with error bars) masses of the
photometric primaries in the observed sample of Paper II, based on
spectral modeling of the WDs, for various bins of ∆RVmax. The
WDs with large ∆RVmax(> 200 km s−1) which reflect the close
binaries in the sample, have masses ∼ 0.6 M⊙, similar to single
WDs, whose mean and rms mass range is shown by the horizontal
dashed and dotted lines. The bins without error bars are based
on only one system each, and the 375 km s−1 bin is based on two
systems.

2.3. WD secondary mass

The mass of the secondary, m2, is not likely to be
drawn from the same distribution as m1. Already in
main-sequence binaries, it is clear that the secondary
mass is not drawn from the initial mass function, but
rather from a mass-ratio distribution that is approxi-
mately flat (Raghavan et al. 2010). However, there is lit-
tle in the way of observational or theoretical guidance for
choosing the mass distribution of post-common-envelope
WD secondaries. Of the ∼40 known DD systems, only
10 are double-lined, i.e., with detected spectral features
from both components. For these systems, both WD
masses can be determined, but the number is still too
small to say much about the mass distribution. In the
BPS calculations of Claeys et al. (2011) the secondary
WDs have a roughly flat mass-ratio distribution. We
therefore choose the following parametrization. In cases
where m1 is above mlim, if the simulated system is a bi-
nary, we draw the secondary WD mass from a power-law
distribution in mass ratio,

P (q) ∝ qβ , q ≡ m2/m1, (1)

with m2 between mlim and m1. The power-law index
β is one of the parameters that we vary among the re-
alizations of our simulation, in order to constrain the
properties of the WD binary population. In cases where
the primary in the Monte-Carlo draw was below mlim

(and therefore the star is always in a binary), the second
star is chosen with equal probability between 0.2 M⊙

and 1.2 M⊙. In this scheme, since the typical mass pri-
mary has a mass ∼ 0.6 M⊙, the secondary will have,
on average, a mass of ∼ 0.4 M⊙, reflecting the ob-
served commonness of low-mass WDs in close binaries
(e.g. Rebassa-Mansergas et al. 2011).
For illustration purposes, we have plotted these pri-

mary and secondary mass distributions in Figure 2,
with β = 0. We have overlaid the standard bound-
aries between He, CO, and ONe cores in isolated WDs
(0.5 and 1.0 M⊙, respectively), but we note that these
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Fig. 2.— Probability density distribution of primary (blue) and
secondary (red) masses in our model binary WD population. A
binary fraction of fbin=0.05 is assumed in this example, and this
sets the height of the extremely low-mass WD peak (< 0.25 M⊙),
in which WDs are always in close binaries. A flat mass-ratio dis-
tribution (β = 0) is also assumed in this example. We note that
the two distributions are not independent. For illustration, the
theoretical boundaries between He, CO, and ONe WDs in isolated
stars are shown with vertical lines.

boundaries might not apply to close binary systems (see
Prada Moroni & Straniero 2009).

2.4. Separation distribution

Next, we assign to each simulated DD system a sep-
aration, and hence we need to consider what are the
possible separation distributions for close binary WDs.
The separation distribution at the time the WDs emerge
from their final common envelope phase is unknown ob-
servationally, while theoretically it is a longstanding,
complex, and unsolved problem (see Ivanova 2011, for
a recent review). The close WDs may undergo either
one or two common-envelope phases (Woods et al. 2012),
which could, in principle, lead to a complicated separa-
tion distribution. Nevertheless, BPS calculations, as well
as some more sophisticated treatments (Deloye & Taam
2010), suggest a power-law separation distribution with
a negative index, over the range of separations that we
consider here, ∼ 0.1− 10 R⊙. In the BPS calculations of
Claeys et al. (2011), over the range of separations that
we consider, the post-common-envelope initial WD sep-
arations indeed are roughly constant per logarithmic in-
terval (J. Claeys, private communication). The same is
true in the BPS models of Yungelson (2010), at least for
separations above ∼ 1 R⊙ (L. Yungelson, private com-
munication). The ∼ t−1 Type-Ia supernova delay-time
distributions generally predicted by BPS models for the
DD channel would not arise if the WD initial separation
distributions were not approximately of the above form
(see, e.g. Maoz & Mannucci 2011).
Therefore, we will assume an initial WD separation

distribution that is a power law, with an index that is a
free parameter to be constrained by observations. What-
ever the initial distribution, orbital decay due to gravi-
tational wave emission will immediately begin to modify
it, as all of the orbits shrink and the innermost systems
merge. Furthermore, the actual distribution at any par-
ticular time will be the sum of the distributions of many
populations of different ages, that have evolved over dif-
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ferent amounts of time. We now calculate the form of
this eveolved, time-integrated, distribution.

2.4.1. Evolution of a binary separation distribution due to
gravitational wave losses

The separation a of two point masses, m1 and m2,
in a circular-orbit binary, will shrink over time due to
gravitational wave energy loss as

da

dt
= − K

4a3
, K ≡ 256

5

G3

c5
m1m2(m1 +m2), (2)

where G is the gravitational constant and c is the speed
of light (Peters & Mathews 1963). From integration, the
time t for the system to evolve from separation a′ to
separation a obeys

a′4 − a4 = Kt. (3)

Suppose a population of WD binaries is formed at a time
t = 0 (this could be, e.g., a population of WD binaries
in the Galaxy that have just emerged from the common
envelope phase). The population has an initial distribu-
tion of separations n′(a′). For simplicity, we will assume
the initial distribution of WD masses is independent of
separation. Systems with separations in the range a′ to
a′ + da′ will migrate, after a time t, to a bin a to a+ da
in the evolved distribution n(a, t). Conservation of the
number of systems (except for those systems that reach
a = 0 and merge) requires that

n(a, t)da = n′(a′)da′, (4)

or

n(a, t) = n′(a′)
da′

da
= n′(a′)

( a

a′

)3

(5)

= n′[(a4 +Kt)1/4]
a3

(a4 +Kt)3/4
.

If the initial distribution is a power law,

n′(a′) ∝ a′α, (6)

then
n(a, t) ∝ a3(a4 +Kt)(α−3)/4. (7)

The evolved distribution at time t is thus approximately
a broken power law. For separations a ≫ (Kt)1/4 (i.e.,
much larger than those that can merge within time t), the
distribution will have approximately the original power-
law slope, n(a) ∼ aα. At separations a ≪ (Kt)1/4, on the
other hand, n(a) ∼ a3 (see left panel of Figure 3). The
merger rate versus time from this single-age population
will be controlled by the short separation pairs for which
a ≪ (Kt)1/4,

dn

dt
=

dn

da

da

dt
∝ n(a, t) a−3 ∼ t(α−3)/4. (8)

This is a well-known result for the delay-time distri-
bution of the gravitational-wave-induced mergers of a
single-age population, having an initial separation dis-
tribution that is a power law of index α (e.g. Greggio
2005; Totani et al. 2008).
Let us consider now a series of binary WD populations,

each with an initial separation distribution n′(a′) ∝ a′α,
being produced at a rate R(t) between t = 0 and the

present age of the Galaxy, t0. The present-day distribu-
tion will be

N(a) =

∫ t0

0

R(t0 − t)n(a, t)dt (9)

∝
∫ t0

0

R(t0 − t)a3(a4 +Kt)(α−3)/4dt.

Assuming, for instance, a constant star-formation rate
over the age of the Galaxy, then also R(t) = const. (Even
if the star-formation history is “bumpy”, the WD forma-
tion history will be the convolution of the star-formation
history with a broad, ∼ t−0.5, kernel, that describes the
WD supply [e.g., Pritchet et al. 2008], and which will
smooth out the WD production rate). The integral then
gives

N(x) ∝ x4+α[(1 + x−4)(α+1)/4 − 1], α 6= −1, (10)

or

N(x) ∝ x3 ln(1 + x−4), α = −1, (11)

where

x ≡ a

(Kt0)1/4
(12)

is the separation in units of the separation of binaries
that will merge within the age of the Galaxy. For exam-
ple, for t0 = 10 Gyr and m1 = m2 = 0.55 M⊙, x = 1
corresponds to a0 = 0.01 AU, or 1.5× 106 km, or about
150 WD radii. The right panel on Figure 3 shows N(x)
for various values of α. N(x) is, again, approximately a
broken power law, with index α at x ≫ 1. At x ≪ 1 the
power-law index is 3 for α ≥ −1, and α+ 4 for α ≤ −1.

2.4.2. Choice of binary separation

We use the functional forms in Eqns. 10-11 to model
the possible present-day distributions of DD separations,
for various indices α of the initial power-law distribu-
tions at formation. In realizations of our simulation, we
draw the separation of specific component binary masses
from the present-day distribution for a particular value
of α, with a between amin = 2 × 104 km (contact) and
amax = 0.05 AU. For the purpose of producing simu-
lated radial velocities, binaries with periods < 15 min
are assigned zero orbital velocity, as the SDSS exposure
length prevents detection of velocity differences in such
cases. A practical consideration in this process is the
large dynamic range that the distribution P (a) can as-
sume over this range in a. As a result, very few simu-
lated binaries might be assigned separations in ranges
that have low probability, and the model expectation
values for the the velocity differences due to those bi-
naries will have large Poisson errors. To avoid this, we
populate the distribution evenly with simulated systems
among four decades of separation a (i.e., from amin to
amax/1000, from amax/1000 to amax/100, etc.). Each bi-
nary system is given a relative weight according to the
integral of the separation distribution over the decade it
is in.

2.5. Period, orbital velocities, and merger rates
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Fig. 3.— Left: Example of the gravitational-wave-driven time evolution of the separation distribution of a population with an initial
power-law separation distribution of index α = −2.0 (Eq. 7). In this example, both WDs are of 0.55 M⊙. Right: Separation distributions
for various values of α, time-integrated over a constant star-formation rate over 10 Gyr in the Galactic disk (Eqns. 10-11). Separations are
relative to the initial separation of two 0.55 M⊙WDs that will merge within 10 Gyr, a = 0.01 AU.

Given two masses and an orbital separation, Kepler’s
law gives the period

τ = 2π

(

a3

G(m1 +m2)

)1/2

, (13)

and the circular orbital velocities,

v1 =
2πa

τ

m2

m1 +m2
, v2 =

2πa

τ

m1

m1 +m2
. (14)

We assume circular velocities for simplicity, but also
because this is the expectation for close binaries that
have likely undergone circularization by tidal forces and
common-envelope evolution. For example, there are es-
sentialy no binaries with P < 12 d that have any appre-
ciable eccentricity (Raghavan et al. 2010). It has been
recently suggested (Thompson 2010) that there might
be a preponderance of triple systems among binary WDs
that would induce elliptical orbits via the Kozai (1962)
mechanism, leading to a large population of systems with
short merger times. We defer the exploration of this sce-
nario to future work. Equation 3 with a = 0 gives the
merger time, tmerge, of the simulated system. The merger
rate per WD in the simulated sample is obtained by not-
ing, for a given set of parameters, the fraction of all of the
systems in the simulation that merge within a set time
window, divided by that time. Each system is weighted
according to its decade in separation (see section 2.4.2,
above). A separate tally is conducted to calculate the
merger rate of only those binaries whose summed masses
exceed the Chandrasekhar mass, which may be of rele-
vance for the type-Ia supernova rate. For α ≥ −1, the
merger rate is approximately constant, and therefore the
time window for numerically calculating the rate is arbi-
trary, as long as it is shorter than t0. The constancy of
the rate can be seen from Eq. 10, by noting that mergers
come from systems with x < 1, for which N(x) ∼ x3,
and the merger rate is

dN

dt
=

dN

da

da

dt
∝ N(a) a−3 ∼ const. (15)

For α < −1, the merger rate falls with time, but quite

slowly for values of α that are not too steep,

dN

dt
∼ N(a) a−3 ∼ aα+1 ∼ t(α+1)/4, (16)

so an accurate numerical merger rate is still obtained in
the above scheme.
The merger rate for a given combination of fbin and α

can also be roughly estimated analytically. If α ≥ −1,
the majority of pairs have large separations, with long
times until merger. The merger rate is therefore set by
the integrated effect of old systems. All binaries with
separations of a < a0 at their formation time will con-
tribute (at a constant rate, as we saw) to the current
merger rate, where a0 is the maximum separation bi-
nary that merges within t0. Every choice of component
masses gives a different value of a0. However, for the
range of possible component masses, a0 is between 0.005
and 0.018 AU and a value of a0 = 0.01 AU is typical.
The typical time until merger of each system is t0. The
merger rate per observed WD is therefore

1

Nwd

dN

dt
≈ fbin

(1− fbin)t0

∫ a0

amin
n(a)da

∫ amax

amin
n(a)da

(17)

=
fbin

(1− fbin)t0

(a0/amin)
α+1 − 1

(amax/amin)α+1 − 1
,

for n(a) = aα. If fbin is small, and (as in the present
case), amax and a0 are both much larger than amin, then
the merger rate is roughly

1

Nwd

dN

dt
≈ fbin

t0

(

a0
amax

)α+1

. (18)

This gives values in good agreement with the merger
rates from the numerical Monte Carlo calculation. One
can also see from Eq. 18 that, in a plot of the parameter
space of α vs. log fbin, curves of constant merger rate
will be straight lines with slope of 1/ log(a0/amax) ≈ 1.4,
for a0 = 0.01 AU and amax = 0.05 AU (see Paper II). For
α ≪ −1, most WD binaries are formed with small sepa-
rations and therefore merge within a time much shorter
than t0. In this case, the merger rate will be controlled
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by the supply rate of new WDs, which in turn is set by
the star-formation rate.

2.6. Inclination, photometric primary, temporal
sampling, and velocity error

We next apply observational effects to each simulated
binary sytem. First, a line-of-sight inclination i of the
perpendicular to the orbital plane is chosen from a dis-
tribution

P (i) ∝ sin i, (19)

and the line-of-sight velocity is reduced by sin i.
We then need to decide which of the two WDs will be

the photometric primary. This could be either the less
massive WD, because it has larger surface area and/or it
is younger and hence hotter; or the more massive WD,
because it cools more slowly due to its small surface area
and is hence hotter. In practice, these effects compete
against each other, and it is difficult to determine which
of the two components will dominate the spectral en-
ergy distribution. From an observational point of view,
the distribution of absolute magnitudes as a function of
WD mass in the DR7 SDSS catalog shows a large spread
about the mean at all masses, although low mass WDs
(below ∼0.35 M⊙) do seem to be intrinsically brighter
(see Figure 4). From a theoretical point of view, the cool-
ing curves of Fontaine et al. (2001) also predict that, in
coeval DD systems, WDs with masses below ∼ 0.35 M⊙

will remain substantially brighter than their more mas-
sive counterparts for several hundred Myr (in the SDSS
g filter – the effect is enhanced in r, and diminished in
u). After about 1 Gyr, the slower cooling of more mas-
sive WDs takes over and makes them brighter, but by
this time the predicted magnitudes become fainter than
the cutoff in our samples for most of the volume probed
by SDSS. To summarize, it seems reasonable to assume
that low-mass WDs, if present, will have a tendency to
dominate the spectral energy distribution of DD systems,
but in other cases either of the components may be dom-
inant. In our Monte Carlo runs, we therefore make the
less massive WD the photometric primary when its mass
is below 0.35 M⊙, but decide randomly between the two
WDs when the less massive WD is above this limit.
Once the photometric primary has been selected, we

sample its line-of-sight velocity with the actual distribu-
tion of temporal samplings in the SDSS data. We do
this by choosing at random a particular observation pat-
tern (number of epochs and time between epochs) from
the sample, with a random phase assigned to the first
epoch of the sinusoidal RV curve. Figure 5 shows the
distributions of the number of epochs and of the tempo-
ral baselines per object for the SDSS sample of Paper II.
To each simulated velocity measurement, we add a ran-
dom error that we draw from a Gaussian distribution,
with the variance of the Gaussian drawn from the ac-
tual distribution of measurement errors for the observed
sample (see figure 1 in Paper II for this distribution for
the SDSS sample). Finally, for every simulated system
or non-binary WD, we find the minimum and maximum
observed velocities and calculate ∆RVmax.
For every parameter combination that defines a binary

WD population model, we produce 105 WD systems (ei-
ther single or binary, according to fbin), and find the frac-
tional prediction for each bin in the model ∆RVmax dis-
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Fig. 4.— Distribution of absolute g magnitudes as a function
of mass for the hot DA WDs in the DR7 catalog. We only con-
sider, in this figure, objects with Teff above 12000 K and g mag
brighter than 19, for which spectroscopic masses can be modeled
reliably. The overlaid histogram shows the mode (most frequent
g magnitude observed) and the standard deviation in bins of 0.1
M⊙. There is a large spread in absolute magnitudes at all masses,
but low mass WDs (below ∼ 0.35 M⊙) do seem to be intrinsically
brighter.

tribution. Multiplied by the observed WD sample size,
this gives the expectation value for that bin.

3. RESULTS

Figure 6 shows the simulated ∆RVmax distribution for
a model binary population with a particular set of pa-
rameters (fbin, α, β), when a sample of that population
is sampled with a particular set of empirical temporal se-
quences and a particular velocity error distribution. The
observational parameters chosen are those of the SDSS
sample presented in Paper II, and the model parame-
ters are one set among those that reproduce the data.
Along with this distribution, we plot the predictions for
a model with no binaries in it. We see that the mod-
eled ∆RVmax distribution consists of two parts. At low
∆RVmax, there is a “core” that is dominated by random
velocity errors, that have been applied to systems that
are single, or that have low ∆RVmax because of one or
more causes (low orbital velocity, low inclination, inop-
portune sampling). Beyond this core, the distribution
has a “tail” that reveals those close binaries that hap-
pened to have large orbital velocities, favorable inclina-
tions, and temporal sampling that caught their velocity
variations. For any observational sample, one can always
calculate this zero-binaries core. When compared to the
observed ∆RVmax distribution, it immediately reveals if
and where in the data there exists a tail of real binary
systems. A statistical comparison between the data and
a grid of model distributions can then select the regions
of binary population parameter space that are allowed or
ruled out by the data.
A reliable estimate of the RV errors is essential, as oth-

erwise underestimated errors can masquerade as a tail, or
overestimated errors can hide a real binary population.
This is also illustrated in Fig. 6, where we show several
no-binary predictions that use incorrect error distribu-
tions, i.e., error distributions that are different from the
one used to generate the distribution with binaries.
The temporal sampling density of the survey will nat-

urally affect both the core and the tail of the ∆RVmax
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Fig. 5.— Temporal sampling characteristics for the DR7 WD sample analyzed in Paper II, and used in the example simulations here.
Left: Distribution on number of epochs per object. Most WDs have only two or three epochs, but there is a tail of objects with more
epochs. Right: Distribution of maximum time differences between epochs. A 45 min interval is most common, but longer timescales, of
order an hour or of several days, are probed in many cases.
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Fig. 6.— Simulated distributions of ∆RVmax. Solid line shows
the distribution resulting for a WD population with binary fraction
fbin=0.05, separation distribution power-law index α = −1, and
mass-ratio distribution power-law index β = 0, when this distri-
bution is observed with the temporal sequences and RV errors of
the DR7 sample presented in Paper II. The dashed line shows the
“core” of the distribution, obtained by setting fbin=0 (no binaries,
except for the extremely low-mass WDs, which are always in bina-
ries), and reflects the part of the full distribution that is due to RV
errors alone. Colored curves show the core distributions obtained
when assuming incorrect error distributions (various narrow distri-
butions of 1σ error ranges, as marked). Accurate characterization
of the errors is thus essential for characterizing the binary popula-
tion by means of the signal in the tail of the ∆RVmax distribution.

distribution. The more epochs per object, the greater
the chance of catching the full RV variation range of
each system. The core will also grow, but only as the
square root of the number of epochs. Since the fully re-
vealed RV range reaches saturation beyond some number
of epochs, while the core ∆RVmax continues to grow as
random errors are added in quadrature, there will be a
limiting typical number of epochs, N , beyond which the
technique is no longer efficient for characterizing the pop-
ulation, and one can, instead, attempt to fit RV curves to
each object. This will happen when

√
Nσv ∼∆RVmax+,

where the latter is the highest value of ∆RVmax for which
a sample has some exemplars, and σv is the typical ve-
locity error. Fig 7 illustrates how the core and the tail
of the distribution change when, instead of the full sam-
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Fig. 7.— Dependence of ∆RVmax distribution on temporal sam-
pling. Blue curves show the full ∆RVmax distribution (solid curves)
and the fbin=0 core (dashed curve), for a chosen set of binary pop-
ulation parameters, and with the actual DR7 Paper II sample with
its temporal sampling characteristics (same as Fig. 6.) Red curves
show the distribution and core when every object is observed on
two epochs only.

pling of the SDSS dataset, every object is sampled only
twice.
Figure 8 shows how the ∆RVmaxdistribution depends

on the binary population parameters fbin, α, and β.
Qualitatively, increasing fbin and decreasing α both
have the same effect of increasing the number of small-
separation binaries, and therefore of raising the high
∆RVmax tail of the distribution. Quantitatively, if we
were dealing with a population of binaries with single
values of component masses, single values of inclination
angle, numerous sampling per object, and no measure-
ment errors, then the ∆RVmax distribution tail would
behave as

dN

dv
=

dN

da

da

dv
, (20)

and the broken power-law separation distribution, N(a),
would lead to a broken power-law orbital velocity distri-
bution. Recalling that, for α > −1, the small-separation
part of the separation distribution behaves as N(a) ∝ a3,
and taking the Keplerian v ∝ a−1/2, we would then ex-
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Fig. 8.— Dependence of the ∆RVmax distribution on binary pop-
ulation parameters. Top: Dependence of binary fraction, fbin. The
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shows the bare “core” of the distribution, due to the radial veloc-
ity errors. Middle: Dependence on separation distribution power
law index, α. Bottom: The weak dependence on the mass-ratio
distribution’s power-law index, β.

pect the tail to fall steeply as ∼ v−9 (for all α > −1),
with its amplitude depending on fbin/(α+ 1) (the latter
factor entering through the normalization of the distribu-
tion). The aα branch of N(a) at a > a0 would transform
to a v−2α−3 power law at velocities v < v0, where v0 is
the orbital velocity of a binary with separation a0. In re-
ality, the distribution of component masses (which leads

to a range of values for a0), the projection of velocities
due to inclination, and the sampling (both of which ef-
fects move binaries in the distribution to lower values of
∆RVmax), and the velocity errors (which again mix the
distribution), will lead to a ∆RVmax tail with a slope
that behaves differently than above, and does depend on
α. For α < −1, N(a) ∝ aα+4, and the ∆RVmax dis-
tribution tail falls more gently, as ∼ v−2(α+11), in the
idealized case. Thus, in principle, α can be discerned
in data with low-enough velocity errors, and with large
enough samples, such that the slope of the tail can be
measured accurately.
As seen in Fig. 8, the ∆RVmax distribution is weakly

dependent on β, the power-law index of the binary mass-
ratio distribution. For a given choice of primary mass,
the secondary’s velocity will depend on the mass ratio q
as (1 + q)−1/2. For the typical m1 . 0.75 M⊙ primary
mass, the secondary mass is constrained to the range
from m1 down to mlim = 0.25 M⊙, so q is between about
1/3 and 1. Going from high positive values of β that
favor q near 1, to very negative β’s that concentrate q
for all binaries to be near 1/3, will induce an increase of
√

3/2 = 1.22 in the secondary’s velocity v2, and an even
smaller relative decrease, by 0.93, in v1, if it is the pri-
mary that is selected as the photometric primary. Thus
when changing between the extreme values of β, about
half of the binaries will have their ∆RVmax increase by
22%, and half will decrease by 7%, or a net increase by
7% in the ∆RVmax of each bin in the distribution. Even
for the highest velocities that we consider, this is a small
change, comparable to the typical velocity errors. Fur-
thermore, as we saw above, the ∆RVmax distribution is
roughly a power law. The transformation v → v′ = kv,
where k is a constant, does not affect the shape of power-
law distribution in v.

4. CONCLUSIONS

We have used Monte Carlo simulations to study how
the distribution of maximal radial velocity differences,
∆RVmax, can characterize a close binary population, in
a radial velocity survey where a large number of stars
are observed, but with only a few epochs per star, and
with potentially large RV errors. Our focus has been on
a survey for double WDs of the kind that we analyze
in Paper II, using the SDSS DR7 WD sample, which
has served here as our example survey in terms of obser-
vational parameters. As part of this modeling process,
we required a realistic representation of the present day
separation distribution of close WD binaries whose sepa-
rations have evolved due to gravitational wave emission.
We have therefore derived analytical expressions for the
separation distribution of a population of WD binaries
that is continuously formed, its orbits decay, and some of
its members merge, over the lifetime of the Galaxy. With
these simulations, we have determined how the ∆RVmax

distribution depends on the binary population, which
we have characterized using three parameters (describing
close-binary fraction, separation distribution, and mass-
ratio distribution), and on the observational parameters
of the sample – RV errors and temporal sampling pat-
tern.
Our main findings are:

1. The ∆RVmax distribution has a core region, that
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is produced by the random RV errors, and a tail,
that can reveal the presence of some of the close
binaries in a sample. The power of the technique
is that, even with large errors and only few (or
even just two) epochs per object, the close binary
population can reveal itself in the tail, provided
that the number of objects in the sample is large
enough. This tail permits statistically constraining
the properties of the population, even with sparse
and noisy data, and without detailed followup work
on candidate binary systems.

2. Accurate knowledge of the distribution of radial
velocity errors is essential to model properly the
∆RVmax distribution, and thus deduce the contri-
bution of the real binary population to the tail.

3. Steep distributions in initial separation (very neg-
ative α, with most binaries at small separations)
and populations with a large close-binary fraction
(large fbin) will both result in an increase in the
amplitude of the ∆RVmax tail. There may thus be
some degeneracy in the determination of these two
parameters. A change in α, however, also changes
the shape of the tail, and hence, in high-quality
datasets (many objects, small errors), these param-
eters may still be individually constrained.

4. The ∆RVmax distribution depends weakly on the
details of the distributions of the component binary
WD masses – the distributions of primary masses
and of secondary mass ratios, which in any case
are chosen from a a relatively small dynamic range.
This binary population characteristic thus cannot
be constrained by this kind of survey data. Con-
versely, not knowing the distribution of mass ratios
does not affect adversely our ability to constrain
the other binary population parameters.

5. The ∆RVmax approach allows to estimate the
merger rate of a close binary population, based on
noisy RV data with few epochs, of the kind we con-
sider. This is possible without follow-up observa-
tions to obtain full binary parameter solutions for
candidates, and without necessarily even finding a
single binary that will merge within a Hubble time.
This ability is a result of the statistical nature of
our approach.

In Paper II we apply the methods presented here to
the observed SDSS DR7 WD sample, we set constraints
on the local population parameters of close-WD binaries
in the Galaxy, and we derive the merger rate of this pop-
ulation, both in general and for particular component
and total mass ranges. We show that the local rate of
WD mergers with super-Chandrasekhar total masses is
an order of magnitude lower than the local Type-Ia su-
pernova rate. The local merger rate of all WDs, however,
is remarkably similar to the Type-Ia suparnova rate. A
large fraction of all WD mergers are between CO and CO
WDs, with total masses not far from the Chandrasekhar
limit. If sub-Chandrasekhar mergers result in a Type-Ia
supernova explosion, we may have identified their domi-
nant progenitors.

Apart from Type-Ia supernova explosions, other pos-
sible outcomes of WD mergers can be tested with
our methodology – R Corona Borealis stars (e.g.
Longland et al. 2011), or highly magnetic WDs, which
have been postulated to result from WD mergers (e.g.
Garćıa–Berro et al. 2012, and references therein). Some
7 ± 3% of local WDs have magnetic fields greater than
107 G (Kawka et al. 2007). Assuming these magnetic
fields decay on very long timescales, WD mergers pro-
ducing all of this population would need to occur, over
10 Gyr, the age of the Galaxy, at a rate of ∼ (7 ± 3) ×
10−12 yr−1 per WD. In Paper II, our fit to the observed
∆RVmax distribution for the WDs in SDSS indicates a
WD merger rate, for total merged masses of < 1 M⊙,
of 1+3

−0.7 × 10−12 yr−1 per WD. The rate may thus be
sufficient to explain at least some, and perhaps even all,
magnetic WDs with such mergers.
As another example, about half of WDs with masses

below 0.45 M⊙ appear to be single (Maxted et al.
2000; Napiwotzki et al. 2007; Kilic et al. 2007).
Nelemans & Tauris (1998) have suggested formation of
such low-mass single WDs via interaction between a
giant star and a close massive-planet or brown-dwarf
companion, followed by evaporation or tidal disruption
of the companion. Kilic et al. (2007) have proposed that
these WDs have evolved from metal-rich stars whose
evolution was truncated by severe mass loss on the giant
branch. Alternatively, Iben et al. (1997) have raised
the possibility that the single low-mass WDs are the
merger products of even-lower WDs. Our constraints
on merger rates can test this last scenario. In the
Kepler et al. (2007) WD mass function, about 8% of
the WDs are in a Gaussian component that peaks at
around 0.4 M⊙. Assuming that half of these WDs are
single, then in the Iben et al. (1997) scenario, about
4% of the WD population would be the outcome of
very-low-mass WD mergers. This is a similar fraction
to the one invoked above in the case of magnetic WDs,
and therefore would require a similar merger rate. Our
calculations, however, show that the rate of mergers
with total masses in the range 0.3–0.5 M⊙ is four orders
of magnitude below the one required by this scenario.
This comes about because each of the merging WDs
would need to be below 0.3 M⊙, and such WDs are rare.
The longer gravitational orbit decay time at these low
masses further lowers the rate. One could circumvent
this argument by invoking large mass loss during the
merger process (e.g. Fryer et al. 2010), so that more
massive and common WDs could be involved. However,
Dan et al. (2012) find negligible mass loss in their 3D
hydrodynamic simulations of WD mergers.
The tools that we have introduced here can also easily

be adapted to the characterization of stellar multiplicity
based on large RV surveys in other settings. Examples
are ongoing surveys like LAMOST (Su et al. 1998) and
APOGEE (Prieto et al. 2008), and planned ones, such
as BigBOSS (Schlegel et al. 2011).
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