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Abstract. As was shown in the book of Mulder [4], the interval function is an important
tool for studying metric properties of connected graphs. An axiomatic characterization of
the interval function of a connected graph was given by the present author in [5]. (Using
the terminology of Bandelt, van de Vel and Verheul {1} and Bandelt and Chepoi [2], we may
say that [5] gave a necessary and sufficient condition for a finite geometric interval space to
be graphic).

In the present paper, the result given in (5] is extended. The proof is based on new ideas.
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The letters i-n will be reserved for denoting non-negative integers. By a graph we
will mean a finite undirected graph without multiple edges and loops (i.e. a graph in
the sense of Chartrand and Lesniak [3], for example). If U is a nonempty set, then
we denote by Q(U) the set of all mappings of U into the set of all subsets of U.

Let G be a connected graph. and let V(G), E(G) and dg denote its vertex set, its
edge set, and its distance function, respectively. Following Mulder [4], we define the
interval function I of G as follows:

Ig(z,z) = {y € V(G); y belongs to an z-z path of length de(z, 2) in G}
for all z, z € V(Q). Obviously, I € Q(V(G)).

Proposition 1. Let G be a connected graph, and let .J denote the interval func-
tion of G. Put U = V(G). Then J fulfils the following Axioms A-G (for arbitrary u,
v, e,y elU):

A ifv e J(u,x), then J(v,2) C J(u,z);
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ifve J(u,z) andy € J(v,2), then v € J(u,y);

u € J(u,x);

’J(u,u)' =1;

J(u,z) = J(z,u);

if]J(u,U)l =2= 'J(x,y)!. v € J(u,z) and u € J(v,y), then z € J(v,y);
if|J(u,v)| = 2= |J(z,y)| and v € J(u,z), then eitherz € J(v,y) ory € J(u,z)
orv € J(u,y).

Qm@mUow

The validity of Axioms A-E follows from 1.1.2 in [4]. The verification of Axiom
G was given in [5].

Verification of Axiom F: Let the assumption in F hold. Then dg(v,¥y) € dg(v,z)+
1 =dg(u,z) < dg(u,y) + 1 =dg(v,y). Hence z € J(v,y). .

As will be shown in our theorem, Axioms A-G can be used for characterizing the
interval function of a connected graph. A similar result was originally proved in [5].

In the theorem of [5], instead of Axiom F the following Axiom Fo was used (u, v,
x, y are arbitrary elements in U):
Fo if [J(wv)| =2 = [J(@.9)|.v € Jw,z),u € J(v,y) and y € J(u,z), then

z € J(v,y).
Because of the proof of our theorem we prefer Axiom F to Axiom Fg.

Proposition 2. Let U be a nonempty set, let J € UU), and let J fulfil Axioms
A-E and G. Then it fulfils Axiom F if and only if it fulfils Axiom Fg.

Proof. Obviously, F implies Fo. Conversely, let J fulfil Axiom Fo. Consider
arbitrary w,v,z,y € U such that |J(u,v)| = 2 = |J(z,9)|, v € J(u,7) and u €
J(v,y). We will show that x € J(v,y). Suppose, to the contrary, that z ¢ J(v,y).
Axiom Fg implies that y ¢ J(u.2). By Axiom G, v € J(u,y). Since u € J(v,y). we
conclude that w = v, which is a contradiction. Thus J fulfils Axiom F. [m]

Proofs of the following two lemmas are not difficult and will be omitted. Note

that the proof of Lemma 2 depends on the fact that U is finite.

Lemma 1. Let U be a noncempty set, let J € Q(U), and let J fulfil Axioms A, B
and E. Let g, ..., Tpym € U, let

(1) Tng1 € J(@n,20), .-, Tngm € J(Tngm—1,70)
and
2) @0 € J(@nt1,21), - Tz € T (@nghat1, Tht)s



where 2 < k <m and n > 1. Then

Tntitl € J(@ntis Ti)y s Tngr € J(Tngk—1, T:) and

(3) Tict € J(Tnyit1, Ti),

o Zimy € J(@npr, @) foreachi, 1 <i<k—1.

Lemma 2. Let U be a nonempty finite set, let J € Q(U), and let J fulfil Axioms
A-E. Ifu, z € U and u # x, then

J(u,2) — {u} = U J(v, ).
veJ(u,z}
[(uv)j=2

Remark 1. Let U be a finite nonempty set, let J € Q(U), let J fulfil Axioms
A-E, let u, 2 € U and u # x. By Axiom C, u € J(u,z). Lemma 2 implies that
there exists w € U such that w € J(u,2) and |J(u,w)| = 2. Consider an arbitrary
v € J{u,x) such that |J(u,v)\ = 2. Recall that U is finite. Lemma 2 implies that
there exist wo, w1, ..., w; € U, where j > 1, such that wo = u, w; = v, w; =,

1J(wg,uq)| =...= I](wj,_l,wj)‘ =2

and
wy € J(wo,2),...,w; € J(wj.y1,z).

Let U be a finite nonempty set, and let J € Q(U). We will say that a graph G is
the graph of J if V(@) = U and t and z are adjacent in G if and only if ‘J(t, z)| =2
for all distinct ¢, z € U. Obviously, there exists exactly one graph of J. As follows
from Remark 1, if J fulfils Axioms A-E, then the graph of J is connected.

It is clear that if G is a connected graph, then G is the graph of I.

The following theorem extends (and partially modifies) the result of [5]:

Theorem. Let U be a finite nonempty set, let J € Q(U), and let G denote the
graph of J. Then the following three statements are equivalent:
(I) G is connected and J = Ig;
(I) J fulfils Axioms A-G (for arbitrary u,v,z,y € U);
(111) J fulfils Axioms A-F (for arbitrary u,v,z,y € U) and I(t,z) C J(t,z) for all
t,zeU.

Remark 2. Let U be a nonempty set, and let J € Q(U). It is not difficult to
show that J is a geometric interval space in the sense of Bandelt, van de Vel and
Verheul [1], Verheul [7] and Bandelt and Chepoi [2] if and only if J fulfils Axioms
A-E. By our theorem, a finite geometric interval space is graphic in the sense of [1]
and [2] if and only if it fulfils Axioms F and G.
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In proving our theorem, we will need one more lemma. Let I be a finite nonempty
set, and let Jy, Jo € Q(U). Assume that J, and J, have the same graph. Let G denote
the graph of J; and J, and let n > 0. We will write

Ji Ciny J2 (or J1 =(n) J2)

if and only if Ji(r,s) C Ja(r, s) for all 7, s € U such that dg(r,s) < n (or Ji(r,s) =
Jo(r,s) for all r, s € U such that dg(r, s) < n, respectively).

Lemma 3. Let U be a finite nonempty set, let n > 0, J € YU), and let G denote
the graph of J. Assume that J fulfils Axioms A-F (for arbitrary u,v,z,y € U) and
that Ig C(ny J. Then Ig =(n) J.

Proof of Lemma 3. Let D denote the diameter of G. Instead of dz and
I we write d and I, respectively. We proceed by induction on n. The case when
n < 1 is obvious. Assume that n > 2. Since I C(,) J, we have I C,_1y J. By the
induction hypothesis, I =(,_1) J. If D <n -1, then I =(,) J. Let D > n.

Consider arbitrary r, s € U such that d(r, s) = n. We want to prove that J(r,s) C
I(r, s). First, assume that z € I(r,s) for each z € J(r,s) such that I.I(r, z)[ =2. By
virtue of Lemma 2, J(r,s) C I(r,s). Now, assume that there exists t € J(r,s) such
that iJ('r,t){ =2andt¢I(rs)

There exist zq, ..., z, € I(r,s) such that zy = 5, v, = r and the sequence

(4) TnyTn-1,...,T0

is a path in G. By virtue of Remark 1, there exist Tn+1, -+ Tntm € U, wherem > 1,
such that Za41 = ¢, Zp4m = T,

(5) |J(Iﬂ,;zn+l)‘ =...= ‘J(I7L+nx~ls-'cn+m)l =2
and (1) holds. Since the sequence
(6) Ty Tk 1y - s T

is a path in G, m > n. Since @41 & I(Zn, o), We have d(Tnt1,20) > n. Hence
m>zn+1.
We will show that

(7) Tm—1 ¢ ‘I(sz-m;J;m)'

Since m > n, (1) implies that 2y € J(Tm-1,Tntm). If Tm_1 € J(Tm,Tngm), then
Axioms B-D imply that ,,—; = x.n. which contradicts (5). Thus (7) holds.
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By virtue of (7), there exists k, 1 < k < m, such that
(8) k1 & J(Tntkr k)

and if ¥ > 2, then (2) holds. Recall that d(Zn41,20) > n. There exists h, 0 < h
< k — 1, such that

(9) d(Tpyni1,2n) 20
and
(10) if h <k~ 2, then d(Tnynt2,Lhy1) <n— 1

By Lemma 1, if k£ > 2, then (3) holds. Combining this fact with (1), we get
(11) Tnthtl € J(Tnth, Tn).

Moreover, (3) implies that

(12) if h < k-2, then xp, € J(Tnths2, Thet)-
Clearly,
(13) [T (@h, zn41)| = 2 = | (@ntns Torngr)]-

Obviously, d(@nh+1, Tht1) < 1. It follows from (9) that d(@niht1,Thtr) Zn—1.
We distinguish two cases.

Case 1. Let d(@n+ht1,@hes) = n. This implies that za4a € I(Tnths1, Tay1)-
Since I C(n) J, we have

(14) Tprn € J(Tntha1, Thr1)-

Combining (11), (13) and (14) with Axiom F, we get

(15) th € J(Tnthtls Ther)-

1t follows from (8) that h < k — 2. According to (12), z;, € J(Tnth+2,Ths1). By

(10), d(Znthy2:Ther) S n—1. Since I =(n-1) J, T4 € I(zﬂ+lx+2,1h+1). Therefore,
d(Tp+ht2Th) < 1 — 2. This implies that d(Tnyns1,21) < n, Which contradicts (9).
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Case 2. . Let d(Tntn+1,2at1) = n—L It follows from (9) that d(znypyy, zn) = ne
Hence wn+1 € I{(ZTnths1,Zn). Since I Cny J, we get

(16) Tht1 € J(Tnght1,Tn).
Combining (11) and (16) with Axiom B, we get
(17) Tntht1 € I (@ngn, Thyl)

Since d(@nth, zhe1) S n—1land I =g._yy J, wesee that 2,4 n41 € I(@nyn, zhp1). We
have d(Zn+h+1, Th+1) € n—2. This means that d(Tn+n+1,2r) < n, which contradicts
(9) again.

Thus J(r,s) C I(r,s). We conclude that I =, J, which completes the proof of
the lemma. a

Proof of the theorem. Instead of d; and Ig we write d and I, respec-
tively. By Proposition 1, (I) implies (II).

Now, we will prove that (II) implies (III). Suppose, to the contrary, that (II) holds
but (III) does not. Then there exists n > 2 such that I C(,—;) J but it is not true
that I C(ny J. Since J fulfils Axioms A-F, Lemma 3 implies that I =(,_,y J. Clearly,
there exist r, s € U such that d(r,s) = n and I(r,s) — J(r,s) # 0.

First, assume that z € J(r,s) for each z € I(r,s) such that |I(r,z)] = 2. Then
we get J(r,s) C J(r,s), which is a contradiction. Now, assume that there exists
t € I(r,s) such that |1(r‘t)\ = 2 and t ¢ J(r,s). Obviously, there exist zo, ...,
ZTn_1, Tn € U such that g = s, ¥p—1 = ¢, 2, = r and (4) is a path in G. Thus
Tno1 ¢ J(Tn, o).

By virtue of Remark 1, there exist 41, ..., Zntm € U, where m > 1, such that
ZTntm = Z0, and (1) and (5) hold. Since (6) is a path in G, we have m 2 n. if m = n,
then (7) holds. If m > n, then similarly as in the proof of Lemna 3 we get (7) again.

There exists k, 1 < k < m, such that (8) holds and if & > 2, then (2) holds.
Recall that ., ¢ J(zn,%0) and d(zn,20) = n. This implies that there exists h,
0 < h < k—1,such that

(18) Tath-1 & T(¥nyn,xn) and d(wpyp,Th) = n
and
(19) if h < k=2, then either Tnyn € J(tntntr, Tng1)

or d(&npht1s¥pqr) <n— 1
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By Lemma 1, if k > 2, then (3) holds. Combining this fact with (1), we get (11).
Moreover, it is easy to see that (13) holds.

By (18), d(Tn+h,2a) = n. Thus Znyn—1 € I(Tnyn.2hy1)- Since I Cinoyy J, we get
Tnth—1 € J(@nyn,Tus1)- U 2py1 € J(@ngn,zn), then, combining Axioms A and E,
we get Tnth—1 € J(Tosn,Tn), which contradicts (18). Thus

(20) Thtt ¢ J(Tntn, Th)-

Obviously, d(Zn+na+1.Tr+1) € 1. We distinguish two cases.

Case 1. Let (15) hold. As follows from (8), h < k — 2.

First, assume that d(Zn4h41,2he1) = n. By virtue of (19), (14) holds. Combin-
ing (11), (13) and (14) with Axioms E and F, we get zny1 € J(Zn+n,2n), which
contradicts (20).

Now, assume that d(Znth+1.2r+1) € 7 — 1. Combining (15) with the fact that
J Ciu-ny I, we get 2 € J(Tnint1, Tay1)- Therefore, d(ninyr,¥n) < n— 2. This
implies that d(zn4r,s) < 1, which contradicts (18).

Case 2. Let x4 ¢ J(@ntns1,2nt1). Combining this fact with (11), (13), (20)
and Axiom G, we see that (17) holds. Since d(z,4n,Tht1) = n — 1, the fact that
J C(n—1) I implies that uint1 € I(%nsn, Thy1). Thus d(@ninsr, ©n41) = n—2. This
means that d(T,+h+1,%r) € 2 — 1. It follows from (18) that d(z,4+ht1,20) =n — 1.
This implies that 2n41 € I(Zn4n41,28). Since I Cn1) J, (16) holds. Combining
(11) and (16) with Axiom A, we see that zp41 € J(¥n4n,2n), which contradicts (20).

Thus I(r,s) C J(r,s), which is a contradiction. We conclude that (II) implies

(I11).
By virtue of Lemma 3, (IIT) implies (I), which completes the proof of the theorem.
m]

Remark 3. Let G be a connected graph. An axiomatic characterization of the
set of all ordered triples (u, v, w) of vertices in G with the properties that dg(u,v) = 1-
and dg(u, w) = dg(v,w) + 1 was given by the present author in [6].
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