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Abstract. As was shown in the book of Mulder [4], the interval function is an important 
tool for studying metric properties of connected graphs. An axiomatic characterization of 
the interval function of a connected graph was given by the present author in [5]. (Using 
the terminology of Bandelt, van de Vel and Verheul [1] and Bandelt and Chepoi [2], we may 
say that [5] gave a necessary and sufficient condition for a finite geometric interval space to 
be graphic). 

In the present paper, the result given in [5] is extended. The proof is based on new ideas. 
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The letters h-n will be reserved for denoting non-negative integers. By a graph we 

will mean a finite undirected graph without multiple edges and loops (i.e. a graph in 

the sense of Chartrand and Lesniak [3], for example). If U is a nonempty set, then 

we denote by Q(U) the set of all mappings of U into the set of all subsets of U. 

Let G be a connected graph, and let V(G), E(G) and dG denote its vertex set, its 

edge set, and its distance function, respectively. Following Mulder [4], we define the 

interval function la of G as follows: 

Ia(x, z) — \y £ V(G); y belongs to an x-z path of length da(x, z) in G} 

for all x,ze V(G). Obviously, IG e fl(V(G)). 

Propos i t ion 1. Let G be a connected graph, and let J denote the interval func­

tion ofG. Put U = V(G). Then J fulfils the following Axioms A-G (for arbitrary u, 

v, x, y e U): 

A ifve J(u,x), then J(v,x) C J(u,x); 
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B ifv e J(u,x) and y e J(v,x), then v 6 J(u,y); 

C « e J ( « , i ) ; 

D | J ( « , « ) | = 1; 

E J(u,x) = J(x,u); 

F if\j(u,v)\ = 2 = \j(x,y)\, v e J(u,x) and u e J(v,y), then x e J(v,y); 

G if \J(u,v)\ = 2 = |J(a:,)/)| andv e J(u,x), theneitherx e J(v,y) ory e J(u,x) 

or v e J(u,y). 

The validity of Axioms A-E follows from 1.1.2 in [4]. The verification of Axiom 

G was given in [5]. 

Verification of Axiom F: Let the assumption in F hold. Then do(v, y) ^ do(v, x) + 

1 = do(u,x) ^ do(u,y) + 1 = do(v,y). Hence x e J(v,y). 

As will be shown in our theorem, Axioms A-G can be used for characterizing the 

interval function of a connected graph. A similar result was originally proved in [5]. 

In the theorem of [5], instead of Axiom F the following Axiom F 0 was used (u. v, 

x, y are arbitrary elements in U): 

F 0 if | J ( u , v ) | = 2 = \j(x,y)\,v e J(u,x),u e J(v,y) and y e J(u,x), then 

x e J(v,y). 

Because of the proof of our theorem we prefer Axiom F to Axiom F 0 . 

Proposi t ion 2. Let U be a nonempty set, let J e fl(U), and let J fulfil Axioms 

A-E and G. Then it fulfils Axiom F if and only if it fulfils Axiom F 0 . 

P r o o f . Obviously, F implies F 0 . Conversely, let J fulfil Axiom F 0 . Consider 

arbitrary u,v,x,y e U such that | J ( u , v ) | = 2 = | j (x , j / ) | , v 6 J(u,x) and u 6 

J(v,y). We will show that x e J(v,y). Suppose, to the contrary, that x <£ J(v,y). 

Axiom F 0 implies that y $ J(u,x). By Axiom G, v e J(u,y). Since u e J(v,y). we 

conclude that u = v, which is a contradiction. Thus ./ fulfils Axiom F. • 

Proofs of the following two lemmas are not difficult and will be omitted. Note 

that the proof of Lemma 2 depends on the fact that U is finite. 

L e m m a 1. Let U be a nonempty set, let J e il(U), and let J fulfil Axioms A, B 

and E. Let a : 0 , . . . , x n + m e U, let 

(1) xn+i e J(xn,x0),.. .,xn+m e J(xn+m-i,x0) 

and 

(2) x0 e J(xn+1,x1),...,xk-2 e J(xn+k-i,xk-1), 
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where 2 < k < m and n _s 1, Tiien 

a;n+i+i € J(xn+i,Xi),...,xn+k e J ( _ n + t _ i , _ i ) and 

(3) Xi-i e J(xn+i+1,Xi),... ,Xi_i e J(xn+k,Xi) for each i, l < t < „ - l . 

L e m m a 2. Let U be a nonempty finite set, let J e fi({7), and let J fulfil Axioms 

A-E. If u, x eU and u=£x, then 

J(u,x)-{u}= | J J (» ,_ ) . 

\J(u,v)\=2 

R e m a r k 1. Let U be a finite nonempty set, let J e fl(U), let J fulfil Axioms 

A-E, let u, x € U and u 5̂  „. By Axiom C, u e J(u,x). Lemma 2 implies that 

there exists w e U such that w € J(«,a;) and | j(u,u>)| = 2. Consider an arbitrary 

v e J(w,x) such that | j ( u , v ) | = 2. Recall that U is finite. Lemma 2 implies that 

there exist w0, w\, . . . , UJJ e [/, where j ^ 1, such that w0 = u, wi = v, Wj = x, 

I J(_>o,u'i)| = . . . = \J(WJ-I,WJ)\ = 2 

and 

«>i e J(w0,_•),...,uij e J ( U J J _ I , „ ) . 

Let [/ be a finite nonempty set, and let J e Q(U). We will say that a graph G is 

the graph of J if V(G) = U and t and z are adjacent in G if and only if | J(t, z) \ = 2 

for all distinct t, z 6 U. Obviously, there exists exactly one graph of J. As follows 

from Remark 1, if J fulfils Axioms A-E, then the graph of J is connected. 

It is clear that if G is a connected graph, then G is the graph of IG. 

The following theorem extends (and partially modifies) the result of [5]: 

T h e o r e m . Let U be a finite nonempty set, let J e fl(U), and let G denote the 

graph of J. Then the following three statements are equivalent: 

(I) G is connected and J = IG; 

(II) J iuifiis Axioms A-G (for arbitrary u,v,x,y e U); 

(III) J fulfils Axioms A-F (for arbitrary u,v,x,y e U) and IG(t,z) C J(t,z) for all 

t,zeU. 

R e m a r k 2. Let U be a nonempty set, and let J e fl(U). It is not difficult to 

show that J is a geometric interval space in the sense of Bandelt, van de Vel and 

Verheul [1], Verheul [7] and Bandelt and Chepoi [2] if and only if J fulfils Axioms 

A-E. By our theorem, a finite geometric interval space is graphic in the sense of [1] 

and [2] if and only if it fulfils Axioms F and G. 
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In proving our theorem, we will need one more lemma. Let U be a finite nonempty 

set, and let J i , J2 £ £-({/). Assume that J i and J2 have the same graph. Let G denote 

the graph of J i and J2 , and let n _. 0. We will write 

- l __(„) J-2 (or Jl =(„) J2) 

if and only if J i ( r , s ) C J2(r,s) for all r, s eU such that dG(r,s) ^ n (or J i ( r , s ) = 

-_(r ,s) for all r,s eU such that dc(r,s) ^ n, respectively). 

L e m m a 3. Let J7 be a finite nonempty set, let n >. 0, J _ __(_/"), and iet G denote 

the graph of J. Assume that J fulfils Axioms A-F (for arbitrary u, v, x, y _ U) and 

that IG C(n) J- Then IG =(n) J-

P r o o f of L e m m a 3. Let _3 denote the diameter of G. Instead of _o and 

IG we write d and 7, respectively. We proceed by induction on n. The case when 

n < 1 is obvious. Assume that n ^ 2. Since I C(nj J, we have 7 __(n-i) J By the 

induction hypothesis, I =(„__) J. If _- ^ n - 1, then J =(„) J. Let D >• n. 

Consider arbitrary r, s e U such that d(r, s) = n. We want to prove that J(r, s) C 

I(r,s). First, assume that z _ J ( r , s ) for each z 6 J(r,s) such that | j ( r , z ) | = 2. By 

virtue of Lemma 2, J(r,s) C I(r,s). Now, assume that there exists t e J ( r , s) such 

that | J ( r , . ) | = 2 and t $ I(r,s). 

There exist x0, ..., xn 6 I(r, s) such that x0 = s, xn = r and the sequence 

(4) _ n , _ n _ i , . . . , „ 0 

is a path in G. By virtue of Remark 1, there exist xn+_, . . . , Xn+m - U, where m ^ 1, 

such that a;n+i = t, xn+m = x0 , 

(5) | j ( _ n , x n + i ) | = . . . = | J ( x n + m _ i , - „ + - . ) ! = 2 

and (1) holds. Since the sequence 

(6) z ~ , „ n + i , . . . , x n + , n 

is a path in G, m >- n. Since xn+i $ I(xn,x0), we have d ( x n + i , x 0 ) ^ n. Hence 

m>n + l. 
We will show that 

(7) .._._. g J(xn+m,X,n). 

Since m > n, (1) implies that xm G J ( x m _ i , x n + , u ) - If z m _ i _ J ( x m , x n + m ) , then 

Axioms B-D imply that x m _ i = x,n , which contradicts (5). Thus (7) holds. 



By virtue of (7), there exists fc, 1 < fc < m, such that 

(8) Xk-i i J(xn+k,xk) 

and if k ^ 2, then (2) holds. Recall that d(xn+1,x0) ^ n. There exists h, 0 ^ h 

^ fc — 1, such that 

(9) d(xn+h+1,xh) > n 

and 

(10) if h < fc-2, then d(x„+fc+2,Zfc+i) $ n - l . 

By Lemma 1, if fc ^ 2, then (3) holds. Combining this fact with (1), we get 

(11) xn+h+1 6 J(xn+h,xh). 

Moreover, (3) implies that 

(12) i f A ^ f c - 2 , then xh £ J(xn+h+2,xh+1). 

Clearly, 

(13) \J(xh,xh+1)\ = 2 = \J(xn+h,xn+h+1)\. 

Obviously, d(xn+h+1,xh+1) ^ n. It follows from (9) that d(xn+h+1,xh+1) ^ n- 1. 

We distinguish two cases. 

C a s e 1. Let d(xn +fc+ i , . i / l + 1) = 7i. This implies that Xn+h G /(^n+h+i.^/ i+i) . 

Since 7 C(n) J, we have 

(14) x,l+h e J(xn+h+1,xh+1). 

Combining (11), (13) and (14) with Axiom F, we get 

(15) xh e J(xn+h+1,xh+1). 

It follows from (8) that h ^ fc - 2. According to (12), Xh £ J(xn+h+2,xh+1). By 

(10), d(xn+h+2,xh+1) ^ n - 1. Since / =(„_i) J , z* £ /(a;,.+M-2>ZM-i)- Therefore, 

d(a;n+/ l+2,.Tn) ^ n - 2. This implies that d(xn+h+1.xh) < n , which contradicts (9). 
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C a s e 2. . Let d (_ n +h+i , -h+i ) = n - 1 . It follows from (9) that d(_ n + f c +i , Xh) = "•• 
Hence xh+i _ I(xn+h+i,xh). Since I C ( n ) J, we get 

(16) _h+l £ J(_n+h+l,:Ch). 

Combining (11) and (16) with Axiom B, we get 

(17) - n +h+l - J(»n+ f t ,~_+l) ' 

Since d(-n+h,Xh+l) < n - 1 and I =( n _i) J, we see that _ n + n + 1 g _ ( _ n + f t , _ f t + 1 ) . We 

haved ( - n + h+ i ,_h+ i ) ^ n-1. This means that d (_ n + f t + i , _h ) < n, which contradicts 

(9) again. 

Thus J(r, s) C I(r, s). We conclude that I =(n) J, which completes the proof of 

the lemma. • 

P r o o f of t h e t h e o r e m . Instead of da and la we write d and I, respec­

tively. By Proposition 1, (I) implies (II). 

Now, we will prove that (II) implies (III). Suppose, to the contrary, that (II) holds 

but (III) does not. Then there exists n >- 2 such that I Q(n-i) J but it is not true 

that I C(nj J. Since J fulfils Axioms A-F, Lemma 3 implies that I = ( n - i ) J Clearly, 

there exist r, s eU such that d(r, s) = n and I(r, s) - J(r, s) ;_ 0. 

First, assume that z _ J(r,s) for each z £ I(r,s) such that \l(r,z)\ = 2. Then 

we get I(r,s) C J(r,s), which is a contradiction. Now, assume that there exists 

t € I(r,s) such that |_ ( r , i ) | = 2 and t $ J(r,s). Obviously, there exist x0, . . . . 

,Tn_i, Xn £ U such that x0 = s, _ n _i = t, » n = r and (4) is a path in G. Thus 

- n - l ^ J(xn ,a;o). 

By virtue of Remark 1, there exist - n + i , . . . , .i:n+„, £ U, where m ^ 1, such that 

: r n + m = „0i and (1) and (5) hold. Since (6) is a path in G, we have m > n . If m = n, 

then (7) holds. If m > n, then similarly as in the proof of Lemma 3 we get (7) again. 

There exists k, 1 ^ k ^ m, such that (8) holds and if A: >. 2, then (2) holds. 

Recall that a;-_i £ J ( x n , _ 0 ) and d(xn,x0) = n. This implies that there exists h, 

0 ^ h 4 k - 1, such that 

(18) - n + h - i £ J ( - n + h , - h ) and d (x n + n , _ f t ) = n 

and 

(19) if ft $ fc - 2, then either xn+h _ J( .c , l + ; ,+ 1 , xh+1) 

or d(_ n + h + i ,Xh+i) ^ n - 1 . 



By Lemma 1, if k ^ 2, then (3) holds. Combining this fact with (1), we get (11). 

Moreover, it is easy to see that (13) holds. 

By (18), d(xn+h,xh) = n. Thus xn+h-i _ I(xn+h.xh+1). Since I Q(n-i) J, we get 

xn+h-i e J(xn+h,xh+i). If a;/i+i _ J(xn+h,xh), then, combining Axioms A and E, 

we get xn+h-i e J(xn+h,xh), which contradicts (18). Thus 

(20) - fc+ig J(xn+h,Xh). 

Obviously, d(xn+h+i,xh+i) ^ n. We distinguish two cases. 

C a s e 1. Let (15) hold. As follows from (8), h s: k - 2. 

First, assume that d(xn+h+l,xh+i) = n. By virtue of (19), (14) holds. Combin­

ing (11), (13) and (14) with Axioms E and F, we get xh+i e J(xn+h,xh), which 

contradicts (20). 

Now, assume that d(xn+h+i.xh+i) <. n - 1. Combining (15) with the fact that 

J _-(n-i) I, wc get xh _ J (_ n + f t +i ,_ f t +i ) . Therefore, d(xn+ f t+i,_ f t) ^ n — 2. This 

implies that d(xn+h,xh) < n, which contradicts (18). 

C a s e 2. Let xh £ J(xn+h+i,xh+1). Combining this fact with (11), (13), (20) 

and Axiom G, we see that (17) holds. Since d(xn+h,xh+i) = n - 1, the fact that 

J _-(n-i) / implies tha t xn+h+i e I(xn+h,xh+l). Thusrf(o:„+/,+ l , „ / l + i ) = n - 2 . This 

means that d(x.n+h+i,xh) <. n - 1. It follows from (18) that d(xn+h+i,xh) = n - 1. 

This implies that x.h+i £ I(xn+h+1,xh). Since _ Q(n-i) J, (1C) holds. Combining 

(11) and (16) with Axiom A, we see that xh+i e J(xn+h,xh), which contradicts (20). 

Thus I(r,s) C J(r,s), which is a contradiction. We conclude that (II) implies 

(III). 

By virtue of Lemma 3, (III) implies (I), which completes the proof of the theorem. 

D 

R e m a r k 3. Let G be a connected graph. An axiomatic characterization of the 

set of all ordered triples (u, it, in) of vertices in G with the properties that do (u,v) = 1 

and dG(u,w) = dG(v,w) + 1 was given by the present author in [6]. 
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