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CHARACTERIZING THE MAXIMUM GENUS 

OF A CONNECTED GRAPH 

LADISLAV NEBESKÝ, Praha 

(Received December 10, 1991) 

In this paper a generalization of Tutte 's theorem on perfect matchings and a 

generalization of Rado's theorem on independent transversals will be used for char­

acterizing the maximum genu5, of a connected graph. 

0. By a graph we mean here a graph in the sense of [4], i.e. a pseudograph in the 

sense of [2]. A graph G is determined by its vertex set V(G), its edge set E(G), and 

its incidence relation between edges and vertices. A graph in the sense of [2] will b^ 

called here a simple graph, similarly as in [4] or [18]. Note that a simple graph G is 

determined by V(G) and E(G) only. 

A trivial graph (i.e. a graph with only one vertex and no edge) will be considered 

to be 2-edge-connected. Any maximal 2-edge-connected subgraph of a graph G .vill 

be referred to as leaf of G. 

Let G be a graph. We denote by c(G) the number of components of G. We 

define p(G) = \V(G)l q(G) = \E(G)\, and /3(G) = q(G) - p(G) -f c^•;, Urn*, if C 

connected, then [3(G) = q(G) — p(G) -f 1. Moreover, we denote by b(G) or bx(G) the 

number of components F\ of G such that (3(F\) is odd, or the number of leaves F2 

of G such that l3(Fn) is odd, respectively. 

Let G be a connected graph. We denote by &/G the set of all A C E(G) such 

that G — A is connected. We denote by S?(G) the set of all spanning trees of G. If 

T e &(G), then we denote by &/G(T) the set of all A C E(G) - E(T). Clearly, 

*fc= (J *fc(T). 
T€^(C7) 

For every graph G we denote by T(G) the set of all integers i such that there 

exists a 2-cell embedding of G into the closed orientable surface of genus i (for the 
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above mentioned concepts of topological graph theory the reader is referred to [17] 

or to Chapter 5 of [2]). As follows from the properties of 2-cell embeddings, T(G) is 

finite for every graph G. Moreover, T(G) -p-- 0 if and only if G is connected. Duke 

[5] proved that if G is a connected graph, i, k G T(G) and j is an integer such that 

i < j < k, then j G L(G). (As was proved in [14], this result does not hold for signed 

graphs.) For every connected graph G, the maximum genus 7A/(G) of G is defined 

as the maximum integer in T(G). As was shown in [11], 7A/(G) ^ [/3(G)/2] for every 

connected graph G. Since the beginning of the seventies many papers concerning 

the maximum genus have been written. (The maximum nonorientable genus has 

been also studied. Ringel [13] proved that the maximum nonorientable genus of a 

connected graph G is equal to /3(G).) 

The maximum genus of a connected graph was determined by Homenko, Ostro-

verkhy and Kusmenko [8] and independently by Xuong [19]. We will present the 

result obtained in [19]. The result obtained in [8] looks rather dissimilarly but in 

substance it is the same. 

If G is a connected graph and T G ^"(G), then we denote by xG(T) the number 

of components F of G — E(T) such that | F ( F ) | is odd. 

T h e o r e m A ([19]). Let G be a connected graph. Then 

7 A / ( G ) = \(P(G)- min xG(T)). 
1 Te^-(G) 

For the case when 7A/(G) = [^P(G)], the formula was proved independently by 

Jungerman [9]. 

If G is a connected graph and A C F(G), then we denote 

yG(A) = c(G-A) + b(G-A)-l-\A\. 

P r o p o s i t i o n A. If G is a connected graph, then 

max (6A(G - A0) - \A0\) = max yG(A) 
AoCE(G) ^CE(G) 

= max ( 6 A ( G - A i ) - | A i | ) . 
A i e .Q/G 

P r o o f (outlined) . Let A C E(G)\ there exists A' C A such that G - A' is 

connected and l ^ - ^ ' l = c(G - A) - 1; we can see that 6 A ( G - A ' ) ^ 6 ( G - A). Let 

Ai G c0tG', there exists A" C E(G) such that A\ C A" and the set of components of 

G — A" is the same as the set of leaves of G — A\; hence \A" — A\ \ — c(G — A") — 1. 

Finally, let A^ C E(G); there exists A* C A0 such that A* G srfG and 6A(G - A*) = 

6A(G — J4O)- The result of the proposition easily follows. • 
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Iromenko and Glukhov [7] and independently Nebesky [10] have found that for 

any connected graph G\ 

min xG(T) 
Te^(G) 

can be expressed as the maximum of a function. Homenko and Glukhov [7] proved 

that if G is a connected graph, then 

min xG(T)= max (bx(G - A) - \A\). 
T£^{G) ACE{G) V / i i/ 

The present author proved the following theorem: 

T h e o r e m B ([10]). If G is a connected graph, then 

min xG(T) = max yG(A). 
T£^(G) ACE(G) 

Note that Sirari and Skoviera [15] generalized Theorems A and B to signed graphs. 

In Section 2 of the present paper an extension of Theorem B will be given. 

1. Let G be a connected graph different from a tree, and let T G &(G). It is clear 

that if e.\ and e2 are distinct edges in E(G) — E(T), then the subgraph T-+- e\ -f e2 

of G has at least one and at most two nontrivial (i.e. cyclic) leaves. We denote by 

G '#T the simple graph with 

V(G#T) = E(G) - E(T) 

and with the property that 

ef G E(G#T) if and only if the subgraph T -+• e + / of G has only one nontrivial 

leaf 

for any distinct e , f G E(G) - E(T). 

L e m m a 1. Let G be a nontrivial 2-edge-connected graph, and let T G 5?(G). 

Then G#T is connected. 

P r o o f . We assume, to the contrary, that G#T is not connected. Then there 

exist Eu E2 C s/G(T) such that Ex # 0 / E2i Fi H F2 = 0 and Ex U E2 = 

E(G) — E(T), and that T + ex -f e2 has two nontrivial leaves for any e\ G Fi and 

e2 G F2. We denote by <f the set of all E G SS/Q(T) with the properties that 

E 0 Ei / 0 -^ F D F2 and the subgraph T + E of G has only one nontrivial leaf. 

Clearly, <f ^ 0. 
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Consider E0 £ £ such that no proper subset of Fo belongs to £. We can see 

that |Fo| ^ 3. Without loss of generality we will assume that |Fo H Eo\ ^ 2. 

Consider an arbitrary eo £ Fo H F2- Obviously, F0 — {^o} ^ <?• According to the 

definition, T + (Fo — {eo}) has at least two nontrivial leaves. Clearly, there exists a 

leaf Fi of T -f (Fo - {e0}) such that E(FX) D E\ 7- 0. Denote E* = E(F}) - E(T). 

Since T -f (Fo — {eo}) has at least two nontrivial leaves, we conclude that E* is a 

proper subset of F0 — {eo}, and therefore F* U {e0} is a proper subset of F0. Hence 

E*U{e0}£<?. 

On the other hand, F\ is a nontrivial leaf of T-\-(E0 — {eo}) and T-h(F0 — {e0})-r-e0 

has only one nontrivial leaf. It is easy to see that T-f- (F (F i ) — E(T)) -f- e0 has only 

one nontrivial leaf. Thus we get E* U{e0} £ <f, which is a contradiction. The lemma 

is proved. • 

Corol lary. Let G be a connected graph different from a tree, and let T £ 1?(G). 

Then there exists a bijection <p of the set of all nontrivial leaves of G onto the set of 

all components ofG#T such that 

V{?(F)) = E{F)-E{T) 

for each nontrivial leaf F ofG. 

Proof is obvious . 

Let G be a graph . If M is a matching in G and u £ V(G) is such that u is incident 

with no edge in M, then we say that u is an unsaturated vertex of AI. A matching 

M in G is referred to as a maximum matching in G if |M 0 | ^ \M\ for every matching 

AIo in G. 

If H is a graph, then we denote by Co(1V) the number of components F of H such 

that p(F) is odd. We shall need the following theorem: 

T h e o r e m C (Berge [3]). Let G be a graph. Then the number of unsaturated 

vertices of a maximum matching in G is equal to 

max (co(G-U)-\U\). 

Note that Theorem C is a generalization of Tutte 's theorem on perfect match-

ings [16]. 

If G is a connected graph different from a tree and T £ «^(G), then we shall denote 

by ZG(T) the number of unsaturated vertices of a maximum matching in G '#T. 
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L e m m a 2. Let G be a connected graph different from a tree, and let T £ &(G). 

Then 

zG(T)= max (bx(G - A) - \A\). 
A6&G{T) 

P r o o f . According to Theorem C, 

zG(T)= max (c0((G#T) - A)-\A\). 
ACE(G)-E(T) V ' V 

Consider aa arbitrary / . C £ ( o ) — E(T). The corollary implies that 

c0((G-A)#T) = bx(G-A). 

It is easy to see that 

(G#T) - A = (G - ^ ) # T . 

Obviously, bx(G - (E(G) — E(T))) = 0. Hence, the statement of the lemma 

follows. • 

In the next section we will prove that if G is a connected graph different from a 

tree, then there exists T G &(G) such that 

min xG(T0) = xG(T) = zG(T) = max zcv(Pi)-
To€^(G) Ti6.^(G) 

2, The following proposition can be easily proved: 

P r o p o s i t i o n B . If G is a connected graph, then 

yG(A)=0(G) (mod 2) 

for every A C E(G). 

For the proof see [10]. 

If G is a connected graph, then we denote by .///(G) the set of all A C E(G) such 

that 

yG(A) = max yG(A') 
A'CE(G) 

and yG(A") < yG(A) for every A" C E(G) such that A is a proper subset of A". 

A complete proof of the next Lemma can be found in [10]. 
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L e m m a A. Let G be a connected graph, let A G ./{(G), and let F be a component 

ofG- A. If 0(F) is even, then q(F) = 0. If /3(F) is odd, then F - e is connected 

and 

max yF-e(Ap) = 0 
AFCE(F-e) 

for each e G E(F). 

P r o o f (outlined). The case when p(F) is even is clear. Let /3(F) be odd. 

Consider an arbitrary c G E(F). Since A G ^/t(G), we get that F — e is connected. 

Let AF C E(F - e). Then 

yG(A) > yG(A U {e} U AF) = yG(A) + yF-e(AF) - 2, 

and thus yF-e(AF) < 2. Proposition B implies that yF-e(^F) ^ 0- Since yF__e($) = 

0, the proof is complete . • 

We shall need a theorem from the intersection of matroid theory and transversal 

theory; see Wilson [18], for example . Corollary 33B in [18] can be reformulated as 

follows: 

T h e o r e m D . Consider a matroid on a finite nonempty set A with rank function 

r. Let D\, ..., Dk (k ^ 1) be nonempty subsets of A. Denote Q) = (D\,.. ., D*). 

Then the maximum size of an independent transversal ofQ) is equal to 

*- , c ?r . , } ( | / | - r (U D . - ) ) -
- l • •• ' iei 

Clearly, Theorem D is a generalization of Rado's theorem on independent transver­

sals [12]. 

We are now prepared to prove the main result of the present paper. 

T h e o r e m 1. Let G be a connected graph different from a tree. Then there exists 

T G &(G) such that 

min xa(TQ) = xG(T) = max yG(A) = zG(T) = max zG(T{). 
T0GJ7(G) A€E(G) Tx£°r{G) 

P r o o f . For every connected graph II we denote 

xH = min xH(T) and yH = max VH(A). 

TeJT(G) ACE(G) 

We shall prove that 
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(I) there exists T G &(G) such that xG(T) <J yG ^ zG(T) and HG ^ *G 

and that 

( I I ) max zG(T\) = ijG. 
T,e^(G) 

(I) We proceed by induction on </(G'). Since G is different from tree, we get that 

q(G) ^ 1. The case when q(G) = 1 is obvious. Let q(G) ^ 2. Consider an arbitrary 

A G ~//(G). Let M denote the set of all components F of G — A such that /3(F) is 

odd. We put k = b(G — A). Since G is not a tree and A G ~//(G), we can see that 

k >̂ 1. There exist mutually distinct components Bi, . . . , £?* of G — A such that 

.^ = {B\,. . ., Bk}. For every i G {V • . . , k} we denote by N,- the set of all e G A 

such that e is incident with a vertex of B2-. For 1 C {V . . . , k} we denote 

N7 = UN,, 
t € / 

Let 7i denote the mapping of exp A into the set of integers defined as follows: 

r(A0) = | A 0 | - c(G - A0) + 1 for every A0 C A. 

If I C { l , . . . , k } , then 

| 1 | - r (N 7 ) = | 1 | - |N 7 | + c(G - N7) - 1 <; yG(1V//) ^ y G . 

It is easy to see that 

h-r(N{l k]) = yc(A). 

Thus, 

^ n a x ^ l / l - ^ ) ) ^ . 

It is not difficult to see that r is the rank function of a rnatroid on A. According to 

Theorem D, the maximum size of an independent partial transversal of (N i , . . . , Nj.) 

is equal to k — yG. Thus, without loss of generality we will assume that there exists an 

independent transversal of (N i , . . . , Nk-yG). This means that there exist mutually 

distinct ci\, . . . , (ik-yG G A such that 

cii G Ni, for each i G { 1 , . . . , k — yG } , 

and G — a\ — . . . — cik-yG is connected. Denote 

A* = A- {a\,...,ak-yG}. 

We can see that \A*\ = c(G - A) - I. 
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Let i £ {V . . . , k}. We choose an edge e; of Bi such that if i ^ k — go, then there 

exists a vertex incident with both a,- and et-. According to Lemma A, I37 — e. is 

connected and t/L?,_e. = 0. If Bi — e,- is not a tree, then it follows from the induction 

hypothesis that there exists 7} £ &"(Bi — e t) such that XBt-et(Ti) = 0. If Bi — e, is 

a tree, we put T; = 7?t — e t . 

We denote by T the subgraph of G induced by the set of edges 

A*UF(Ti)U...UF(Ffc). 

Clearly, T is a spanning tree of G. It is easy to see that XG(T) ^ yc-

According to Lemma 2, 

zG(T)= max (bA(C7 - A0) - \A0\). 
A0€£JG(T) 

Since |A*| = c(G — A) — 1, we can see that 

bA(G- {au...,ak-yG})- \{au...,ak-yG}\ = yc • 

Hence y6< ^ zG(T). 

Consider V £ <^(G) such that xG(T') = xG- Let 

&con = [B £ y$\ the subgraph of T ' induced by V(B) is connected} . 

It is not difficult to see that q(F) is odd for at least | # c o n | — \A — E(T)\ components 

Fof G - E(V). Thus 

XG(T') 2 IBconl - 1-4 - £,(-T/)| = |Boon| - |-4| + |-4 n E(T')\. 

Moreover, we can see that 

\A O E(T')\ ^ c(T' - A) - 1 and c(T - A) > c(G - A) + \B - Bcon\. 

We get that xG(V) ^ yG(A)} and thus xG ^ yG. 

(II) If we combine Lemma 2 with Proposition A, we obtain 

max zG(T\) = max max (bx(G - ATx) - M r , I) 
T,GJ7(C7) T l €^ r (G )>4T l €^a(Ti) 

= m a x ( b A ( G - A ' ) - | A ' | ) = T/G. 

The proof of the theorem is complete. • 
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T h e o r e m 1 is an ex t ens ion of T h e o r e m B. In t h e proof of T h e o r e m 1 s o m e ideas 

f rom [10] were u t i l i zed . O n t h e o t h e r h a n d , t h e p roof of T h e o r e m 1 shows t h a t 

T h e o r e m B can be p roved by us ing T h e o r e m D; t h e n t h e role of T h e o r e m D is 

s imi l a r t o t h e role of Ha l l ' s t h e o r e m on d i s t i nc t r e p r e s e n t a t i v e s [6] in A n d e r s o n ' s 

p roo f [1] of T u t t e ' s t h e o r e m on perfect m a t c h i n g s . 
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