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Abstract

Modeling of connective tissues often includes collagen fibers explicitly as one of the components.

These fibers can be oriented in many directions; therefore, several studies have considered statistical

distributions to describe the fiber arrangement. One approach to formulate a constitutive framework

for distributed fibers is to express the mechanical parameters, such as strain energy and stresses, in

terms of angular integrals. These integrals represent the addition of the contribution of infinitesimal

fractions of fibers oriented in a given direction. This approach leads to accurate results; however, it

requires lengthy calculations. Recently, the use of generalized structure tensors has been proposed

to represent the angular distribution in the constitutive equations of the fibers. Although this

formulation is much simpler and fewer calculations are required, such structure tensors can only be

used when all the fibers are in tension and the angular distribution is small. However, the amount of

error introduced in these cases of non-tensile fiber loading and large angular distributions have not

been quantified. Therefore, the objective of this study is to determine the range of values of angular

distribution for which acceptable differences (less than 10%) between these two formulations are

obtained. It was found, analytically and numerically, that both formulations are equivalent for planar

distributions under equal-biaxial stretch. The comparison also showed, for other loading conditions,

that the differences decrease when the fiber distribution is very small. Differences of less than 10%

were usually obtained when the fiber distribution was very low (κ ≈ 0.03; κ ranges between 0 and

1/3, for aligned and isotropic distributed fibers, respectively). This range of angular distribution
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greatly limits the types of tissue that can be accurately analyzed using generalized structure tensors.

It is expected that the results from this study guide the selection of a proper approach to analyze a

particular tissue under a particular loading condition.
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1 Introduction

Collagen fibers are the principal component of connective tissues. The role of the fibers is

mainly mechanical, providing the tissue with the required stiffness and strength. These fibers

are loaded in tension and buckle under compression (Holzapfel et al. 2004). Therefore, the

mechanical behavior of connective tissues in tension is influenced by fiber structural

arrangement. For instance, in tendons, where the main function is to transmit loads from muscle

to bone, the collagen fibers are mostly aligned along the tendon's long axis. Another example

can be found in intervertebral discs, where fibers of the annulus fibrosus are oriented in multiple

directions to support a multiaxial loading environment. A variety of modeling approaches

incorporate collagen fibers explicitly as one of the components. Therefore, connective tissues

are often analyzed as a fiber-reinforced composite material (Spencer 1984). However, due to

the complexity of the fiber organization, simplified geometries are usually considered

(Diamant et al. 1972; Comninou and Yannas 1976; Lanir 1978). Tissue modeling studies

generally assume perfectly aligned fibers (Spilker et al. 1992; Limbert and Middleton 2004),

although some studies have utilized a discrete number of fiber directions to represent fiber

architecture (Wu and Yao 1976; Holzapfel et al. 2000; Garcia 2007; Guerin and Elliott

2007). In the pioneering work of Lanir, a constitutive relation for continuous fiber distributions

was proposed (Lanir 1983) and it has been applied for a variety of tissues such as articular

cartilage, arteries and aortic valves (Ateshian et al. 2009; Sacks 2003; Freed et al. 2005; Gasser

et al. 2006).

The strain energy and stresses, for a continuous fiber distribution, can be obtained by angular

integration (AI) of infinitesimal fractions of fibers aligned in a given direction. This formulation

allows the use of any angular distribution (experimental values or mathematical function) and

constitutive model for the fibers. Additionally, the assumption that fibers are only loaded in

tension can be easily implemented in this method. Several special cases of this theory have

been successfully used to describe the mechanical behavior of a variety of tissues (Lanir et al.

1996; Billiar and Sacks 2000; Sacks 2003; Nguyen et al. 2008; Girard et al. 2009; Ateshian et

al. 2009; Pandolfi and Holzapfel 2008). In particular, Ateshian et al. (2009) showed that large

values of the tensile Poisson's ratio for articular cartilage in tension and the low values observed

in compression can only be explained using a continuous angular distribution for the fibers.

Since this approach leads to accurate results, it can be considered the ‘gold standard’. However,

a disadvantage of the AI formulation is the large number of calculations required to evaluate

the strain and stresses.

Generalized structure tensors (GST) have been recently proposed for the modeling of tissues

with continuously distributed collagen fibers (Freed et al. 2005; Gasser et al. 2006). These

tensors are a mathematical entity assumed to represent the three-dimensional distribution of

the fibers. Once the tensor has been defined, the strain in the fibers can be readily obtained by

a multiplication with a strain tensor. The popularity of this approach lies in the small number

of calculations required to obtain the strain energy and stresses of the fibers. Therefore, this

formulation can be efficiently implemented in numerical algorithms like finite elements.

Federico and Herzog (2008) elegantly demonstrated that this approach is valid only when all
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the fibers are in tension and when the fiber distribution is small. However, the amount of error

introduced in these cases of non-tensile fiber loading and large angular distributions have not

been quantified. A numerical comparison between these methods is required to determine when

differences can be considered small enough to permit use of the more computationally efficient

GST method.

The objective of this study is to quantitatively compare the AI and GST formulations to

determine the range of values of angular distribution for which the GST approach can be used.

To this end, the differences between these approaches are initially derived analytically and

then illustrated numerically as a function of the angular distribution for several loading

conditions. It is expected that this study will provide guidance to select the appropriate approach

to model a particular tissue under a given loading environment.

2 Angular integration and generalized structure tensors formulations

2.1 Angular integration (AI)

In Lanir's formulation, the fiber distribution was described by a spatial density distribution

function, which quantifies the volumetric fraction of fibers oriented in a particular direction.

The total strain energy and stresses were calculated as the integration of the energy and stresses

of fibers in all directions. This general formulation was later simplified for the case of planar

tissues under biaxial testing (Lanir et al. 1996). Similar approaches were presented by Ateshian

et al. (2009), Girard et al. (2009), Nguyen et al. (2008), Billiar and Sacks (2000) and Sacks

(2003).

In general, the strain energy (Ψ) and the second Piola-Kirchhoff stress tensor (Sf) for a family

of distributed fibers can be expressed as

(1a)

(1b)

where ρ (θ, φ) is the density distribution function, θ and φ are Eulerian angles describing the

direction of any spatial vector (Fig. 1), λ is the stretch of a fiber, Ψ̄ is the strain energy of a

fiber, C is the right Green-Cauchy strain tensor, Ω is the surface of a unit sphere and dΩ =

sinθdθdφ. In Eq. (1), it is assumed that the fiber will buckle under any compressive deformation;

therefore, Ψ̄ (λ) = 0 and ∂Ψ̄ (λ)/∂C = 0 for λ ≤ 1.0. The partial derivative in Eq. (1b) can be

rewritten using the chain rule as

(2)

where M is an unit vector representing the average direction of an infinitesimal fraction of

fibers, and the stretch, in the direction M, is related to the strain tensor by λ2 = C :M⊗M.

Therefore, Eq. (1b) can be rewritten as
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(3)

Equation (3) is valid for a general 3-dimensional fiber distribution. However, it can be

simplified for the case of planar fiber distributions as

(4)

Although Eq. (4) has been solved for a particular choice of ρ (θ) and Ψ̄ (Raghupathy and

Barocas 2009), in general, it is very difficult to obtain a closed-form solution; therefore,

numerical integration is the usual alternative.

2.2 Generalized structure tensors (GST)

Structure tensors are an alternative approach to formulate the constitutive relations for fiber-

reinforced materials. For a material with perfectly aligned fibers, the structure tensor can be

defined as the dyadic product a0 ⊗ a0, where a0 is a unit vector in the direction of the fibers

in the reference configuration. The strain energy can be expressed as a function of the invariants

of C and a0 ⊗ a0

(5)

A general discussion on the use of these invariants and tensors can be found in Spencer

(1984). Recently, Freed et al. (2005) and Gasser et al. (2006) formulated GSTs, which consider

the effect of fiber angular distribution. The angular distribution tensor (H) is defined as

(6)

Notice that M represents the direction of an infinitesimal fraction of fibers and it is used inside

integral expressions and a0 represents global fiber orientations. Again, Eq. (6) can be simplified

for planar fiber distributions as

(7)

The pseudo-invariant I〈4 〉 = C : H, can be expressed in an integral form, using Eq. (6), as
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(8)

A similar expression can be easily obtained for planar distributions. From Eq. (8), it can be

observed that I〈4〉 is the weighted average of λ2. Notice that in the definition of I〈4〉, there is

not a condition to exclude fibers under compression. Therefore, if one of the principal values

of C is lower than 1.0, a fraction of compressed fibers will be included in the average λ̄2.

Uniaxial tension, biaxial tension and simple shear are examples of deformation states for which

at least one of the principal values of C is less than one. Consequently, error will be introduced

when the GST formulation is considered in these loading scenarios.

For the generalized structural tensor, the strain energy (Ψf) and the second Piola-Kirchhoff

(Sf) stress tensor can be expressed as

(9a)

(9b)

An essential difference between the AI and GST is that, for the GST, the strain energy function

and the stresses are calculated using the average stretch rather than the actual stretch in the

fibers. In general, lower stresses are obtained when λ̄ is used in the constitutive equations.

3 Particular cases and comparison between AI and GST formulations

In this section, both formulations are compared analytically in a general form without

specifying a constitutive equation for the fibers. Although Federico and Herzog (2008) also

presented an analysis of the differences between these two formulations, in this section we are

comparing a few cases for which analytical solutions can be easily calculated. Three cases will

be considered: two for which the formulations are equivalent (perfectly aligned fibers and

constant fiber stretch) and one case in which they are different (isotropic fiber distribution).

For perfectly aligned fibers, the distribution density function ρ (θ,φ) becomes the product of

Dirac delta functions, δ (θ) δ (φ). Therefore, the stresses in the AI formulation (Eq. (3)) can be

expressed as

(10)

where a0 is a unit vector in the fiber direction, and . On the other hand, for the GST

formulation, it can be easily shown from Eq. (6) that H becomes a0 ⊗ a0, and the pseudo-

invariant I〈4〉 tends to . Therefore, the second P-K stress tensor can be expressed as
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(11)

The second case for which these two formulations coincide is when the stretch in the fibers is

the same in all directions (i.e., dilatational loading). In this case, the average stretch, λ̄, and the

actual stretch of the fiber are the same; therefore, Eq. (3) can be expressed as

(12)

Notice that Eq. (12) is identical to Eq. (9b); therefore, the AI and GST formulations are

equivalent for any angular distribution when the fiber stretch is uniform. A similar equivalency

can be obtained for planar distributions under equibiaxial stretch.

A case where the formulations clearly differ is when the fiber distribution is isotropic, e.g., ρ
(θ, φ) is constant. For GST, from Eq. (6), it can be observed that H becomes one third of the

identity tensor, . Therefore, Eq. (9) can be rewritten as

(13a)

(13b)

Consequently, for an isotropic fiber distribution, the fiber term predicts only constant normal

stress in all directions.

4 Numerical comparison

It has been shown that both formulations lead to similar results when the fibers are in tension

and the angular distribution is small (Federico and Herzog 2008). In the previous section, two

cases were presented for which both formulations have the same analytical solution. The

objective is to determine for which values of fiber distribution acceptable differences are

obtained. To this end, a particular angular distribution and constitutive equation for the fibers

have been chosen. Here, acceptable differences are defined to be within 10%. However, the

comparisons are presented for the entire range of fiber distribution (e.g., from totally aligned

to isotropic distributed fibers); therefore, the difference between formulations can be obtained

for any value of the fiber distribution.

The following energy function has been chosen (Holzapfel et al. 2000) as a constitutive relation

to describe the mechanical behavior of the collagen fibers

14
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where c1 is an elastic constant and c2 a is non-dimensional parameter associated with the degree

of nonlinearity. The total energy of the fibers can be calculated using Eq. (1a) or Eq. (9a) for

the AI and GST formulations, respectively. For a transversely isotropic fiber distribution, the

density function proposed by Gasser et al. (2006) was selected.

(15)

where b is called a concentration parameter (it is associated with the spread of the distribution

function), and erfi is the imaginary error function. Notice that, although this fiber distribution

(Eq. 15) is a function of only one angle, the fiber arrangement is 3-dimensional. The generalized

structure tensor associated with this density function can be expressed as (Gasser et al. 2006)

(16)

where  ranges from 0 to 1/3 for perfectly aligned and isotropic distributed

fibers, respectively. An expression similar to Eq. (16) can be obtained for a planar (von Mises)

distribution

(17)

where H2, I2 and a02 ⊗ a02 are two-dimensional versions of the tensors shown in Eq. (16), the

distribution parameter is now defined as  and ranges from 0 to 1/2. Figure

2 illustrates the von Mises distribution for two values of κ2D. The shaded areas represent the

angular range which contains 95% of the fibers; i.e., the ±26° and ±71.8° for κ2D = 0.05 and

0.25, respectively.

Three loading configurations, typically used to characterize connective tissues, have been

selected for comparison: uniaxial tension, biaxial tension, and simple shear. In order to

determine the range of values of κ, an acceptable difference (100 * (SAI − SGST)/SAI) in the

stresses of 10% was selected. Additionally, since the difference in the formulations depends

on the applied stretch, a maximum stretch of 1.2 is chosen. This value of stretch is supposed

to represent a typical range of deformation for connective tissue. A single set of material

properties is used throughout this section: c1 = 5MPa, c2 = 30MPa. It is assumed that these

properties describe the behavior of the supraspinatus tendon (Kadlowec et al. 2009). Finally,

the tissue is considered as an incompressible material; therefore, the condition detC = 1 holds.

Figure 3 shows the comparison between the AI and GST formulations for planar (2D) and

transversely isotropic (3D) distributions under uniaxial tension. First, notice that the behavior

of the planar and the transversely isotropic distributions is similar. It can be observed that the

difference between the AI and GST formulations tends to zero when the fibers are highly

aligned (κ → 0). This can be attributed to the reduced number of buckled fibers. A difference

of 10% in the longitudinal stress is obtained for κ = 0.015 (κ 2D = 0.022) when a stretch of 1.2

is applied. If the stretch applied is 1.10, an acceptable (10%) difference is obtained when κ is
lower than 0.043 (κ2D = 0.065).
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Several comparisons have been made to analyze the case of biaxial loading. Figure 4a shows

the comparison between the AI and GST considering a von Mises (2D planar) fiber distribution.

In this case, a stretch is applied in the mean direction of the fibers (λ1) and the lateral direction

is kept fixed (λ2). In this loading configuration, none of the fibers experience buckling.

However, the disparity between AI and GST obtained for this configuration can be attributed

to using the average stretch instead of integrating the actual energy of the fibers. For example,

for a value of κ equal to 0.03, a difference of 10% is obtained for S11 when a stretch of 1.2 is

applied in the direction x1.

To determine the effect of the strain configuration in the biaxial testing of planar (2D) family

of fibers, a comparison between formulations as a function of the Lagrangian strain ratio E22/

E11 for several values of κ2D is shown in Fig. 4b. In this plot, the ratio between stresses was

calculated keeping the stretch in the direction x1 constant and equal to 1.2. Therefore, the ratios

E22/E11 = 0 and E22/E11 = 1 correspond to the transverse fixed and equal-biaxial configurations,

respectively. It can be observed that the differences between formulations vanish for the case

of equal-biaxial strains, regardless of the angular distribution. However, when the angular

distribution is large (e.g., κ2D = 0.25 or 0.5), small differences are obtained only when the strain

configuration is close to equal-biaxial; i.e., a difference of 10% is obtained for E22/E11 = 0.96

for κ2D = 0.5.

Several tissues, like annulus fibrosus and arteries, have two families of fibers. Usually, it is

assumed that both families have the same fiber properties and angular distribution (Yin and

Elliott 2005). Figure 5a and b show the comparison between formulations for the stress

component S11 in a biaxial test. For this comparison, a tissue with two planar (2D) fibers

families oriented at ±30° from the axis x1 was considered. Figure 5a shows that the stress

difference as a function of κ2D is similar to that for a single family of fibers (Fig. 4a); however,

it can be observed that for low values of κ2D, the stress difference is larger for the case of two

fiber families. A difference of 10% is obtained for λ1 = 1.2 and κ2D = 0.0026. Also notice that

the difference for isotropic fiber distribution (κ2D = 0.5) is the same as that of a single family

of fibers, as expected. On the other hand, Fig. 5b shows that the stress differences vanish for

the case of equal-biaxial strain. Notice that the curves for isotropic distribution (κ2D = 0.5) in

Figs. 4b and 5b are identical.

It has been shown, analytically and numerically, that no difference between formulations exists

when a planar (2D) fiber distribution is subjected to equal-biaxial stretch (Figs. 4b and 5b).

However, if the fiber distribution is transversely isotropic (3D), as that of Eq. (15), a fraction

of the fibers buckle due to the out-of-plane contraction and therefore do not contribute to total

stresses in the tissue. However, in the GST formulation, those fibers are considered in the

calculation of the average stretch. To illustrate this, a single fiber of families with transversely

isotropic distribution under equal-biaxial stretch is analyzed. Figure 6 shows the stress

difference as a function of fiber distribution for several values of the applied stretch. A 10%

difference is obtained for κ = 0.014 and a stretch equal to 1.2. This value is very close to that

obtained for the case of uniaxial tension (Fig. 3).

Finally, the case of simple shear is analyzed. From Eqs. (16) and (17), it can be noticed that if

the main direction of the fiber is aligned with the axes x1 or x2, all the off-diagonal components

of the generalized structure tensor H are zero. Therefore, there is no contribution of the fibers

to the shear stresses in the case of GST. Conversely, from Eqs. (3) and (4), it is observed that

the contribution of the fibers to the shear stresses is non-zero for the case of AI. Consequently,

for these fiber orientations, the difference will be 100% for all values of fiber distribution. On

the other hand, a comparison for a planar (2D) family of fibers oriented at 45° from x1 under

simple shear is shown in Fig. 7. Notice that fiber buckling occurs in the direction of the

compressive principal strain. The differences between formulations are 0 or 100% when the
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fibers are aligned (κ2D = 0) or homogeneously distributed (κ2D = 0.5), respectively. A

difference of 100% for an isotropic distribution is expected, since the second term of the right

hand side of Eq. (17) vanishes when κ2D = 0.5. A 10% difference was obtained when κ2D =

0.02 for E12 = 0.2.

5 Conclusions

This study provided quantitative comparisons between the constitutive frameworks using AI

and GST to describe the mechanical behavior of connective tissues. While it has been

established that under various loading conditions errors can be introduced in the structural

tensor approach (Federico and Herzog 2008), this study quantified the difference between these

two modeling frameworks to guide potentially appropriate applications for the more

computationally efficient structural formulation. Several loading conditions, such as uniaxial,

biaxial tension and simple shear, were considered. The differences were calculated as a function

of angular distribution; therefore, the range of values of κ for which acceptable differences are

obtained was determined. It was found, analytically and numerically, that both formulations

are equivalent for planar distributions for the case equal-biaxial stretch. The comparison also

showed, for other loading conditions, that the differences decrease when the fiber distribution

is very small. Differences of less than 10% were usually obtained when the fiber distribution

parameter was low (κ ≈ 0.03). This comparison can be used as a guideline to choose the proper

formulation for a given tissue and loading conditions.
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Fig. 1.

Eulerian angles used to define the direction of a vector in a 3-dimensional coordinate system
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Fig. 2.

The shaded area of the von Mises distribution, for two values of κ2D, represents the angular

range in which 95% of fibers are contained
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Fig. 3.

Difference of the second Piola-Kirchhoff stresses in the direction x1(S11) between AI and GST

formulations increases with the applied stretch (λ1) and decreases when the fiber distribution

(κ for transversely isotropic (3D) and κ2D for planar (2D) distributions) is small. Difference

defined as (SAI − SGST)/SAI * 100. Notice that distributions go from perfectly aligned (κ =
κ2D = 0) to isotropic (κ = 1/3,κ2D = 1/2)
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Fig. 4.

A planar family of fibers under biaxial tension: a difference of second Piola-Kirchhoff stress

in the direction x1(S11) when displacement in the direction x2 is constrained shows that both

formulations are equivalent for small values of fiber distribution (κ2D), b the difference of

S11 as a function of the Lagrangian strain ratio E22/E11 vanishes for the equal-biaxial (E22/

E11 = 1) strain configuration. Difference defined as (SAI − SGST)/SAI*100
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Fig. 5.

Tissue with two planar families of fibers under biaxial tension: a difference of second Piola-

Kirchhoff stress in the direction x1 (S11) when displacement in the direction x2 are constrained

shows that both formulations are equivalent for small values of fiber distribution (κ2D), b the

difference of S11 as a function of the Lagrangian strain ratio E22/E11 vanishes for the equal-

biaxial (E22/E11 = 1) strain configuration. Difference defined as (SAI − SGST)/SAI*100
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Fig. 6.

Transversely isotropic (3D) family of fibers shows differences in the second Piola-Kirchhoff

stresses (S11) even for the case equal-biaxial testing. Difference defined as (SAI − SGST)/

SAI*100
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Fig. 7.

Differences between the second Piola-Kirchhoff shear stresses (S12) go from 0 to 100% when

the angular distribution (κ2D) increases in a planar family of fibers oriented at 45° from the

vertical axis. Difference defined as (SAI − SGST)/SAI*100
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