
Provided by the author(s) and University College Dublin Library in accordance with publisher 

policies. Please cite the published version when available.

Title Characterizing the Performance of Flash Memory Storage Devices and Its Impact on 

Algorithm Design

Authors(s) Ajwani, Deepak; Malinger, Itay; Meyer, Ulrich; Toledo, Sivan

Publication date 2008-06-25

Publication information McGeoch, C.C. (ed.). Experimental Algorithms: 7th International Workshop, WEA 2008 

Provincetown, MA, USA, May 30- June 1, 2008 Proceedings

Series Lecture Notes in Computer Science (LNCS, volume 5038)

Publisher Springer

Item record/more information http://hdl.handle.net/10197/9904

Publisher's statement The final publication is available at www.springerlink.com.

Publisher's version (DOI) 10.1007/978-3-540-68552-4_16

Downloaded 2022-08-24T13:17:19Z

The UCD community has made this article openly available. Please share how this access 

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1007%2F978-3-540-68552-4_16&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F9904


Characterizing the performance of Flash

memory storage devices and its impact on

algorithm design ?

Deepak Ajwani1, Itay Malinger2, Ulrich Meyer3 and Sivan Toledo4

1 Max Planck Institut für Informatik, Saarbrücken, Germany
2 Tel Aviv University, Tel Aviv, Israel

3 Johann Wolfgang Goethe Universität, Frankfurt a.M., Germany
4 Massachusetts Institute of Technology, Massachusetts, USA

Abstract. Initially used in digital audio players, digital cameras, mobile
phones, and USB memory sticks, flash memory may become the dom-
inant form of end-user storage in mobile computing, either completely
replacing the magnetic hard disks or being an additional secondary stor-
age. We study the design of algorithms and data structures that can
exploit the flash memory devices better. For this, we characterize the
performance of NAND flash based storage devices, including many solid
state disks. We show that these devices have better random read per-
formance than hard disks, but much worse random write performance.
We also analyze the effect of misalignments, aging and past I/O patterns
etc. on the performance obtained on these devices. We show that despite
the similarities between flash memory and RAM (fast random reads)
and between flash disk and hard disk (both are block based devices), the
algorithms designed in the RAM model or the external memory model
do not realize the full potential of the flash memory devices. We later
give some broad guidelines for designing algorithms which can exploit
the comparative advantages of both a flash memory device and a hard
disk, when used together.

1 Introduction

Flash memory is a form of non-volatile computer memory that can be electri-
cally erased and reprogrammed. Flash memory devices are lighter, more shock
resistant, consume less power and hence are particularly suited for mobile com-
puting. Initially used in digital audio players, digital cameras, mobile phones,
and USB memory sticks, flash memory may become the dominant form of end-
user storage in mobile computing: Some producers of notebook computers have
already launched models (Apple MacBook Air, Sony Vaio UX90, Samsung Q1-
SSD and Q30-SSD) that completely abandon traditional hard disks in favor of
flash memory (also called solid state disks). Market research company In-Stat

? Supported in part by the DFG grant ME 3250/1-1, and by MADALGO - Center for
Massive Data Algorithmics, a Center of the Danish National Research Foundation



predicted in July 2006 that 50% of all mobile computers would use flash (instead
of hard disks) by 2013.

Frequently, the storage devices (be it hard disks or flash) are not only used
to store data but also to actually compute on it if the problem at hand does not
completely fit into main memory (RAM); this happens on both very small de-
vices (like PDAs used for online route planning) and high-performance compute
servers (for example when dealing with huge graphs like the web). Thus, it is
important to understand the characteristics of the underlying storage devices in
order to predict the real running time of algorithms, even if these devices are used
as an external memory. Traditionally, algorithm designers have been assuming
a uniform cost access to any location in the storage devices. Unfortunately, real
architectures are becoming more and more sophisticated, and will become even
more so with the advent of flash devices. In case of hard disks, the access cost
depends on the current position of the disk-head and the location that needs to
be read/written. This has been well researched; and there are good computation
models such as the external memory model [1] or the cache-oblivious model [6]
that can help in realistic analysis of algorithms that run on hard disks. This pa-
per attempts to characterize the performance (read/writes; sequential/random)
of flash memory devices; to see the effects of random writes, misalignment and
aging etc. on the access cost and its implications on the real running time of
basic algorithms.

External memory model. The external memory model (or the I/O model)
proposed by Aggarwal and Vitter [1] is one of the most commonly used model
when analyzing the performance of algorithms that do not fit in the main memory
and have to use the hard disk. It assumes a single central processing unit and two
levels of memory hierarchy. The internal memory is fast, but has a limited size of
M words. In addition, we have an external memory which can only be accessed
using I/Os that move B contiguous words between internal and external memory.
At any particular time stamp, the computation can only use the data already
present in the internal memory. The measure of performance of an algorithm is
the number of I/Os it performs.

State of the art for flash memories. Recently, there has been grow-
ing interest in using flash memories to improve the performance of computer
systems [4, 9, 11]. This trend includes the experimental use of flash memories
in database systems [9, 11], in Windows Vista’s use of usb flash memories as
a cache (a feature called ReadyBoost), in the use of flash memory caches in
hard disks (e.g., Seagate’s Momentus 5400 PSD hybrid drives, which include
256 MB on the drive’s controller), and in proposals to integrate flash memories
into motherboards or i/o busses (e.g., Intel’s Turbo Memory technology).

Most previous algorithmic work on flash memory concerns operating system

algorithms and data structures that were designed to efficiently deal with flash
memory cells wearing out, e.g., block-mapping techniques and flash-specific file
systems. A comprehensive overview on these topics was recently published by
Gal and Toledo [7]. The development of application algorithms tuned to flash



memory is in its absolute infancy. We are only aware of very few published results
beyond file systems and wear leveling:

Wu et al. [12, 13] proposed flash-aware implementations of B-trees and R-
trees without file system support by explicitly handling block-mapping within
the application data structures.

Goldberg and Werneck [8] considered point-to-point shortest-path computa-
tions on pocket PCs where preprocessed input graphs (road networks) are stored
on flash-memory; due to space-efficient internal-memory data-structures and lo-
cality in the inputs, data manipulation remains restricted to internal memory,
thus avoiding difficulties with unstructured flash memory write accesses.

Goals. Our first goal is to see how standard algorithms and data structures
for basic algorithms like scanning, sorting and searching designed in the RAM
model or the external memory model perform on flash storage devices. An impor-
tant question here is whether these algorithms can effectively use the advantages
of the flash devices (such as faster random read accesses) or there is a need for
a fundamentally different model for realizing the full potential of these devices.

Our next goal is to investigate why these algorithms behave the way they
behave by characterizing the performance of more than 20 different low-end and
high-end flash devices under typical access patterns presented by basic algo-
rithms. Such a characterization can also be looked upon as a first step towards
obtaining a model for designing and analyzing algorithms and data structures
that can best exploit flash memory. Previous attempts [9, 11] at characterizing
the performance of these devices reported measurements on a small number of
devices (1 and 2, respectively), so it is not yet clear whether the observed behav-
ior reflects the flash devices, in general. Also, these papers didn’t study if these
devices exhibit any second-order effects that may be relevant.

Our next goal is to produce a benchmarking tool that would allow its users
to measure and compare the relative performance of flash devices. Such a tool
should not only allow users to estimate the performance of a device under a given
workload in order to find a device with an appropriate cost-effectiveness for a
particular application, but also allow quick measurements of relevant parameters
of a device that can affect the performance of algorithms running on it.

These goals may seem easy to achieve, but they are not. These devices em-
ploy complex logical-to-physical mapping algorithms and complex mechanisms
to decide which blocks to erase. The complexity of these mechanisms and the fact
that they are proprietary mean that it is impossible to tell exactly what factors
affect the performance of a device. A flash device can be used by an algorithm
designer like a hard disk (under the external memory or the cache-oblivious
model), but its performance may be far more complex.

It is also possible that the flash memory becomes an additional secondary
storage device, rather than replacing the hard disk. Our last, but not least, goal
is to find out how one can exploit the comparative advantages of both in the
design of application algorithms, when they are used together.

Outline. The rest of the paper is organized as follows. In Section 2, we show
how the basic algorithms perform on flash memory devices and how appropri-



ate the standard computation models are in predicting these performances. In
Section 3, we present our experimental methodology, and our benchmarking
program, which we use to measure and characterize the performance of many
different flash devices. We also show the effect of random writes, misalignment
and aging on the performance of these devices. In Section 4, we provide an algo-
rithm design framework for the case when flash devices are used together with
a hard disk.

2 Implications of flash devices for algorithm design

In this section, we look at how the RAM model and external memory model
algorithms behave when running on flash memory devices. In the process, we
try to ascertain whether the analysis of algorithms in either of the two models
also carry over to the performance of these algorithms obtained on flash devices.

In order to compare the flash memory with DRAM memory (used as main
memory), we ran a basic RAM model list ranking algorithm on two architectures
- one with 4GB RAM memory and the other with 2GB RAM, but 32 GB flash
memory. The list ranking problem is that given a list with individual elements
randomly stored on disk, find the distance of each element from the head of
the list. The sequential RAM model algorithm consists of just hoping from one
element to its next, and thereby keeping track of the distances of node from the
head of the list. Here, we do not consider the cost of writing the distance labels
of each node.

We stored a 230-element list of long integers (8 Bytes) in a random order,
i.e. the elements were kept in the order of a random permutation generated
beforehand. While ranking such a list took minutes in RAM, it took days with
flash. This is because even though the random reads are faster on flash disks
than the hard disk, they are still much slower than RAM. Thus, we conclude
that RAM model is not useful for predicting the performance (or even relative
performance) of algorithms running on flash memory devices and that standard
RAM model algorithms leave a lot to be desired if they are to be used on flash
devices.

Algorithm Hard Disk Flash

Generating a random double and writing it 0.2 µs 0.37 µs
Scanning (per double) 0.3 µs 0.28 µs
External memory Merge-Sort (per double) 1.06 µs 1.5 µs
Random read 11.3 ms 0.56 ms
Binary Search 25.5 ms 3.36 ms

Table 1: Runtime of basic algorithms when running on Seagate Barracuda 7200.11
hard disk as compared to 32 GB Hama Solid State disk



As Table 1 shows, the performance of basic algorithms when running on hard
disks and when running on flash disks can be quite different, particularly when
it comes to algorithms involving random read I/Os such as binary search on a
sorted array. While such algorithms are extremely slow on hard disks necessitat-
ing B-trees and other I/O-efficient data structures, they are acceptably fast on
flash devices. On the other hand, algorithms involving write I/Os such as merge
sort (with two read and write passes over the entire data) run much faster on
hard disk than on flash.

It seems that the algorithms that run on flash have to achieve a different
tradeoff between reads and writes and between sequential and random accesses
than hard disks. Since the cost of accesses don’t drop or rise proportionally
over the entire spectrum, the algorithms running on flash devices need to be
qualitatively different from the one on hard disk. In particular, they should be
able to tradeoff write I/Os at the cost of extra read I/Os. Standard external
memory algorithms that assume same cost for reading and writing fail to take
advantage of fast random reads offered by flash devices. Thus, there is a need
for a fundamentally different model for realistically predicting the performance
of algorithms running on flash devices.

3 Characterization of flash memory devices

In order to see why the standard algorithms behave as mentioned before, we
characterize more than 20 flash storage devices. This characterization can also be
looked at as a first step towards a model for designing and analyzing algorithms
and data structures running on flash memory.

3.1 Flash memory

Large-capacity flash memory devices use nand flash chips. All nand flash chips
have common characteristics, although different chips differ in performance and
in some minor details. The memory space of the chip is partitioned into blocks
called erase blocks. The only way to change a bit from 0 to 1 is to erase the
entire unit containing the bit. Each block is further partitioned into pages, which
usually store 2048 bytes of data and 64 bytes of meta-data (smaller chips have
pages containing only 512+16 bytes). Erase blocks typically contain 32 or 64
pages. Bits are changed from 1 (the erased state) to 0 by programming (writing)
data onto a page. An erased page can be programmed only a small number of
times (one to three) before it must be erased again. Reading data takes tens
of microseconds for the first access to a page, plus tens of nanoseconds per
byte. Writing a page takes hundreds of microseconds, plus tens of nanoseconds
per byte. Erasing a block takes several milliseconds. Finally, erased blocks wear
out; each block can sustain only a limited number of erasures. The guaranteed
numbers of erasures range from 10,000 to 1,000,000. To extend the life of the
chip as much as possible, erasures should therefore be spread out roughly evenly
over the entire chip; this is called wear leveling.



Because of the inability to overwrite data in a page without first erasing the
entire block containing the page, and because erasures should be spread out over
the chip, flash memory subsystems map logical block addresses (lba) to physical
addresses in complex ways [7]. This allows them to accept new data for a given
logical address without necessarily erasing an entire block, and it allows them to
avoid early wear even if some logical addresses are written to more often than
others. This mapping is usually a non-trivial algorithm that uses complex data
structures, some of which are stored in ram (usually inside the memory device)
and some on the flash itself.

The use of a mapping algorithm within lba flash devices means that their
performance characteristics can be worse and more complex than the perfor-
mance of the raw flash chips. In particular, the state of the on-flash mapping
and the volatile state of the mapping algorithm can influence the performance of
reads and writes. Also, the small amount of ram can cause the mapping mech-
anism to perform more physical i/o operations than would be necessary with
more ram.

3.2 Configuration

The tests were performed on many different machines – a 1.5GHz Celeron-M
with 512m ram, a 3.0GHz Pentium 4 with 2GB of ram, a 2.0Ghz Intel dual
core T7200 with 2GB of ram, and a 2 x Dual-core 2.6 GHz AMD Opteron with
2.5 GB of ram. All of these machines were running a 2.6 Linux kernel.

The devices include USB sticks, compact-flash and sd memory cards and
solid state disks (of capacities 16GB and 32GB). They include both high-end
and low-end devices. The USB sticks were connected via a USB 2.0 interface,
memory cards were connected through a USB 2.0 card reader (made by Hama)
or PCMCIA interface, and solid state disks with IDE interface were installed in
the machines using a 2.5 inch to 3.5 inch IDE adapter and a PATA serial bus.

Our benchmarking tool and methodology. Standard disk benchmark-
ing tools like zcav fail to measure things that are important in flash devices (e.g.,
write speeds, since they are similar to read speeds on hard disks, or sequential-
after-random writes); and commercial benchmarks tend to focus on end-to-end
file-system performance, which does not characterize the performance of the flash
device in a way that is useful to algorithm designers. Therefore, we decided to
implement our own benchmarking program that is specialized (designed mainly
for LBA flash devices), but highly flexible and can easily measure the perfor-
mance of a variety of access patterns, including random and sequential reads
and writes, with given block sizes and alignments, and with operation counts or
time limits.

3.3 Result and Analysis

Performance of steady, aligned access patterns. Figure 1 shows the per-
formance of two typical devices under the aligned access patterns. The other
devices that we tested varied greatly in the absolute performance that they



(a) (b)

Fig. 1: Performance (in logarithmic scale) of the (a) 1 GB Toshiba TransMemory usb
flash drive and the (b) 1 GB Kingston compact-flash card.

Device Buffer size 512 Bytes Buffer size 2 MB

Name size sr rr sw rw sr rr sw rw

kingston dt secure 512m 0.97 0.97 0.64 0.012 33.14 33.12 14.72 9.85

memorex mini traveldrive 512m 0.79 0.79 0.37 0.002 13.15 13.15 5.0 5.0

toshiba transmemory 512m 0.78 0.78 0.075 0.003 12.69 12.69 4.19 4.14

sandisk u3 cruzer micro 512m 0.55 0.45 0.32 0.013 12.8 12.8 5.2 4.8

m-systems mdrive 1g 0.8 0.8 0.24 0.005 26.4 26.4 15.97 15.97

m-systems mdrive 100 1g 0.78 0.78 0.075 0.002 12.4 12.4 3.7 3.7

toshiba transmemory 1g 0.8 0.8 0.27 0.002 12.38 12.38 4.54 4.54

smi flash device 1g 0.97 0.54 0.65 0.01 13.34 13.28 9.18 7.82

kingston cf card 1g 0.60 0.60 0.25 0.066 3.55 3.55 4.42 3.67

kingston dt elite hs 2.0 2g 0.8 0.8 0.22 0.004 24.9 24.8 12.79 6.2

kingston dt elite hs 2.0 4g 0.8 0.8 0.22 0.003 25.14 25.14 12.79 6.2

memorex td classic 003c 4g 0.79 0.17 0.12 0.002 12.32 12.15 5.15 5.15

120x cf card 8g 0.68 0.44 0.96 0.004 19.7 19.5 18.16 16.15

supertalent solid state flash drive 16g 1.4 0.45 0.82 0.028 12.65 12.60 9.84 9.61

hama solid state disk 2.5” ide 32g 2.9 2.18 4.89 0.012 28.03 28.02 24.5 12.6

ibm deskstar hard drive 60g 5.9 0.03 4.1 0.03 29.2 22.0 24.2 16.2

seagate barracuda 7200.11 hard disk 500g 6.2 0.063 5.1 0.12 87.5 69.6 88.1 71.7

Table 2: The tested devices and their performance (in MBps) under sequential and
random reads and writes with block size of 512 Bytes and 2 MB.

achieved, but not in the general patterns; all followed the patterns shown in
Figures 1a and 1b.

In all the devices that we tested, small random writes were slower than all
the other access patterns. The difference between random writes and other ac-
cess patterns is particularly large at small buffer sizes, but it is usually still
evident even on fairly large block sizes (e.g., 256KB in Figure 1a and 128KB in
Figure 1b). In most devices, small-buffer random writes were at least 10 times
slower than sequential writes with the same buffer size, and at least 100 times
slower than sequential writes with large buffers. Table 2 shows the read/write



access time with two different block sizes (512 Bytes and 2 MB) for sequential
and random accesses on some of the devices that we tested.

We believe that the high cost for random writes of small blocks is because
of the LBA mapping algorithm in these devices. These devices partition the
virtual and physical address spaces into chunks larger than an erase block; in
many cases 512KB. The LBA mapping maps areas of 512KB logical addresses
to physical ranges of the same size. On encountering a write request, the system
writes the new data into a new physical chunk and keeps on writing contiguously
in this physical chunk till it switches to another logical chunk. The logical chunk
is now mapped twice. Afterwards, when the writing switches to another logical
chunk, the system copies over all the remaining pages in the old chunk and
erases it. This way every chunk is mapped once, except for the active chunk,
which is mapped twice. On devices that behave like this, the best random-write
performance (in seconds) is on blocks of 512KB (or whatever is the chunk size).
At that size, the new chunk is written without even reading the old chunk. At
smaller sizes, the system still ends up writing 512KB, but it also needs to read
stuff from the old location of this chunk, so it is slower. We even found that on
some devices, writing randomly 256 or 128KB is slower than writing 512KB, in
absolute time.

In most devices, reads were faster than writes in all block sizes. This typical
behavior is shown in Figure 1a.

Another nearly-universal characteristic of the devices is the fact that sequen-
tial reads are not faster than random reads. The read performance does depend
on block size, but usually not on whether the access pattern is random or se-
quential.

The performance in each access pattern usually increases monotonically with
the block size, up to a certain saturation point. Reading and writing small blocks
is always much slower than the same operation on large blocks.

The exceptions to these general rules are discussed in detail in [2].

Comparison to hard disks. Quantitatively, the only operation in which
lba flash devices are faster than hard disks is random reads of small buffers.
Many of these devices can read a random page in less than a millisecond, some-
times less than 0.5ms. This is at least 10 times faster than current high-end
hard disks, whose random-access time is 5-15ms. Even though the random-read
performance of lba flash devices varies, all the devices that we tested exhibited
better random-read times than those of hard disks.

In all other aspects, most of the flash devices tested by us are inferior to
hard disks. The random-write performance of lba flash devices is particularly
bad and particularly variable. A few devices performed random writes about as
fast as hard disks, e.g., 6.2ms and 9.1ms. But many devices were more than 10
times slower, taking more than 100ms per random write, and some took more
than 300ms.

Even under ideal access patterns, the flash devices we have tested provide
smaller I/O bandwidths than hard disks. One flash device reached read through-
put approaching 30MB/s and write throughput approaching 25MB/s. Hard disks



Fig. 2: (a) Effect of misalignment on the performance of flash devices (b) Total time
taken by large number of random writes on a 32 GB Hama Solid state disk

can achieve well over 100MB/s for both reads and writes. Even disks designed
for laptops can achieve throughput approaching 60MB/s. Flash devices would
need to improve significantly before they outperform hard disks in this metric.
The possible exception to this conclusion is large-capacity flash devices utilizing
multiple flash chips, which should be able to achieve high throughput by writing
in parallel to multiple chips.

Performance of large number of random writes. We observed an in-
teresting phenomenon (Figure 3.3) while performing large number of random
writes on a 32 GB Hama (2.5” IDE) solid state disk. After the first 3000 random
writes (where one random write is writing a 8-byte real number at a random
location in a 8 GB file on flash), we see some spikes in the total running time.
Afterwards, these spikes are repeated regularly after every 2000 random writes.
This behavior is not restricted to Hama solid state disk and is observed in many
other flash devices.

We believe that it is because the random writes make the page table more
complex. After a while, the controller rearranges the pages in the blocks to
simplify the LBA mapping. This process takes 5-8 seconds while really writing
the data on the disk takes less than 0.8 seconds for 2000 random writes, causing
the spikes in the total time.

Effects of misalignment. On many devices, misaligned random writes
achieve much lower performance than aligned writes. In this setting, alignment
means that the starting address of the write is a multiple of the block size. We
have not observed similar issues with sequential access and with random reads.

Figure 3.3 shows the ratio between misaligned and aligned random writes.
The misalignment is by 2KB, 16KB and 32KB. All of these sizes are at most as
large as a single flash page. Many of the devices that we have tested showed some
performance drop on misaligned addresses, but the precise effect varied from
device to device. For example, the 128MB SuperTalent usb device is affected by
misalignment by 2KB but not by misalignments of 16KB or 32KB.



Effect of random writes on subsequent operations. On some devices,
a burst of random writes slows down subsequent sequential writes. The effect
can last a minute or more, and in rare cases hours (of sustained writing). No
such effect was observed on subsequent reads.

In these experiments, we performed t seconds of random writing, for t = 5, 30
and 60. We then measured the performance of sequential writes during each
4 second period for the next 120 seconds. For very small blocks, the median
performance in the two minutes that follow the random writes can drop by more
than a factor of two. Even on larger blocks, performance drops by more than
10%.

Effects of Aging. We were not able to detect a significant performance
degradation as devices get older (in terms of the number of writes and era-
sures). On a (512mb Kingston DataTraveler II+) device, we observed that
the performance of each access pattern remains essentially constant, even after
320,000 sequential writes on the entire device. The number of writes exceeded
the rated endurance of the device by at least a factor of 3.

4 Designing algorithms to exploit flash when used

together with a hard disk

Till now, we discussed the characteristics of the flash memory devices and the
performance of algorithms running on architectures where the flash disks replace
the hard disks. Another likely scenario is that rather than replacing hard disk,
flash disk may become an additional secondary storage, used together with hard
disk. From the algorithm design point of view, it leads to many interesting ques-
tions. A fundamental question here is how can we best exploit the comparative
advantages of the two devices while running an application algorithm.

The simple idea of directly using external memory algorithms with input and
intermediate data randomly striped on the two disks treats both the disks as
equal. Since the sequential throughput and the latency for random I/Os of the
two devices is likely to be very different, the I/Os of the slower disk can easily
become a bottleneck, even with asynchronous I/Os.

The key idea in designing efficient algorithms in such a setting is to restrict
the random accesses to a static data-structure. This static data-structure is then
kept on the flash disk, thereby exploiting the fast random reads of these devices
and avoiding unnecessary writing. The sequential read and write I/Os are all
limited to the hard disk.

We illustrate this basic framework with the help of external memory BFS
algorithm of Mehlhorn and Meyer [10].

The BFS algorithm of Mehlhorn and Meyer [10] involves a preprocessing
phase to restructure the adjacency lists of the graph representation. It groups
the nodes of the input graph into disjoint clusters of small diameter and stores
the adjacency lists of the nodes in a cluster contiguously on the disk. The key
idea is that by spending only one random access (and possibly some sequential
accesses depending on cluster size) in order to load the whole cluster and then



keeping the cluster data in some efficiently accessible data structure (hot pool)
until it is all used up, the total amount of I/Os can be reduced by a factor
of up to

√

B on sparse graphs. The neighboring nodes of a BFS level can be
computed simply by scanning the hot pool and not the whole graph. Removing
the nodes visited in previous two levels by parallel scanning gives the nodes in
the next BFS level (a property true only for undirected graphs). Though some
edges may be scanned more often in the pool, random I/Os to fetch adjacency
lists is considerably reduced.

This algorithm is well suited for our framework as random I/Os are mostly
restricted to the data structure keeping the graph clustering, while the hot pool
accesses are mostly sequential. Also, the graph clustering is only stored once
while the hot pool is modified (read and written) in every iteration. Thus, we
keep the graph clustering data structure in the flash disk and the hot pool on
the hard disk.

We ran a fast implementation [3] of this algorithm on a graph class that is
considered difficult for the above mentioned algorithm. This graph class is a tree
with

√

B+1 BFS levels. Level 0 contains only the source node which has an edge
to all nodes in level 1. Levels 1 . . .

√

B have n
√

B
nodes each and the ith node in

jth level (1 < j <
√

B) has an edge to the ith node in levels j − 1 and j + 1.
As compared to striping the graph as well as pool randomly between the

hard disk and the flash disk, the strategy of keeping the graph clustering data
structure in flash disk and hot pool in hard disk performs around 25% better.
Table 3 shows the running time for the second phase of the algorithm for a 228-
node graph. Although the number of I/Os in the two cases are nearly the same,
the time spent waiting for I/Os is much smaller for our disk allocation strategy,
leading to better overall runtime.

The cluster size in the BFS algorithm was chosen in a way so as to balance
the random reads and sequential I/Os on the hard disks, but now in this new
setting, we can reduce the cluster size as the random I/Os are being done much
faster by the flash memory. Our experiments suggest that this leads to even
further improvements in the runtime of the BFS algorithm.

Operation Random striping Our strategy

1 Flash + 1 Hard disk 2 Hard disks Same cluster size Smaller cluster size

I/O wait time 10.5 6.3 7.1 5.8
Total time 11.7 7.5 8.1 6.3

Table 3: Timing (in hours) for the second phase of Mehlhorn/Meyer’s BFS algorithm
on 228-node graph

5 Discussion

Our results indicate that there is a need for more experimental analysis to find
out how the existing external memory and cache-oblivious data structures like
priority queues and search trees perform, when running on flash devices. Such
experimental studies should eventually lead to a model for predicting realistic



performance of algorithms and data structures running on flash devices, as well
as on combinations of hard disks and flash devices. Coming up with a model
that can capture the essence of flash devices and yet is simple enough to design
and analyze algorithms and data structures, remains an important challenge.

As a first model, we may consider a natural extension of the standard external-
memory model that will distinguish between block accesses for reading and writ-
ing. The I/O cost measure for an algorithm incurring x read I/Os and y write
I/Os could be x + cW · y, where the parameter cW > 1 is a penalty factor for
write accesses.

An alternative approach might be to assume different block transfer sizes,
BR for reading and BW for writing, where BR < BW and cR · x + cW · y (with
cR, cW > 1) would be the modified cost measure.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9), pages 1116–1127, 1988.

2. D. Ajwani, I. Malinger, U. Meyer and S. Toledo Characterizing the performance
of flash memory storage devices and its impact on algorithm design. Max Planck
Institut für Informatik, Research report no. MPI-I-2008-1-001

3. D. Ajwani, U. Meyer and V. Osipov. Improved external memory BFS implementa-
tions. ALENEX’07, pages 3–12, 2007.

4. Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. A design for
high-performance flash disks. SIGOPS Oper. Syst. Rev., 41(2):88–93, 2007.

5. P. M. Chen and D. A. Patterson. A new approach to I/O performance evaluation—
self-scaling I/O benchmarks, predicted I/O performance. In ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages 1–12, 10–14
1993.

6. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algo-
rithms. FOCS, pages 285–297. IEEE Computer Society Press, 1999.

7. E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM
Computing Surveys, 37:138–163, 2005.

8. A. Goldberg and R. Werneck. Computing point-to-point shortest paths from exter-
nal memory. ALENEX’05. SIAM, 2005.

9. Sang-Won Lee and Bongki Moon. Design of flash-based DBMS: an in-page logging
approach. In Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors, SIGMOD
Conference, pages 55–66. ACM, 2007.

10. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear
I/O. ESA, volume 2461 of LNCS, pages 723–735. Springer, 2002.

11. Daniel Myers and Samuel Madden. On the use of NAND flash disks in high-
performance relational databases. manuscript, 2007.

12. C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient B-tree layer for flash-memory
storage systems. In Proceedings of the 9th International Conference on Real-Time
and Embedded Computing Systems and Applications (RTCSA), 2003.

13. C.-H. Wu, L.-P. Chang, and T.-W. Kuo. An efficient R-tree implementation over
flash-memory storage systems. In Proceedings of the eleventh ACM international
symposium on Advances in geographic information systems, pages 17–24. ACM
Press, 2003.


