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ABSTRACT
In 2008, Kasiviswanathan el al. defined private learning as
a combination of PAC learning and differential privacy [16].
Informally, a private learner is applied to a collection of la-
beled individual information and outputs a hypothesis while
preserving the privacy of each individual. Kasiviswanathan
et al. gave a generic construction of private learners for (fi-
nite) concept classes, with sample complexity logarithmic
in the size of the concept class. This sample complexity is
higher than what is needed for non-private learners, hence
leaving open the possibility that the sample complexity of
private learning may be sometimes significantly higher than
that of non-private learning.

We give a combinatorial characterization of the sample
size sufficient and necessary to privately learn a class of
concepts. This characterization is analogous to the well
known characterization of the sample complexity of non-
private learning in terms of the VC dimension of the concept
class. We introduce the notion of probabilistic representation
of a concept class, and our new complexity measure RepDim
corresponds to the size of the smallest probabilistic repre-
sentation of the concept class.

We show that any private learning algorithm for a concept
class C with sample complexity m implies RepDim(C) =
O(m), and that there exists a private learning algorithm
with sample complexity m = O(RepDim(C)). We further
demonstrate that a similar characterization holds for the
database size needed for privately computing a large class of
optimization problems and also for the well studied problem
of private data release.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy ; F.2.m [Analysis of Algorithms and Problem
Complexity]: Miscellaneous
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1. INTRODUCTION
Motivated by the observation that learning generalizes

many of the analyses applied to large collections of data,
Kasiviswanathan el al. [16] defined in 2008 private learning
as a combination of probably approximately correct (PAC)
learning [19] and differential privacy [11]. A PAC learner is
given a collection of labeled examples (sampled according to
an unknown probability distribution and labeled according
to an unknown concept) and generalizes the labeled exam-
ples into a hypothesis h that should predict with high ac-
curacy the labeling of fresh examples taken from the same
unknown distribution and labeled with the same unknown
concept.

The privacy requirement is that the choice of h preserves
differential privacy of sample points. Intuitively this means
that this choice should not be significantly affected by any
particular sample. Differential privacy is increasingly ac-
cepted as a standard for rigorous privacy and recent research
has shown that differentially private variants exists to many
analyses. We refer the reader to surveys of Dwork [9, 10].

The sample complexity required for learning a concept
class C determines the amount of labeled data needed for
learning a concept c ∈ C. It is well known that the sample
complexity of learning a concept class C (non-privately) is
proportional to a complexity measure of the class C knowns
as the VC-dimension [20, 6, 13]. Kasiviswanathan et al. [16]
proved that a private learner exists for every finite concept
class. The proof is via a generic construction that exhibits
sample complexity logarithmic in the size of the concept
class. The VC-dimension of a concept class is bounded by
this quantity (and significantly lower for some interesting
concept classes), and hence the results of [16] left open the
possibility that the sample complexity of private learning
may be significantly higher than that of non-private learn-
ing.

In analogy to the characterization of the sample complex-
ity of (non-private) PAC learners via the VC-dimension, we
give a combinatorial characterization of the sample size suf-
ficient and necessary for private PAC learners. Towards
obtaining this characterization, we introduce the notion of
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probabilistic representation of a concept class. We note that
our characterization, as the VC-dimension characterization,
ignores the computation required by the learner. Some of
our algorithms are, however, computationally efficient.

1.1 Related Work
We start with a short description of prior work on the

sample complexity of private learning. To simplify the ex-
position, we ignore dependencies on the error, confidence
and privacy parameters by considering them constants for
this and the following section. The dependency on these pa-
rameters would be made explicit in the later sections of the
paper.

Recall that the sample complexity of non-private learners
for a class of functions C is proportional to the VC-dimension
of the class [6, 13] – a combinatorial measure of the class
that is equal to the size of the largest set of inputs that
is shattered by the class. This characterization, as ours,
ignores the computation required by the learner.

Kasiviswanathan et al. [16] showed, informally, that ev-
ery finite concept class C can be learned privately (ignoring
computational complexity). Their construction is based on
the exponential mechanism of McSherry and Talwar [17],
and the O(ln |C|) bound on sample complexity results from
the union bound argument used in the analysis of the expo-
nential mechanism. Computationally efficient learners were
shown to exist by Blum et al. [4] for all concept classes that
can be efficiently learned in the statistical queries model.
Kasiviswanathan et al. [16] showed an example of a concept
class – the class of parity functions – that is not learnable in
the statistical queries model but can be learned privately and
efficiently. These positive results suggest that many “natu-
ral” computational learning tasks that are efficiently learned
non-privately can be learned privately and efficiently.

Beimel et al. [3] studied the sample complexity of private
learning. They examined the concept class of point functions
POINTd where each concept evaluates to one on exactly one
point of the domain and to zero otherwise. Note that the
VC-dimension of POINTd is one. Beimel et al. proved lower
bounds on the sample complexity of properly and privately
learning the class POINTd (and related classes), implying that
the VC dimension of a class does not characterize the sample
complexity of private proper learning. On the other hand,
they observed that the sample complexity can be improved
for improper private learners whenever there exists a smaller
hypothesis class H that represents C in the sense that for
every concept c ∈ C and for every distribution on the exam-
ples, there is a hypothesis h ∈ H that is close to c. Using the
exponential mechanism to choose among the hypotheses in
H instead of C, the sample complexity is reduced to ln |H|
(this is why the size of the representation H is defined to
be ln |H|). For some classes this can dramatically improve
the sample complexity, e.g., for the class POINTd (defined
in Example 3.2), the sample complexity is improved from
O(ln | POINTd |) = O(d) to O(ln d). Using other techniques,
Beimel et al. showed that the sample complexity of learning
POINTd can be reduced even further to O(1), hence show-
ing the largest possible gap between proper and non proper
private learning. Such a gap does not exists for non-private
learning.

Chaudhuri and Hsu [7] studied the sample complexity
needed for private learning infinite concept classes when the
data is drawn from a continuous distribution. They showed

that under these settings there exists a simple concept class
for which any proper learner that uses a finite number of
examples and guarantees differential privacy fails to satisfy
accuracy guarantee for at least one data distribution. This
implies that the results of Kasiviswanathan et al. [16] do
not extend to infinite hypothesis classes. Interestingly, our
results imply an improper private algorithm for an infinite
extension of the class POINT (that is, a class over the natural
numbers of all boolean functions that return 1 on exactly
one number).

Chaudhuri and Hsu [7] also study learning algorithms that
are only required to protect the privacy of the labels (and
do not necessarily protect the privacy of the examples them-
selves). They prove upper bounds and lower bounds on the
sample complexity of such algorithms. In particular, they
prove a lower bound on the sample complexity using the
doubling dimension of the disagreement metric of the hy-
pothesis class with respect to the unlabeled data distribu-
tion. This result does not imply our characterization as the
privacy requirement in protecting the labels is much weaker
than protecting the sample point and the label.

A line of research (started in [18]) that is very relevant
to our paper is boosting learning algorithms, that is, taking
learning algorithms that have a big classification error and
producing a learning algorithm with small error. Dwork et
al. [12] show how to privately boost accuracy, that is, given
a private learning algorithms that have a big classification
error, they produce a private learning algorithm with small
error. In Lemma 3.14, we show how to boost the accuracy
α for probabilistic representations. This gives an alternative
private boosting, whose proof is simpler. However, as it uses
the exponential mechanism, it is (generally) not computa-
tionally efficient.

1.2 Our Results
Beimel et al. [3] showed how to use a representation of

a class to privately learn it. We make an additional step
in improving the sample complexity by considering a prob-
abilistic representation of a concept class C. Instead of one
collection H representing C, we consider a list of collections
H1, . . . ,Hr such that for every c ∈ C and every distribution
on the examples, if we sample a collection Hi from the list,
then with high probability there is a hypothesis h ∈ Hi that
is close to c. To privately learn C, the learning algorithm
first samples i ∈ {1, . . . , r} and then uses the exponential
mechanism to select a hypothesis from Hi. This reduces the
sample complexity to O(maxi ln |Hi|); the size of the prob-
abilistic representation is hence defined to be maxi ln |Hi|.

We show that for POINTd there exists a probabilistic rep-
resentation of size O(1). This results in a private learning
algorithm with sample complexity O(1), matching a differ-
ent private algorithm for POINTd presented in [3]. Our new
algorithm offers some improvement in the sample complex-
ity compared to the algorithm of [3] when considering the
learning and privacy parameters. Furthermore, our algo-
rithm can be made computationally efficient without making
any computational hardness assumptions, while the efficient
version in [3] assumes the existence of one-way functions.
Finally, it is conceptually simpler and in particular it avoids
the sub-sampling technique used in [3].

One can ask if there are private learning algorithms with
smaller sample complexity than the size of the smallest prob-
abilistic representation. We show that the answer is no —
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the size of the smallest probabilistic representation is a lower
bound on the sample complexity. Thus, the size of the small-
est probabilistic representation of a class C, which we call the
representation dimension and denote by RepDim(C), char-
acterizes (up to constants) the sample size necessary and
sufficient for privately learning the class C. We also show
that for concepts defined over a finite domain, the difference
between the sizes of the best deterministic and probabilistic
representation is bounded. Namely, that if C is a concept
class over the domain {0, 1}d, then there exists a determin-
istic representation of C of size O(RepDim(C) + ln d). Thus,
for classes whose smallest deterministic representation is of
size ω(ln d), the size of the smallest deterministic representa-
tion characterizes the sample complexity of private learning
of the class.

The notion of probabilistic representation applies not only
to private learning, but also to optimization problems. We
consider a scenario where there is a domain X, a database
S of m records, each taken from the domain X, a set of so-
lutions F , and a quality function q : X∗ × F → [0, 1] that
we wish to maximize. If the exponential mechanism is used
for (approximately) solving the problem, then the size of the
database should be Ω(ln |F|) in order to achieve a reasonable
approximation. Using our notions of a representation of F
and of a probabilistic representation of F , one can reduce
the size of the minimal database without paying too much
in the quality of the solution. Interestingly, a similar no-
tion to representation, called “solution list algorithms”, was
considered in [2] for constructing secure protocols for search
problems while leaking only a few bits on the input. Curi-
ously, their notion of leakage is very different from that of
differential privacy.

We give two examples of such optimization problems. First,
an example inspired by [2]: each record in the database is
a clause with exactly 3 literals and we want to find an as-
signment satisfying at least 7/8 fraction of the clauses while
protecting the privacy of the clauses. A construction of [2]
yields a deterministic representation for this problem where
the size of the database can be much smaller. Using a prob-
abilistic representation, we can give a good assignment even
for databases of constant size. This example is a simple in-
stance of a scenario, where each individual has a preference
on the solution and we want to choose a solution maximizing
the number of individuals whose preference are met, while
protecting the privacy of the preference. Another example of
optimization is sanitization, where given a database we want
to publish a synthetic database, which gives a similar utility
as the original database while protecting the privacy of the
individual records of the database. Using our techniques,
we study the minimal database size for which sanitization
gives reasonable performance with respect to a given family
of queries.

Open Problem. We still do not know the relation be-
tween this dimension and the VC dimension. By Sauer’s
Lemma, if C is a concept class over {0, 1}d, then the number
of functions in C is at most exp(d · VC(C)). By [16], there
is a private learning algorithm for C whose sample size is
O(d · VC(C)), thus, the probabilistic representation dimen-
sion of C is O(d ·VC(C)). We do not know if there is a class
C such that RepDim(C) � VC(C). A candidate for such
separation appears in [1].

2. PRELIMINARIES
Notation. We use Oγ(g(n)) as a shorthand for O(h(γ) ·
g(n)) for some non-negative function h. Given a set B of
cardinality r, and a distribution P on {1, 2, . . . , r}, we use
the notation b ∈P B to denote a random element of B chosen
according to P.

2.1 Preliminaries from Privacy
A database is a vector S = (z1, . . . , zm) over a domain X,

where each entry zi ∈ S represents information contributed
by one individual. Databases S1 and S2 are called neighbor-
ing if they differ in exactly one entry. An algorithm preserves
differential privacy if neighboring databases induce nearby
outcome distributions. Formally,

Definition 2.1 (Differential Privacy [11]). A ran-
domized algorithm A is ε-differentially private if for all neigh-
boring databases S1, S2, and for all sets F of outputs,

Pr[A(S1) ∈ F ] ≤ exp(ε) · Pr[A(S2) ∈ F ]. (1)

The probability is taken over the random coins of A.

An immediate consequence of the definition is that for any
two databases S1, S2 ∈ Xm, and for all sets F of outputs,

Pr[A(S1) ∈ F ] ≥ exp(−εm) · Pr[A(S2) ∈ F ].

2.2 Preliminaries from Learning Theory
Let Xd = {0, 1}d. A concept c : Xd → {0, 1} is a function

that labels examples taken from the domain Xd by either
0 or 1. A concept class C over Xd is a class of concepts
mapping Xd to {0, 1}.

PAC learning algorithms are given examples sampled ac-
cording to an unknown probability distribution D over Xd,
and labeled according to an unknown target concept c ∈ C.
The generalization error of a hypothesis h : Xd → {0, 1} is
defined as

errorD(c, h) = Pr
x∈DXd

[h(x) 6= c(x)].

For a labeled sample S = (xi, yi)
m
i=1, the empirical error of

h is

errorS(h) =
1

m
|{i : h(xi) 6= yi}|.

Definition 2.2. An α-good hypothesis for c and D is a
hypothesis h such that errorD(c, h) ≤ α.

Definition 2.3 (PAC Learning [19]). Algorithm A
is an (α, β)-PAC learner for a concept class C over Xd us-
ing hypothesis class H and sample size m if for all concepts
c ∈ C, all distributions D on Xd, given an input of m sam-
ples S = (z1, . . . , zm), where zi = (xi, c(xi)) and xi are
drawn i.i.d. from D, algorithm A outputs a hypothesis h ∈ H
satisfying

Pr[errorD(c, h) ≤ α] ≥ 1− β.

The probability is taken over the random choice of the exam-
ples in S according to D and the coin tosses of the learner
A.

Definition 2.4. An algorithm satisfying Definition 2.3
with H ⊆ C is called a proper PAC learner; otherwise it is
called an improper PAC learner.
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2.3 Private Learning
As a private learner is a PAC learner, its outcome hy-

pothesis should also be a good predictor of labels. Hence,
the privacy requirement from a private learner is not that
an application of the hypothesis h on a new sample (per-
taining to an individual) should leak no information about
the sample.

Definition 2.5 (Private PAC Learning [16]). Let
A be an algorithm that gets an input S = (z1, . . . , zm). Al-
gorithm A is an (α, β, ε)-PPAC learner for a concept class
C over Xd using hypothesis class H and sample size m if

Privacy. Algorithm A is ε-differentially private (as for-
mulated in Definition 2.1);

Utility. Algorithm A is an (α, β)-PAC learner for C using
H and sample size m (as formulated in Definition 2.3).

2.4 The Exponential Mechanism
We next describe the exponential mechanism of McSh-

erry and Talwar [17]. We present its private learning vari-
ant; however, it can be used in more general scenarios. The
goal here is to chooses a hypothesis h ∈ H approximately
minimizing the empirical error. The choice is probabilistic,
where the probability mass that is assigned to each hypoth-
esis decreases exponentially with its empirical error.

Inputs: a privacy parameter ε, a hypothesis class H, and
m labeled samples S = (xi, yi)

m
i=1.

1. ∀h ∈ H define q(S, h) = |{i : h(xi) = yi}|.
2. Randomly choose h ∈ H with probability

exp (ε · q(S, h)/2)∑
f∈H exp (ε · q(S, f)/2)

.

Proposition 2.6. Denote ê , minf∈H{errorS(f)}. The
probability that the exponential mechanism outputs a hy-
pothesis h such that errorS(h) > ê + ∆ is at most |H| ·
exp(−ε∆m/2). Moreover, The exponential mechanism is ε
differentially private.

2.5 Concentration Bounds
Let X1, . . . , Xn be independent random variables where

Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p for some 0 < p < 1.
Clearly, E[

∑
iXi] = pn. Chernoff and Hoeffding bounds

show that the sum is concentrated around this expected
value:

Pr
[∑

i
Xi > (1 + δ)pn

]
≤ exp

(
−pnδ2/3

)
for δ > 0,

Pr
[∑

i
Xi < (1− δ)pn

]
≤ exp

(
−pnδ2/2

)
for 0 < δ < 1,

Pr
[∣∣∣∑

i
Xi − pn

∣∣∣ > δ
]
≤ 2 exp

(
−2δ2/n

)
for δ ≥ 0.

The first two inequalities are known as the multiplicative
Chernoff bounds [8], and the last inequality is known as the
Hoeffding bound [15].

3. THE SAMPLE COMPLEXITY OF PRI-
VATE LEARNERS

In this section we present a combinatorial measure of a
concept class C that characterizes the sample complexity

necessary and sufficient for privately learning C. The mea-
sure is a probabilistic representation of the class C. We start
with the notation of deterministic representation from [3].

Definition 3.1 ([3]). A hypothesis class H is an α-
representation for a class C if for every c ∈ C and every
distribution D on Xd there exists a hypothesis h ∈ H such
that errorD(c, h) ≤ α.

Example 3.2 (POINTd). For j ∈ Xd, define cj : Xd →
{0, 1} as cj(x) = 1 if x = j, and cj(x) = 0 otherwise. Define
POINTd = {cj}j∈Xd . In [3] it was shown that for α < 1/2,
every α-representation for POINTd must be of cardinality at
least d, and that an α-representation Hd for POINTd exists
where |Hd| = O(d/α2).

The above representation can be used for non-private learn-
ing, by taking a big enough sample and finding a hypothesis
h ∈ Hd minimizing the empirical error. For private learn-
ing it was shown in [3] that a sample of size Oα,β,ε(log |Hd|)
suffices, with a learner that employs the exponential mech-
anism to choose a hypothesis from Hd.

Definition 3.3. For a hypothesis class H we denote
size(H) = ln |H|. We define the Deterministic Represen-
tation Dimension of a concept class C as

DRepDim(C) = min
{

size(H) : H 1

4
-represents C

}
.

Example 3.4. By the results of [3], stated in the previous
example, DRepDim(POINTd) = θ(ln(d)).

We are now ready to present the notion of a probabilistic
representation. The idea behind this notion is that we have
a list of hypothesis classes, such that for every concept c and
distribution D, if we sample a hypothesis class from the list,
then with high probability it contains a hypothesis that is
close to c.

Definition 3.5. Let P be a distribution over {1, 2, . . . , r},
and let H = {H1,H2, . . . ,Hr} be a family of hypothesis
classes (every Hi ∈ H is a set of boolean functions). We
say that (H ,P) is an (α, β)-probabilistic representation for
a class C if for every c ∈ C and every distribution D on Xd:

Pr
P

[∃h ∈ Hi s.t. errorD(c, h) ≤ α] ≥ 1− β.

The probability is over randomly choosing a set Hi ∈P H .

Example 3.6 (POINTd). In Section 7 we construct for
every α and every β a pair (H ,P) that (α, β)- probabilisti-
cally represents the class POINTd, where H contains all the
sets of at most 4

α
ln(1/β) boolean functions.

Definition 3.7. Let H = {H1,H2, . . . ,Hr} be a family
of hypothesis classes. We denote |H | = r, and size(H ) =
max{ ln |Hi| : Hi ∈ H }. We define the Representation
Dimension of a concept class C as

RepDim(C) = min

 size(H ) :
∃P s.t. (H ,P) is a
( 1

4
, 1

4
)-probabilistic

representation for C

 .

Example 3.8 (POINTd). The size of the probabilistic
representation mentioned in Example 3.6 is ln( 4

α
ln(1/β)).

Placing α = β = 1
4

, we see that the Representation Dimen-
sion of POINTd is constant.
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3.1 Equivalence of (α, β)-Probabilistic Repre-
sentation and Private Learning

We now show that RepDim(C) characterizes the sample
complexity of private learners. We start by showing in
Lemma 3.9 that an (α, β)-probabilistic representation of C
implies a private learning algorithm whose sample complex-
ity is the size of the representation. We then show in Lemma
3.12 that if there is a private learning algorithm with sam-
ple complexity m, then there is probabilistic representa-
tion of C of size O(m); this lemma implies that RepDim(C)
is a lower bound on the sample complexity. Recall that
RepDim(C) is the size of the smallest probabilistic repre-
sentation for α = β = 1/4. Thus, to complete the proof
we show in Lemma 3.14 that a probabilistic representation
with α = β = 1/4 implies a probabilistic representation for
arbitrary α and β.

Lemma 3.9. If there a exists pair (H ,P) that
(α, β)-probabilistically represents a class C, then for every
ε there exists an algorithm A that (6α, 4β, ε)-PPAC learns C
with a sample size m = O

(
1
αε

(size(H ) + ln( 1
β

))
)

.

Proof. Let (H ,P) be an (α, β)-probabilistic represen-
tation for the class C, and consider the following algorithm
A:

Inputs: S = (xi, yi)
m
i=1, and a privacy parameter ε.

1. Randomly choose Hi ∈P H .
2. Choose h ∈ Hi using the exp. mechanism with ε.

By the properties of the exponential mechanism, A is ε-
differentially private. We will show that with sample size

m = O
(

1
αε

(size(H ) + ln( 1
β

))
)

, algorithm A is a (6α, 4β)-

PAC learner for C. Fix some c ∈ C and D, and define the
following 3 good events:

E1 Hi chosen in step 1 contains at least one hypothesis h
s.t. errorS(h) ≤ 2α.

E2 For every h ∈ Hi s.t. errorS(h) ≤ 3α, it holds that
errorD(c, h) ≤ 6α

E3 The exponential mechanism chooses an h such that
errorS(h) ≤ α+ minf∈Hi {errorS(f)}.

We first show that if those 3 good events happen, algo-
rithm A returns a 6α-good hypothesis. Event E1 ensures the
existence of a hypothesis f ∈ Hi s.t. errorS(f) ≤ 2α. Thus,
event E1 ∩E3 ensures algorithm A chooses (using the expo-
nential mechanism) a hypothesis h ∈ Hi s.t. errorS(h) ≤ 3α.
Event E2 ensures therefore that this h obeys errorD(c, h) ≤
6α.

We will now show that those 3 events happen with high
probability. As (H ,P) is an (α, β)-probabilistic representa-
tion for the class C, the chosenHi contains a hypothesis h s.t.
errorD(c, h) ≤ α with probability at least 1−β; by the Cher-
noff bound with probability at least 1 − exp(−mα/3) this
hypothesis has empirical error at most 2α. Event E1 hap-
pens with probability at least (1 − β)(1 − exp(−mα/3)) >
1 − (β + exp(−mα/3)), which is at least (1 − 2β) for m ≥
3
α

ln(1/β).
Using the Chernoff bound, the probability that a hypoth-

esis h s.t. errorD(c, h) > 6α has empirical error ≤ 3α is less
than exp(−mα3/4). Using the union bound, the probabil-
ity that there is such a hypothesis in Hi is at most |Hi| ·

exp(−mα3/4). Therefore, Pr[E2] ≥ 1−|Hi| ·exp(−mα3/4).

For m ≥ 4
3α

(ln( |Hi|
β

)), this probability is at least (1− β).
The exponential mechanism ensures that the probability

of event E3 is at least 1 − |Hi| · exp(−εαm/2) (see Section

2.4), which is at least (1− β) for m ≥ 2
αε

ln( |Hi|
β

).

All in all, by setting m = 3
αε

(size(H ) + ln( 1
β

)) we en-
sure that the probability of A failing to output a 6α-good
hypothesis is at most 4β.

We will demonstrate the above lemma with two examples:

Example 3.10 (Efficient learner for POINTd). As
described in Example 3.6, there exists an (H ,P) that
(α/6, β/4)-probabilistically represents the class POINTd, where
size(H ) = Oα,β,ε(1). By Lemma 3.9, there exists an algo-
rithm that (α, β, ε)-PPAC learns C with sample size m =
Oα,β,ε(1).

The existence of an algorithm with sample complexity O(1)
was already proven in [3]. Moreover, assuming the existence
of oneway functions, their learner is efficient. Our construc-
tions yields an efficient learner, without assumptions. To
see this, consider again algorithm A presented in the above
proof, and note that as size(H ) is constant, step 2 could
be done in constant time. Step 1 can be done efficiently as
we can efficiently sample a set Hi ∈P H . In Claim 7.1
we initially construct a probabilistic representation in which
the description of every hypothesis is exponential in d. The
representation is than revised using pairwise independence
to yield a representation in which every hypothesis h has a
short description, and given x the value h(x) can be com-
puted efficiently.

Example 3.11 (POINTN). Consider the class POINTN,
which is exactly like POINTd, only over the natural numbers.
By results of [7, 3], it is impossible to properly PPAC learn
the class POINTN. Our construction can yield an (inefficient)
improper private learner for POINTN with Oα,β,ε(1) samples.
The details are deferred to Section 7.

The next lemma shows that a private learning algorithm
implies a probabilistic representation. This lemma can be
used to lower bound the sample complexity of private learn-
ers.

Lemma 3.12. Let α ≤ 1/4. If there exists an algorithm
A that (α, 1

2
, ε)-PPAC learns a concept class C with a sam-

ple size m, then there exists a pair (H ,P) that (1/4, 1/4)-
probabilistically represents the class C such that size(H ) =
O (mεα).

Proof. Let A be an (α, 1
2
, ε)-PPAC learner for the class

C using hypothesis class F whose sample size is m. Without

loss of generality, we can assume that m ≥ 3 ln(4)
4α

(since A
can ignore part of the sample). For a target concept c ∈ C
and a distribution D on Xd, we define

GαD = {h ∈ F : errorD(c, h) ≤ α}.

Fix some c ∈ C and a distribution D on Xd, and define the

following distribution D̃ on Xd:

Pr
D̃

[x] =

{
1− 4α+ 4α · PrD[x], x = 0d.

4α · PrD[x], x 6= 0d.

Note that for every x ∈ Xd,

Pr
D̃

[x] ≥ 4α · Pr
D

[x]. (2)
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As A is an (α, 1
2
)-PAC learner, it holds that

Pr
D̃,A

[
A(S) ∈ GαD̃

]
≥ 1

2
,

where the probability is over A’s randomness and over sam-

pling the examples in S (according to D̃). In addition, by
inequality (2), every hypothesis h with errorD(c, h) > 1/4

has error strictly greater than α under D̃:

errorD̃(c, h) ≥ 4α · errorD(c, h) > α.

So, every α-good hypothesis for c and D̃ is a 1
4
-good hy-

pothesis for c and D. That is, GαD̃ ⊆ G
1/4
D . Therefore,

PrD̃,A

[
A(S) ∈ G1/4

D

]
≥ 1

2
.

We say that a database S of m labeled examples is good
if the unlabeled example 0d appears in S at least (1− 8α)m
times. Let S be a database constructed by taking m i.i.d.

samples from D̃, labeled by c. By the Chernoff bound, S is
good with probability at least 1− exp(−4αm/3). Hence,

Pr
D̃,A

[
(A(S) ∈ G1/4

D ) ∧ (S is good)
]
≥ 1

2
−exp(−4αm/3) ≥ 1

4
.

Therefore, there exists a database Sgood of m samples that
contains the unlabeled sample 0d at least (1− 8α)m times,

and PrA
[
A(Sgood) ∈ G1/4

D

]
≥ 1

4
, where the probability is

only over the randomness of A. All of the examples in Sgood

(including the example 0d) are labeled by c.

For σ ∈ {0, 1}, denote by ~0σ a database containing m
copies of the example 0d labeled as σ. As A is ε-differentially
private, and as the target concept c labels the example 0d

by either 0 or 1, for at least one σ ∈ {0, 1} it holds that

Pr
A

[A(~0σ) ∈ G1/4
D ] ≥ exp(−8αεm) · Pr

A

[
A(Sgood) ∈ G1/4

D

]
≥ exp(−8αεm) · 1/4. (3)

That is, PrA[A(~0σ) /∈ G1/4
D ] ≤ 1− 1

4
e−8αεm. Now, consider a

set H containing the outcomes of 4 ln(4)e8αεm executions of

A(~00), and the outcomes of 4 ln(4)e8αεm executions of A(~01).
The probability that H does not contain a 1

4
-good hypoth-

esis for c and D is at most (1 − 1
4
e−8αεm)4 ln(4)e8αεm ≤ 1

4
.

Thus, H =
{
H ⊆ F : |H| ≤ 2 · 4 ln(4)e8αεm

}
, and P, the

distribution induced by A(~00) and A(~01), are a (1/4, 1/4)-
probabilistic representation for the class C. Note that the
value c(0d) is unknown, and can be either 0 or 1. Therefore
the construction uses the two possible values (one of them
correct).

It holds that size(H ) = max{ ln |H| : H ∈ H } =
ln(8 ln(4)) + 8αεm = O (mεα).

Lemma 3.14 shows how to construct a probabilistic repre-
sentation for an arbitrary α and β from a probabilistic repre-
sentation with α = β = 1/4; in other words we boost α and
β. The proof of this lemma is combinatorial. It allows us to
start with a private learning algorithm with constant α and
β, move to a representation, use the combinatorial boosting,
and move back to a private algorithm with small α and β.
This should be contrasted with the private boosting of [12]
which is algorithmic and more complicated (however, the
algorithm of Dwork et al. [12] is computationally efficient).

We first show how to construct a probabilistic representa-
tion for arbitrary β from a probabilistic representation with
β = 1/4.

Claim 3.13. For every concept class C and for every β,
there exists a pair (H ,P) that (1/4, β)-probabilistically rep-
resents C where size(H ) ≤ RepDim(C) + ln ln(1/β).

Proof. Let β < 1/4, and let (H 0,P0) be a ( 1
4
, 1

4
)- prob-

abilistic representation for C with size(H 0) = RepDim(C) ,
k0 (that is, for every H0

i ∈ H 0 it holds that |H0
i | ≤ ek0).

Denote H 0 = {H0
1,H0

2, . . . ,H0
r}, and consider the following

family of hypothesis classes:

H 1 =
{
H0
i1 ∪ · · · ∪ H

0
iln(1/β)

: 1 ≤ i1 ≤ · · · ≤ iln(1/β) ≤ r
}
.

Note that for everyH1
i ∈H 1 it holds that |H1

i | ≤ ln(1/β)ek0

and so size(H 1) , k1 ≤ k0 + ln ln(1/β). We will now show
an appropriate distribution P1 on H 1 s.t. (H 1,P1) is a
( 1

4
, β)-probabilistic representation for C. To this end, con-

sider the following process for randomly choosing an H1 ∈
H 1:

1. Denote M = ln(1/β)
2. For i = 1, . . . ,M :

Randomly choose H0
i ∈P0 H 0.

3. Return H1 =
⋃M
i=1H

0
i .

The above process induces a distribution on H 1, denoted
as P1. As H 0 is a ( 1

4
, 1

4
)-probabilistic representation for C,

we have that

Pr
P1

[
@h ∈ H1 s.t. errorD(c, h) ≤ 1/4

]
=

=

M∏
i=1

Pr
P0

[
@h ∈ H0

i s.t. errorD(c, h) ≤ 1/4
]
≤

≤
(

1

4

)M
≤ β.

Lemma 3.14. For every concept class C, every α, and ev-
ery β, there exists (H ,P) that (α, β)-probabilistically repre-
sents C where

size(H ) = O
(

ln(
1

α
)·
(

RepDim(C)+ln ln ln(
1

α
)+ln ln(

1

β
)
))
.

Proof. Let C be a concept class, and let (H 1,P1) be a
( 1

4
, β/T )-probabilistic representation for C (where T will be

set later). By Claim 3.13, such a representation exists with

size(H 1) , k1 ≤ RepDim(C) + ln ln(T/β). We use H 1 and
P1 to create an (α, β)- probabilistic representation for C.
We begin with two notations:

1. For T hypotheses h1, . . . , hT we denote by majh1,...,hT
the majority hypothesis. That is, majh1,...,hT

(x) = 1
if and only if |{hi : hi(x) = 1}| ≥ T/2.

2. For T hypothesis classes H1, . . . ,HT we denote

MAJ(H1, . . . ,HT ) =
{

majh1,...,hT : ∀1≤i≤T hi ∈ Hi
}

.

Consider the following family of hypothesis classes:

H =

{
MAJ(Hi1 , . . . ,HiT ) : Hi1 , . . . ,HiT ∈H 1

}
.
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Moreover, denote the distribution on H induced by the fol-
lowing random process as P:

For j = 1, . . . , T :
Randomly choose Hij ∈P1 H 1

Return MAJ(Hi1 , . . . ,HiT ).

Next we show that (H ,P) is an (α, β)-probabilistic repre-
sentation for C: For a fixed pair of a target concept c and
a distribution D, randomly choose Hi1 , . . . ,HiT ∈P1 H 1.
We now show that with probability at least (1− β) the set
MAJ(Hi1 , . . . ,HiT ) contains at least one α-good hypothesis
for c,D.

To this end, denote D1 = D and consider the following
thought experiment, inspired by the Adaboost Algorithm of
[14]:

For t = 1. . . . , T :

1. Fail if Hit does not contain a 1
4
-good hypothesis for

c,Dt.
2. Denote by ht ∈ Hit a 1

4
-good hypothesis for c,Dt.

3. Dt+1(x) =

{
2Dt(x), if ht(x) 6= c(x).(

1− errorDt (c,ht)

1−errorDt (c,ht)

)
Dt(x), otherwise.

Note that as D1 is a probability distribution on Xd; the
same is true for D2,D3, . . . ,DT . As (H 1,P1) is a ( 1

4
, β/T )-

probabilistic representation for C, the failure probability of
every iteration is at most β/T . Thus (using the union bound),
with probability at least (1 − β) the whole thought experi-
ment will succeed, and in this case we show that the error
of hfin = majh1,...,hT is at most α.

Consider the set R = {x : hfin(x) 6= c(x)} ⊆ Xd. This
is the set of points on which at least T/2 of h1, . . . , hT err.
Next consider the partition of R to the following sets:

Rt =
{
x ∈ R :

(
ht(x) 6= c(x)

)
∧
(
∀i>t hi(x) = c(x)

)}
.

That is, Rt contains the points x ∈ R on which ht is last to
err. Clearly Dt(Rt) ≤ 1/4, as Rt is a subset of the set of
points on which ht errs. Moreover,

Dt(Rt) ≥ D1(Rt) · 2T/2 ·
(

1− errorDt(c, ht)

1− errorDt(c, ht)

)t−T/2
≥ D1(Rt) · 2T/2 ·

(
1− 1/4

1− 1/4

)t−T/2
≥ D1(Rt) · 2T/2 ·

(
1− 1/4

1− 1/4

)T/2
= D(Rt) ·

(
4

3

)T/2
,

so,

D(Rt) ≤ Dt(Rt) ·
(

4

3

)−T/2
≤ 1

4
·
(

4

3

)−T/2
.

Finally,

errorD(c, hfin) = D(R) =

T∑
t=T/2

D(Rt) ≤

≤ T

2
· 1

4
·
(

4

3

)−T/2
=
T

8
·
(

4

3

)−T/2
.

Choosing T = 14 ln( 2
α

), we get that errorD(c, hfin) ≤ α.
Hence, (H ,P) is an (α, β)-probabilistic representation for

C. Moreover, for every Hi ∈H we have that |Hi| ≤
(
ek1
)T

,
and so

size(H ) ≤ k1 · T ≤
(

RepDim(C) + ln ln(T/β)
)
T

= O
(

ln(
1

α
) ·
(

RepDim(C) + ln ln ln(
1

α
) + ln ln(

1

β
)
))
.

The next theorem states the main result of this section
– RepDim characterizes the sample complexity of private
learning.

Theorem 3.15. Let C be a concept class. Θ̃β

(
RepDim(C)

αε

)
samples are necessary and sufficient for the private learning
of the class C.

Proof. Fix some α ≤ 1/4, β ≤ 1/2, and ε. By Lemma
3.14, there exists a pair (H ,P) that (α

6
, β

4
)-represent class C,

where size(H ) = O
(

ln(1/α) ·
(

RepDim(C) + ln ln ln(1/α) +

ln ln(1/β)
))

. Therefore, by Lemma 3.9, there exists an algo-

rithm A that (α, β, ε)-PPAC learns the class C with a sample
size

m = Oβ

(
1

αε
ln(

1

α
) ·
(

RepDim(C) + ln ln ln(
1

α
)

))
.

For the lower bound, let A be an (α, β, ε)-PPAC learner
for the class C with a sample size m, where α ≤ 1/4 and β ≤
1/2. By Lemma 3.12, there exists an (H ,P) that ( 1

4
, 1

4
)-

probabilistically represents the class C and size(H ) = ln(8)+
ln ln(4) + 8αεm. Therefore, by definition, RepDim(C) ≤
ln(8 ln(4)) + 8αεm. Thus,

m ≥ 1

8αε
·
(

RepDim(C)− ln(8 ln(4))
)

= Ω

(
RepDim(C)

αε

)
.

4. FROM A PROBABILISTIC REPRESEN-
TATION TO A DETERMINISTIC REPRE-
SENTATION

In this section we will establish a connection between the
(probabilistic) representation dimension of a class and its
deterministic representation dimension.

Observation 4.1. Let (H ,P) be an (α, β)-probabilistic
representation for a concept class C. Then, B =

⋃
Hi∈H Hi

is an α-representation of C.

Proof. As (H ,P) is an (α, β)-probabilistic representa-
tion for C, for every c and every D

Pr
P

[∃h ∈ Hi s.t errorD(c, h) ≤ α] ≥ 1− β > 0.

The probability is over choosing a set Hi ∈P H . In partic-
ular, for every c and every D there exists an Hi ∈ H that
contains an α-good hypothesis.

The simple construction in Observation 4.1 may result in
a very large deterministic representation. For example, in
Claim 7.1 we show an (H ,P) that (α, β)- probabilistically
represents the class POINTd, where H contains all the sets
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of at most 4
α

ln( 1
β

) boolean functions. While
⋃
Hi∈H Hi =

2Xd is indeed an α-representation for POINTd, it is extremely
over-sized.

We will show that it is not necessary to take the union
of all the Hi’s in H in order to get an α-representation
for C. As (H ,P) is an (α, β)-probabilistic representation,
for every c and every D, with probability at least 1 − β a
randomly chosen Hi ∈P H contains an α-good hypothesis.
The straight forward strategy here is to first boost β as in
Claim 3.13, and then use the union bound over all possible
c ∈ C and over all possible distributions D on Xd. Unfortu-
nately, there are infinitely many such distributions, and the
proof will be somewhat more complicated.

Definition 4.2. Let H = {H1,H2, . . . ,Hr} be a family
of hypothesis classes, and P be a distribution over {1, . . . , r}.
We will denote the following non private algorithm as
Learner(H ,P,m, γ):

Input: a sample S = (xi, yi)
m
i=1.

1. Randomly choose Hi ∈P H .
2. If for every h ∈ Hi errorS(h) > γ, then fail.
3. Return h ∈ Hi minimizing errorS(h).

We will say that Learner(H ,P,m, γ) is β-successful for a
class C over Xd, if for every c ∈ C and every distribution D
on Xd, given an input sample drawn i.i.d. according to D
and labeled by c, algorithm Learner fails with probability at
most β.

Claim 4.3. If (H ,P) is an (α, β)-probabilistic represen-
tation for a class C, then, for m ≥ 3

α
ln(1/β), algorithm

Learner(H ,P,m, 2α) is 2β-successful for C.

Proof. We will show that with probability at least 1−2β,
the set Hi (chosen in Step 1) contains at least one hy-
pothesis h s.t. errorS(h) ≤ 2α. As (H ,P) is an (α, β)-
probabilistic representation for class C, the chosen Hi will
contain a hypothesis h s.t. errorD(c, h) ≤ α with proba-
bility at least 1 − β; by the Chernoff bound with proba-
bility at least 1 − exp(−mα/3) this hypothesis has empiri-
cal error at most 2α. The set Hi contains a hypothesis h
s.t. errorS(h) ≤ 2α with probability at least (1 − β)(1 −
exp(−mα/3)) > 1 − (β + exp(−mα/3)), which is at least
(1− 2β) for m ≥ 3

α
ln(1/β).

Claim 4.4. Let H be a family of hypothesis classes, and
P a distribution on it. Let γ, β and m be such that m ≥
4
γ

(size(H )+ ln( 1
β

)). If Learner(H ,P,m, γ) is β-successful

for a class C over Xd, then there exists Ĥ ⊆ H and a

distribution P̂ on it, s.t. Learner(Ĥ , P̂,m, γ) is a (2γ, 3β)-

PAC learner for C and
∣∣∣Ĥ ∣∣∣ = d·m

β2 .

Proof. For every input S = (xi, yi)
m
i=1, denote by pS the

probability of Learner(H ,P,m, γ) failing on step 2 (the
probability is only over the choice of Hi ∈P H in the first
step). As Learner(H ,P,m, γ) is β-successful,

Pr
P,D

[
Learner(H ,P,m, γ) fails

]
=
∑
S

Pr
D

[S] · pS ≤ β.

Consider the following process, denoted by Proc, for ran-

domly choosing a multiset H̃ of size t (t will be set later):

For i = 1, . . . , t :
Randomly choose Hi ∈P H

Return H̃ = (H1,H2, ...,Ht).

Denote by Ut the uniform distribution on {1, 2, . . . , t}. As
before, for every input S = (xi, yi)

m
i=1, denote by p̃S the

probability of Learner(H̃ ,Ut,m, γ) failing on its second
step (again, the probability is only over the choice of Hi ∈Ut
H̃ in the first step). Using those notations:

Pr
Ut,D

[
Learner(H̃ ,Ut,m, γ) fails

]
=
∑
S

Pr
D

[S] · p̃S .

Fix a sample S. As the choice of Hi ∈Ut H̃ is uniform,

p̃S =

∣∣∣{Hi ∈ H̃ : ∀h ∈ Hi errorS(h) > γ
}∣∣∣∣∣∣H̃ ∣∣∣ .

Using the Hoeffding bound,

Pr
Proc

[
|p̃S − pS | ≥ β

]
≤ 2e−2tβ2

.

The probability is over choosing the multiset H̃ . There are
at most 2m(d+1) samples of size m (as every entry in the
sample is an element of Xd, concatenated with a label bit).
Using the union bound over all possible samples S,

Pr
Proc

[
∃S s.t. |p̃S − pS | ≥ β

]
≤ 2m(d+1) · 2 · e−2tβ2

.

For t ≥ m·d
β2 the above probability is strictly less than 1. This

means that for t = m·d
β2 there exists a multiset Ĥ such that

|p̂S − pS | ≤ β for every sample S. We will show that for this

Ĥ , Learner(Ĥ ,Ut,m, γ) is a (2γ, 3β)-PAC learner. Fix a
target concept c ∈ C and a distribution D on Xd. Define the
following two good events:

E1 Learner(Ĥ ,Ut,m, γ) outputs a hypothesis h such that
errorS(h) ≤ γ.

E2 For every h ∈ Hi s.t. errorS(h) ≤ γ, it holds that
errorD(c, h) ≤ 2γ.

Note that if those two events happen, Learner(Ĥ ,Ut,m, γ)
returns a 2γ-good hypothesis for c and D. We will show that
those two events happen with high probability. We start by

bounding the failure probability of Learner(Ĥ ,Ut,m, γ).

Pr
Ut,D

[
Learner(Ĥ ,Ut,m, γ) fails

]
=

∑
S

Pr
D

[S] · p̂S

≤
∑
S

Pr
D

[S] · (pS + β)

= Pr
P,D

[
Learner(H ,P,m, γ) fails

]
+ β ≤ 2β.

When Learner(Ĥ ,Ut,m, γ) does not fail, it returns a hy-
pothesis h with empirical error at most γ. Thus, Pr[E1] ≥
1− 2β.

Using the Chernoff bound, the probability that a hypoth-
esis h with errorD(c, h) > 2γ has empirical error ≤ γ is less
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than exp(−mγ/4). Using the union bound, the probabil-
ity that there is such a hypothesis in Hi is at most |Hi| ·
exp(−mγ/4). Therefore, Pr[E2] ≥ 1 − |Hi| · exp(−mγ/4).

For m ≥ 4
γ

ln( |Hi|
β

), this probability is at least (1− β).

All in all, the probability of Learner(H ,P,m, γ) failing
to output a 2γ-good hypothesis is at most 3β.

Theorem 4.5. If there exists a pair (H ,P) that (α, β)-
probabilistically represents a class C over Xd (where |H |
might be very big), then there exists a pair (Ĥ , P̂) that

(4α, 6β)-probabilistically represents C, where Ĥ ⊆H , and∣∣∣Ĥ ∣∣∣ =
3d

4αβ2

(
size(H ) + ln(

1

β
)

)
.

Proof. Let (H ,P) be an (α, β)-probabilistic represen-
tation for a class C. Set m = 3

α
(size(H )+ln( 1

β
)). By Claim

4.3, Learner(H ,P,m, 2α) is 2β-successful for class C. By

Claim 4.4, there exists an Ĥ ⊆ H and a distribution P̂
on it, such that Learner(Ĥ , P̂,m, 2α) is a (4α, 6β)-PAC

learner for C and
∣∣∣Ĥ ∣∣∣ = d·m

4β2 = 3d
4αβ2 (size(H ) + ln( 1

β
)).

Assume towards contradiction that (Ĥ , P̂) does not
(4α, 6β)-represent C. So, there exist a concept c ∈ C and
a distribution D s.t., with probability strictly greater than

6β, a randomly chosen Hi ∈P̂ Ĥ does not contain a 4α-
good hypothesis for c,D. Therefore, for those c and D,

Learner(Ĥ , P̂,m, 2α) will fail to return a 4α-good hypoth-
esis with probability strictly greater than 6β.

Theorem 4.6. For every class C over Xd there exists a 1
4

-
representation B such that size(B) = O(ln(d)+RepDim(C)).

Proof. By Lemma 3.14, there exists a pair (H ,P) that
( 1

16
, 1

12
)-probabilistically represents C such that size(H ) =

O(RepDim(C)). Using Theorem 4.5, there exists a pair

(Ĥ , P̂) that ( 1
4
, 1

2
)-probabilistically represents C, such that

size(Ĥ ) = size(H ) and∣∣∣Ĥ ∣∣∣ = O (d · size(H )) .

We can now use Observation 4.1 and construct the set
B =

⋃
Hi∈ Ĥ Hi which is a 1

4
-representation for the class C.

In addition,

|B| = O
(∣∣∣Ĥ ∣∣∣ · esize(H )

)
= O

(
d · size(H ) · esize(H )

)
.

Thus, size(B) = ln |B| = O (ln(d) + RepDim(C)).

Corollary 4.7. For every concept class C over Xd,
DRepDim(C) = O(ln(d) + RepDim(C)).

Corollary 4.8. There exists a constant N s.t. for every
concept class C over Xd where DRepDim(C) ≥ N log(d),
the sample complexity that is necessary and sufficient for
privately learning C is Θα,β(DRepDim(C)).

5. PROBABILISTIC REPRESENTATION
FOR PRIVATELY SOLVING OPTIMIZA-
TION PROBLEMS

The notion of probabilistic representation applies not only
to private learning, but also to a broader task of optimization
problems. We consider the following scenario:

Definition 5.1. An optimization problem OPT over a
universe X and a set of solutions F is defined by a quality
function q : X∗×F → [0, 1]. Given a database S, the task is
to choose a solution f ∈ F such that q(S, f) is maximized.

Notation. We will refer to the optimization problem de-
fined by a quality function q as OPTq.

Definition 5.2. An α-good solution for a database S is
a solution s such that q(S, s) ≥ maxf∈F{q(S, f)} − α.

Given an optimization problem OPTq, one can use the
exponential mechanism to choose a solution s ∈ F . In
general, this method achieves a reasonable solution only for
databases of size Ω(log |F|/ε). To see this, consider a case
where there exists a database S of m records such that ex-
actly one solution t ∈ F has a quality of q(S, t) = 1, and
every other f ∈ F has a quality of q(S, f) = 1/2. The
probability of the exponential mechanism choosing t is:

Pr[t is chosen] =
exp(εm/2)

(|F| − 1) · exp(εm/4) + exp(εm/2)
.

Unless

m ≥ 4
ε

ln(|F| − 1) = Ω( 1
ε

ln |F|), (4)

the above probability is strictly less than 1/2. Using our
notations of probabilistic representation, it might be possible
to reduce the necessary database size.

Consider using the exponential mechanism for choosing a
solution s, not out of F , but rather from a smaller set of so-
lutions B. Roughly speaking, the factor of ln |F| in require-
ment (4) will now be replaced with ln |B|, which corresponds
to size of the representation. Therefore, the database size
m should be at least ln |B|/ε. So m needs to be bigger than
the size of the representation by at least a factor of 1/ε.

In the following analysis we will denote this required gap,
i.e., m/ ln |B|, as ∆. We will see that the existence of a
private approximation algorithm implies a probabilistic rep-
resentation with 1 < ∆ ≈ 1

ε
, and that a probabilistic repre-

sentation with ∆ > 1 implies a private approximation algo-
rithm. Bigger ∆ corresponds to better privacy; however, it
might be harder to achieve.

Definition 5.3. Let OPTq be an optimization problem
over a universe X and a set of solutions F . Let B be a set
of solutions, and denote size(B) = ln |B|. We say that B
is an α-deterministic representation of OPTq for databases
of m elements if for every S ∈ Xm there exists a solution
s ∈ B such that q(S, s) ≥ maxf∈F{q(S, f)} − α.

Definition 5.4. Let B be an α-deterministic representa-
tion of OPTq for databases of m elements. Denote ∆ ,
m

size(B)
. If ∆ > 1, then we say that the ratio of B is ∆.

An α-deterministic representation B with ratio ∆ is re-
quired to support all the databases of m = ∆ · size(B) ele-
ments. That is, for every S ∈ Xm, the set B is required to
contain at least one α-good solution.

Fix S ∈ Xm. Intuitively, ∆ controls the ratio between m
and number of bits needed to represent an α-good solution
for S. As B contains an α-good solution for S, and assuming
B is publicly known, this solution could be represented with
ln |B| = size(B) = m/∆ bits.
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Definition 5.5. Let OPTq be an optimization problem
over a universe X and a set of solutions F . Let P be a dis-
tribution over {1, 2, . . . , r}, and let B = {B1,B2, . . . ,Br} be
a family of solution sets for OPTq. We denote size(B) =
max{ ln |Bi| : Bi ∈ B }. We say that (B,P) is an (α, β)-
probabilistic representation of OPTq for databases of m ele-
ments if for every S ∈ Xm:

Pr
P

[
∃s ∈ Bi s.t. q(S, s) ≥ max

f∈F
{q(S, f)} − α

]
≥ 1− β.

Definition 5.6. Let (B,P) be an (α, β)-probabilistic rep-
resentation of OPTq for databases of m elements. Denote
∆ , m

size(B)
. If ∆ > 1, then we say that the ratio of the

representation is ∆.

Definition 5.7. An optimization problem OPTq is

bounded if
∣∣∣|S1| · q(S1, f) − |S2| · q(S2, f)

∣∣∣ ≤ 1 for every

solution f and every two neighboring databases S1, S2.

We are interested in approximating bounded optimization
problems, while guaranteeing differential privacy:

Definition 5.8. Let OPTq be a bounded optimization
problem over a universe X and a set of solutions F . An
algorithm A is an (α, β, ε)-private approximation algorithm
for OPTq with a database of m records if:

1. Algorithm A is ε-differentially private (as formulated
in Definition 2.1);

2. For every S ∈ Xm, algorithm A outputs with proba-
bility at least (1 − β) a solution s such that q(S, s) ≥
maxf∈F{q(S, f)} − α.

Example 5.9 (Sanitization). Consider a class of
predicates C over X. A database S contains points taken
from X. A predicate query Qc for c ∈ C is defined as
Qc(S) = 1

|S| · |{xi ∈ S : c(xi) = 1}|. Blum et al. [5] defined

a sanitizer (or data release mechanism) as a differentially
private algorithm that, on input a database S, outputs an-
other database Ŝ with entries taken from X. A sanitizer
A is (α, β)-useful for predicates in the class C if for every
database S it holds that

Pr
A

[
∀c ∈ C

∣∣Qc(S)−Qc(Ŝ)
∣∣ ≤ α] ≥ 1− β.

This scenario can be viewed as a bounded optimization
problem: The solutions are sanitized databases. For an in-
put database S and and a sanitized database Ŝ, the quality
function is

q(S, Ŝ) = 1−max
c∈C

{
|Qc(S)−Qc(Ŝ)|

}
.

To see that this optimization problem is bounded, note that
for every two neighboring databases S1, S2 of m elements,
and every c ∈ C it holds that |Qc(S1)−Qc(S2)| ≤ 1

m
. There-

fore, for every sanitized database f ,

m · |q(S1, f)− q(S2, f)|

= m ·
∣∣∣∣max
c∈C
{|Qc(S1)−Qc(f)|} −max

c∈C
{|Qc(S2)−Qc(f)|}

∣∣∣∣
≤ 1

The next two lemmas establish an equivalence between a
private approximation algorithm and a probabilistic repre-
sentation for a bounded optimization problem.

Lemma 5.10. Let OPTq be a bounded optimization prob-
lem over a universe X. If there exists a pair (B,P) that
(α, β)-probabilistically represents OPTq for databases of m
elements, s.t. the ratio of (B,P) is ∆ > 1, then for every

α̂, β̂, ε satisfying

∆ ≥ 2

εα̂

(
1 +

ln(1/β̂)

size(B)

)
,

there exists an
(
(α+ α̂), (β+ β̂), ε

)
-approximation algorithm

for OPTq with a database of size m.

Proof. Consider the following algorithm A:

Inputs: a database S ∈ Xm, and a privacy parameter ε.

1. Randomly choose Bi ∈P B.

2. Choose s ∈ Bi using the exponential mechanism, that
is, with probability

exp(ε ·m · q(S, s)/2)∑
f∈Bi exp(ε ·m · q(S, f)/2)

.

By the properties of the exponential mechanism, A is ε-
differentially private. Fix a database S ∈ Xm, and define
the following 2 bad events:

E1 The set Bi chosen in step 1 does not contain a solution
s s.t. q(S, s) ≥ maxf∈F{q(S, f)} − α.

E2 The solution s chosen in step 2 is such that q(S, s) <
maxt∈Bi q(S, t)− α̂.

Note that if those two bad events do not occur, algorithm A
outputs a solution s such that q(S, s) ≥ maxf∈F{q(S, f)} −
α − α̂. As (B,P) is an (α, β)-probabilistic representation
of OPTq for databases of size m, event E1 happens with
probability at most β. By the properties of the exponential
mechanism, the probability of event E2 is bounded by |Bi| ·
exp(−εmα̂/2). As m = ∆ size(B), this probability is at
most

Pr[E2] ≤ size(B) · exp(−εmα̂/2)

= size(B) · exp(−ε∆ size(B)α̂/2)

≤ size(B) · exp

(
−

(
1 +

ln(1/β̂)

size(B)

)
size(B)

)
= size(B) · exp(− size(B)− ln(1/β̂)) = β̂.

Therefore, algorithm A outputs an (α+ α̂)-good solution

with probability at least (1− β − β̂).

Lemma 5.11. Let OPTq be an optimization problem. If
there exists an (α, β, ε)-private approximation algorithm for

OPTq with a database of m records, then for every β̂ satis-
fying

∆ ,
m

ln( 1
1−β ) + ln ln( 1

β̂
) +m · ε

> 1,

there exists a pair (B,P) that (α, β̂)-probabilistically repre-
sents OPTq for databases of m elements, where the ratio of
the representation is ∆.
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Proof. Let A be an (α, β, ε)-private approximation al-
gorithm for OPTq, with a sample size m. Fix an arbi-
trary input database S ∈ Xm. Define G as the set of all
solutions s, possibly outputted by A, such that q(S, s) ≥
maxf∈F{q(S, f)}−α. As A is an (α, β, ε)-approximation al-
gorithm, PrA [A(S) ∈ G] ≥ 1−β. As A is ε-differentially pri-

vate, PrA
[
A(~0) ∈ G

]
≥ (1− β)e−mε, where ~0 is a database

with m zeros. That is, PrA
[
A(~0) /∈ G

]
≤ 1 − (1 − β)e−mε.

Now, consider a set B containing the outcomes of
Γ , 1

1−β ln( 1

β̂
)emε executions of A(~0). The probability that

B does not contain a solutions s ∈ G is at most (1 − (1 −
β)e−mε)Γ ≤ β̂. Thus, B = {B ⊆ support(A) : |B| ≤ Γ},
and P, the distribution induced by A(~0), are an (α, β̂)-
probabilistic representation of OPTq for databases with m
elements. Moreover, the ratio of the representation is

m

size(B)
=

m

max{ ln |B| : B ∈ B }

=
m

ln( 1
1−β ) + ln ln( 1

β̂
) +mε

= ∆.

5.1 Exact 3SAT
Consider the following bounded optimization problem, de-

noted as OPTE3SAT: The universe X is the set of all possible
clauses with exactly 3 different literals over n variables, and
the set of solutions F is the set of all possible 2n assign-
ments. Given a database S = (σ1, σ2, . . . , σm) containing m
E3CNF clauses, the quality of an assignment a ∈ F is

q(S, a) =
|{i : a(σi) = 1}|

m
.

Aiming at the (very different) objective of secure protocols
for search problems, Beimel et al. [2] defined the notation
of solution-list algorithms, which corresponds to our nota-
tion of deterministic representation. We next rephrase their
results using our notations.

R1 For every α > 0 and every ∆ > 1, there exists a set B
that (α+ 1/8)-deterministically represents OPTE3SAT

for databases of size m = O
(
∆(ln ln(n) + ln(1/α)

)
),

and a ratio of ∆.

R2 Let α < 1/2 and ∆ > 1. For every set B that α- deter-
ministically represents OPTE3SAT for databases of size
m with a ratio of ∆, it holds that m = Ω

(
ln ln(n)

)
.

Using (R1) and a deterministic version of Lemma 5.10,
for every α, β, ε > 0, there exists an

(
(1/8 + α), β, ε

)
- ap-

proximation algorithm for OPTE3SAT with a database of
m = Oα,β,ε(ln ln(n)) clauses. By (R2), this is the best pos-
sible using a deterministic representation.

We can reduce the necessary database size, using a prob-
abilistic representation. Fix a clause with three different
literals. If we pick an assignment at random, then with
probability at least 7/8 it satisfies the clause. Now, fix any
exact 3CNF formula. If we pick an assignment at random,
then the expected fraction of satisfied clauses is at least 7/8.
Moreover, for every 0 < α < 7/8, the fraction of satisfied
clauses is at least (7/8−α) with probability at least α

α+1/8
.

So, if we pick t = ln(1/β)
ln(α+1/8)+ln(1/α)

random assignments, the

probability that none of them will satisfy at least (7/8−α)m

clauses is at most
(

α
α+1/8

)t
= β. So, for every ∆ > 1,

B = {B : B is a set of at most t assignments},

and P, the distribution induced on B by randomly pick-
ing t assignments, are an

(
(1/8 + α), β

)
-probabilistic repre-

sentation of OPTE3SAT for databases of size ∆ · ln(t) and
a ratio of ∆. By Lemma 5.11, for every ε there exists
an
(
(1/8 +α), β, ε

)
-approximation algorithm for OPTE3SAT

with a database of m = oα,β,ε(1) clauses.

6. EXTENSIONS

6.1 (ε, δ)-Differential Privacy
The notation of ε-differential privacy was generalized to

(ε, δ)-differential privacy, where the requirement in inequal-
ity (1) is changed to

Pr[A(S1) ∈ F ] ≤ exp(ε) · Pr[A(S2) ∈ F ] + δ.

The proof of Lemma 3.12 remains valid even if algorithm A
is only (ε, δ)-differential private for

δ ≤ 1
8
e−8αεm(1− e−ε). (5)

To see this, note that inequality (3) changes to

Pr
A

[
A(~0) ∈ G

]
≥

≥
(((

Pr
A

[A(S) ∈ G] · e−ε − δ
)
e−ε − δ

)
· · ·
)
e−ε − δ

≥ 1

4
e−8αεm − δ

(
8αm−1∑
i=0

e−iε
)

≥ 1

4
e−8αεm − δ

(
1

1− e−ε

)
≥ 1

8
e−8αεm.

The rest of the proof remains almost intact (only minor
changes in the constants). With that in mind, we see that
the lower bound showed in Theorem 3.15 for ε-differentially
private (that is, with δ = 0) learners also applies for (ε, δ)-
differentially private learners satisfying inequality (5). That

is, every such learner for a class C must use Ω
(

RepDim(C)
αε

)
samples.

When using (ε, δ)-differential privacy, δ should be negli-
gible in the security parameter, that is, in d – the repre-
sentation length of elements in Xd. Therefore, using (ε, δ)-
differential privacy instead of ε-differential privacy cannot
reduce the sample complexity for PPAC learning a concept
class C whenever RepDim(C) = O (log(d)).

6.2 Probabilistic Representation Using a Hy-
pothesis Class

We will now consider a generalization of our representa-
tion notations that can be useful when considering PPAC
learners that use a specific hypothesis class. In particular,
those notation can be useful when considering proper-PPAC
learners, that is, a learner that learns a class C using a hy-
pothesis class B ⊆ C.

Definition 6.1. We define the α-Deterministic Repre-
sentation Dimension of a concept class C using a hypothesis
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class B as

DRepDimα(C,B) = min

size(H) :
H ⊆ B is an
α-representation
for class C

 .

Note that DRepDim 1
4
(C, 2Xd) = DRepDim(C). The de-

pendency on α in the above definition is necessary: if C is
not contained in B then for every small enough α, the hy-
pothesis class B itself does not α-represents C (and therefore
no subset H ⊆ B can α-represent C). Moreover, when con-
sidering the notations of representation using a hypothesis
class, our boosting technique for α does not work (as the
boosting uses more complex hypotheses).

Example 6.2. Beimel et al. [3] showed that for every α <
1, every subset H ( POINTd does not α-represent the class
POINTd. Therefore, DRepDimα(POINTd, POINTd) = θ(d) for
every α < 1.

Definition 6.3. A pair (H ,P) is an (α, β)-probabilistic
representation for a concept class C using a hypothesis class
B if:

1. (H ,P) is an (α, β)-probabilistic representation for the
class C, as formulated in Definition 3.5.

2. Every Hi ∈H is a subset of B.

Note that whenever B = 2Xd , this definition is identical to
Definition 3.5. Using this general notation, we can restate
Lemma 3.9 and Lemma 3.12 as follows:

Lemma 6.4. If there exists a pair (H ,P) that (α, β)- prob-
abilistically represents a class C using a hypothesis class B,
then for every ε and every γ there exists an algorithm A
that (α+ γ, 3β, ε)-PPAC learns C using B and a sample size
m = O((size(H ) + ln( 1

β
)) max{ 1

γε
, 1
γ2
}).

Note that in the above lemma the resulting algorithm A
has accuracy (α+ γ) as opposed to 6α in lemma 3.9, where
γ is arbitrary. While in section 3 we did not mind the multi-
plicative factor of 6 in the accuracy parameter (as we could
boost it back), replacing it with an additive factor of γ might
be of value in this section as our boosting technique for the
accuracy parameter does not work here. As an example,
consider a representation with α = 1

10
. Without boosting

capabilities, this change makes the difference between the
ability to generate an algorithm with α = 6

10
, or an algo-

rithm with α = 1
10

+ 1
1000

.

Lemma 6.5. If there exists an algorithm A that (α, 1
2
, ε)-

PPAC learns a concept class C using a hypothesis class B
and a sample size m, then there exists a pair (H ,P) that
(α, 1/4)-probabilistically represents the class C using the hy-
pothesis class B where size(H ) = O (mε).

Definition 6.6. We define the α-Probabilistic Represen-
tation Dimension of a concept class C using a hypothesis
class B as

RepDimα(C,B) = min

size(H ) :

∃P s.t. (H ,P)
is an (α, 1

4
)-prob.

representation
for C using B

 .

Example 6.7. Beimel et al. [3] showed that for every α <
1, every proper-PPAC learner for POINTd requires Ω((d +
log(1/β))/(εα)) labled examples. Using Lemma 6.4, we get
that RepDimα(POINTd, POINTd) = Ω(d).

We still do not know the relation between the represen-
tation dimension of a concept class and its VC dimension.
However, the above example shows a strong separation be-
tween the VC dimension of the class POINTd and
RepDimα(POINTd, POINTd).

7. A PROBABILISTIC REPRESENTATION
FOR POINTS

Example 3.6 states the existence of a constant size proba-
bilistic representation for the class POINTd. We now give the
construction.

Claim 7.1. There exists an (α, β)-probabilistic represen-
tation for POINTd of size ln(4/α) + ln ln(1/β). Furthermore,
each hypothesis h in each Hi has a short description and
given x, the value h(x) can be computed efficiently.

Proof. Consider the following set of hypothesis classes

H =

{
H ⊆ 2Xd : |H| ≤ 4

α
ln(

1

β
)

}
.

That is, H ∈ H if H contains at most 4
α

ln( 1
β

) boolean
functions. We will show an appropriate distribution P s.t.
(H ,P) is an (α, β)-probabilistic representation of the class
POINTd. To this end, fix a target concept cj ∈ POINTd and a
distribution D on Xd (remember that j is the unique point
on which cj(j) = 1). We need to show how to randomly
choose anH ∈R H such that with probability at least (1−β)
over the choice of H, there will be at least one h ∈ H such
that errorD(cj , h) ≤ α. Consider the following process for
randomly choosing an H ∈H :

1. Denote M = 4
α

ln( 1
β

)

2. For i = 1, . . . ,M construct hypothesis hi as follows:
For each x ∈ Xd (independently):

Let hi(x) = 1 with probability α/2,
and hi(x) = 0 otherwise.

3. Return H = {h1, h2, . . . , hM}.

The above process induces a distribution on H , denoted
as P. We will next analyze the probability that the returned
H does not contain an α-good hypothesis. We start by fixing
some i and analyzing the expected error of hi, conditioned
on the event that hi(j) = 1. The probability is taken over
the random coins used to construct hi.

E
hi

[
errorD(cj , hi)

∣∣∣ hi(j) = 1
]

=

= E
hi

[
E
x∈D

[ ∣∣cj(x)− hi(x)
∣∣ ] ∣∣∣ hi(j) = 1

]
= E
x∈D

[
E
hi

[ ∣∣cj(x)− hi(x)
∣∣ ∣∣∣ hi(j) = 1

]]
≤ α

2
.

Using Markov’s Inequality,

Pr
hi

[
errorD(cj , hi) ≥ α

∣∣∣∣ hi(j) = 1

]
≤ 1

2
.
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So, the probability that hi is α-good for cj and D is:

Pr
hi

[errorD(cj , hi) ≤ α] ≥

≥ Pr
hi

[hi(j) = 1] · Pr
hi

[
errorD(cj , hi) ≤ α

∣∣∣∣ hi(j) = 1

]
≥ α

2
· 1

2
=
α

4
.

Thus, the probability that H fails to contain an α-good hy-

pothesis is at most
(
1− α

4

)M
, which is less than β for our

choice of M . This concludes the proof that (H ,P) is an
(α, β)-probabilistic representation for POINTd.

When a hypothesis hi() was constructed in the above ran-
dom process, the value of hi(x) was independently drawn for
every x ∈ Xd. This results in a hypothesis whose descrip-
tion size is O(2d), which in turn, will result in a non efficient
learning algorithm. We next construct hypotheses whose
description is short. To achieve this goal, we note that in
the above analysis we only care about the probability that
hi(x) = 0 given that hi(j) = 1. Thus, we can choose the
values of hi in a pairwise independent way, e.g., using a ran-
dom polynomial of degree 2. The size of the description in
this case is O(d).

Observation 7.2. Consider the class POINTN, defined in
Example 3.11. The above construction can be adjusted to
yield an (inefficient) improper private learner for POINTN
with Oα,β,ε(1) samples. The only adjustments necessary are
in the construction of the (α, β)-probabilistic representation.
Specifically, we need to specify how to randomly draw a
boolean function h over the natural numbers, such that for
every x ∈ N the probability of h(x) = 1 is α/2, and the val-
ues of h on every two distinct points in N are independent.
This can be done easily, as a random real number could be
interpreted as a random function over N.

8. REFERENCES
[1] A. Beimel, H. Brenner, S. P. Kasiviswanathan, and

K. Nissim. Bounds on the sample complexity for
private learning and private data release. Full version
of [3], in submition, 2012.

[2] A. Beimel, P. Carmi, K. Nissim, and E. Weinreb.
Private approximation of search problems. SIAM J.
Comput., 38(5):1728–1760, 2008.

[3] A. Beimel, S. P. Kasiviswanathan, and K. Nissim.
Bounds on the sample complexity for private learning
and private data release. In 7th Theory of
Cryptography Conference, pages 437–454, 2010.

[4] A. Blum, C. Dwork, F. McSherry, and K. Nissim.
Practical privacy: The SuLQ framework. In PODS,
pages 128–138. ACM, 2005.

[5] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In
STOC, pages 609–618. ACM, 2008.

[6] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K.
Warmuth. Learnability and the Vapnik-Chervonenkis
dimension. Journal of the Association for Computing
Machinery, 36(4):929–965, 1989.

[7] K. Chaudhuri and D. Hsu. Sample complexity bounds
for differentially private learning. Journal of Machine
Learning Research – COLT 2011 Proceedings,
19:155–186, 2011.

[8] H. Chernoff. A measure of asymptotic efficiency for
tests of a hypothesis based on the sum of observations.
Ann. Math. Statist., 23:493–507, 1952.

[9] C. Dwork. The differential privacy frontier. In
O. Reingold, editor, TCC, volume 5444 of LNCS,
pages 496–502. Springer, 2009.

[10] C. Dwork. A firm foundation for private data analysis.
Commun. of the ACM, 54(1):86–95, 2011.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In S. Halevi and T. Rabin, editors, TCC,
volume 3876 of LNCS, pages 265–284. Springer, 2006.

[12] C. Dwork, G. N. Rothblum, and S. P. Vadhan.
Boosting and differential privacy. In 51th Annual
IEEE Symposium on Foundations of Computer
Science, pages 51–60, 2010.

[13] A. Ehrenfeucht, D. Haussler, M. J. Kearns, and L. G.
Valiant. A general lower bound on the number of
examples needed for learning. Inf. Comput.,
82(3):247–261, 1989.

[14] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119 – 139, 1997.

[15] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[16] S. P. Kasiviswanathan, H. K. Lee, K. Nissim,
S. Raskhodnikova, and A. Smith. What can we learn
privately? In 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 531–540.
IEEE Computer Society, 2008.

[17] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In 48th Annual IEEE Symposium
on Foundations of Computer Science, pages 94–103.
IEEE, 2007.

[18] R. E. Schapire. The strength of weak learnability.
Mach. Learn., 5(2):197–227, 1990.

[19] L. G. Valiant. A theory of the learnable.
Communications of the ACM, 27:1134–1142, 1984.

[20] V. N. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its
Applications, 16:264, 1971.

109


