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Abstract

The transcriptional state of a cell reflects a variety of biological factors, from persistent cell-type 

specific features to transient processes such as cell cycle. Depending on biological context, all 

such aspects of transcriptional heterogeneity may be of interest, but detecting them from noisy 

single-cell RNA-seq data remains challenging. We developed PAGODA to resolve multiple, 

potentially overlapping aspects of transcriptional heterogeneity by testing gene sets for 

coordinated variability amongst measured cells.

Introduction

Single-cell transcriptome measurements provide an unbiased approach for studying the 

complex cellular compositions inherent to multicellular organisms. Increasingly sensitive 

single-cell RNA-sequencing (scRNA-seq) protocols
1,2 have been used to examine both 

healthy and diseased tissues
3–14

. Nevertheless, analysis of scRNA-seq data remains 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence should be addressed to PVK (; Email: Peter_Kharchenko@hms.harvard.edu) 

Author Contributions. K.Z., J.C. and P.V.K. conceived the study. N.S., R.L., G.E.K., Y.C.Y., F.K. and J.-B.F. carried out the single-

cell purification and RNA-seq measurements. G.E.K. and J.C. carried out RNAscope in situ validation. J.F. and P.V.K. designed and 

implemented the statistical analysis approach, with the help of J.L.H. P.V.K and J.F. wrote the manuscript with the help of J.C. and 

K.Z.

Competing Financial Interests Statement. N.S. and F.K. are a current employees and shareholders of Illumina, Inc. The authors 

declare no competing financial interest.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2016 July 18.

Published in final edited form as:

Nat Methods. 2016 March ; 13(3): 241–244. doi:10.1038/nmeth.3734.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



challenging, as measurements expose numerous differences between cells, only some of 

which may be relevant for system-level functions.

High levels of technical noise
15

 and strong dependency on expression magnitude pose 

difficulties for principal component analysis (PCA) and other dimensionality reduction 

approaches. Because of this, application of PCA as well as more flexible approaches such as 

GP-LVM
16

 or tSNE
17

 is often restricted to highly expressed genes
11,12,18

. Even when cell-

to-cell variation captures prominent biological processes taking place within the measured 

cells, these processes may not be of primary interest. For example, differences in metabolic 

state or cell cycle phase may be common to multiple cell types, and can mask more subtle 

cell-to-cell variability associated with the biological processes being studied
11

. Such cross-

cutting transcriptional features represent alternative ways to classify cells, posing a 

challenge for the commonly-used clustering approaches that aim to reconstruct a single 

subpopulation structure
5,8,9,11

. Partitioning methods, such as k-means clustering or the 

specialized BackSPIN algorithm
9
 may, for example, choose to classify cells first based on 

the cell cycle phase instead of tissue-specific signaling state, if the cell cycle differences are 

more pronounced.

Here, we describe an alternative approach for analyzing transcriptional heterogeneity called 

PAGODA that aims to detect all statistically-significant ways in which measured cells can be 

classified. PAGODA is based on statistical evaluation of coordinated expression variability 

of previously-annotated pathways as well as automatically-detected gene sets. Gene set 

testing with methods such as GSEA
19

 has been extensively utilized in the context of 

differential expression analysis to increase statistical power and uncover likely functional 

interpretations. A similar rationale can be applied in the context of heterogeneity analysis. 

For example, while cell-to-cell variability in expression of a single neuronal differentiation 

marker such as Neurod1 may be too noisy and inconclusive, coordinated upregulation of 

many genes associated with neuronal differentiation in the same subset of cells would 

provide a prominent signature distinguishing a subpopulation of differentiating neurons. 

Examining previously published datasets, we illustrate that PAGODA recovers known 

subpopulations and reveals additional subsets of cells in addition to providing important 

insights about the relationships amongst the detected subsets.

The extent of transcriptional diversity in mouse NPCs is likely to be influenced by a variety 

of unexamined factors that include programmed cell death
20

, genomic mosaicism
21–23

 as 

well as a variety of “environmental” influences such as changes in exposure to signaling 

lipids
24–26

. We therefore used scRNA-seq to assess a cohort of cortical NPCs from an 

embryonic mouse. We demonstrate that PAGODA effectively recovers the known 

neuroanatomical and functional organization of NPCs, identifying multiple aspects of 

transcriptional heterogeneity within the developing mouse cortex that are difficult to discern 

by the existing heterogeneity analysis approaches.
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Results

Pathway and Gene Set Overdispersion Analysis (PAGODA)

To characterize significant aspects of transcriptional heterogeneity in a scRNA-seq dataset, 

PAGODA relies on a series of statistical and computational steps (Fig. 1). First, the 

measurement properties of each cell, such as effective sequencing depth, drop-out rate and 

amplification noise are estimated using a previously described mixture model approach
27 

with minor enhancements (Step 1, Fig. 1). Using these models, the observed expression 

variance of each gene is renormalized based on the genome-wide variance expectation at the 

appropriate expression magnitude (Step 2). Batch correction is also performed at this stage. 

The resulting residual variance, modeled by the χ2 statistic, effectively distinguishes 

subpopulation-specific genes (Supplementary Notes 1,2), and determines the contribution of 

each gene to the subsequent PCA calculations.

PAGODA then examines an extensive panel of gene sets to identify those showing a 

statistically significant excess of coordinated variability (Step 3). The gene sets include 

annotated pathways, such as Gene Ontology (GO) categories, as well as clusters of 

transcriptionally-correlated genes found within a given dataset (de novo gene sets). The later 

allows PAGODA to detect aspects of transcriptional heterogeneity driven by processes that 

are not represented in the pathway annotation. The prevalent transcriptional signature of 

each gene set is captured by its first principal component (PC), using weighted PCA to 

adjust for technical noise contributions. If the amount of variance explained by the first PC 

of a given gene set is significantly higher than expected (Step 4, correcting for multiple 

hypotheses), the gene set is said to be overdispersed, and is included in the subsequent 

analysis.

The PC of each overdispersed gene set separates cells along a certain axis (PC scores). Many 

PCs will show very similar patterns, either because the same genes drive them, or because 

multiple biological processes distinguish the same subsets of cells. To provide a non-

redundant view of the transcriptional heterogeneity within the dataset, PCs from 

significantly overdispersed gene sets are clustered, and those with similar gene loadings or 

cell separation patterns are combined to form a single 'aspect' of heterogeneity (Step 5, 

Supplementary Fig. 1). The resulting major aspects of transcriptional heterogeneity can be 

explored numerically or through an interactive web browser interface
28

 (Step 6). As we 

illustrate below, examination of individual aspects and their relationships to each other can 

provide insights and functional clues not apparent from the most prominent cell 

classification. Finally, if upon further interpretation one or more aspects of transcriptional 

heterogeneity are determined to be extraneous to the biological context, PAGODA provides 

an option to control explicitly for such aspects (Step 7).

PAGODA captures alternative annotations of individual cells

To illustrate PAGODA on a complex cell population, we re-examined scRNA-seq data for 

3,005 cells from the mouse cortex and hippocampus from a recent publication by Zeisel et 

al.
9
. This extensive dataset covers a variety of cell types, some of which exhibit very distinct 

expression signatures. Zeisel et al. also introduced a novel heterogeneity analysis method 
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called BackSPIN
9
 that performs recursive partitioning. Applying PAGODA revealed nine 

major aspects of heterogeneity that distinguish the seven top-level classes and two lower-

level subpopulations identified by BackSPIN (Fig. 2). The functional interpretation of the 

identified aspects is evident from the identity of overdispersed GO categories. The most 

significant aspect separates oligodendrocytes, the most numerous cell type in the dataset, 

which are easily distinguished by strong overdispersion of myelination-related pathways. 

Similarly, overdispersion of immune, vascular, and muscle-associated GO-annotated gene 

sets identify microglia, vascular endothelial, and mural subpopulations respectively. Other 

cell types, such as ependymal cells, or different types of neurons are distinguished by de 

novo gene set signatures, with most overdispersed genes revealing their identity (e.g. Gad1, 

Tbr1, Gabra5).

We noted that aspects distinguishing many of the cell types appear to overlap, most 

frequently with the myelination signature. For instance, a subset of 35 cells exhibits 

prominent expression of both immune response genes characteristic of microglia as well as 

genes responsible for myelin sheath (Fig. 2). Similarly, myelin-associated expression 

signature is observed for a subset of vascular cells, astrocytes, pyramidal neurons and 

interneurons. These hybrid signatures most likely correspond to cases in which two cells of 

different cell types were captured together (see Supplementary Fig. 2 for the analysis of cell 

type co-occurrence frequencies). The occurrence and functional interpretation of such 

ambiguous cases where a given cell exhibits multiple alternative signatures are apparent 

from PAGODA analysis. In contrast, BackSPIN, as well as other partitioning methods, 

would need to classify such cells based on one of the signatures or isolate them as a separate 

class without exposing their relationship to other groups.

We further evaluated PAGODA performance by re-analyzing datasets that were used to 

present alternative methods of heterogeneity analysis
8,11,29

, recovering previously identified 

subpopulations and identifying additional biologically-relevant features (Supplementary 

Note 3). In particular, PAGODA’s ability to associate with a given cell multiple, potentially 

independent aspects of transcriptional heterogeneity, allows one to focus on biologically-

relevant subpopulations that may be distinguished by relatively subtle transcriptional 

variation. For instance, in reanalyzing data for mouse CD4+ T that was used to present an 

elegant GP-LVM approach by Buettner et al
11

, PAGODA successfully recovered Il4ra-Il24 

response and a closely aligned glycolysis aspect in addition to a prominent mitosis-

associated signature, without requiring explicit correction steps. Furthermore, PAGODA 

revealed a prominent subpopulation of cells exhibiting an expression signature typical of 

dendritic cells that was not previously observed.

PAGODA reveals multiple aspects of heterogeneity in mouse NPCs

As heterogeneity amongst NPCs may influence downstream neural diversity, we performed 

Smart-Seq
30

 on 65 NPCs isolated from the cerebral cortex of 13.5-day embryonic mouse 

brain. The most significant aspect of heterogeneity identified by PAGODA within the 

isolated NPCs reflects gradual induction of the genes associated with neuronal maturation 

and growth (Fig. 3a, top aspect). Approximately half of the cells express Dcx, Sox11, and 

other known markers of neuronal maturation, with the most mature subset expressing genes 
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involved in neuronal maturation and growth cones (Neurod6, Gap43). Such cells maintain 

expression of some progenitor markers (e.g., vimentin) and therefore likely represent 

developing, committed neurons. In contrast, the set of early NPCs exhibits strong M- and S-

phase signatures that are absent from the more mature NPCs, as well as up-regulation of 

genes characteristic of early progenitor state
31

 (Sox2, Notch2, Hes1) captured by the 

“negative regulation of neuronal differentiation” and “neural tube development” GO 

categories.

Maturation of neuronal progenitors is closely tied to the spatial organization of the 

developing cortex
32

. We used spatial expression patterns
33

 of genes differentially expressed 

between the early and maturing NPCs to reconstruct the most likely spatial distribution of 

these cells within the mouse brain (Fig. 3b, Online Methods). As expected, we found early 

NPCs localize close to ventricular zone (VZ). We also used in situ RNA-FISH (Online 

Methods) to examine two genes, Rpa1 and Nnd, of unknown relationship to the embryonic 

cerebral cortex (Fig. 3c). Consistent with their predicted pattern, Rpa1 was most prominent 

in proliferative regions. Ndn localized in the post-mitotic regions (especially the cortical 

plate), as well as rare cells within the subventricular zone (SVZ, Supplementary Fig. 3).

An additional subset of NPCs was distinguished by expression of Eomes, Neurod1, and 

other genes localized to the SVZ region and thought to distinguish basal progenitors
31,34

. 

The Eomes signature mark cells that express intermediate levels of genes associated with 

neuronal maturation as well as a subset of mature NPCs and subset of early NPCs 

undergoing DNA replication, likely representing neuronally-committed NPCs maturing in 

the SVZ, and dividing basal NPCs, respectively. These dividing cells express notch signaling 

genes (Dll1, Notch2, Mfng) concurrently with Eomes and therefore likely represent nascent 

basal progenitors
31

.

Two other aspects cut across the main NPC maturation axis. The first is driven by prominent 

expression of Ndn (Fig. 3a). Ndn, initially noted for high expression in mature neurons
35

, 

has also been shown to be expressed in the VZ
36

, and to restrict both proliferation and 

apoptosis rates in NPCs
36–38

. In combination with RNAscope analyses (Supplementary Fig. 

3), we found Ndn to be expressed within a subset of NPCs, approximately a quarter of 

which exhibit pronounced mitotic signatures and are likely localized in the SVZ. The second 

cross-cutting aspect is coordinated expression of Dlx homeodomain transcription factors. 

Dlx genes mark tangentially-migrating NPCs, which originate in the ganglionic eminence 

(GE) and migrate to the cortical areas, giving rise to the GABAergic neurons
39,40

. The Dlx-

positive cells express other markers of tangentially migrating NPCs, most notably Sp9 and 

Sp8 transcription factors
41

. Indeed, spatial localization of these cells was predicted to be in 

the GE region, where tangentially-migrating NPCs are expected to originate (Fig. 3b). In 

agreement with earlier observations of such NPCs undergoing mitosis in the cortical 

VZ/SVZ areas, two of ten Dlx-positive NPCs were captured in S-phase and one in M-phase.

To illustrate the methodological advantage of PAGODA, we re-examined our NPC data 

using alternative analysis methods, including PCA, ICA, tSNE
12,17

, GP-LVM
16

, and 

BackSPIN
9
 (Supplementary Figs. 4,5). While none of the methods were able to recover all 

of the identified subpopulations, BackSPIN provided the most compelling results, capturing 
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heterogeneity involving expression of Dlx and Prdx4/Mest. However, the reported clustering 

grouped only some of the cells associated with each signature, illustrating limitations of 

partitioning-based interpretation in a complex biological context.

Discussion

Just like organisms as a whole, individual cells can be classified according to a variety of 

meaningful criteria. For example, tangentially migrating NPCs that, despite being a distinct 

progenitor subtype, go through the same neuronal maturation process as other NPCs. By 

identifying significantly overdispersed gene sets, PAGODA is able to effectively recover 

such complex heterogeneity structures. The potential ambiguity of classification illustrated 

by the NPCs is likely to be present in many biological contexts. In such cases, an optimal 

partition or clustering of cells is unlikely to be fully informative, and the analysis can benefit 

from concurrent interpretation. The gene-set-based approach and interactive interface 

implemented by PAGODA aims to identify and facilitate interpretation of significant 

transcriptional features separating cells within the population.

Methods

Isolation and single-cell RNA-seq of mouse neural progenitor cells (NPC) and astrocytes 

(ASC)s

Single NPCs were isolated from C57BL/6J embryonic day 13.5 cortices for RNA-

sequencing. Timed-pregnant mice were sacrificed by deep anesthesia followed by cervical 

dislocation. The embryos were quickly removed and cortical hemispheres were isolated, 

ganglionic eminences removed, and all pups brains were pooled. All animal protocols were 

approved by the Institutional Animal Care and Use Committee at The Scripps Research 

Institute (La Jolla, CA) and conform to the National Institutes of Health guidelines.

Single cells were isolated by gentle trituration in ice-cold phosphate buffered saline 

containing 2 mM EGTA (PBSE) using P1000 tips with decreasing bore diameter. Cells were 

then filtered through a 40 uM nylon cell strainer and stained with propidium iodide (PI), a 

live-dead stain, and fluorescence activated single cell sorting (FACS) was performed 

selecting for PI negative cells. Samples remained on ice throughout the process and total 

processing time from cervical dislocation to sorting was limited to 2 hours. Single cells were 

sorted directly into cell lysis buffer provided in the Clontech SMARTer® Ultra™ Low RNA 

Kit for Illumina® Sequencing (cat # 634936), and sequencing libraries were generated using 

the manufacturer’s protocol. Resulting libraries were sequenced on the Illumina® HiSeq™ 

2000 sequencing platform.

Gene validation using in situ hybridization with RNA-scope

Mouse E13.5 embryos were removed from timed pregnant mice and prepared according to 

RNAscope instructions for paraffin embedded tissue. RNAscope probes (Advanced Cell 

Diagnostics) were designed by the manufacturer (Cat. # : GINS2 435891, RPA1 435911) 

and sections were processed using RNAscope 2.0 High Definition Reagent Kit - BROWN 

(Cat. #:310035) according to the manufacturer’s instructions. Sections were imaged on a 

Ziess Axioimager at 20× magnification.
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Previously published single-cell RNA-seq data

For the mixture of cultured human neuronal progenitor cells (NPCs) and primary cortical 

samples from Pollen et al
29

, SRA files for each study were downloaded from the Sequence 

Read Archive (http://www.ncbi.nlm.nih.gov/sra) and converted to FASTQ format using the 

SRA toolkit (v2.3.5). FASTQ files were aligned to the human reference genome (hg19) 

using Tophat (v2.0.10) with Bowtie2 (v2.1.0) and Samtools (v0.1.19). Gene expression 

counts were quantified using HTSeq (v0.5.4). Read counts for the Th2 data by Buettner et 

al
11

 were downloaded from the supplementary site (http://github.com/PMBio/scLVM/blob/

master/data/Tcell/data_Tcells.Rdata). Read (or UMI) count matrices for other two datasets 

were downloaded from GEO: GSE60361 for Zeisel et al
9
; GSE59739 for Usoskin et al

8
.

Fitting single-cell error models—Following the approach described in Kharchenko et 

al
27

, the read count for a gene g in a cell i was modeled as a mixture of a negative binomial 

(signal) and Poisson (drop-out) components: 

, where  is the probability of 

encountering a drop-out event in a cell i for a gene with population-wide expected 

expression magnitude eg (FPKM); λbg = 0.1 is the low-level signal rate for the dropped-out 

observations; θi(eg) is the negative binomial size parameter (see functional form below); and 

αi is the library size of cell i, as inferred by the fitting procedure. The single-cell error 

models were fitted using the approach described in Kharchenko et al
27

, with the following 

modifications. 1. Rather than estimating expected expression magnitudes of genes using all 

pairwise comparisons between all other cells, each cell was compared to its k most similar 

cells (based on Pearson linear correlation of genes detected in both cells for any pair of 

cells). The value of k was chosen to approximate the complexity of the dataset (1/3rd of the 

cells for mouse and human NPC datasets, 1/5th for the larger Zeisel et al.
9
 and Usoskin et 

al.
8
 datasets). 2. The count dependency on the expected expression magnitude was estimated 

on the linear scale with zero intercept. 3. To improve fit, the drop-out probability was 

modeled using logistic regression on both expression magnitude (log scale) and its square 

value. 4. Instead of fitting a constant value for the negative binomial size parameter θ, it was 

fit as a function of expression magnitude, using the following functional form: log(θ) = a + 

h/(1+10(x−m)*s)r, where x is the expression magnitude (log scale), and a,h,m,s,r are 

parameters of the fit. This functional form provides a more flexible fit than the θ = (a0 + 

a1/x)−1 form used in DESeq
42

, while allowing for stable asymptotic behavior.

Evaluating overdispersion of individual genes

For each gene, the approach estimates the ratio of observed to expected expression variance 

and the statistical significance of the observed deviation from the expected value. To 

illustrate the rationale, we start with a Poisson approximation. Let  be the number of reads 

observed for a gene g in a cell i. If such reads follow a Poisson distribution with the mean µg 

and variance νg (both equal to some Poisson rate λg), then Fisher’s index of dispersion 

 follows  distribution
43

. While for the Poisson case νg = µg, for 

negative binomial process, νg = µg + (µg)2/θ, where θ is the size parameter. As θ decreases 

from very high values where the negative binomial is well approximated by a Poisson, Dg 
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diverges from . Analytical adjustments of Dg based on the negative binomial moments 

can improve χ2 approximation
44

. For more accurate approximation we used a numeric 

correction of the χ2 degrees of freedom, depending on the magnitude of θ, so that 

(Supplementary Note 2, Figure SN2.2).

To account for the possibility of drop-out events, weighted sample variance estimates were 

used, so that: , where  is the 

probability that the measurement in a cell i was not a drop-out event based on the error 

model for cell i, and  is the effective degrees of freedom for the gene g. 

, where eg is the expected expression magnitude of a gene g across the measured 

cells.

Since negative binomial (or NB/Poisson mixture) models do not fully capture the variability 

trends observed in the real scRNA-seq measurements, Dg estimates for the real data can 

systematically deviate from 1. To adjust for this non-centrality, we normalized Dg by its 

transcriptome-wide expectation value , where  models the transcriptome-wide 

dependency of Dg on gene expression magnitude.  estimates were obtained using a 

general additive model (GAM, fit using the mgcv R package) as a smooth function of gene 

expression magnitude eg. To improve smoothness, the GAM fit was performed on the 

corresponding squared coefficient of residual variance (Dg/Eg)2. The fit is performed on all 

of the genes. The P value of overdispersion for a gene g was then be calculated as 

, where  is CDF of χ2 distribution with k degrees of freedom.

To improve stability of the estimates with respect to outliers, a Winsorization procedure
45 

was applied to the read count matrix prior to the variance evaluation described above. To 

ensure that the outliers are trimmed in a manner independent of the total cell coverage, the 

Winsorization procedure was applied to the FPM matrix (i.e. normalizing counts by the 

library size), that were then translated back into the integer counts. A trim value of 3 was 

used for all datasets (i.e. observations from the three highest and tree lowest cells for each 

gene were Winsorized).

Weighted PCA and significance of pathway overdispersion—For PCA the data 

was transformed to better approximate the standard normal distribution. Specifically, PCA 

was carried out on a matrix of log-transformed read counts with a pseudocount of 1, 

normalized by the library size: . The values for each gene (matrix row) 

were then scaled so that the weighted variance of a given gene matched the tail probabilities 

of the distribution for a standard normal process: , where QN 

is the quantile function of the standard normal distribution, and varwg(xg) is the weighted 

variance of values xg. As in our previous work
27

, the weight used for the clustering and PCA 

steps included an additional damping coefficient k = 0.9 : , which 
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improved the stability of the subsequent cell clustering for noisy datasets (  is a 

probability of observing  counts in a drop-out event, evaluated from the Poisson PDF).

Weighted PCA was performed for each gene set as described by S. Bailey
46

, recording first 

(and optionally subsequent) principal components, the magnitude of the eigenvalue (λ1) and 

associated cell scores for each gene set. Statistical significance of the λ1 eigenvalues 

obtained for each gene set (overdispersion P value for a set s, ) was evaluated based on 

the Tracy-Widom F1 distribution
47

 F1(m,ne), where m is the number of genes in a given set 

s, and ne is the effective number of cells, determined to fit the distribution of the randomly 

sampled gene sets (containing the same number of genes as the actual gene sets). The 

presented results used pathways annotated by Gene Ontology (GO), restricting evaluation to 

the GO terms that had between 1000 and 10 annotated genes.

Identification and statistical treatment of de novo gene clusters—Since some 

aspects of transcriptional heterogeneity can be driven by genes that are poorly represented or 

not at all described by the annotated pathways, PAGODA incorporates into the overall 

analysis de novo gene sets that group genes showing correlated patterns of expression across 

the cells measured in a particular dataset. By default, PAGODA, implements a 

straightforward clustering procedure: a hierarchical clustering is performed using Ward 

method (as implemented by the hclust package in R) using a Pearson correlation distance on 

the normalized expression matrix (that is used for the weighted PCA step described above). 

The resulting dendrogram is cut to obtain a pre-defined number of de novo gene clusters (the 

results shown use 150 clusters). As there are many alternative methods for clustering co-

expressed genes, PAGODA implementation provides parameters to use alternative clustering 

procedures.

Since de novo gene clusters are by purposefully selected to contain genes with correlated 

expression profiles, the amount of variance explained by the first principal component 

(magnitude of λ1) will be higher than expected from random matrices, and cannot be 

modeled by the same Trace-Window F1 distribution as previously-annotated gene set. To 

evaluate statistical significance of overdispersion, a background distribution of λ1 was 

generated by performing the same hierarchical clustering and weighted PCA procedure on 

randomized matrices (where cell order was randomized for each gene independently, 100 

randomizations). The λ1 values were normalized relative to Tracy-Widom F1 expectation as 

, where  and  are the mean and variance of λ1 

predicted by the Tracy-Window F1 distribution, and coefficients a and b are determined by 

the linear model . This standardized residual  was modeled using Gumbel 

extreme value distribution, the parameters of which were fit using extRemes package in R. 

The overdispersion P value for each de novo gene set were determined from the tails of that 

distribution. The subsequent procedures treated de novo gene sets and annotated gene sets in 

the same way.

Clustering of redundant heterogeneity patterns—To compile a non-redundant set of 

aspects, the PC cell scores (projections on the eigenvector) from each significantly 
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overdispersed (5% FDR, as estimated by the Benjamini-Hochberg method
48

) gene set were 

normalized so that the magnitude of their variance corresponds to the tail probability of the 

χ2 distribution: , where  is the quantile function of the χ2 

distribution with n degrees of freedom (n is the number of cells in the dataset). The 

redundant aspects of heterogeneity were reduced in two steps. First, aspects reflecting 

transcriptional variation of the same genes were grouped by evaluating similarity of the 

corresponding gene loading scores in combination with the pattern similarity using the 

following distance measure between gene sets i and j: , 

where cor is Peason linear correlation, li,lj are the loading scores of genes found in both i 

and j sets, and si,sj are the corresponding PC cell scores (dij was set to 1 if there were less 

than 2 genes in common between the gene sets i and j). The distance dij was then used to 

cluster the aspects, using hierarchical clustering with complete-linkage. Clusters separated 

by a distance less than 0.1 were grouped. The cell scores of the grouped aspects were 

determined as cell scores of the first principal component of all aspects within a grouped 

cluster. The second step, aimed at grouping aspects showing similar patterns of cell 

separation, was accomplished by another round of hierarchical clustering using cor(si,sj) 

distance measure with Ward clustering procedure. The similarity threshold for the final 

grouping of similar aspects varied between datasets depending on their complexity (0.5 for 

the human NPC data, 0.95 for the mouse cortical/hippocampal dataset, 0.9 for the T cell and 

the mouse NPC data).

Batch correction—To control for the effect of categorical covariates, such as presence of 

multiple batches in the data, the approach contrasted whole-population and batch-specific 

variance estimates. Specifically, for each gene g, a batch-specific average expression 

magnitude was estimated for each batch b:eg,b. These batch-specific expression estimates 

were then used to obtain batch-adjusted values of Dg,  and kg (Dg,b,  and kg,b 

respectively). To identify genes showing batch-specific variation, the ratio of batch-specific 

and batch-adjusted variance was evaluated as αg = Dg,b/Dg. The residual variance of genes 

showing discrepant batch- and population-specific variance was taken to be 

, and .

The procedure above ensures that batch-specific effects are not reflected in the magnitude of 

the adjusted variance. Batch effects also need to be controlled at the level of expression 

values on which weighted PCA is performed, as batch-specific expression patterns across a 

sufficiently large set of genes can still account for sufficiently high amount of total variance 

to be picked by the PCA analysis. The expression values, , were adjusted 

in two steps, separating drop-out (0 read count) observations from the rest. To adjust for the 

disparity in the frequency of the drop-out observations between batches, the lower bound of 

the zero-count observation fraction (u) was determined for each batch (assuming binomial 

process), and the weights  for each batch were multiplied by min(1,max(u)/Zb), where 

max(u) is the maximum lower bound value amongst batches, and Zb is the fraction of zero-

count observations in a given batch. This procedure ensures that the expected number of 
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zero-count observations is equal amongst all of the batches. The second step adjusted the log 

expression magnitudes of non-zero observations so that the weighted means within each are 

each equal to the population-wide weighted mean. To further control for batch-specific 

effects, weighted PCA was performed using batch-specific centering (i.e. setting weighted 

mean of each batch to 0).

Spatial placement of cell subpopulations—To spatially place neuronal 

subpopulations identified by PAGODA, we used significantly differentially expressed genes 

(absolute corrected Z-score > 1.96) as relative gene expression signatures for each 

subpopulation of interest compared to all other NPCs. In situ hybridization (ISH) data for 

the developing 13.5 day embryonic mouse were downloaded from the Allen Developing 

Mouse Brain Atlas (Website: ©2013 Allen Institute for Brain Science. Allen Developing 

Mouse Brain Atlas: http://developingmouse.brain-map.org) for all available genes 

(n=2,194). ISH data are quantified as gene expression energies, defined as expression 

intensity times expression density, at a grid voxel level. Each voxel corresponds to a 100 µm 

gridding of the original ISH stain images and corresponds to voxel level structure 

annotations according to the accompanying developmental reference atlas ontology. The 3-D 

reference model for the developing 13.5 day embryonic mouse derived from Feulgen-HP 

yellow DNA staining was also downloaded from the Allen Developing Mouse Brain Atlas 

for use as a higher resolution reference image. Energies for genes in each subpopulation's 

gene expression signature with corresponding ISH data available were weighted by 

expression fold change on a log2 scale and summed to constitute a composite overlay of 

gene expression. Background signal and expression detection in regions not annotated as 

part of the mouse embryo in the reference model were removed by applying a minimum 

gene energy level threshold of 8 units. We focused on spatial placements within the 

developing mouse forebrain and thus restricted gene energies to voxels annotated as 

‘forebrain’ or ‘ventricles, forebrain’ in the reference atlas ontology.

In contrast to more complex in situ landmark association methods as presented by Satija et 

al.
49

 and Achim et al.
50

, the current method is focused on relative placement of mutually 

exclusive subpopulations. Because of this we are able to take advantage of both upregulated 

and downregulated gene sets in assigning the most likely spatial distribution of each 

identified subpopulation. For example, genes upregulated in the maturing NPCs relative to 

early NPCs can be used as indicators as to where the maturing NPC subpopulation is 

spatially localized. In addition, genes downregulated in maturing NPCs relative to early 

NPCs can also be used as indicators as to where maturing NPCs may be absent. 

Additionally, unlike Satija et al.
49

, we do not binarize the in situ data since we are 

particularly interested in gradients of expression across voxels or bins in our particular case. 

Likewise, due to the resolution limitations of our in situ data, where each voxel is much 

bigger than one cell, we are unable to precisely map individual cells to single locations as in 

Achim et al's method
50

.

Implementation and data availability—The PAGODA functions are implemented in 

version 1.99 of scde R package, available at http://pklab.med.harvard.edu/scde/. The source 

code is available on GitHub (https://github.com/hms-dbmi/scde). The spatial mapping of 
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neural cells based on the data generated by the Allen Institute for Brain Science has been 

implemented as a separate R package, called brainmapr, available from GitHub (https://

github.com/hms-dbmi/brainmapr). The scRNA-seq data and gene count matrix for the NPC 

cells is available from Gene Expression Omnibus (GEO) under the GSE76005 accession 

number.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pathway and gene set overdispersion analysis (PAGODA)
Transcriptional heterogeneity analyzed through the following key steps: 1. Error models are 

fit for each cell to quantify the dependency of amplification noise and drop-out probabilities 

on the expression magnitude
27

. A model fit for a cell is shown, separating drop-out and 

amplified components, and the 95% confidence envelope of the amplified component; 2. 
The residual expression variance magnitude for each gene is determined relative to the 

transcriptome-wide expectation model (red curve), taking into account the uncertainty in the 

variance estimates of each gene by determining effective degrees of freedom (kg) for the χ2 

distribution; 3. Weighted PCA analysis is performed independently on functionally-

annotated gene sets, as well as de novo gene sets determined based on correlated expression 

in the current dataset; 4. If the amount of variance explained by a principal component of a 

gene set is significantly higher than expected, the gene set is called overdispersed, and the 

cell scores defined by that principal component (coded in orange-green gradient) are 

included as one of the significant aspects of heterogeneity; 5. Redundant aspects that are 

driven by the same genes or show similar patterns of cell separation are grouped to provide 

succinct overview of heterogeneity; 6. A web browser-based interface is used to navigate the 

identified aspects of heterogeneity, associated gene sets and gene expression patterns. 7. 
Depending on the biological question, some of the detected aspects of heterogeneity may be 

deemed artifactual or extraneous, and can be actively controlled for in a subsequent iteration.
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Figure 2. PAGODA analysis of the 3,005 cells from mouse cortex and hippocampus measured by 
Zeisel et al.

9

The dendrogram shows the overall clustering of the cells, with the row immediately below 

specifying the group to which each cell was assigned in the original analysis by Zeisel et al. 

The main panel shows the top 9 significant aspects (P < 0.05) of heterogeneity (rows) 

detected by PAGODA based on gene sets defined by GO annotations, with the orange/white/

green gradient indicating high/neutral/low score of a cell with respect to a given aspect. The 

aspect scores are oriented so that high (orange) and low (green) values generally correspond, 

respectively, to increased and decreased expression of the associated gene sets. Row labels 

summarize the key functional annotations of the gene sets in each aspect. Two subsequent 

panels show expression patterns of top-loading genes innate immune response (from the 

aspect distinguishing neuroglia), and myelin sheath (distinguishing oligodendrocytes). A 

population of ~35 cells expressing both signatures is marked by a green bar, and most likely 

represents capture of two associated cells of different type. The bottom panel shows images 

of the microfluidic traps corresponding to some of the dual-signature cells, along with cells 

(leftmost two) exhibiting only the oligodendrocyte signature. Green boxes below the main 

panel highlight cells showing a combination of the oligodendrocyte signature with other cell 

types (numbered 1–5: vascular endothelial, astrocytes, CA1 neurons, Gad1/2 interneurons 

and neuroglia). Detailed composition is available through an interactive online view
28

.
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Figure 3. Transcriptional heterogeneity of 65 neuronal progenitor cells in embryonic mouse 
cortex
a. Top eight significant (P < 0.01) aspects of heterogeneity are shown, labeled by their 

primary GO category or driving genes. Detailed are available through an online browser
28

. 

Top aspect tracks induction of neuronal maturation pathways, driving the overall 

subpopulation structure. Mitotic and S-phase signatures in early NPCs account for the next 

two most significant aspects, with the S-phase aspect incorporating closely matching 
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expression patterns of genes responsible for NPC maintenance. Color codes in the top panel 

summarize key subpopulations of NPCs distinguished by the detected heterogeneity aspects.

b. Anatomical placement of the early vs. maturing NPC classes within embryonic brain. In 

situ hybridization signals in E13.5 mouse brain are shown for Tyro3 and Nfasc, with the two 

heatmap rows above showing their expression in the scRNA-seq. Computational prediction 

(third panel) based on the overall transcriptional profile places early NPCs near VZ, and 

maturing ones in SVZ (subventricular zone)/CP regions. In situ images were generated by 

Allen Institute for Brain Science
33

. The lower panel shows anatomical placement of the Dlx-

expressing NPCs, and in situ images for the associated genes.

c. Validation of genes associated with specific subpopulations by in situ hybridization. 

Coronal E13.5 brain sections labeled using RNAscope probes for Rpa1 (left) and Ndn 

(right). Rpa1 showed high expression in the ventricular (VZ) and sub-ventricular zone 

(SVZ). Ndn, which is marks a distinct subpopulation of both mature and early NPCs, shows 

prominent expression throughout the CP, with rarer high expressing cells in the VZ and SVZ 

(black arrows).
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