
Theor Chem Account (2008) 119:113–131
DOI 10.1007/s00214-006-0185-2

REGULAR ARTICLE

Characterizing vibrational motion beyond internal coordinates

Werner Hug · Maxim Fedorovsky

Received: 14 February 2006 / Accepted: 31 May 2006 / Published online: 12 December 2006
© Springer-Verlag 2006

Abstract We present a procedure for the decomposi-
tion of the normal modes of a composite system, includ-
ing its rotations and translations, into those of fragments.
The method permits—by the cross-contraction of dyads
of mass-weighted displacement vectors, without
recourse to valence coordinates—the direct compari-
son of nuclear motions of structurally similar but oth-
erwise arbitrary fragments of molecules, and it leads to
a quantitative definition of the similarity and the over-
lap of nuclear motions. We illustrate its usefulness by
the quantification of the mixing of the normal modes of
formic acid monomers upon the formation of a dimer,
by the comparison of the overlap of the intermolec-
ular normal vibrations of the water dimer computed
with different ab initio schemes, and by the comparison
of similarity and overlap of vibrations of (4S,7R)-gal-
axolide and (4S)-4-methylisochromane. The approach
is expected to become a standard tool in vibrational
analysis.

Keywords Overlap of nuclear motion · Similarity ·
Normal modes · Vibrational energy distribution

1 Introduction

The result of a molecule’s normal coordinate analysis
are vibrational energies and nuclear motions. Computed
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vibrational energies can, at least in principle, be directly
likened to experimental values, though in practice
anharmonicity—and the influence of the condensed
phase in which the measurements are often done—limit
the validity of the comparison. It is far more difficult
to relate computed nuclear motions to experimental
data. One way is through the calculation of vibrational
absorption intensities, and of Raman scattering inten-
sities and depolarization ratios, but for non-symmetric
molecules nuclear motions are not uniquely related to
these quantities [1]. For chiral molecules, two powerful
tools for judging the correct rendering of vibrational
nuclear motions are vibrational circular dichroism
(VCD) [2–4] and Raman optical activity (ROA) [5–7].
Even with these methods, experimental confirmation
of computed nuclear motions requires the agreement
not just of individual bands but of patterns of bands,
and of changes in patterns with changes in molecu-
lar structure, in observed and computed vibrational
spectra.

The characteristic frequencies and intensities one
observes in the vibrational spectra of polyatomic mol-
ecules with similar structural elements provides strong
experimental evidence of the presence of similar nuclear
motions in many of these molecules. Historically, the fact
that empirical normal coordinate analysis was able to
consistently yield vibrational motions which also show
such patterns [8] therefore provided a solid argument in
favor of the general qualitative correctness of computed
vibrational modes. The art of rendering group vibra-
tions, typical of small fragments of larger molecules,
was honed, of course, through the use of force fields
expressed in internal coordinates chosen as valence
coordinates, such as the stretching of bonds, or the defor-
mation of valence and torsional angles [9]. The approach



114 Theor Chem Account (2008) 119:113–131

was largely unsuccessful in accounting for the differ-
ences observed in the vibrational spectra of structurally
similar molecules, but it remained the only possible one
in the absence of the feasibility of large quantum chem-
ical computations.

The advent of the ab initio calculation of force fields,
and the introduction of analytical gradients, has funda-
mentally changed the computation of molecular vibra-
tions [10]. Force fields are now generally expressed in
Cartesian derivatives rather than in valence coordinates,
and off-diagonal force constants are no longer the enig-
matic quantities they once were. The fact that the com-
putation of the so-called “fingerprint” region [11,12]
of the vibrational spectra of chiral molecules [13–16],
and the explicit inclusion of water molecules hydro-
gen bonded to them [17,18], has become entirely pos-
sible is one of the best illustrations of the progress
which has been achieved. The use of density functional
theory (DFT), which was pioneered in vibrational opti-
cal activity for the computation of large, dissymmet-
ric molecules [19,20], has been a key element in these
developments.

The tools for interpreting the results of large calcula-
tions, on the other hand, have not kept pace with these
computational developments. There have certainly been
advances in the graphical representation of computed
results [21], but the analysis of vibrational motions, and
the correlation of data for different molecules, still either
relies on the use of valence coordinates [18] or it has to
be done by the visual inspection of nuclear displace-
ments. The visual inspection can be effective [16] but it
is tedious and, for large molecules, error prone as similar
motions of nuclei—if the nuclei are not part of a structur-
ally distinguished fragment—are easily missed. Valence
coordinates are likewise best suited for the identification
of characteristic vibrations of distinct groups of nuclei
but less useful when one tries to compare vibrations in
the fingerprint region. For characterizing low-frequency
large-scale skeletal motions of sizable molecules, they
tend to be useless.

The goal of the present work has been to develop a
method which permits the decomposition of computed
vibrational motions without the recourse to valence
coordinates, and which allows the automatic recogni-
tion of the presence of similarity in vibrational motions
of large molecules. To this end, similarity will be quanti-
fied so that it represents the extent to which the shapes
of the motions of the nuclei of two vibrations resem-
ble each other, irrespective of the relative size of the
motions. This we will contrast with the notion of overlap
which will be defined in such a way that it represents the
fraction with which the nuclear motions of one vibration
are also present in other vibrations.

2 Theory

The relevance to vibrational spectra of the results of a
comparison of nuclear motions depends on how well
such motions can be computed in the first place. The
procedure we detail here is, by itself, mathematically
strict but is subject to representing a molecule’s nuclear
motions by normal modes, and normal coordinates are
an approximation only to the (classical) trajectories of
the nuclei. The notion of normal modes supposes that
a molecule’s force field should be harmonic, a require-
ment which is never exactly satisfied.

In a normal mode, nuclei move in phase and the
ratio of all coordinates is constant in time, which for
non-degenerate modes implies nuclear motions along
straight lines [1]. A molecule’s translations and rotations
satisfy the conditions for true normal modes [9,22]. They
are not expressible by internal coordinates but must be
included when nuclear motions in a cluster of molecules
is considered. For rotations, the directions specified by
normal coordinates then represent the directions of the
tangents to the nuclear trajectories at the position of the
nuclei in the chosen equilibrium orientation. A motion
like pseudo-rotation [23], on the other hand, cannot be
treated by a normal coordinate analysis, and neither can
our procedure be directly applied to the comparison of
such nuclear motions. To the extent that a non-rectilin-
ear nuclear motion can be represented by a superposi-
tion of normal modes, the procedure will, however, be
applicable to individual components of such a represen-
tation. An obvious example are elliptical trajectories in
a doubly degenerate normal mode.

2.1 Representation of nuclear displacement vectors
of one system by those of another

The transformation from the 3N normal modes Qp to
the 3N mass-weighted Cartesian displacements qα,i of
the nuclei α with mass mα can be written as1 [22]

q = L · Q, (1)

where, in keeping with the notation as used in this arti-
cle, a dot has been used to indicate a single contraction.
q and Q are column vectors with the components qαi

1 The symbol L is used here for the matrix which transforms
normal coordinates into mass-weighted Cartesian coordinates, in
keeping with earlier work [21,24]. This matrix is designated in
[22] as L , and its elements in [9,22] as lik . It should not be con-
fused with the matrix often designated by the same symbol which
connects internal and normal coordinates.



Theor Chem Account (2008) 119:113–131 115

and Qp, respectively, and

qαi = √
mαxαi. (2)

The basis in which the xαi are expressed are the 3N
unit vectors eαi located at the N nuclei α, with i indicat-
ing the Cartesian components.

The columns of the transformation matrix L are the
3N eigenvectors Lp of the Hessian matrix written in
mass-weighted Cartesian coordinates. They are normal-
ized so that

Lp · Lp =
N∑

α=1

Lα,p · Lα,p = 1, (3)

where the dot notation of the scalar product in
Cartesian space has also been used for the eigenvectors
Lp of a system of linear equations.2 If one considers
a single normal mode Qp, i.e. if one assumes a single
component p only of Q to be different from zero, then
the mass-weighted displacement vector qα,p of nucleus
α is given by

qα,p = Lα,pQp. (4)

For true vibrations, excluding translations and rota-
tions, the actual size of the mass-weighted excursions
follows from the energy of the vibration. The potential
energy Up of a vibration p is

2Up = ω2
pQ2

p. (5)

The total energy Ep of vibration p is the sum of the
potential energy Up and the kinetic energy Tp. For a
harmonic oscillation the virial theorem yields Tp = Up,
and therefore

Ep = ω2
pQ2

p. (6)

The maximum excursion corresponds to the classical
turning point of motion, where all energy is in the form
of potential energy. The mass-weighted maximum excur-
sion vector q0

α,p of nucleus α therefore is

q0
α,p = Lα,p

√
Ep

ωp
. (7)

Ep depends on the value of the vibrational quantum
number np. For np = 0, i.e. for Ep equal to the zero

point energy h̄ωp
2 , the classical mass-weighted excursion

becomes

q0
α,p = Lα,p

√
h̄

2ωp
. (8)

2 The matrices of the metric coefficients are unit matrices so that
this does not lead to ambiguities, as covariance and contravariance
do not need to be distinguished.

The normal modes which correspond to translations
and rotations are characterized by the vanishing of a
change in the potential energy, and an excursion cannot,
therefore, be specified as done in Eq. (8) for vibrations.
It is still entirely possible, however, to include transla-
tions and rotations in the matrix L of Eq. (1) because the
transformation it specifies holds also for nuclear veloci-
ties. Hence, in place of (4), one can write

q̇α,p = Lα,pQ̇p. (9)

Equation (9) stays physically meaningful also for trans-
lations and rotations. It is clear, however, that in com-
paring vectors of the L matrix, as we do in the following,
we do not compare actual nuclear motions, even though,
for the sake of simplicity, this terminology will be used
where convenient. Likewise, where no confusion can
arise, “mass-weighted” is not always explicitly specified
where nuclear displacements are discussed.

If two systems have the same number of nuclei, then
it is possible to express the vectors Lp of one system
by those of the other, irrespective of the geometry of
the systems and the masses of the nuclei. This forms
the basis of our analysis of the vibrations of one sys-
tem in terms of the vibrational, translational, and rota-
tional motions of the nuclei of another. From the point
of view of understanding nuclear motions, it is obvious
that expressing the Lp vectors of one system by those of
another makes sense only if there is some structural cor-
respondence. This requires that the two systems contain
groups of nuclei with a similar mass, in a geometrically
similar arrangement. The nuclear motions of such simi-
lar groups of nuclei can also be compared if they are part
of entities which differ in the number of their nuclei. An
exact representation, however, of the nuclear motions
of one system by those of the other is only possible when
the compared entities themselves have the same number
of nuclei.

To develop the procedure, we will use an example
where the decomposition is precise. This is so for the
normal modes of a dimer with 2N nuclei if they are
expressed by the normal modes of two identical, inde-
pendent monomers with N nuclei each. Apart from this
choice, the treatment is general.

If we assume a non-linear geometry for the two mono-
mers, each independent monomer has 3N − 6 normal
modes of vibration, while the dimer has 3(2N)−6 vibra-
tional modes. The presence of six additional vibrational
modes in the dimer, as compared to the two indepen-
dent monomers, reflects the conversion into vibrations,
upon the formation of a dimer, of six translational and
rotational modes. In order to compare the modes of
a system of two independent monomers with those of
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the dimer, we first have to complement the vibrational
modes of each entity by six translational and rotational
normal modes. This then yields 3(2N) modes for the
system of two independent monomers, and also for the
dimer.

The vectors Lt
p of the translational modes can be

obtained by displacing, without rotation, the center of
gravity of an entity by �xi in three orthogonal directions
i, with all distances between the nuclei being kept fixed.
The components Lt

αi,p are then proportional to
�xαi

√
mα . The actual values of Lt

αi,p follow from the
normalization condition Lt

p · Lt
p = 1.

The determination of the vectors Lr
p of the rotational

modes requires, as a first step, the calculation of the
principal axes of all tensors of inertia. Each entity is
then subject to a virtual rotation about each of the three
principal axes. From this, one derives the directions and
the ratios of the lengths of the mass-weighted displace-
ment vectors qr

α,p = �xr
α,p

√
mα . The vectors Lr

α,p are
proportional to these displacement vectors, and their
actual length follows from Lr

p · Lr
p = 1.

The vectors Lt
p and Lr

p obtained in this way are orthog-
onal to each other, and orthogonal to the vibrations.

2.2 Quantitative decomposition of the normal modes
of a dimer

We will designate the dimer in the following with the
letter A, and the two monomers of which it is composed
with B and C. The unit vectors eA

αi for the displacements
of the 2N nuclei α of the dimer form a canonical base in
R

n, with n = 6N:

eA
11 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
.
.
.
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, eA
12 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
.
.
.
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , eA
(2N)3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
.
.
.
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Two indices are used in order to separately specify the
number α of the nucleus and the Cartesian components
i. Taken together, they represent a single index only.

If the nuclei of monomer B are numbered from 1 to
N, and those of monomer C from N + 1 to 2N, then
the combined nuclear displacements of the two mono-
mers span the same space as the dimer. Expressed by
the monomers the canonical base then is

eB
11 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
.
.
0
.
.
.
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , eB
N3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
.
.
1
0
.
.
.
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

eC
(N+1)1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
.
.
.
1
0
.
.
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , eC
(2N)3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
.
.
.
0
.
.
.
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

A vector LA
p of the dimer can be written as

LA
p =

2N∑

α=1

3∑

i=1

LA
αi,peA

αi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

LA
11,p

LA
12,p
.
.
.

LA
2N3,p

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

LA
1,p

LA
2,p
.
.
.

LA
2N,p

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

For the vectors LB
q and LC

r of the monomers B and C
one has similarly

LB
q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LB
1,q
.
.

LB
N,q
0
.
.
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, LC
r =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
.
.
0

LC
N+1,r

.

.
LC

2N,r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

The vectors LA
p of the dimer can now be expressed

by a linear combination of those of the monomers. The
coefficient cBA

qp with which LB
q occurs in LA

p is obtained
by multiplying LA

p scalar by LB
q

cBA
qp = LB

q · LA
p , (14)

and similarly for cCA
rp .

The signs of the coefficients cBA
qp and cCA

qp depend on
the relative phases of LA

p , LB
q , and LC

r , which are arbi-
trary. The signs of the coefficients are therefore signifi-
cant only in as much as they indicate sign changes for
the combination of the monomer modes LB

q and LC
r in

different dimer modes.
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The same phase ambiguity exists when wavefunc-
tions are compared in quantum mechanics. For wave-
functions, one has the option to compare the physically
relevant densities instead. For L-vectors, one can com-
pare, in an analogous fashion, dyads of vectors instead
of the L-vectors themselves. Dyads retain the informa-
tion of the relative phase of the displacement of nuclei
within a normal mode (by which we mean an in-phase
or out-of-phase coupling of group vibrations; motion
as such is always in-phase in a normal mode). As qua-
dratic expressions, however, dyads do not contain abso-
lute phase information. Thus, instead of considering the
coefficients cBA

qp we can define a coefficient dBA
qp by the

double cross-contraction of the dyads of the dimer with
those of the monomers

dBA
qp = LB

q LB
q : LA

p LA
p . (15)

The way in which cBA
qp and dBA

qp are related follows from
the defining relation [25] of the double contraction3

LsLt : LuLv = (Ls · Lu)(Lt · Lv) (16)

so that

dBA
qp =

(
cBA

qp

)2
.

dBA
qp therefore represents the fraction with which mode

q of monomer B occurs in mode p of dimer A, and the
dyads of the dimer can be written as sums of the dyads
of the two monomers

LA
p LA

p =
3N∑

q=1

dBA
qp LB

q LB
q +

3N∑

r=1

dCA
rp LC

r LC
r . (17)

The modes of two non-interacting identical mono-
mers occur in degenerate pairs. For a dimer with appro-
priate symmetry, where the nuclei of the two monomers
occupy equivalent sites, the modes LB

q and LC
q′ of such

pairs occur with the same weight in a dimer mode.
It is then advantageous to form an in-phase and an
out-of-phase combination of the monomer modes of a
pair, and to represent the modes of the dimer in this new
basis. The two linear combinations

LBC+
qq′ = 1√

2

(
LB

q + LC
q′

)
, LBC−

qq′ = 1√
2

(
LB

q − LC
q′

)
,

(18)

3 This is not the only convention for defining summation over
indices in double contractions specified by a double dot, see e.g.
[26]; the convention as used here is consistent with the one we used
earlier [21]. Standard tensor notation avoids such ambiguities but
would be far more cumbersome in the present context.

give rise to the two dyads

LBC±
qq′ LBC±

qq′ = 1
2

(
LB

q LB
q + LC

q′LC
q′ ± LB

q LC
q′ ± LC

q′LB
q

)
.

(19)

The individual dyads which occur in the brackets have
the form

LB
q LB

q =
(

LB
q LB

q 0
0 0

)
(20)

LC
q′LC

q′ =
(

0 0
0 LC

q′LC
q′

)
(21)

LB
q LC

q′ =
(

0 LB
q LC

q′
0 0

)
(22)

LC
q′LB

q =
(

0 0
LC

q′LB
q 0

)
. (23)

A situation which is often encountered is that two
modes of a dimer, lets say LA+

p and LA−
p′ , can be rep-

resented to good approximation by the in-phase and
out-of-phase combination of only two monomer modes.
One can then write

LA+
p ≈ 1√

2

(
LB

q + LC
q′

)
(24)

LA−
p′ ≈ 1√

2

(
LB

q − LC
q′

)
. (25)

Double-contracting the dyads LA+
p LA+

p and LA−
p′ LA−

p′

with LBC+
qq′ LBC+

qq′ and LBC−
qq′ LBC−

qq′ allows us to directly
identify the in-phase and the out-of-phase dimer mode,
without a graphical inspection of the modes or the com-
parison of the relative signs of the coefficients cBA

qp and
cCA

qp , as one has

LBC+
qq′ LBC+

qq′ : LA+
p LA+

p ≈ 1 (26)

LBC+
qq′ LBC+

qq′ : LA−
p′ LA−

p′ = 0 (27)

LBC−
qq′ LBC−

qq′ : LA+
p LA+

p = 0 (28)

LBC−
qq′ LBC−

qq′ : LA−
p′ LA−

p′ ≈ 1. (29)

These relations follow from the form of the dyads and
the identity (16).

In the more general case, where several modes of
each monomer contribute to a dimer mode, the proce-
dure yields the fractional content with which in-phase
and out-of-phase combinations occur. Only dyads trans-
forming according to the irreducible representation of
the analyzed dimer mode occur in its decomposition,
which simplifies the inspection of computer-generated
tables. This convenience should not be underestimated
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as it can be cumbersome to keep track of the relative
signs of numbers in large matrices.

The procedure can be extended to dimers which lack
appropriate symmetry, but in this case, the separation
of the plus and minus combinations of the monomer
modes in the dimer modes will be approximate only.

2.3 Overlap and similarity

We define as the overlap Op′p of mode p′ with mode p
the double contraction of the dyads of their L-vectors:

Op′p = Lp′Lp′ : LpLp. (30)

This definition of overlap has the virtue of being inde-
pendent of an arbitrary phase factor with which the
L-vectors as solutions of a system of homogeneous lin-
ear equations can always be multiplied. If mode p′ and
mode p are identical, then Op′p = 1, and for orthogonal
modes, Op′p = 0.

It is convenient to distinguish three situations:

• The modes are located on the same molecule. Their
dyads are therefore orthonormal, but the notion of
overlap can be applied to parts of dyads. This per-
mits the comparison of the motion of the nuclei of a
fragment for different modes.

• The modes are located on different molecules which
have common structural elements. The comparison
is done for the motion of the nuclei of structurally
similar fragments.

• The modes of a molecule are compared with a library
of standardized nuclear displacements.

The aspects which must be considered are how transla-
tional and rotational motion is taken into account, the
lack of orthonormality of parts only of dyads, and the
geometrical alignment of molecules, or of their frag-
ments, which is required for the comparison of modes.

Modes located on the same molecule. If nuclear motion
is compared for a fragment F, for two different modes
p and p′ of the same molecule, then the displacements
of the nuclei of the fragment can either be compared
directly, or one can compare those components only
which correspond to local vibrations. In the latter case,
the translations and rotations of the whole fragment
need to be subtracted as shown below. Neither of the
two ways is the precise equivalent of the comparison of
displacements in internal coordinates, but when there
is substantial motion of the whole fragment, the second
way comes closer.

The direct comparison is equivalent to the double
contraction of the dyads LF

p LF
p and LF

p′LF
p′

OF
p′p = LF

p′LF
p′ : LF

p LF
p . (31)

The separate comparison of only the vibrational com-
ponents requires the determination of the translational
and rotational dyads LtF

q LtF
q and LrF

q LrF
q of the fragment

F. They can be obtained as described in the preceding
section for a dimer and its monomers. The translational
and rotational content of the dyad LF

p LF
p follows from

double-contracting it with the dyads for translations
and rotations, and the vibrational component LvF

p LvF
p

is obtained as the difference

LvF
p LvF

p = LF
p LF

p

−
⎛

⎝
∑

q

LtF
q LtF

q : LF
p LF

p

⎞

⎠ LtF
q LtF

q

−
⎛

⎝
∑

q

LrF
q LrF

q : LF
p LF

p

⎞

⎠ LrF
q LrF

q . (32)

For the overlap of the vibrational components of the
modes p′ and p on the fragment F one then has

OvF
p′p = LvF

p′ LvF
p′ : LvF

p LvF
p . (33)

In view of the orthogonality of vibrations, translations,
and rotations, it suffices to remove the translational and
rotational contaminants from one of the two contracted
dyads only in Eq. (33).

The local vibrational motions obtained by removing
translations and rotations are not actual vibrations of
the isolated fragment, but of the fragment as part of
the remainder of the molecule. In terms of the preced-
ing discussion of the decomposition of the modes of a
dimer, the local vibrational motions would correspond
not to those of an independent monomer, but to those
of a monomer as part of the dimer.

The analytical power of separating motions by con-
tracting dyads transpires from looking at a simple frag-
ment F, where F consists of just two nuclei joined by a
bond. We will consider two molecular vibrational modes
p and p′, one representing the in-phase and the other
the out-of-phase coupling of the stretching of the bond
F with a similar stretching motion of another bond. The
Eckart–Sayvetz conditions [22] are not, in general, sat-
isfied for fragment F in either composite vibration. The
contractions LtF

q LtF
q : LF

p LF
p and LrF

q LrF
q : LF

p LF
p then

provide us with a quantitative measure of the contami-
nation, by translations and rotations, of the local motions
of fragment F in molecular mode p, i.e. by how much
the bond F shifts and rotates. OvF

p′p, and the similarly

definable quantities OtF
p′p and OrF

p′p, in turn measure to
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which extent, for the in-phase and the out-of-phase com-
posite vibrations p and p′, the vibrational, translational,
and rotational motions of the nuclei of the fragment F
overlap.

Overlap only identifies a common component but it
does not tell us how similar the motions of the nuclei
of a fragment actually are because the compared parts
of the dyads are not normalized. This can be altered
by dividing the overlap by the norms of the contracted
dyads:

SF
p′p =

OF
p′p

|LF
p′LF

p′ ||LF
p LF

p | = LF
p′ LF

p′ :LF
p LF

p√
LF

p′ LF
p′ :LF

p′ LF
p′

√
LF

p LF
p :LF

p LF
p

. (34)

SF
p′p measures the similarity of the shape of the nuclear

displacements on fragment F in the molecular vibra-
tions p′ and p, independently of the actual size of nuclear
excursion. The vibrational similarity SvF

p′p is defined anal-

ogously, with LvF
p and LvF

p′ replacing LF
p and LF

p′ .
In the case of degenerate modes, no modification is

necessary for overlap—the contributions of individual
components of a degenerate set can simply be added. For
similarity, the numerator and denominator of Eq. (34)
are obtained by adding the contributions of individual
components first.

Modes located on different molecules. The comparison
of nuclear displacements of the nuclei of fragments of
different molecules requires a directional alignment of
the fragments. For small groups, e.g. two carbonyl
groups, this step poses no problem. Likewise, for planar
fragments with a sufficiently similar though not neces-
sarily identical structure, like the three-nuclei OCO of
a carboxylic group and the three-nuclei OCN of a pri-
mary amide group, the approximate alignment and the
comparison of the displacement vectors by inspection
appears manageable. The way in which the hydrogen
atom attached to the oxygen, and the two hydrogen
atoms attached to the nitrogen atom, can also be
included in an analysis depends on the molecular vibra-
tions one is interested in. For a low-frequency mode, the
hydrogens can be combined with the O and the N atom
into pseudo-atoms, and the displacements of the cen-
ters of gravity can be compared. For the OH and NH
stretching vibrations, this is not a valid approach, and
one would have to align the OH bond of the carboxyl
group with either of the two NH bonds of the amide
group.

This simple example shows that the choice of the
groups of nuclei to be considered, and the way they
have to be aligned, can depend on the vibration one is
interested in.

A frequent situation in vibrational optical activity is
the need to compare the vibrations of different mole-
cules with the same general structure, but with a different
substitution pattern. The vibrations of interest leading
to the VCD and ROA signals revealing the absolute con-
figuration of a compound often are large-scale motions
which encompass much of a chiral molecule’s non-planar
structure [16]. The fragments to be considered then are
the molecules’ non-planar backbones, or large parts of
them. The alignment of such fragments with a similar,
but not necessarily precisely identical geometry, is thus
crucial for a valid comparison of most vibrations of inter-
est in vibrational optical activity. It cannot be done by
inspection, and it will be discussed in more detail in a
subsequent section.

Examples for a possible choice of fragments in the
case of a sizable molecule are given in Sect. 3.3.

Comparison with a library of standardized
mass-weighted nuclear displacements. The nuclear dis-
placements of a fragment FA of a molecule A, taken
together for all normal modes of the molecule A, includ-
ing translations and rotations, permit the representa-
tion of the nuclear displacements of any fragment FB
of another molecule B of different size, provided that
FA and FB comprise the same number of nuclei. This
is so even though, on a fragment only, the nuclear dis-
placements of molecular modes are linearly dependent
and do not form an orthonormal set. We can therefore
write for the part LFB

q LFB
q of the molecular dyad LB

q LB
q

on fragment FB

LFB
q LFB

q =
3NA∑

p=1

dFAFB
pq LFA

p LFA
p , (35)

where NA is the number of nuclei of molecule A, FA has
the same number of nuclei as FB, and the coefficients
dFAFB

pq are obtained by double-contracting the local parts
of dyads.

A practically useful application is the representation
of the local nuclear motions of a fragment of a complex
molecule by the normal modes of an identical fragment
of a much smaller molecule. An example would be the
exact representation of the motions of the C and the O
nucleus of a carbonyl group of a large molecule by the
motions of the C and the O nucleus in the normal modes
of formaldehyde.

Instead of an exact representation, one is often inter-
ested in identifying that part of the nuclear motion of
a large molecule which corresponds to a characteristic
vibrational motion of the nuclei of a smaller one. In
our simple example, this would obviously be the pure
CO-stretching motion of formaldehyde. A standardized
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carbonyl vibrational stretching motion can be obtained
from the appropriate formaldehyde mode by removing
the small translational component which the combined
motion of the C and the O nucleus will have in form-
aldehyde. In addition, one will want to renormalize the
reference dyad Lref

COLref
CO

Lref
COLref

CO = Lv
COLv

CO

|Lv
COLv

CO| . (36)

The overlap OvF
p′p of a large molecule’s vibrations with

this standardized carbonyl-stretching motion then fol-
lows from Eq. (33), and the similarity SvF

p′p with Eq. (34).
It is possible to build a library of standardized mass-

weighted nuclear displacements representative of char-
acteristic local vibrational motions. Such a library will
permit the systematic search of the vibrations of large
molecules for predefined patterns of local motions.

2.4 Orientational alignment

While the representation of the normal modes of one
system by those of another only requires an identical
number of nuclei, the meaningful comparison of vibra-
tional motions by Eqs. (26)–(34) also requires an ori-
entational alignment. The geometry, even if similar, of
topologically identical groups of nuclei in different mol-
ecules is, however, almost never precisely the same. In
the dimer of formic acid, e.g., which will be discussed in
the following section, the structure of the monomers is
distorted by the formation of hydrogen bonds. An exact
superposition of the positions of all nuclei is not possible
in such cases, and for systems comprising more than two
or three nuclei a strategy for aligning groups of nuclei
must be adopted.

The problem of aligning molecules with a slightly
differing geometry was first formulated in terms of rota-
tion matrices [27,28] and later quaternions [29,30]. Qua-
ternions, invented in the nineteenth century by the Irish
mathematician W.R. Hamilton, were considered some-
what musty mathematics, less than three decades ago
[25]. They have recently found renewed favor as a con-
venient means for the efficient rotation of objects in
space, notably in the context of virtual reality.

A point in space with the position vector b = bxi +
byj + bzk can be represented by the quaternion b =
(0, b) = 0 + bxi + byj + bzk, where i, j, k satisfy the
identities

i2 = j2 = k2 = ijk = −1. (37)

The relations (37) define ordinary (non-commutative
but associative) quaternion multiplication. The rotation
of b through an angle ϕ about a unit vector n through
the origin can be written as the conjugation of the qua-
ternion b with the quaternion q of unit norm,

b′ = qbq−1, (38)

q = (
cos (ϕ/2), sin (ϕ/2)n

)
, (39)

q−1 = q∗ = (
cos (ϕ/2), − sin (ϕ/2)n

)
. (40)

Two groups A and B can be defined by the position
vectors of their N nuclei, A = {aα} and B = {bα}. If
B is the group to be aligned with A, then, according to
Euler’s theorem [25], if the two groups have an identical
geometry, a rotation of B about a single suitably chosen
axis is sufficient to orient it in the same way as A. After a
translation of the rotated group B′ into A one will have
b′

α = aα for all values of α. If the geometries of A and B
are not identical, a least-square criterion for minimizing
the distances between equivalent nuclei can be used to
define the best superposition, i.e. one can make the least
square deviation

ε =
N∑

α=1

wα

(
b′

α − aα

)2 (41)

as small as possible.
In Eq. (41), wα are individual positive weighting

coefficients one might want to attribute to different
kinds of nuclei. Throughout the present work, relative
atomic weights were chosen for this purpose. If chosen
different from 1, the geometrical centers of A and B are
defined by

rcenter =
∑N

α=1 wαrα∑N
α=1 wα

, (42)

where r stands for a or b. In practice, for determining the
rotation axis n and the rotation angle ϕ, the geometrical
centers of A and B are first translated into the origin and
the rotation of B is executed afterwards, rather then in
the sequence described for explaining the principle.

The procedure for finding the quaternion q with unit
norm which renders ε minimal has been described some-
what imprecisely in [29], and in more useful form in [30].
A program QTRFIT written in C is freely available [29].
In order to facilitate the use of the method in the context
of the program PyVib2 [31] developed for the present
work, and in order to correct an error in the coding of
Eq. (42) in QTRFIT which leads to slightly erroneous
results, the method was recoded in Python.
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3 Computational examples

As pointed out in the theoretical section, normal coor-
dinates describe nuclear motions by the tangents to the
classical nuclear trajectories at equilibrium position. The
successful computation of vibrational spectra—Raman,
ROA, absorption, and VCD—by using them proves that
this is not, in general, an important limitation.

Excursions, and deviations of nuclear motions from a
straight line, can become substantial for localized
nuclear motions, or for the motions of entities in a shal-
low potential. This latter case applies to some of the
low-frequency motions of the hydrogen-bonded dimers
discussed in Sects. 3.1 and 3.2. The reliable computation
of the low-frequency part of vibrational spectra might
become difficult in these cases, but tangents to nuclear
trajectories can still be compared with our procedure.
Our choice of relatively rigid monomers, namely H2O
and formic acid, assures, furthermore, that the compar-
ison of the normal modes of the dimers with those of
the monomers remains meaningful, with negligible mix-
ing of monomer vibrations with large-amplitude global
rotational and translational motions.

The main effect of a possible inclusion of anharmonic-
ity is expected to be a shift of the computed frequencies
towards lower values. For the H2O dimer discussed in
Sect. 3.2, the goal is the comparison of different har-
monic force fields via the normal modes they entail.
Anharmonicity is therefore of no concern in this case.

3.1 Mixing of modes in the formic acid dimer

In this C2h-symmetric dimer, the monomers occupy
equivalent sites. The covalent intramolecular bonds lead
to larger force constants than do the hydrogen bonds,
and many vibrations of the dimer therefore are expected
to resemble, on the monomer fragments, those of the
independent monomers. As the monomers do not have
low energy vibrations, the six additional vibrations of
the dimer should be those of lowest energy and have a
pronounced intermolecular character.

Intramolecular vibrations. We denote as intramolecular
those vibrations of the dimer which are expressible as
linear combinations of true monomer vibrations. The
vibrations 7–24 are expected to belong into this cate-
gory. The procedure to analyze them is as described
in Sect. 2.2, Eqs. (24)–(29), by double-contracting the
dyads of the dimer vibrations with the dyads result-
ing from the in-phase and out-of-phase combinations
of monomer vibrations.

The computations were done with the B97-1 func-
tional [32,33] and the recent pc-2 basis set [34–36] with

the Gaussian program [37]. This combination was chosen
as the result of an extended study on the usefulness
of DFT calculations for the computation of hydrogen
bonding [38].

The numerical results in Table 1 confirm that the
dimer vibrations 7–24 can almost quantitatively be rep-
resented by true monomer vibrations—the numbers in
most columns add up to close to 1. It is equally evident,
however, that the formation of a dimer can mix different
vibrations on the same monomer, so that Eqs. (26) and
(29) are not always satisfied. This is true for the 1,400–
1,480 cm−1 wavenumber range, for the four monomer
vibrations 5, 6, 5′, and 6′, which yield the four dimer
vibrations 15, 16, 17, and 18. These vibrations are in-
plane, mostly valence-angle bending motions involving
all four hydrogen nuclei of the dimer.

In Fig. 1 we depict vibration 15 of the formic acid
dimer. A decomposition of the nuclear motions into
valence coordinates would be of little help for under-
standing its origin. Table 1, in contrast, tells us that vibra-
tion 15 of the dimer represents a mixture of 60% of the
out-of-phase combination of the 2 monomer vibrations
5 and 5′, and of 40% of 6 and 6′.

The representation of the vibrations as used in Fig. 1
is in terms of vibrational energy, with the volume of the
spheres chosen proportional to the fraction individual
nuclei contribute to the total energy of a vibration [39].
The ratio of the kinetic energy of nucleus α in vibration
p to the vibration’s total kinetic energy is given by

Tα,p

Tp
= Lα,p · Lα,p. (43)

For a harmonic potential, the kinetic energy and the
potential energy are equal so that Eq. (43) is also equal
to the ratio Eα,p/Ep of their sum. The product Lα,p ·
Lα,p thus equaling the fractional contribution nucleus α

makes to a vibration’s energy. The direction of motion of
the nuclei is indicated by shading. The shaded spheres
must not be construed as conveying an impression of
actual nuclear motion in a representation of the distri-
bution of vibrational energy.

Other vibrations of the dimer are almost pure combi-
nations of a single vibration of each of the two indepen-
dent monomers, with Eqs. (26) and (29) well satisfied.
This is true of the vibrations 19 and 20 of the CO-stretch
type. Less expected is the absence of mixing for the
CH-stretch vibrations 21 and 22, and the OH-stretch
vibrations 23 and 24, because they are energetically close
in the dimer. The mixing remains low as a consequence
of local geometry and not of energetic separation. It
would be larger if the OH and the CH bonds would lie
on a single axis.
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Table 1 Overlap of the formic acid dimer vibrations 7–24 with the in-phase (upper half) and out-of-phase (lower half) linear combina-
tions of monomer vibrations, according to Eq. (18)

689 721 978 1,000 1,078 1,100 1,259 1,262 1,402 1,404 1,449 1,478 1,709 1,781 3,058 3,063 3,104 3,125
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

630 1 0.978 0 0 0 0 0 0.003 0 0 0 0 0.011 0 0 0 0 0 0
682 2 0 0 0 0.755 0 0.213 0 0 0 0 0 0 0 0 0 0 0 0

1,053 3 0 0 0 0.223 0 0.777 0 0 0 0 0 0 0 0 0 0 0 0
1,129 4 0.006 0 0 0 0 0 0.958 0 0 0 0 0.023 0.009 0 0 0 0 0
1,304 5 0.010 0 0 0 0 0 0.022 0 0 0.319 0 0.631 0.009 0 0 0 0.005 0
1,403 6 0 0 0 0 0 0 0.009 0 0 0.676 0 0.309 0.005 0 0 0 0 0
1,824 7 0 0 0 0 0 0 0.006 0 0 0 0 0.017 0.969 0 0 0 0.007 0
3,048 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.973 0.026 0
3,762 9 0 0 0 0 0 0 0 0 0 0.002 0 0.005 0.005 0 0 0.026 0.960 0

630 1 0 0.964 0 0 0 0 0 0.009 0.007 0 0.019 0 0 0 0 0 0 0.001
682 2 0 0 0.874 0 0.044 0 0 0 0 0 0 0 0 0 0 0 0 0

1,053 3 0 0 0.049 0 0.951 0 0 0 0 0 0 0 0 0 0 0 0 0
1,129 4 0 0.013 0 0 0 0 0 0.960 0 0 0.013 0 0 0.012 0 0 0 0.002
1,304 5 0 0.021 0 0 0 0 0 0.007 0.579 0 0.387 0 0 0.005 0 0 0 0.002
1,403 6 0 0.002 0 0 0 0 0 0.010 0.403 0 0.579 0 0 0.005 0 0 0 0
1,824 7 0 0 0 0 0 0 0 0.011 0.009 0 0 0 0 0.978 0 0 0 0
3,048 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.973 0 0 0.026
3,762 9 0 0 0 0 0 0 0 0.002 0 0 0.002 0 0 0 0.025 0 0 0.969

The criterion for in-phase and out-of-phase is the transformation property with respect to rotation about the C2 axis. 0 stands for values
below 1 part in 1,000. The small difference to 1 in each column is made up by translational and rotational monomer modes. Wavenumbers
are indicated at the top and at the left. Computational approach: B97-1/pc-2

Fig. 1 Vibrational energy distribution of vibration 15 of the
dimer (top), with the underlying monomer vibrations 5 and 6 (bot-
tom) which contribute 60 and 40%, respectively. Computational
approach: B97-1/pc-2

Intermolecular vibrations. The decomposition of the six
vibrations of lowest energy of the dimer into the nuclear
motions of the monomers, shown in Table 2, proves that
they can all be represented by almost pure combina-
tions of translational and rotational monomer modes.
Rotational modes contribute far more than the transla-
tional ones. This can be understood from the Eckart–
Sayvetz conditions [22]. They preclude combinations of

translational motions which lead to a translation of the
center of mass of the dimer. An in-phase and an out-of-
phase combination of two translational monomer modes
can therefore not both lead to dimer vibrations. In con-
trast, some monomer rotations can combine in both
ways because a net angular momentum, which one of
the two combinations produces, can be readily compen-
sated for by the translational motions of the individual
monomers’ centers of mass. This is an important mecha-
nism leading to the mixing of translational and rotational
modes.

The dimer vibrations 3 and 5 in Table 2 are examples
of such nuclear motions mainly composed of an in-phase
and out-of-phase combination of the same rotational
monomer modes. Vibration 6, which is shown graph-
ically in Fig. 2, represents a 99.9% pure out-of-phase
combination of rotations about the monomer axes of
inertia I3(B) and I3(C), which are parallel to the C2 axis
of the dimer (see Fig. 3). The in-phase combination, in
turn, makes an important contribution to dimer vibra-
tion 2, with translations compensating the resulting net
rotation.

In addition to the vibrational energy representation,
Fig. 2 also displays the shape of vibration 6 in the form
of non-mass-weighted Lx-vectors. This gives, in contrast
to the energy representation, the correct impression of
the rigid rotational motion of the individual formic acid
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Table 2 Overlap of the in-phase combinations (upper half) and the out-of-phase combinations (lower half), according to Eq. (18), of
the translational (T) and rotational (R) modes of the two formic acid monomers with the six vibrations of lowest energy of the dimer

76 171 184 208 260 275
1 2 3 4 5 6

0 Tx 0 0.248 0 0.069 0 0
0 Ty 0 0.210 0 0.787 0 0
0 Tz 0 0 0 0 0 0
0 R1 0.007 0 0.964 0 0 0
0 R2 0.991 0 0.005 0 0 0
0 R3 0 0.533 0 0.141 0 0
0 Tx 0 0 0 0 0 0
0 Ty 0 0 0 0 0 0
0 Tz 0 0 0 0 0.053 0
0 R1 0 0 0 0 0.850 0
0 R2 0 0 0 0 0.015 0
0 R3 0 0 0 0 0 0.999

In-phase and out-of-phase are defined as for Table 1. The small difference to 1 in each column is made up of true monomer vibrations.
The numbers on the top and on the left are the frequencies of the normal modes. Computational approach: B97-1/pc-2

Fig. 2 Dimer mode described by the out-of-phase combination of
the two rotational monomer modes about the main axes I3(B) and
I3(C) of their tensors of inertia, which are parallel to the dimer’s
C2 axis. Top vibrational energy distribution. Bottom nuclear dis-
placements Lx. Computational approach: B97-1/pc-2

units. To represent the Lx-vectors, spheres located on
nuclei are used with the spheres’ diameter proportional
to the size of the nuclear excursions, and with the direc-
tion of motion indicated by shading [21].

3.2 Intermolecular potential of the H2O dimer

In the dimer, the H2O monomers do not occupy equiv-
alent sites. For some nuclear motions of the monomers,
like, e.g., the scissoring modes, it is possible to identify an
in-phase and an out-of-phase combination, but for other
kinds of motions, such as the antisymmetric stretch-
ing modes, this is not meaningfully possible. Table 3
therefore lists the results of the double contractions of
the dimer dyads with the dyads of the two monomers,

without the previous formation of in- and out-of-phase
combinations. The computations were done with the
DFT B97-1/pc-2 combination already used for formic
acid.

The lowest six vibrations of the dimer are pure in-
termolecular modes with negligible contributions from
monomer vibrations. Their vibrational energy distribu-
tion is depicted in Fig. 4. Most of the true vibrational
modes of the individual monomers also mix little upon
dimer formation, even though the dimer’s Cs symmetry
only precludes the antisymmetric stretching mode 3 of
monomer B from doing so. Two monomer vibrations
which do mix are the symmetric and the antisymmetric
stretching mode 2 and 3 of monomer C.

The compared DFT methods are B97-1/pc-2, B97-
1/rr-pc-2 (see following section), B97-1/pc-1, and the
O3LYP functional [40,41] combined with pc-2. The ref-
erence method is the coupled cluster approach at the
CCSD(T) level with the aug-cc-pVTZ basis set [42].
The CCSD(T) calculations were done with ACESII [43].
The choice of the first two DFT methods is obvious
as they are the ones used in this work. B97-1/pc-1 and
O3LYP/pc-2 were included to demonstrate the impor-
tance of the choice of the basis set and of the functional.

The overlap of the mass-weighted vibrational dyads
is represented by circular discs drawn with a surface
proportional to overlap, with the diameter of the circles
equal to the squares which contain them when overlap
equals 1. Each column in the schematics given below
corresponds to the decomposition of a vibration com-
puted by a DFT method into the vibrations computed
by the reference method.

All comparisons are made for harmonic force fields as
it is not the purpose of the present work to consider an-
harmonic corrections. It its therefore not expected that
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Fig. 3 Coordinate system used for the dimer A and orientation of
the main axes of the two monomers’ tensors of inertia designated
as I1(B), I1(C), I2(B), etc. I1 has the smallest and I3 the largest

value. The y-axis points from the center of mass of monomer B to
the center of mass of monomer C, the C2 axis is perpendicular to
the (x, y)-plane, as is I3

Table 3 Overlap of the vibrations of the water dimer A with the modes of monomer B (upper half) and of monomer C (lower half).
R1, R2, and R3 are rotations about the three main axes I1, I2, and I3 of the individual monomers’ tensors of inertia

134 147 154 188 361 627 1,632 1,654 3,731 3,838 3,917 3,940
1 2 3 4 5 6 7 8 9 10 11 12

0 Tx 0.001 0.002 0 0 0 0.011 0 0 0 0 0 0
0 Ty 0 0 0.160 0.340 0 0 0 0 0 0 0 0
0 Tz 0 0 0 0 0.015 0 0 0 0 0 0 0
0 R1 0 0 0.455 0.221 0.315 0 0 0 0 0 0 0
0 R2 0.269 0.442 0 0 0 0.093 0 0 0 0 0 0
0 R3 0.110 0.334 0 0 0 0.066 0 0 0 0 0 0
1,632 1 0 0 0 0 0 0 0.957 0.043 0 0 0 0
3,844 2 0 0 0 0 0 0 0 0 0.005 0.994 0 0
3,948 3 0 0 0 0 0 0 0 0 0 0 0 1.000
0 Tx 0.001 0.002 0 0 0 0.011 0 0 0 0 0 0
0 Ty 0 0 0.160 0.340 0 0 0 0 0 0 0 0
0 Tz 0 0 0 0 0.015 0 0 0 0 0 0 0
0 R1 0.371 0.013 0 0 0 0.420 0 0 0 0 0 0
0 R2 0.249 0.207 0 0 0 0.398 0 0 0 0 0 0
0 R3 0 0 0.226 0.098 0.650 0 0 0.004 0 0 0 0
1,632 1 0 0 0 0 0.004 0 0.043 0.952 0 0 0 0
3,844 2 0 0 0a 0 0 0 0 0 0.750 0.006 0.244 0
3,948 3 0 0 0 0 0 0 0 0 0.244 0 0.756 0

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

I3 (largest) is perpendicular to the plane HOH, I2 (medium) coincides with the C2 axis. For the directions of the translations T and the
labeling of the monomers, see Fig. 4. Computational approach: B97-1/pc-2

computed frequencies would compare well with exper-
imental ones, if these were known. It is equally clear,
however, that agreement within the harmonic approxi-
mation is indispensable for obtaining, in a further step,
the right answer for the right reason, by the explicit con-
sideration of anharmonicity.

Figure 5 shows that agreement of the intermolec-
ular vibrations is good for B97-1/pc-2 and CCSD(T)/
aug-cc-pVTZ. A small amount of mixing of the two low-
est vibrations of A′′ symmetry of the reference method
occurs in B97-1/pc-2. Results, not shown, for MP2/aug-
cc-pVTZ and MP2/aug-cc-pVQZ calculations are
similar [38].

Replacing the pc-2 set by the rr-pc-2 set (right-hand
side of Fig. 5) does not substantially alter the picture.
Less mixing is observed for the two lowest vibrations,

and a bit more for vibrations 3, 4, and 5. It is interest-
ing to note that augmenting either of these triple-zeta
sets by diffuse functions does not produce a qualitative
difference.

The situation changes when the double-zeta pc-1 set
is used instead. From Fig. 6 it is evident that, while
the basic shape of individual vibrations remains roughly
intact, the energetic sequence does not. As the same
experience is made with other double-zeta sets, we con-
clude that a triple-zeta set is a minimum requirement
for the correct reproduction of the harmonic-approxi-
mation sequence of the low frequency vibrations of the
H2O dimer.

The replacement of the B97-1 functional by either
the OLYP functional or the O3LYP hybrid functional
changes the shape and energetic sequence of the lowest
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Fig. 4 Vibrational energy
distribution of the
intermolecular vibrations of
the water dimer A. The x-axis
in Table 3 is perpendicular to
the dimer’s plane of
symmetry, y points from the
center of mass of monomer B
towards the center of mass of
monomer C. Computational
approach: B97-1/pc-2

Fig. 5 Overlap of the lowest
six vibrations of the H2O
dimer computed with DFT
with those computed with
CCSD(T)/aug-cc-pVTZ.
Going down a column gives
the decomposition of a
vibration obtained by a DFT
procedure into those of the
reference method, with the
frequencies of the latter
indicated at the far left. Left
B97-1/pc-2. Right
B97-1/rr-pc-2

Fig. 6 Overlap of the lowest
six vibrations of the H2O
dimer computed with DFT
with those computed with
CCSD(T)/aug-cc-pVTZ.
Going down a column gives
the decomposition of a
vibration obtained by a DFT
procedure into those of the
reference method, with the
frequencies of the latter
indicated at the far left. Left
B97-1/pc-1. Right
O3LYP/pc-2
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Fig. 7 The pseudo-axial
conformers of
(4S)-4-methylisochromane
(left) and (4S,7R)-galaxolide
(right)

four vibrations. The results for O3LYP/pc-2 are the most
favorable ones and included in Fig. 6. One sees that
even O3LYP cannot reproduce the CCSD(T) harmonic
sequence of the three lowest vibrations, and that, more-
over, vibrations 1 and 4 are mixtures of the CCSD(T)
vibrations 3 and 4. OLYP and O3LYP are clearly not
suited for describing hydrogen bonding.

3.3 Vibrational modes of large molecules

In this section we demonstrate how the vibrational
motions of a large molecule, (4S,7R)-galaxolide, can
be analyzed in terms of the vibrational motions of two
smaller ones with similar structural elements, namely
(4S)-4-methylisochromane and o-xylene.

For a molecule like (4S,7R)-galaxolide, the B97-1/pc-2
approach is, at present, not feasible with our modest
computational resources. The rr-pc-2 basis [38] set (rr
for twice reduced) was born out of the necessity to have
a basis set with some of the same qualities as pc-2, but
suitable for the DFT calculation of large molecules. It
was obtained from pc-2 by removing the f functions on
the atoms of the first row, and by replacing the two d
functions by a single one. On hydrogen atoms, the d
functions were likewise removed, and the two p func-
tions were replaced by a single one. The B97-1/rr-pc-2
approach was used throughout this section.

Comparison of (4S,7R)-galaxolide and (4S)-4-methylis-
ochromane. In both of these chiral molecules the methyl
group at position 4 can assume either a pseudo-axial or
a pseudo-equatorial orientation [16]. The pseudo-axial

conformer is slightly favored and is the one considered
here. Similarly, in galaxolide, the methyl group at posi-
tion 7 can assume either a pseudo-axial or a pseudo-
equatorial orientation. The energy of the pseudo-axial
conformer is higher by 12.7 kJ/mol and so only the
pseudo-equatorial form is of importance. The computed
structures and the numbering of the atoms of the two
molecules are shown in Fig. 7.

The two molecules have far too many vibrational
modes for a comprehensive discussion. The 45 nuclei
of (4S,7R)-galaxolide lead to 129 vibrational modes,
while the 23 nuclei of (4S)-4-methylisochromane yield
63. The largest common fragment of the two molecules
has 21 nuclei (Fig. 8). In order to identify similar nuclear
motions in a systematic way, all the displacement vectors
of these 21 nuclei for 192 vibrations must be compared.
This was done by contracting dyads by an automated
procedure.

We limit the comparison here to the subsets of the
ten vibrations 38–47 (779–946 cm−1) of (4S,7R)-galaxo-
lide and of the ten vibrations 15–24 (727–989 cm−1) of
(4S)-4-methylisochromane. This spectral range is part
of the fingerprint region where conventional methods
for correlating vibrational motions fail to provide useful
information.

The first question one may ask is if there are, in the
chosen wavenumber range, vibrations which strongly
overlap on the largest common fragment MIC (Fig. 8).
Figure 9 shows that, while overlap for many vibrations
is substantial, it is also far from complete, with the larg-
est values barely exceeding 0.5 (this corresponds to the
surface of the largest circular discs in Fig. 9).
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Fig. 8 The fragments on which the vibrations 38–47 of (4S,7R)-
galaxolide are compared with the vibrations 15–24 of (4S)-4-
methylisochromane. Left fragment MIC with the 21 common

nuclei of the methylisochromane moiety. Middle fragment MPy
with the 15 common nuclei of the methylpyrane moiety. Right
fragment Ar with the 8 common nuclei of the aromatic moiety

Fig. 9 Representation of overlap (left) and similarity (right) in
graphical form for fragment MIC. The columns correspond to the
vibrations of (4S,7S)-galaxolide, and the rows to the vibrations of

(4S)-4-methylisochromane. A circle with a diameter equal to the
square which contains it means a value of 1

An absence of strong overlap can be due to the dis-
similarity of the shape of the vibrations, or it can be due
to a lack of the localization of the vibrations on the frag-
ment one inspects. From the similarity also depicted in
Fig. 9 one sees that both aspects are important for the
MIC fragment. There is one pair of vibrations for which
similarity reaches 0.95, namely 46 for (4S,7R)-galaxolide
and 21 for (4S)-4-methylisochromane. A further pair, 47
and 21, comes close, with a value of 0.87. These vibra-
tions are depicted in Fig. 10. For the other vibrations of
the chosen sets, similarity is lower.

Reducing the size of a fragment can increase similar-
ity though it will, for vibrations which extend beyond
the fragment, reduce overlap. This is born out in Fig. 11
for the methylpyrane moiety MPy.

The pattern of nuclear displacements exhibited by
vibration 21 on the MPy moiety of (4S)-4-methylisochr-
omane is particularly persistent. It shows up, with a
similarity of 0.7, 0.94, 0.99, and 0.99, in the vibrations

44, 45, 46, and 47, respectively, in (4S,7R)-galaxolide.
The characteristic nuclear motions on the MPy fragment
are strikingly coupled in (4S,7R)-galaxolide with nuclear
motions on the distant pentamethyl-cyclopentane frag-
ment, rather than with vibrations on the neighboring Ar
fragment.

The different behavior of overlap and similarity illus-
trates the fact that the shape of nuclear motions is often
similar even when the size of nuclear motions is not. The
directions, and the relative size, of the small excursions
on the MPy moiety of (4S,7R)-galaxolide in vibration
47, e.g., agree to 99% with those of the far larger excur-
sions of vibration 21 in (4S)-4-methylisochromane. We
may consider such persistent similarity, independent of
excursion, the hallmark of a group vibration.

Comparison with o-xylene. As a corollary, we present
in Fig. 12 vibration 44 of (4S,7R)-galaxolide and vibra-
tion 18 of (4S)-4-methylisochromane. Both vibrations
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Fig. 10 Examples of vibrations with a high similarity on the MIC moiety due to motion on MPy. SMPy: value of the similarity of the
motions of the 13 nuclei of MPy of (4S,7R)-galaxolide and (4S)-4-methylisochromane. Representation: vibrational energy distribution

are distributed over the whole of these molecules. The
motions of the eight nuclei of the aromatic moiety Ar
are strikingly similar, but not identical, for the two mol-
ecules, with similarity reaching 0.63 on Ar—the highest
on this fragment for the chosen set of vibrations. Over-
lap, on the other hand, is negligible, as is already evident
from Fig. 9. The motions of the eight nuclei of Ar are
closely related to those of a vibration of A′′ symmetry
of o-xylene shown also in Fig. 12. The similarity of this
vibration with the vibrations 18 of (4S)-4-methylisochr-
omane and 44 of (4S,7R)-galaxolide on Ar is 0.7 and
0.68, respectively.

On the pentamethyl-cyclopentane moiety, vibration
44 comes close to transforming according to the A′′ rep-
resentation of the local point group Cs of this fragment.
The local mirror planes of the aromatic and of the cy-
clopentane moiety are both oriented in the same way,
and so the coupling of a motion on the fragment Ar with
A′′ symmetry in o-xylene with an A′′ type motion on the
cyclopentane fragment is what one expects.

4 Conclusions

It is a recent development that the vibrational modes
of large molecules, and of clusters of molecules, if com-
posed mainly of hydrogen and first-row atoms, can be
reliably computed. The availability of such data has
opened the need for understanding them. We demon-
strate in this article that it is possible to comprehend
large-scale computed nuclear motions, encompassing an
ensemble of several dozen nuclei, through a decompo-

sition into the vibrational, rotational, and translational
motions of characteristic subunits. The judicious choice
of subunits can bypass many of the limitations of the
decomposition into the more traditional valence coordi-
nates. Through the availability of a program with a con-
venient graphical interface [31], we expect the approach
to become a standard method for analyzing the vibra-
tions of large molecules.

The proposed decomposition is meaningful only if
computed large-scale nuclear motions are physically
meaningful. One might therefore ask, how do we know
that this is so? The conclusive evidence comes from
the agreement of computed and measured vibrational
spectra. Raman optical activity and vibrational circular
dichroism spectra, in particular, are highly sensitive not
just to the energy of the vibrational modes, but even
more so to their shape. The conclusive demonstration
that DFT can yield vibrational modes which lead to good
agreement between computed and measured VCD [44]
and ROA [14,15] spectra of large, non-symmetric mol-
ecules must be considered a major advance in the field
of molecular mechanics.

The decomposition of vibrational modes as outlined
here can yield further important arguments in support
of ab initio computed vibrational shapes. The limited
material we present suggests that extended vibrational
motions of large molecules are quite logically composed
of characteristic motions of subunits. This is demon-
strated by the comparison of some of the modes of
(4S,7R)-galaxolide, (4S)-4-methylisochromane, and
o-xylene. The persistence of nuclear motions on
symmetric as well as non-symmetric fragments of such
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Fig. 11 Representation of overlap (left) and similarity (right) in
graphical form for fragment MPy. The columns correspond to the
vibrations of (4S,7S)-galaxolide, and the rows to the vibrations of

(4S)-4-methylisochromane. A circle with a diameter equal to the
square which contains it means a value of 1

Fig. 12 Similar vibrations on the aromatic fragment Ar. SAr : value of the similarity on Ar of (4S)-4-methylisochromane (middle) and
(4S,7R)-galaxolide (right) with the eclipsed rotamer of o-xylene (left). Representation: vibrational energy distribution

molecules is astounding, with some of the more obvi-
ous resemblances already recognized [16] ahead of the
availability of the present decomposition of vibrational
modes.

A decisive aspect of the method we propose is, of
course, that it allows us to quantify the notions of over-
lap and similarity. The mere visual tracking down of
resemblances of nuclear motions does not discover sim-
ilarity as defined here, but overlap. This is at the root of
the problem of identifying, by visual inspection alone,
highly similar but small motions on extended vibrational

chromophores, even though they seem to be a common
occurrence. The similarity on the aromatic fragment of
mode 44 of (4S,7R)-galaxolide with mode 14 of o-xylene
is a point in case.

The quantitative assessment of the mixing of the
vibrations of individual subunits, by their being part of
a larger system, is an important but so far unexplored
aspect of vibrational optical activity. We demonstrate
the disentanglement of mingled vibrational modes for
a simple non-chiral system, the dimer of formic acid.
In this example, hydrogen bonding in the dimer mixes
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selectively, and unexpectedly, some of the monomers’
bending vibrations. In some chiral carboxylic acids we
have studied, this is at the origin of large and character-
istic vibrational optical activity.

The influence of external perturbations and of anhar-
monicity are not studied here. From the demonstrated
sensitivity of the method for identifying small changes in
computed intermolecular potentials, such as those pro-
duced by differing computational approaches for the
H2O dimer, it is evident, however, that the approach is
well suited for quantifying changes due to solvent inter-
actions and anharmonic potentials. Both perturbations
are expected to influence the shape of nuclear motions,
and both are therefore of practical interest in a future
refinement of the theoretical treatment of vibrational
optical activity.

Note added in proof: Since submitting our manuscript,
the ViPA (vibrational projection analysis) method
[Grafton AK, Wheeler RA (1998) J Comp Chem
19:1663] has been brought to our attention. It uses, sim-
ilarly to much earlier work [Duschinsky F (1937) Acta
Physicochim URSS 7:551] of which we were likewise
not aware, the scalar product for comparing vibrational
motions. The Eckart-Sayvetz conditions are not taken
into account in the ViPA method. As translations, rota-
tions, and vibrations of individual units are not sepa-
rately considered it cannot, in contrast to the method
described here, compare such motions on distinct frag-
ments of different molecules or clusters. The lack of a
standardized way of aligning entities would also appear
to render numerical results geometry dependent.
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