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Abstract. Using the cohomological approach to W-algebras, we calculate charac-
ters and fusion coeflicients for their representations obtained from modular in-
variant representations of affine algebras by the quantized Drinfeld—Sokolov
reduction.

0. Introduction

The study of extended conformal algebras has been playing an increasingly impor-
tant role in the recent development of conformal field theory. Among them the W-
algebras have attracted much attention in the past few years. The first example of
a W-algebra was discovered by Zamolodchikov [37] in an attempt to classify
extended conformal algebras with two generating fields. (Further classification of
W-algebras generated by two or three fields may be found in [8, 97.) There have
been developed several approaches since then to the construction of a general
W-algebra.

In the series of papers [15-17,31] Fateev, Zamolodchikov and Lukyanov
defined W-algebras associated to simple finite-dimensional Lie algebras g of type
A, and D, by explicitly quantizing the corresponding Miura transformations and
derived some results on their “minimal” representations. They put results in a form
suitable for an arbitrary simply laced §. At the same time Bilal and Gervais studied
W-algebras as the algebras of symmetries of Toda theories [7].

In [2,9, 11] the W-algebras appeared as the chiral algebras in coset models. In
[34, 1] they also appeared in an attempt to generalize the Sugawara construction
to higher degree Casimirs. All these constructions are closely related to the
invariants of the Weyl group W of g, hence the name W-algebra.

We adopt the point of view of the paper [21] by Feigin and one of the authors
of the present paper, where the W-algebra W(g), associated to any simple
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finite-dimensional Lie algebra g, naturally appears as a result of quantization of the
(classical) Drinfeld-Sokolov reduction [14]. Namcly, W(g) is realized as the co-
homology of a BRST complex involving the universal enveloping algebra U (g) of
the affine algebra g associated to § and the ghosts associated to the currents of
a maximal nilpotent subalgebra it of §. For (classical) simply laced algebras this
construction gives the same result as in [16, 17].

This approach allows one not only to define the W-algebras, but also to
construct a functor F from the category of positive energy representations of the
affine algebra g to the category of positive energy representations of the algebra
W(g). Namely, the W(g)-module corresponding to a g-module M is the cohomol-
ogy of a BRST complex associated to M.

The most important representations of affine algebras to which we apply this
functor are the admissible (conjecturally = all modular invariant) representations
of g of fractional levels k, discovered and classified in [26-28] by two of the authors
of the present paper.

In the particular case g = 51, all modular invariant representations of level
different from — 2 have level k = — 2 + p/p’ [26], and it was shown in [6, 19] that
the functor F sends these representations either to zero or to the irreducible
representations of the Virasoro algebra from the (p, p’)-minimal model [3]. This
makes us to believe that F sends a modular invariant representation of an arbitrary
affine algebra g either to zero or to an irreducible “minimal” representation of
W (@). This irreducibility is our basic conjecture.

We use the functor F to evaluate the characters of the W(g)-modules thus
obtained as residues of affine characters. Our results completely agree with the
results and conjectures of [7,9, 16]. The fact lhdt the characters of the minimal
scries of the Virasoro algebra are residues of affine s/,-characters was first observed
in [32]. The functor F gives a simple explanation of this phenomenon.

Our calculations give much information about the conformal field theory with
W(g)-symmetry which as yet has not been rigorously defined. In particular, we can
apply the Verlinde formula {35] to the modular transformation of W (§)-characters
(found in [17,28]) to describe the fusion algebra of the (conjectured) minimal
W(g)-models (in the simply-laced case).

It is interesting that if we apply Verlinde’s argument to the affine characters at
a fractional icvel, then the fusion coefficients may be ncgative. However, the functor
F corrects the situation. It sends some different g-modules to the same W (q)-
modules and “erases” some of the g-modules, so that the resulting fusion coeffi-
cients for the W-algebra are positive integers.

Note that the characters of W(g)-modules computed by means of the quantum
Drinfeld-Sokolov reduction coincide with those of the g, @ g,/g1+x coset
model in the case of a simply-laced g. The connection between the quantum
Drinfeld—Sokolov reduction and the coset models still remains a mystery.

Below we describe the contents of the paper. In Sects. 1.1 and 1.2 we recall the
necessary information about an affine Kac-Moody algebra g, its affine Weyl group
W and especially the “enlarged” affine Weyl group W = W, o<W, where W, is
a group of symmetries of the Dynkin diagram of g isomorphic to the center of the
simply connected group corresponding to §. In Sects. 1.3-1.5 we recall the defini-
tion and properties of the principal admissible weights Pr* [26, 27]. Here k stands
for the level; it has the form k = — hY + p/p’, where 1™ is the dual Coxeter number
and p, p’ are relatively prime positive integers such that p = h”. We also recall [27]
the definition of the subset N* of “ — ”-nondegenerate weights, and the map
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@ Pr*—1,, 0 {0} which is 0 outside N~ and ¢ : N~ >, , is |[W] to I.
Here

Iy = (PLV X PLUIY W,

where P (respectively PY™) is the set of dominant integral weights (resp.
coweights) for g of level m. The map ¢~ corresponds to the first quantized
Drinfeld-Sokolov reduction. Furthermore, defining a bijective map f of Pr* onto
itself, we introduce the map @ *: Pr* > [, , u {0} by ¢ " = ¢~ = fand characterize
the set N% of “ + "-nondegenerate weights. (N = (0 only if p’ = h, the Coxeter
number.) The map ¢* corresponds to the second quantized Drinfeld-Sokolov
reduction. In Sects. 1.6 and 1.7 we recall formulas for “normalized” characters of
irreducible representations with principal admissible highest weights and their
properties under modular transformations [27, 28]. In Sect. 1.8 we define the
(multidimensional) residue and express the residues of normalized characters of
admissible representations in terms of certain functions ¢, , (4, p €I, ,) which in
Sect. 3 will turn out to be the characters of W-algebras.

In Sect. 2.1 we describe two classical Drinfeld-Sokolov reductions, with respect
to the set of positive roots (* + "-case) and negative roots (* — ” case). In Sect. 2.2
we quantize these reductions by means of the semi-infinite cohomology. Though
“+ 7 and “ — ” reductions give isomorphic Poisson algebras and their quantiz-
ations give isomorphic W-algebras, it 1s important to consider both reductions.
This is because the “ + 7 reduction can be obtained using the techmiques of
conformal field theory. (It is much easier to perform calculations using operator
product expansions [3, 9].) On the other hand, in the “ — ” reduction the picture is
in many respects much simpler (for example, it is much easier to calculate the value
of the highest weight vector). In Sect. 2.3 we construct, using the two quantum
reductions, functors £, from the category of positive energy g-modules to the
category of modules over the corresponding W-algebra W7 (3). We prove here an
important vanishing theorem (Theorem 2.3) which gives a sufficient condition of
vanishing of the W2 (g)-module F_ (M) for a g-module M.

In Sect. 3.1 we construct a Virasoro subalgebra of the algebra W] (3)
(the energy momentum field 7'(z)). In Sect. 3.2 we calculate the Euler character
of the W (g)-module F. (M) in terms of residues of affine characters (Pro-
position 3.2.3 and Theorem 3.2). The key fact here is Proposition 3.2.2 which
asserts that functors F . map positive energy g-modules to positive energy W 7 (3)-
modules. In Sect. 3.3 we prove some properties of the WW-algebras using representa-
tion theory. Using this and the fundamental irreducibility Conjecture 3.4, we
derive in Sect. 3.4 the character formula for F,(L(A)), where A< N*, and
show that these W (3)-modules are parameterized by the set I, . In Sect. 3.5
we statc conjectures on resolutions, which, in particular, imply the irreducibility
conjecture.

Finally, in Sect. 4 we use results of Sects. 1 and 3 to derive fusion rules for the
W-algebra in the case of simply laced &. It turns out, in particular, that if | 7, | is
relatively prime to p or to p’ (which holds for all k in all cases except for § of type 4,
where n is not a power of a prime number) then the fusion algebra for WZ (g) is
isomorphic to .77 "® /% "hor to /" ® .o/ P " respectively, where ./™ denote
the fusion algebra of level m for g and .« denote its subalgebra corresponding to
radical weights (Theorem 4.3).

The main results of the paper have been announced in [21 and 28].
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1. Principal Admissible Highest Weight Representations of Affine Algebras

1.1. Preliminaries on g. Let § be a simple finite-dimensional Lie algebra over C of
rank /. Choose a Cartan subalgebra b of g and let A¥ < [y and 4 < h* be the sets
of coroots and roots respectively. Let 0¥ < T be the coroot lattice and let 0* <
be the dual to the root lattice. One knows that 0* o Q¥ and that the group
Q*/0Q " is isomorphic to the center of the simply connected Lie group correspond-
ing to g.

Choose a subset of positive roots 4, < A and let 47 be the corresponding
subset of positive coroots in 4. Let g=n_ ®hH@ i, be the corresponding
triangular decomposition of g. Let IT = {ay, ..., %, }and 1Y = {4y, ...,a } be
the sets of simple roots and simple coroots respectively. Let — & = Zi/:l a;ed,
and — oy = Zle ay 4;" € AY be the highest root and the corresponding coroot
respectively, and let a, = ay = 1. The numbers

/ ’
h=> a and h’ =) a’
i=0 i=0

are called the Coxeter number and the dual Coxeter number respectively. Let J be

a subset of the set {0,1,...,¢} consisting of those i for which a; = 1. One has:
1Q*/Q" | =1J| L
Let A;eb* (resp. A ebh),i=1,...,7, be the fundamental weights (resp.

coweights), ie. {A;, &) = &;; (resp. <A, &;> = d;;), and let Aq = Ay = 0.
Let (x|y) = ¢(x, y)/2h" be the normalized invariant bilinear form on g, where
¢ is the Killing form. We identify § and h* using the form. Then we have:

Y =2a/(@|x)ed” foraed, (1.1.1)

(@la) = 2a Jas, i=0,..../. (1.1.2)

It follows that (A;|&;) = a;* /a; (i = 1,....,1), hence A;€ O0* if i € J. Thus, we have
{A;}ies is a set of representatives of 0* mod Q ~. (1.1.3)

All possible values of the ratio a;/a;” are 1if gis of type A,, D, or E;, 1 and 2 if
gisoftype B,, C,or Fy,and 1 and 3if §is of type G,. Welet#¥ = max;(a;/a;” ). The
case r¥ = 1 (resp. ¥ > 1) is called simply-laced (resp. non-simply-laced).

Let W < GL(b) be the Weyl group of 3. We denote by W, the subgroup of
elements of W that map the set {&,, dy,...,& ) into itself. Note that the set
{&o, ..., 8, }\{a;} is a root basis of 4 if and only if jeJ. Since W acts simply
transitively on root bases, we conclude that for each je J there exists a unique
w;e W, such that &; = Ww;d,, and that

Wi ={W;}ies- (1.1.4)
Proposition 1.1. &(w;) = (— 157,

Proof. Let o= ma;ed,. Then, for jeJ we have: either m; =0, then
w, 'aed, orm;=1, then w; 'a e — 4, . Hence we have:

J
Wildy = A=Y (oA =2(p|A). O

red,
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1.2. Affine Algebra g and the Groups W and W (see [24] for details). Let
g=C[t,t '] ® g + CK be the affine algebra associated to g:

La(m), b(n)] = [a, b](m + n) + md,, _,(a|l)K , [K,g]=0, (1.2.1)

where a, b€ §, m, n € Z and a(m) stands for t" ® a. Let h = h + CK be the Cartan
subalgebra of g. The bilinear form (.|.) extends trivially from § to b, so that €K isits
kernel and further to the whole g by (a(m)|b(n)) = 6., ,,,(alb) Given 4 eb*, we
denote by 1 e b* its restriction to b; the number {4, K) is called the level of A
Let AY™ =AY U {a+ nK|oe Ao, nelN U e+ r'nK|oe A, ne N}

be the set of positive real coroots, 47" =AY w — 41" the set of all real co-
roots, IT" = {oclv = 0,K +47i=0,... ,/’} the set of simple coroots. Note that
K=Y_,a"a

We hcwe the following action « — t, of h* on b:
t,wy=v—{v,ay)K, veb

(the contragredient action on b* being t,(4) = /4 + {4, K >«). For a subset L < h*
let t; = {t,|ze L}.
Recall that the Weyl group W of g is a semidirect product:

W=i1g >, (12.2)

It turns out that AY™ = W(II") is invariant with respect to a larger group
W:: tQ*><W, which will play an important role in our considerations. Let
W, = {we Wlw(lIV)=1I"}. Since W acts simply transitively on root bases, we
have:

W=W,<W. (1.2.3)
Using (1.1.3 and 4), the group W . can be described explicitly as follows:
Wi ={w}jcs, where w;=1;W;. (1.2.4)
we have canonical isomorphisms
W, e W, 50407, (1.2.5)
which are induced by the canonical homomorphism W — W using (1.2.3) and the

definition of W.

Proposition 1.2. (see e.g. [25]). The group W .. is a unique normal subgroup of the
group Aut ITY that satisfies the following two properties:

AUt ITY = Aut TVe<W, and W, ~Q%*Qv . [

Let 4y ebh* be defined by Agl; =0, (A, K) = 1. Define the fundamental
weights (resp. coweights) by

Af:;l_i+aivA0 (resp./liv :/Ti\/ ‘l‘ai/lo), lZO,,/
One has
wilog) =o; and widg)=A;=A47 ifjed. (1.2.6)

Let p =Y oA p¥ =3 A" Then
{p, K=h", {(pY",K>=h. (1.2.7)
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‘LetP =) ,ZA;and P =) ZA; be the sets of integral weights and coweights
andlet P, =) . Z. A;and Py =) Z. A, be the sets of dominant integral weights
and coweights. Let P* P* etc. be the subsets of level k weights.

Note that the bilinear form (.].) on [y is W-invariant, but there is no non-trivial
W-invariant bilinear form on b* The situation can be fixed, however, as follows.
One enlarges b by a one-dimensional space Cd by letting h) = ) @ €d and extends
the bilinear form (.[.) from b to b by letting (d[h) = 0, (d|d) = 0, (d|K) = 1. Then
there is a unique way to extend the action of W from b to [y so that the form (.].) is
W-invariant, namely:

wid)=difweW, t,d)=d+x—~3xa)K.
The resulting formula for the automorphism ¢, of [y is:
t(0) = v+ (v| K)o — ((v]o) + F (2| 0)(0| K))K, veD. (1.2.8)

We identify h* with the subspace of lincar functions on T which vanish on d. This
subspace is not W-invariant, as we can sce from

t,(2) =2+ (L Kyo— (o) + 3 (a|a) G KDY, Leb*, {1.2.9)
where ¢ is defined by
oly,=0, (6,dy)=1.

As the bilinear form (.|.) is non-degenerate on b, it induces one on h* which extends
that on h* by

(h*¥|CAy + €)= 0, ([0) = (Ao|A0) =0, (Agld)=1. (1.2.10)
Let AT = A, U {a +nd|lee A, ne N} be the set of positive real roots.
1.3. Principal Admissible Weights. Given A eb*, let R = {ae 4V "|{A + p,2)

€Z}, Rt = R"n AY™. Recall that A is called a principal admissible weight [27] if
it satisfies the following two properties:

(A +p,or¢ —Z, foralluedy™, (1.3.1)
R* is isomorphic to 4™ . (1.3.2)

Note that all dominant integral weights are principal admissible. Recall the
description of all principal admissible weights [27]. Let ueN and let
Ryy=4Y v {a+nuKlaze 47, ne N}. One has (cf. (1.2.6)):

[U/T/WjR[u] < R[u] fOI’jEJ . (]33)

Given ye W, denote by P, , the sct of all principal admissible A such that
R% = y(Ry,), and by P , the subset of P, , of weights of level k. Denote by Pr* the
set of all principal admissible weights of level k.

A rational number k with the denominator u € IN is called principal admissible if

uk+hY)=h" and (u,rv)=1. (1.3.4)
Letting
p=ulk+hn"),
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conditions (1.3.4) can be rewritten as
pueN, p=hv, (puy=1, wr’)=1. (1.3.5)
Recall the shifted action of W:w. A = w(A + p) — p.

Theorem 1.3 [27]. (a) P% , is non-empty if and only if the following two conditions
hold:

k is a principal admissible number with the denominator u , (1.3.6)
W(Ryg) = A7 (13.7)
(b) If (k, u, y) and (k, u, y,) are two triples satisfying (1.3.6) and (1.3.7) then the
following statements are equivalent:
Pk and Pk | coincide,

(1 P
( ) u, y1
(ii) y(Rpg) = y1(Rp)s
(iv) )1 = yt,;,w; for some je J.

c) If (1.3. 6) and (1.3.7) hold, then

Pho={y (A% —(u— Dk + hV)A) A% e pF- 10001

% and PY . have a non-empty intersection,

(d) Pl is nonempty if and only if k is principal admissible. 5
(e) U Pk .. where ueN is the denominator of k and ye W satisfies
(1.3.7). D

Lemma 1.3. Let y = t;3. Then condition (1.3.7) is equivalent to each of the following
two conditions:

(GBI S0 fori=1L. ... /0 (5 Plag)<u. (13.8)
0L — (7 'Bley<u forallaued, . (1.3.9)
Proof. is straightforward.

Remarks 1.3. (a) We have a bijective map A > A° between Pf, and
Pt R0-0 defined by A = y . (A° — (u — D)k + h¥)Ay).

(b) Note that ke Z, is principal admissible and in this case, Pr* = P% .

(c¢) If k is principal admissible, then kA, € P% | = Pr* This is called the vacuum
weight of Pr*.

1.4. The Maps Transpose and f. In this section we consider some important maps
on the set Pr* of all principal admissible weights. The first map is the transpose
A — ‘A defined in [28] as follows. Let R* = R* n 4¥,RL = R" n A, and let W
be the subgroup of W generated by reflections in the elements of R™. The group W*

contains a unique element, denoted by w*, such that w*R% = — R In particular,
woAY = — AY. Note that (w")? = 1. Define w* e Aut b by
wlv) = —wiv) fvebh wiK)=K. (1.4.1)

Then ‘A is defined by
A+ p=wld+ p) (14.2)
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In' particular, one has:
‘A=wA) fAeP, . (14.3)
Furthermore, we have: 'Pf , = P, .y, where for y = t, 7 we let
F=ywwl =14, (1.4.4)
Explicitly, for A = (157).(A° — (u — 1)(k + h¥)A,) € Pk, we have
A= (t-p'7).((A°) — (u = 1)(k + h¥)A) € Py« . (14.5)

It is clear that the transpose is an involutive map of Pr* into itself which fixes
the vacuum weight kA,. It will appear in the calculation of the fusion algebra.

We turn now to the definition of the second map f: P¥* — Pr*, which will link
two quantum reductions considered in the next sections. For this we need the
following lemma.

Lemma 1.4. ([27], Lemma 3.4a). Given [ € Q*, there exists a unique y€ Q" and
a unique y € Wsuch that (tp+,,¥)Rpy © A% 1]

Given ue N, we first define a map y — ) of W into itself. Let y = ty¥; by
Lemma 1.4, there exists a unique ye€ Q" and a unique j € W such that

(tﬂ*ﬁ"'+ll,y )Ru = Avre We let

B=p—p"tup y=tgy.
Using (1.3.3), it is clear that if y is replaced by y; = yt,; W;, then its image ' gets
replaced by y| = y't,; w;. It follows that the element

y=yy lew

remains unchanged if y is replaced by yz,; w;

Now, for A € Pr* there exists y e W such that Ae Pk and we let f(A) = ). A
Due to the above argument and Theorem 1.3, fis a well-defined bijective map on
Pr¥, such that f(P% ,) = Pk ...

Proposition 1.4. (a) (f°transpose)® = 1.
(b) If u = h, then f(kAg) =kAg —(k + h")p"

Proof. Let /1 eP,, w ¥ =153, so that A =y.(A° —(u— 1)k + h¥)A,) for some
A% g puksi- i By Lemma 1.4, there exists a unique y € Q¥ and a unique j' € W
such thdt

tpy' Ry © A%, where f=—f-p" +uy. (1.4.6)

Then, by definition, A":=f('A) = (15 7'). ("(A°) — (u — 1)(k + h¥) o).
We need to show that f(‘4') = A. Applymg the above argument to f’ and 7 in
place of ff and y, there exists a unique 7' € 0¥ and a unique y” € W such that

o § Rug = AY°, where B'= — B — " +uy . (147)

But " = f + u(y — /) (see (1.4.6)). Hence, comparing (1.4.7) with t;Rp,; « 4L
and using uniqueness in Lemma 1.4, we conclude that " = y and f” = 8. Hence,
JeAY =t 7). (A° = (u — Dk + h¥) A,) = A, proving ( a).
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Noting that ¢ _ 5 Ry © 4Yifu = h, we have under the assumption that u = h:
flkAg) =t _ 4 (kAg) = kAg — (k+ hY)p ", proving (b). L]

1.5. The Maps = and the Corresponding Sets of Non-Degenerate Weights N¥ . The
proof of the following lemma is straightforward (cf. Lemma 1.3):

Lemma 1.5. Let A be a principal admissible weight, A € Pk, where y = ;3. Then

the following conditions are equivalent:

(N a)¢Z forallue A, (1.5.1)

V(Ryy) = 41\A% | (1.52)

(371Bla) <0 fori=1,....¢; (37'Blag)<u, (1.5.3)
O< — (7 'Bloy<u forallaed, (1.5.4)
(Bloy#0modu forallaed. [l (1.5.5)

In particular, all elements of P, either satisfy (1.5.1-5) or all do not. Given
ye W, let

M,;={feQ*0< —(7 'Blo)<uforallaed,},

k k
Pi‘: U Pu,t/,)’ry
peM,

k k
Nk =) P
Few

(Elements of the last set are called non-degenerate weights in [28]).
Each set P% admits the following nice parametrisation:

Proposition 1.5.1. [28] (a) Let A€ PY. Then there exists a unique f(e 1\7Iu)j.) such
that A€ Py, .. We let :

@ (A) = (A% uto =3 1 (B)—p").
This is a bijective map (here, as before, p = u(k + h")):
@; PEoPL M xpyeh

the converse map being
. - . D_ v P
Yy (=74 —;ly(u to)+ Ao

In particular, P% & 0 if and only if
k is principal admissible and u = h . (1.5.6)

(b) Let k satisfy (1.5.6) and let 3,5y € W. Then \y; (4, ) = ;. (A1, py) if and only
i3 51 =w; for somejed and p~ (A — Wi ) =u"Hu — Wi py) =45

(c) P¥ and P¥ are either disjoint or coincide and they coincide if and only if
Jj'hieWw,. O
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Given relatively prime integers p = h” and p’ = h, consider the set
Ly = (PL " < PyP=hy/ i,

(where w(/, 1) = (Wi, wu), we W,). Let @ :P*—1,, be the map defined as
follows:

o (A) =@ (A)if AecPr @ (A)=0if A¢ N~ .

It is easy to see, using Proposition 1.5.1b, that the map ¢~ is well defined.

As we shall see, the map ¢~ corresponds to the quantization of the first
Drinfeld-Sokolov reduction. We turn now to the map ¢ ¥ := ¢~ = f corresponding
to the quantization of the second Drinfeld—Sokolov reduction.

Consider the set N :=f"YN-)={A1ePrfp*(A)+0}. We give below
a more explicit description of the set N% and of the map ¢ . Proof is straight-
forward.

Proposition 1.5.2. (a) N% =, Pk, ., where the union is tuken over all j € W and
all e M such that

(f—p lo)y£0modu forall xed. (1.5.7)

(b} The map @ is defined on A e Pffm = N* as follows. By Lemma 1.4, there
exists a unique ' € Wand a unique y € M such that t; ;. ..V Ry < 4L Then

P (A) = (A% udyg — 7B — 5" +uy)— p*)mod W, . (1.5.8)

Equivalently, the weight udq — vy~ " (f — p) is cointegral regular, hence there
exists a unigue wy;e W and a unique ueP é“*” such  that w4+ p”
=wudog — 7N — p ")) then @ " (A) = (A%, yymod W, .

(© If @ (M) =(4u, then o' (c(A)=(7"wWmod W,, where o=
f Yo transpose o f. .

(dy " (kAg) =({p — h" YAy, (u — WAy )mod W,.. T[]

Proposition 1.5.3. (a) Elements A, A€ N¥. are such that ¢~ (A)= @ (A) if and
only if A" = W. A for some we W. In particular, the map ¢~ N~ -1, is| W] to 1.
(b) The same statement holds for ¢ N% —>1,,.

Proof. Let A =y.(4—(u—1)(k+ h")Ag)e N°, where y = 157 ¢ . Then, due to
(1.5.2) we have:

Wy(Ruy) = AX\AY for any we W .
Hence by Theorem 1.3 and Lemma 1.5,
(wy). (0 — (u— Dk + hv)Ay)) e N& .

But wy =r;,(wy), hence by definition of ¢_ (see Proposition 1.5.1),
@-(W.A) = (2 udo — (wy) "(Wh) — p*) =@ ().

Conversely, suppose that ¢ (A)= ¢ (A) =, we P " x PY" " where
A=y (X —(u-—1)k+h")A)e N and y =1, 7. By definition of ¢~ we
have: 2 =4 and j ' =(y) 'p. Letting w =37 !, we thus have: wf = f.
Hence y' =1, 7' = ty(wy) = Wiy =wy,and A' = w. A, O
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Here is a somewhat different description of the maps ¢ and ¢. Recall that
by Lemma 14, given ue N, each fe M determines uniquely an element
Vpi=ty+,, ¥ € W by the condition yg(Ry,;) < 45™. This gives us a map

$:PL P x(0*u” )~ Prt

defined by ¢(A°, B) = y;.(A° — (u — 1)(k + h¥}A,). The map ¢ induces a bijec-
tion:

(P50 (QuQ )/ W > Prt

where W, acts on both factors as defined in 1.2.

Let now A = ¢(4, ) € Pr¥, where (1, ) e (P " x (0% /uQ ¥ )) mod W ... Then
AeNK ifand onlyif § — ¥ is regular with respect to the group We<uM. In this
case we have:

et (A) = (A (u—hAy+ i) mod W, , (1.5.9)

where jie PY* "issuch that i + p¥ and f — p " lie on the same Ww<uQ ¥-orbit.
Furthermore, we have:

a(A)=¢(h —p+2pY). (1.5.10)

1.6. Characters and Normalized Characters of an Affine Algebra. Let M be a g-
module. Tt is called a level k module if K = kI,,. It is called a restricted module if for
any x € g and any v e M there exists n, such that x(n)v =0 for n > ny. If M is
a restricted g-module of level k &+ —hY one defines the Sugawara operators on
M by

Z Yu +n):, (1.6.1)

[EZ i

"T 2k + hY) h
where {u;} and {u'} are bases of § such that (u;|u’) = §;;. Recall that these operators
define a representation of the Virasoro algebra with central charge

k(dim §)

1.6.2
k+h” ( )

Cp =

A restricted g-module M of level k + — I is called a positive energy module if

So 1s a diagonalizable operator on M with a discrete spectrum bounded below and

each eigenspace of Sg is a 3-module from the category €. (Recall that a g-module is

said to be in the category € if it is finitely generated h-diagonalizable and #i . -finite.)

The most important examples of positive energy g-modules are irreducible

highest weight modules L{A), where A eh* is of level k + —h"”, defined by the
property that there exists a non-zero vector v, such that [24]

<n+ + ) tg> v, =0, hvy=<{A h>v, forheb.

k>0

Let ¢ =_ez””, where te#,, the upper half-plane. Consider the domain
Y = #. xbhx C. One defines the character chy of a positive energy g-module M of
level k by the series:

chy(t, x, t) = e2™*try (g5°e®™), (1, x,1)e Y.
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THis series converges to a holomorphic function in the following domain in Y
[24, Chap. 117]:

Im(x|oy>0forae Ay and Im(x§|x)<Imrt, (1.6.3)

and can be analytically extended to a meromorphic function in Y analytic outside
the hyperplanes (x|o)=n for ae Ay, neZ. If AeP*, then y, converges to
a holomorphic function on the whole domain Y [24, Chap. 10].

Given A € h* of level k one defines the normalized character y, of the g-module
L(A) by the formula:

2a(t, x, 1) = g 2*chy (T, X, 1) .
We shall identify ¥ with a domain in b by letting
(t, x,t) = 2mi( — 1d + x + tK) .

In the case A€ Pfj,m—,, the meromorphic function y,(z, x, t) in Y is given by the
following formula {27, 28]:

Ap i pun, oy P + T ) T+ (x[B) + 57 BI7) .

Aie D) (1.6.4)

X/l(r: X, t) =

Here, for /e P%,se N, we let

Ay =q""" Y g(w)er? .

weW

Recall the following simple (but useful) identity for A€ P% and p e h* such that
(s K =m [28]:
m|w(i)  ul?

A,1<mr, — tﬂ,rlﬁﬁ> =) ewyg2l s m

N m
2Zm weW

(1.6.5)

Recall also Macdonald’s identity:

A,, - qmzyzh” ean((p\,\)+tI1’) H <(1 _ qn)/ n (1 _ qn—lea)(l _ qne—1)> . (166)

nzl red,

1.7. Modular Transformations of Normalized Characters. The most interesting
from the conformal field theory point of view are the modular invariant representa-
tions, which are defined as follows. Recall the action of the group SL,(Z) on Y:

ab (0. x, 1) at + b X . c(x|x)
-‘L' = _
cd) 7 ct+d ct+d et +d))°

and its right action on functions on Y:

Sl x, )g=f(B-(1,x,1), BeSL,(Z).

The representation L(A) is called modular invariant if y, is invariant with respect
to a congruence subgroup of SL,(Z).

It was proved in [26] that L(A) is modular invariant if A is admissible, i.e. (1.3.1)
holds, and QR" = Q4" (it was also conjectured there that there is no other
modular invariant L(A) of level # — hY). According to the classification of
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admissible A given in [27], they can be described in terms of the principal
admissible weights (in the type 4 case all admissible weights are principal admis-
sible).

The normalized characters of the principal admissible representations have
remarkable transformation properties. Let

0 —1 11
= T = .
=0 o) 7o)
Theorem 1.7. ([27, Theorem 3.61). Let A€ Pk, where y = t5§. Then
Lals = Z Saitas
Aeprt

where

Sap =Tl (k4 b )~ M* M| P e(yy')

2nmi
_ (A0 A0
S A R S LI S (S P AT (1.7.1)

we W

(Here A'e PX .,y =1ty7") In particular the space Y, pCy, is SLy(Z)-invari-
ant. [

Recall also that the matrix (S )4 cp+ 1S @ unitary symmetric matrix ([28,
Proposition 4.3]).

1.8. The Residue of Affine Characters. Let F(z, x, t) be a meromorphic function on
Y. Define the residue of F by the following formula:

Res,—oF (t,x, t) = lim F(z,ex, 1) [[ (1 —e ™2,
=0 ved,
This is a meromorphic function in (t, t) € #, x C.
Let p and p’ be integers such that p > hY,p' > h. For e P2 ", ue Py? " let
priwli+p) ptp” 2
@D =n@)"" 3 ewgq?! * L

weW

where n(t) = q'/?* [, .n(1 — ¢") is the Dedekind n-function. This is a holomorphic
function in T € 7, .

Proposition 1.8. Let A e P¥, - be a principal admissible weight,

Uty 7
{a) There are two possibilities:
(i) A ¢ N*; in this case Res,—_q(x4(t, x, 1)) = 0;
(ii) A e N“; in this case we let (i, ) = @~ (A). Then:

(D)™ Res,—o 14(7, X, 0) = ¢5,,(1) .

(b) There are two possibilities:

(1) A ¢ N*; in this case Res,—o(y4(t, — 0" + x, £)) = 0;

(i) AeN;ie.Ae P’,j,,ﬂ}—,, where (f — p Y |2) = 0 mod u for all o € A; in this case
we let (J, py = @ (A), ie. (see Proposition 1.5.2) we let i = A° and define (unique)
pe P and we Wby

ptp =wudg+3 1(pY — B).
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Then:
pims oy — 1yl i Res oyt —tpY 4 X, Tl /2) = @ (1)

Proof. We use the explicit formula (1.6.4) for 7, and identities (1.6.6) and (1.6.5).
Since (a) was proved in [28, Proposition 4.2], we check here (b). The proof of (i) of
(b} is the same as that of (a). In the case (ii) of (b) we have, using (1.6.4) and (1.6.6):

Res, oyl —tp" +x,11p" */2) =

__ _, Tp=pr
AA0¢{,<M’C, Ty 1(.8 - pv)a /32;)1>(_ 1)21‘1

qwz 2’1Vqll~,,“j~.r‘x2 27<p‘pv>1—[nz 1 (1 7qn)/n7€j‘ (nngl(l _qn71+h11)n - (1 o qn*hm))

n =+ hto

Using (1.6.5), and the formulas
]_—[ (1 o qn~1+a) n (1 _ qnfa)

nzl nzl
nEa
S (1P e [ (1 g aeN. (18.1)
nzl1
|p|2/2hY = dim §/24 (“strange formula”) , (1.8.2)
S hiz=2plp"). (1.8.3)
yed.
S () = h |5V P (1.8.4)
ved.,

the previous formula gives the result. Note that (1.8.4) follows from

Y (x(yle)=h¥(x[y). O (1.8.5)

yed

2. Two Quantum Reductions

2.1. Two Classical Drinfeld-Sokolov Reductions. Let § = it_ @ b @it be the tri-
angular decomposition of the Lie algebra §. Choose bases of i, (resp. fi_)
consisting of root vectors {e,} (resp. {e_,}), z € A, such that (e,|e_,) = 1. Con-
sider the following two subalgebras of the affine algebra g:

ny :(E[t,t71:]®ﬁi .

Vectors e, (m) (resp. e _,(m)), € A, , me Z, form a basis of n, (resp. n_) and we let
e,(m)* (resp. e _,(m)*) be the dual basis of the space n* (resp. n*) of linear functions
on 1y (resp. n_) which vanish on all but finitely many vectors of the basis. Using
the bilincar form (.|.) on g we may identify n% with n; so that e, (m)* gets
identified with e+, ( — m). Set

po=Y el =1 po=Y e, (0)F. 211

gell vell

Note that p, (resp. p_) is a character of n (resp. n_).
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Let 7 be the restriction map from the dual of g to the dual of n.. Denote by
F 1 (§) the algebra of local functionals on 73 *(p.) invariant under n... These two
algebras have canonical structures of Poisson algebras induced from the canonical
Poisson structure on the dual of g. These Poisson algebras are called the classical
W-algebras. Drinfeld and Sokolov used them to write equations of KdV type as
Hamiltonian systems [14]. For example, %, (s/,) is the Gelfand-Dikii algebra,
which can be identified with the Poisson algebra of local functionals on the space of
differential operators of the form 8" + a,(x)8" "2 + ... + a,(x) on the circle.

According to [30], the Poisson algebra % (§) can be obtained as the cohomo-
logy of the complex which is the “local completion” of (C[g*] ® A(n @ n*), d),
where C[g*] is the Poisson algebra of polynomial functions on g* and d = {¢, - }.
Here

@ = Ze ®(/)a_‘z 1/}®(p(f)a§0[i+zp ®(pa»

0'13

where =, 8, y are roots of it..
Indeed, the space # . of functions on 72 '(p4) can be identified with the O
cohomology of the Koszul complex C[g*] ® A1) with respect to the differential

dy =Y e, @{pf. -} +Y ple) ®@{of.-}

The space of n,-invariant functionals on 73! (p.) is the O™ cohomology of the
standard cohomology complex %, ® A*(1%) of the Lie algebra n, . The differen-
tial of this complex is equal to

1 ,
=Y e} @0 =5 Y Ly ®lo0ief. ).
3 a By

Therefore, the space Z.(g) is the 0™ cohomology of the double complex
Clg*] ® A(ns @ n*%) with respect to the differential dy + d, = d.

Remark 2.1. This construction can be generalized as follows. Let it; be an ideal
in fi=f,, and pen* be such that its stabilizer in 7 is f,. Let
n=C[i '] ®i,n, = Clt, ¢t~ '] ®it;. Let us define a linear functional p € n* by
p(x(n)) = o, -1 p(x), so that p restricted to n, defines its one-dimensional repres-
entation C,. Let N and N, be Lie groups corresponding to Lie algebras n and n,.
We can apply the Hamiltonian reduction to the orbit ¢, of p e n*, which is
isomorphic to N = N/N,. Here N is a Lie group, because N, is a normal subgroup
of N. The Poisson algebra of local functionals on the reduced Hamiltonian space
7~ (¢ ,)/N coincides then with the 0" cohomology of the local completion of the
complex

Clg*]@A*m@ "} @ CLC,],
with respect to the diffcrential

—{Ze ®f/)zf— Y ol s®p, wawﬂ,-}®1+21®{¢§,-}®e,.
aﬁ, o

Here C[¢,] is the space of polynomial functions on ¢ ,, and the Lie algebra n acts
on it as on the coinduced module Homy (U (), C,). If n; = nwand p = p,, then
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O;=p, and we have the Drinfeld-Sokolov reduction. Some other cases were
considered in [29, 33, and 12].

2.2. Quantization of Drinfeld-Sokolov Reductions. As usual, the quantization pro-
cedure consists of replacing the Poisson algebra #(g*) by the corresponding
universal enveloping algebra and the Grassmann algebra by the Clifford algebra.
This is explained below. )

We shall view the space @} := fi, @ a% (= fi. @ f-) as an odd commutative
Lie superalgebra with the bilinear form (.|.} restricted from §. We define a Lie
superalgebra @, to be the orthogonal direct sum of the even Lie superalgebra
a" = g with the bilinear form (.].) and the odd Lie superalgebra &' with the bilinear
form (.].). (Of course, the superalgebras @, and a_ are naturally isomorphic.)

We consider the central extension

Q. = (E[t,t”]@ﬁi @(]:K@(EK,

of the loop super-algebra €[, ¢t~ '] ® a, by letting the even and odd part com-
mute, the bracket on the even part given by (1.2.1) and on the odd part by

[a(m), b(n) ] = 0y, —u(a|D}K", (2.2.1)

where a,beas, myneZ and, as before, a(m) stands for " ® a. Its even part
0% = g@® CK’ and its odd part o} =n, @ n%.
We have the following decomposition:

U'faz)=Ula))(K' — 1) = U(g) @ 6/ (aly) .

Here U(.) stands for the universal enveloping (super) algebra and 7 (a'.) for the
Clifford algebra on the space al (=n. @ n_) with the symmetric bilinear form
induced from g.

Introduce a Z-gradation of U'(a.) by letting

degg=0, degns=—1, degni=1. (22.2)

Given ke €, let Uy(ay) = U'(a4)/(K — k) with the induced Z-gradation (in other
words, we fix the value of the affine central charge to be equal k).
Let z be an indeterminate. For an element a € g + fi. (resp. e n¥) of a, we let

Ay = 1(resp. = 0),
and define the elementary field a(z) of conformal dimension 4, as the series

a(z)= > amyz "4,

mel

Arbitrary fields are obtained from these by taking derivatives in z and normally
ordered products a finite number of times. (Recall that one defines the derivative

d
0A(z) of a field A(z) of conformal dimension 4 to be the field i A(z) of conformal
z

dimension 4 + 1, and the normally ordered product of fields A(z) and A;(z} of
conformal dimensions A and 4, to be the field

AA ()= A_(2)A(2) £ A1 (2) A (2)
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of conformal dimension 4 + 4,. Here, as usual,

A_(z) = Z Az"""4 A(z)= Y Amz "4,

n> —4

and the sign + (resp. — ) is taken if at most one (resp. both) of the fields is odd.)

Let Ug(ay ). denote the C-span of the coefficients of all fields (in a certain
completion of Ui(a)). Tt is well-known that it is closed under the Lie (super)
bracket. Also, it inherits Z-gradation (2.2.2) from U,(a ). (U,(a4 ). consists of the
series whose symbols are local functionals on a* [20]. One also knows that the
associative envelope of U, (a+ ), 18 its universal enveloping algebra [207].)

Denote by ¢,(m) and @,(m)*,ae A4,, meZ, the generators of €/ (n, @ n*)
(resp. €/ (n_ @ n*)) which correspond to the elements e,(m) and e,(m)* (resp.
¢_, (m)and e_ (m)*) of n, and n*% (resp. n_ and n*). Consider the following fields
{here normally ordered products are the usual products):

1
da(z) = ) er, @@ —= Y cho(@ef2ei),

ved, 27,[},;‘6[-

where [e,, e] = ) clge,.

Let df € Uy(a )i be the coefficient of z~1in dZ (z). It is easy to check that the
singular part of the OPE d 3 (z)d I (w) is O (see Sect. 3.1 for a digression on OPE).
Hence (d$)? = 0. The operator d; (resp. d ) is the standard differential of n, (resp.
1. )-cohomology. We let as before

pe= ) o¥l), p-

vell vell

I
g
hS)
R %
)

and define a new differential:
dy =di +ps .

One easily checks that d and p, anticommute, hence d2 = 0. Note that d is an
odd element of U (a4),. of degree 1. Hence the operator D . defined by

Di(u):[di,u], uEUk(air)loc:

equipes the Z-graded Lie super-algebra U, (a4 ). With the structure of a differential
graded Lie superalgebra. The corresponding cohomology is again a Lie super-
algebra.

Note that the complexes (Up(ay)ioe, P+) and (Ug(a_)e, D-) are naturally
isomorphic. Indeed, let w° be the involutive automorphism of § that maps it * to ft_
and induces the element w° ¢ W, and consider the element w = w% _ ;.. We have:

W(Aog) = Ao+ p" —%1pY?5, (2.2.3)
W) = — '+ (hto)d ifae d, where'a = —w (), (224
wix)=w'(x)+ (p"|x)K ifxeh, (2.2.5)

W(ea(n)) = e_y(n + htO!), Ww(p.(n) = (p‘a(n + ht(x)7
W@ (m) = @& n — hia) . (2.2.6)
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Using these formulas, we see that W maps p, to p-, 14 to ns and induces an
isomorphism of Uy(a, ) and U,(a_) which maps d, 1o d_. Hence the cohomology
of complexes (Ui(ay)ioe, D) and (Ug(a- )i, D-) are isomorphic.

It was conjectured in [20] (and proved in [23] for generic k) that the i™
cohomology of these complexes vanishes if i # 0. The 0™ cohomology is a Lie
algebra which is called the W-algebra associated to § and is denoted by W (g).
This is a natural quantization of the classical W-algebra. Namely, it was shown in
[23] that W (g)is a quantum deformation of the classical W-algebra. Its proper-
ties are described in Sect. 3.3.

2.3. The Functors F'.. Let A, be the module of semi-infinite forms over the
algebra %7/ (a'y ), i.e. the irreducible module with the cyclic vector v, satisfying the
following conditions (x e 4, ):

e¥muv_-=0ifm=0, o,mv_=0ifm=>0,
ofmv, =0ifm>0, o,mv,=01f{m=0.
Letting deg v, = 0, A . inherits Z-gradation from %7 (al) (given by (2.2.2)):
Ay =) A% (2.3.1)

melZ

Given a restricted g-module M, let

CeM)=M®A, =Y Ci(M), where CL(M)=M® AL .

jekZ

The Lie superalgebra Uy(a4 ), acts on C1(M). In particular, the element d. acts
on C. (M) shifting the Z-degree by 1. Let H.. (M) = @jel HY, (M) be the cohomol-
ogy of the complex (C.(M),d+). The representatlon of Ugas), on CL(M)
induces a representation “of the Lic algebra Wt (g) on each space HL (M).
Thus, we get functors, which we denote by FJ;, from the category of positive
energy g-modules to the category of W (g)-modules, that send M to H% (M).
In order to prove a vanishing theorem, we need the following standard lemma.

Lemma 2.3. Let (C, d) be a complex,ie. d(C)) < C/" and d*> = 0. Let 5: C - C be
such that §(C%) = C/~ Y and dé + 6d = A is an invertible operator on C. Then the
cohomology of the complex (C, d) is zero.

Proof. First, note that dA = ddd = Ad. Given we C such that do =0, let
o = 3(A 'w). Then dw’ = d6(A™ 'w) = w — 6d(A™*w) = w since 4 and d com-
mute. [l

Theorem 2.3. If M is a positive energy g-module such that e, is locally nilpotent for
some ;€ I, then H_ (M) = 0.

Proof. Let 6 = ¢,,(0). Then we have:
dd+dd=1+4+n,

where n = e, (0) + >, 1. Z 5 Dyt a, ’)(pa (/). The operator n is locally nil-
potent on C(M) since ¢_, (O) 1s hence I + n is invertible and we apply Lemma
23. O
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Remark 2.3. We can also quantize the generalized Drinfeld—Sokolov reduction,
described in Remark 2.1. The quantum BRST complex then is U(@)., where
d=(g® i) ® (n @ n*); where it = n/ny. The differential D is the supercommuta-
tor with d,,, and the action of n on U,(d) is twisted by p. Let us denote the 0
cohomology of this algebra by W,(a,fi;, p). We also have functors from the
category of positive-energy modules over g to the category of Wy (g, 11, p)-modules,
sending a g-module M to H’/(n, M ® N,), where N, = Homy,,(U(n), C,). The
algebra W,(sl3, it,, p) where n; is the span of the generator of the maximal root,
was considered in [5].

3. A Calculation of Characters of W-Algebras

3.1. The Virasoro Subalgebra. Let k = — h". Then the W-algebras W, (§) con-
tains a subalgebra Vir isomorphic to the Virasoro algebra. In order to give
a formula for its generating field 7'(z) = ., L,z ™ 2 we choose an ortho-
normal basis {u;} of ). Then

T(z) = 8(z) + 0:p" (2) + Ten(2)
where S(z) is the Sugawara field (cf. Sect. 1.6}

1
S(z) = ST Y <:ez(z)ed(z): + Z:ui(z)2:> ,

(k+n") /< i
and T,(z) is the ghost field:
Ta(2) = 3, (hte: 09, (2)p5(2): + (1 — hto): 0@F(2)@a(2):) -

yed._
We have to show that
[T(2),d+]=0. (3.1.1)

In order to avoid lengthy calculations, we use some well known field-theoretic
techniques that we now recall. Given two fields A(z) and A4,(z) of conformal
dimensions 4 and A, we may write their operator product expansion (OPE):

Ay A w) = > Ciwz —w),
j2 —4-4,

where C;(z) are some fields. The sum of terms with j < 0, the singular part of the
OPE, determines the (super) bracket of Fourier coeflicients. One says that fields do
not interact if the singular part of the OPE is O (in this case the Fourier coefficients
{(super) commute). The regular part of the OPE is unimportant for calculation of
(super} commutators and is usually dropped.

One calls a field {(z) of conformal dimension 2 an energy-momentum field with
central charge c if

c/2 N 2t(w) +é’t(w)

where ce C .
z—w?* (z—w? z-—w

t(z)t(w) =

This OPE is equivalent to the property thatt(z) = ) .5 t,z "~ * and the 1, obey the
commutation relations of the Virasoro algebra with central charge c.
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A field A(z) is called primary of conformal dimension 4 with respect to t(z) if

AA(W)  8A(W)

Hz)Alw) = (z—wpP? z—w’

In order to prove (3.1.1) we use the following simple lemma.

Lemma3.1.1. IfA(z) =), A,z7" " Yisapr lmaiyﬁeld of conformal dimension 1 with
respect to an energy-momentum field t(z), then [t(z), Ac]=0. O

Let us recall some of the OPE’s:

Lemma 3.1.2. (a) S(z) is an energy-momentum field with central charge ¢, (given by
(1.6.2)).

_(b) The field Th*=4:00,(2)ek(z):+ (1 —4): 00} (2)@,(z):is an energy-
momentum field with central charge

t= — 1247+ 1242,

{c) Elementary fields a(z), a € g, are primary with respect to S(z) of conformal
dimension 1.

(d) Elementary fields @,(z) and ¢¥(z) are primary with respect to T §* of con-
formal dimension 4 and 1 — 7 respectively.

(e) One has the following OPE between elementary fields:

[a, b](w) {alb)k
z—w +(Z—w)2’

1
>
Z—w

a(z)b(w) = a,beg,

Pa(2) 3 (W) =

all other pairs of elementary fields do not interact. U

The following lemma is immediate by Lemma 3.1.2, using the usual Wick
formula for free fermionic fields.

Lemma 3.1.3. (a) 7. (z) is an energy-momentum field with central charge

(k) =c, — 12k|5* 12 =2 Y (6(hio)? — 6htar + 1), (3.1.2)

ved.

where ¢, is given by (1.6.2).
(b) The field d+(z) =dg(2) + Y ,.p@¥(z) is primary with respect to T, (z) of
conformal dimension 1. L]

Formula (3.1.1) is immediate by Lemma 3.1.1 and Lemma 3.1.3b.
Remark 3.1. Using (1.8.2-4) we obtain another formula for c¢(k):
cky=¢, —dimg+ £ +24(p|pY)— 12(k + h")|p¥ |2

_ 12 2 ~ =V v ~v |2
= 1P 2400157) = 120k + )1 p (3.1.3)

We have the following explicit formula for Lg :

L =S80~ 5" + L (3.1.4)
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where

L = < (m — hto)p,( — m)e¥(m) + Y. (m + hto)p3¥( — m)qoa(m)>
m>0

mz0

< (mé — | Ay + p¥ ) — m)eF(m)
m >0

+ 3 (md+alAe +p)eF(— 'ﬂ)%(M)> ~ (3.1.5)

mz0
Applying the automorphism w (see formulas (2.2.3}+(2.2.6)) we get a formula for
Ly =w(Lg )
Lo =So—3(k+h")p 1> +(p1p") + Loen » (3.1.6)
where

Logn= Y. < Y, mo (—m)oFm)y+ Y mei(— m)q)a(m)) . (3.1.9)

26d, m=0 m>0

(In this calculation we use (1.8.3 and 4) along with the formula

@ A
2k +hYy 77
where Q is the affine Casimir [24, Chapter 2].)

0=

3.2. A Calculation of the Euler Character of the Wit-Module H . (M). Define the
Euler character of a direct sum of W (g)-modules V = @jez V; by the formula

ch V=73 (- Dty g" Ls
JeZ
In this definition we assume that ch V converges, by which we mean that L§ is
diagonalizable on V with finite-dimensional eigenspaces.
Let now M be a positive energy g-module. By the Euler—Poincaré principle we
have:

ch H, (M) = ch C.(M)

if the right-hand side converges. Unfortunately, it does not converge.

To get around this difficulty, introduce a Z>-gradation of C, (M) in such a way
that degdZ =(1,0) and deg p, = (0, 1). Tt follows that the cohomology of the
complex (C4+(M),d+) may be calculated as follows. First, we calculate the co-
homology E. (M) of the complex (C.{M),dF). Then we consider the spectral
sequence (EJ_r(M)U), Tk j 21, where E (M), = E.(M) and d;, = p.. This
spectral sequence converges, Wthh is ensured by the following facts. The complex
C (M) decomposes into a direct sum of subcomplexes C, (M), which are /-
eigenspaces of Ly . Furthermore, C% (M); = @, ;-,C%/(M),, where j is bounded
from above for any 4 and p. Thus we have:

J= o

In order to proceed, we need the following
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Lemma 3.2. For x €, let
X)) =x(2) + ), (x[9): @.(2)pf(2): . (322

gedy

Then

(@) [d%, X(2)]=0.

s (xIy)k +h")

(b) X@)JW) = —————
(z—w)
Proof. One checks (a) directly, using Wick’s theorem and the fact that ¢j; +0
only, if y = o + f, that the singular part of the OPE d (z) X(w) is zero. (b) follows
from (1.8.5). [J

By Lemma 3.2b, the Fourier coefficients of the fields X(z), x € b, form an
oscillator algebra of level k + h", which we denote by I'(g). By Lemma 3.2a, I'(J)
acts on E (M).

Proposition 3.2.1 [20]. The action of the W-algebra W, (§) on E (M) can be
expressed via the action of U(I'(§))ee. In particular, one has

1 d 1

T(z) = v ¥ 0i2(2): + 05 (2) — 55(z)
O = 35Ty I W 06— e 66
where u; is an orthonormal basis of h. [
Fix now x € § such that (¢]x) < 0in the “ 4+ ” case (resp. > 0in the “ — ” case)

for all o € IT, and fix & > 0. Then all eigenspaces of the operator Ly + e%in C, (M),
(resp. Ly + eW(X)) are finite-dimensional. Here

f=x+ ) Z (x]a) : @, (— m)@F(m):

1

is the coefficient of z7* of X(z). Thus, by the Euler—Poincaré principle we have

a rigorous formula:

Z (— l)jtrafmf)q%H'\~ = Z (— ])jtrEH(M]qLBJrM . (3.234)
jeZ JEZ
Letting d = — S, we extend any positive energy g-module M to an h-module

(cf. Sect. 1.2) which decomposes into a direct sum of finite-dimensional weight
spaces: M = @;_eP(M)Mi, where P(M) < h* is the sct of weights of M (note that
weight spaces with respect to h and to Sy may be infinite-dimensional). A weight
we P(M)is called maximal if (¢| p¥) is maximal. Fixing a maximal weight u, we
may define the height of A€ P(M) by ht,(2) = (u—AlpY)eZ..

Recall that the oscillator algebra I'(g) acts on E (M), the semi-infinite co-
homology of n., with coefficients in M. Since k + 1" =+ 0, it follows from repres-
entation theory of oscillator algebras [24, Chap. 9], that for each p e b* of level
k there exists a unique irreducible I'(§)-module 7, which admits a non-zero vector
v, (vacuum vector) such that

f(mv,=0form>0 and (0, = u(x)v, for xekb,

and that E , (M) viewed as a I'(g}-module decomposes into a direct sum of modules
n,. Using the formula for T(z) given by Proposition 3.2.1, we obtain

tr, g =¢"@ [T 1 —¢q") 7,

n=1
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where
i+ pl?—1p
2k +h)
In particular, all eigenspaces of Lg in 7, are finite-dimensional.
Now we are in a position to prove the following important proposition.

P(u) = —(ulp”).

Proposition 3.2.2. For any positive energy q-module M all eigenspaces of L5 on
E . (M) are finite-dimensional.

Proof. We give the proof in the “ + ” case, the proof in the ©“ — ™ case being similar.
Let u be a maximal weight of M. Denote by @, the category of positive energy
modules M’ such that all irreducible subquotients of M’ are of the form L(w. p),
where we W, and ht,(A)e Z, if Ae P(M’). We may assume using results of [13],
that M is a module from the category C,,.

We shall prove by induction on n the following:

Claim (n): the multiplicity of 7, in a g-module from the category €, is finite if
ht,(4) £ n and it is non-zero only if 2 = w. u.

We shall repeatedly use the (obvious) fact that if At,(2) > 0 for all maximal
weights 4 of a g-module M’ (in this case we write: P(M') < u), then =, does not
occur in E, (M’).

Let B(u) be a Wakimoto module [18]; by its definition, E% (B(w)) = =, and
El, (B(w)=0ifj + 0. We have an exact sequence:

0->U(w~-B(w-B(uw-0,

where U(u) is a quotient of M (u) and P(B(y)) < . From the long exact sequence
for semi-infinite cohomology, we conclude that the multiplicity of 7, in E, (U(p)) is
equal to that in E,(B(w)). Hence, Claim (0) holds for U(u) and, applying the
inductive assumption for n to B(u), we derive Claim (n + 1) for U(u). Thus, we have
proved the claim for U(u). The same argument applied to the exact sequence

0 M(u) = M() > U(p) >0

proves the claim for the Verma module M (y). Similarly we prove the claim for any
quotient of M (u).

Finally, let y4, . . ., &, be all maximal weights of M (with their multiplicities).
Consider the exact sequence

0—>@M —>M—>M—>0

where M (y;) are some quotients of Verma modules. Applying the above argument
to this exact sequence we prove the claim for M.
Proposition now follows since for any positive integer N there exists # such that
Pw.wy>Niffw)y>n 0O
Using Proposition 3.2.2, formulas (3.2.1) and (3.2.3) . now imply:
chH.(M)=1im Y (= treipng™ ™+ . (3.24.)

w0 jeZ
Similarly, under the same assumption on M we have

chH (M)=1im ¥ (= trepgs =@ . (3.2.4_)

el0 jeZ

We can prove now
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Pfoposition 3.2.3. Let M be a positive energy g-module of level k. Then:

1
(a) ch H_ (M) = g4 00y ("3~ Res,__ g chy (z, x, 0).
b) ch 1. (M) = (— 177 )+ 2/ 1g28 e =y ()m1 Res, _ochyy(z, ~ 25 +x,
)

Proof. Using (3.1.5) and (3.1.7), it is straightforward to derive the following for-
mulas:

Z ( — 1)jtrAith,‘gh+etffx) — n (] . q(/xowv 71,,\'\(1)) , (3'2.5”
JeL yed
Z (— l)jtrA—]qLB‘ngrcW(i—x) — n (1 — q(ArewO(x)\x)) ) (3.2.5_)
JEL 2ed®

Since C. (M) is a tensor product of M and A ., and since the operator L3 + &%
(resp. Lo + ew(X)) acts on M as S, —p” +x (resp. So— 3k +h")|p"|?
+(plpY) + ew(x)), and on A, (resp. A_) as Lg g + &(X —x) (resp. as
Lg o + 8W(X — x)), (a) and (b) follow from (3.2.5_) and (3.2.5.) respectively. [J

Comparing Proposition 3.2.3 with Proposition 1.8 (and its proof), we obtain

Theorem 3.2. Let A< P}, ; be a principal admissible weight.
(a) If Ae N% and @~ (A) = (%, w), then q~“®/**ch H_(L(A)) = @; (7).
(b) If Ae N*, o (A) = (4, u) and w is the element of W defined in Proposition

1.8b(ii), then
g2 ch H (L(A)) = £(w)93,,(2) - 0

3.3. Some Properties of W-Algebras. In order to state some properties of
W-algebras define the Harish-Chandra homomorphism = : Ug(as),. — U(H).
For this note that Uy(ay), is a direct sum of subspaces U(h) and
- Up(as)oe + Ulaz oot + @k Uelas )oe. We let 7 be the projection on the first
summand. Let d; =2 <d, <...<d, =h be the degrees of fundamental W-
invariants in S(b).

It was shown in [21,23] that the W-algebra W, (g) contains Fourier coef-
ficients of # fundamental fields W3 (z) = T(z2), Wi.(2), . . ., W (2), with the follow-
ing properties:

(W1) The Lie algebra W (g) is the linear span of the Fourier components of all
fields obtained from the W} (z) by taking finitely many times normally ordered
products and derivatives.

(W2) W/ (z) has conformal dimension j:

Wiy => Wimz"", [W(m),Li]l=mW;(m).

melZ

(W3) The highest degree terms of n(W;(0)), j=d;,...,d,, generate the
algebra of invariants S(b)".

(W) [ Q) W] (0] = X, eyls, m Wi (m) Wiims) ..., where my <m,
< 0 y,m =0, s <i+]

We let W (m) =w~ YW} (m)
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Proposition'3.3. (a) Let_ Pi(A) = (Wi (0)(4+p),Ae b*. Then the polynomials P;
generate the algebra S(b)".
(b) c;j(s,0)=0foralli,je{d,,...,ds},s=(s1,52,...).

Proof. In view of (W3), in order to prove (a) it suffices to show that P; is
W-invariant. Let r; be the reflection with respect toa; (i = 1,...,7). Let ne N and
let A be a generic element in the hyperplane (4, x> = n in b* of level k. Consider
the Wakimoto module B(4). Then we have either the exact sequence

0-L(A)—-BA) - Lr;.4) >0,

or the same sequence with arrows reversed.

Recall that H _(L(A4)) = 0 by Theorem 2.3. Note also that E_ (B(4)) = H_(B(}))
and that L(r;.2) = M(r;.4) = B(r;.2). From the d_-cohomology long exact se-
quence we now obtain that H® (L(r;. A)) = 7. Since the vector of maximal weight
of the Wy (§)-module H? (L(r;. 2)) is v, ; ® v_, we deduce that

(W 0)(r;. 4) = (W (0))(4) foralli.

This completes the proof of (a).

We prove (b) by induction i which we may assume to be =j. For i =2,
(b) follows from (W2). By Proposition 3.2.3a, the vector §; = v; ® v_ spans the
eigenspace corresponding to the minimal eigenvalue of Ly in H% (M (4)). Since all
W (0) commute with L , we obtain that W (0)§, = P,(4 — p)¥, for all 1 e b*. In
particular, [ W (0), W; (0)]5; = 0, hence

Sels, QWO Wo(0) ... )5, =0 orall 2.

Since, by the inductive assumption all factors in the above sum commute (see
(W4)), we deduce that ¢;;(s,0) = 0. [

3.4. Positive Energy Modules Over W-Algebras. A W (g)-module is called a posit-
ive energy module if Li(= W35 (0)) is diagonalizable with finite-dimensional
eigenspaces and has a real discrete spectrum bounded below. Note that by Proposi-
tion 3.2.2, F/ are functors from the category of positive energy g-modules to the
category of positive energy W7 (g)-modules (see Sect. 2.3).

Lemma 34. Let M (resp. M') be a quotient of a Verma module M (1) (resp. M(w. 4)
for some we W) over g and let v (resp. v') denote its highest weight vector. Then the
eigenspace corresponding to the minimal eigenvalue of Ly in FS (M) (resp. F% (M)
is 1-dimensional and W} (O)-invariant. Furthermore the eigenvalues of Wi (0) in these
eigenspaces are equal.

Proof. The first claim of the lemma is clear and the second one follows from
Proposition 3.3a. [

Let now V be an irreducible positive energy Wi (g)-module. It is clear by
Proposition 3.3b that the eigenspace of LF corresponding to the minimal eigen-
value is 1-dimensional. The /-tuple of eigenvalues (cy, . ..,c,) of Wi (0), ...,
Wdil(O) in this space is called the highest weight of V. Clearly, it determines
V' uniquely; moreover, there exists a unique irreducible positive energy module
over Wi (§) with a given highest weight.
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Conjecture 3.4_. Let A€ N¥ be a non-degenerate principal admissible weight.
Then

(a) F°(L(A))is an irreducible W, (3)-module.

(b) FI(L(A)=0ifj=0.

Conjecture 3.4 _ a together with Propositions 1.5.3 and 3.3a and Theorem 3.2a
imply

Proposition 3.4. (a) A and A' € N* are such that ¢ (A) = @~ (A') if and only if
FO (L(A)) and F° (L(A) are equivalent W (§)-modules. Thus, W (3)-modules
obtained by applying the functor F° to the set of g- -modules {L(A)|Ae N} is
parametrized by the set I, , via the map @~ , where p' is the denominator of k and
p=pk+h")

(b) Let Ae N* and let (A, u) = ¢~ (A). Then:

trF"(L(/lj))qL67C(l\) M= @A,u(f) .
Remark 3.4. (a) Formulas (3.1.3)for k = — h¥ + p/p’ can be rewritten as follows:
12 e —~vi2
ey == PP PPE nete (pupy = Lpz b p 2 h,
pp
which in the simply laced case becomes (cf. {7, 9, 17]):
h(h + D(p — p)?
c(k)=/<l —M), where (p,py=1,p=hp 2h.
pp

(b) Let h,, denote the lowest eigenvalue of L# in a Wi (g)-module labeled by
(4, wyel, . Then h;, = hMl + c(k), where hMl is the exponent of the leading term of
¢, Using this one easily derives the formula (cf. [9]):

hy, = PG+ p)y—plu+p )P =1pp—rpp ).

1

2pp’

(c} Let g be a simply laced simple Lie algebra of type different from A4,. Then for
each s such that a; > 1 one has a family of non-principal admissible g-modules
L(A) parameterized by a finite set of A’s which we denote by P¥. The set of all
non-principal admissible g-modules is a union of these sets [27]. The sets P¥ are
explicitly described in [27, Theorem 2.3]. Here we only recall that P¥ + ¢ if and
only if k + h = p/p’, where p and p’ are relatively prime positive integers such that

P max(h, h ... ), (3.4.1)

where I, B, ... are Coxeter numbers of Lie algebras ¢, §, ... whose Dynkin
diagrams are connected components of the Dynkin diagram of g with the s™ node
deleted. In some cases (described in [27]), (3.4.1) should be a strict inequality.
Furthermore, consider the set of coroots a,(II") (see [27]) this set of roots
decomposes into an orthogonal disjoint union oY uiry . Define k. k, .

by k+h=k+h= =k+h Let /, 4, ... be dommant 1ntegral weights for
mv,irv, ... of levels p (k +hy—hp (k + h) —h,. . Then there exists a unique
element / eb* such that 2 + plp. =/ + p, A + pll'[v =4+ p,.... There exists
a unique integer j, such that

a;i = j,A,mod P .
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Then all possible (4, ) = @~ (A), that may occur (where A € P, e PA" ue PEH)
should satisfy the matching condition [27]:

(Ja—Jwas)=1. (3.4.2)

Let now N¥={AePX(A,a)eZ for all we A”} be the set of non-degenerate
weights from P¥ Due to Theorem 2.3, given A € P¥, we have H _(L(A)) = 0 unless
A e N¥. The set N¥is non-empty if p’ satisfies the same inequality (3.4.1) as p. In the
case A € N* we have, using Theorem 3.2a and [27,(3.4)]:

q W4 chH (L(A) = @Dz - - - -

In other words (provided that Conjecture 3.4_ holds in this case) characters of
corresponding representations of W, () are products of characters of W (g),
Wi@, ... .

Theorem 3.2b leads us to a conjecture in the “ + 7 case similar to Conjecture
34_:

Conjecture 3.4 .. Let A€ Pk, ; n N (ie. § satisfies (1.5.7)) and let (4, ) = ¢ ™ (A)
and w € W be the element defined in Proposition 1.8b(ii). Then:

(a) FE™(L(A)) is an irreducible (or zero) W, (§)-module, where Zt(w) e Z is
defined in [18].

(b) Fi(L(A)) =01if j =+ £t(w). If A€ Pr*\ N¥ | then F/ (L(A)) =0 for all j. (In
the “ — ” case this follows from Theorem 2.3.)

Of course, we have a corollary similar to Proposition 3.4 in this case as well.

3.5. Conjectures on Resolutions. One of the possible ways to prove Conjectures
3.4, is to use resolutions by Wakimoto modules. We will explain it for the “ +”
case.

Conjecture 3.5.1. Let A € P¥, ;be a principal admissible weight and let L(4) be the
corresponding representation. Then there exists a complex (a two-sided BGG

resolution) R,, such that

Rf1 = @ Bs./l »

se Wh

Liq{s) =1
and that all of its cohomologies but 0™ vanish, and the 0" cohomology is
isomorphic to L({A). Here £t ,(s) denotes £t(5), where § is the image of s € W in
W under their isomorphism.

The existence of this resolution has been proved for any integrable representa-
tion over arbitrary g [18] and for any modular invariant representation over
A [4, 18]. Resolutions of this kind were extensively studied in [10].

If we apply our functor F% to this resolution, then we get the complex of
modules R, over the W-algebra, such that

RLA = @ s, n s
se W
{tals) =1
because FL (B,) =0, i+ 0, F%(B,) = n,. By definition, the i cohomology of the
complex R, coincides with F', (L(A)).

Conjecture 3.5.2. R, is a resolution of an irreducible module F (L(A)) over the W-
algebra: all of its cohomologies but Zt(w)'" (where w is the element, defined in
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Proposition 1.8b(ii)) vanish, and the Zt(w)™ cohomology is isomorphic to an
irreducible module (with character ¢, ,(7)).

This conjecture has been proved for g = sl, in [22].

If Conjecture 3.5.2 is true in general, then we may calculate the character of the
module FY (L(A)) as

(= D ¥ (= Dirgght,

1eZ

by the Euler—Poincaré principle. This is equal to

(__ 1)/t(w) Z (_ 1)/[,\(5‘)trm AqL'o _ ( _ 1)[{(»»‘) Z (_ 1)/!A(,\)qP(x‘A)17(T)~/ .

se W se Wt

We get the same formula as the one obtained by means of the residue calculation.

Now Conjecture 3.4, follows from Conjectures 3.5.1 and 3.5.2. Note that the
lowest eigenvalue of Ly on R is equal to P(W. A), where W is the element of W,
which corresponds to the clement w under the isomorphism W ~ W, and that the
corresponding eigenspace is the span of the vacuum vector of m;_,. Therefore this
vector represents a cohomology class in F/."(L(A)), which is the highest weight
vector of F (L(A)).

It is natural to assume that the W, (g)-modules which are the images of L(A),
A e N* under the functor F, form a minimal model of the corresponding con-
formal field theory in the sense of [3]. In the next section we will prove that the
linear span of characters of these modules form a representation of SL,(Z) and we
will use the information on the action of this group to deduce the fusion algebra of
this theory by means of the Verlinde argument.

4. Fusion Rules for W-Algebras in the Simply Laced Case

Throughout this section we will assume that § is simply laced (i.e. of type 4,, D, or
E,); equivalently: a; = a;” for all i (ie. r¥ = 1).

4.1. Some Properties of the Group Wt‘ We use here results and notation of
Sect. 1.1. Let Q be the root lattice and P the weight lattice of §. Note that

0*=P, 0"=0. 4.1.1)
Hence by (1.1.3) we have for any k e Z relatively prime to |J|:
{kA;};c, 1s a set of representatives of P mod Q . (4.1.2)

Lemma 4.1.1. Let k e N be relatively prime to |J|. Then for any /. € P* there exists
a unique we W such that w(l)e Q.

Proof. By (4.1.2), there exists a unique j € J such that 4 = kA;mod Q. Since (for any
keZ)

wi(A) = wiA) + kA, (4.13)

and w(/) = 4 mod Q if we W, the lemma follows. (]
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By (4.1.2), there exists a unique s e J such that
A, —peQ.

Of course, s = 0 if p € Q. In all other cases s is listed below:

s=%+(+ 1) if §is of type 4,7 odd,
s=1 if gis of type D,/ =2 or 3 mod 4,
s=6 if gis of type E-.

Note the following properties of s:
2A,6Q, wi=1. (4.1.4)

Lemma 4.1.2. Given je J, let i€ J be defined by w; = wi b (Le. wild;) = Ao).
(a) wi(A4;) + A, =0, hence A; + A; = 0 mod Q.
(b) If J. e PX, then

/T"’ [3 — (k + I’lv)/Ij = Wj(wli()") ~+ ﬁ) .

Proof. (a) (resp. (b)) follows from (4.1.3) where we let j = i and replace 4 by A; (resp.
by 2+ p — (k + h¥)A;, which has level 0). U

Lemma 4.12a immediately implies
Lemma 4.1.3. Let j,, j,,js€J and let 65" = 0,, t =1,2,3. Then
(@) A;, + A, + A, e Qiff A, + A, + A4, € 0. B
(b) A; +A;, + 4, +peQiff A, + 4, + A, +peQ.
4.2. A Transformation Fornuila for Functions ¢; ,(t). Recall that
Orwiiy = PauifWE VTA, , 4.2.1)

where w(Z, u) = (w4, wu). The following transformation formula follows from
Theorem 1.7 and Proposition 1.8a (see [28, proof of Theorem 4.4]): Let p and p’ be
relatively prime integers greater than or equal to 4 and let (4, /') eI, ,. Then

1
P2, /< - _> = Z S, (um’)@mu’(ﬂ > (4.2.2)
T (u)el,,
where
S(;“ Py = (pp/) - /,Z‘J I - 1/2€2n1((/. +plE )+ + P+ )
p o - mip
— =+ ply(E + p)) ——( + plw(i + p))
X Y elye P Y e(wye P . (4.2.3)
yeWw we W

Note also a special case of Theorem 1.7 when /& P% ke Z, (and g is simply
laced):

ZA\S = Z Sl.u%uf (424)

e Pt
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where
27 -
i = Wl + pla+p)
S =Tk + BRIV Y gw)e kR SRR (4.2.5)
WEe W
Recall also the following important fact [25]:
SW}.,/J — e*ZHl(on\ﬁ)S;k,ﬂ 1f we W+ (426)

Our objective is to express the S¢; i) (4, 4 in terms of the S, ,. We shall assume
that p’ and | J| are relatively prime. Then we may choose (and fix) positive integers
a and a’ such that

ap'=1modpl|J|, @dp=1modp, ¢ =1mod|J]|. (4.2.7)

Note that ¢’ and p’|J| are relatively prime, hence we can find a positive integer
b’ such that:

@b =1modp|J]. (4.2.8)

Lemma 4.2.1. Suppose that ' € Q. Then
a(p'(%+ p) = p(Z_+ p) = X+ p — pA; mod pQ.
a(p(4' +p)—p(A+0p) _

A+ p—p/ modpQ if peQ or p is even

J4p—p(hi+p) modpQ if ¢Q and p is odd .
Proof. By (4.2.7), ap'(A + p) = Z+ pmod Q, hence X = 4+ p — app mod pQ. If
p€Q,(a) follows. In the case p ¢ Q, p' is odd since | J| is even (see Sect. 4.1), hence

a is odd. Hence app = p mod pQ since 25 € Q and (a) follows from the definition of
Ag in Sect. 4.1. The proof of (b) is similar. I

=
~
il

Lemma 4.2.2. Let be N be relatively prime to p|J| (resp. p'|J|). Let ie P& "
(resp. € P2.™"). Define the map ¢, of P57" into itself and & P5 " — { £ 1} (resp.
¢y, and ey, replacing p by p') by:

b2+ p)— (b — DhAg = w(gy(4) + p), we W
&(2) = e(w) .
Then the map ¢, (resp. ¢y) is bijective.
Proof. We have to show that if £, A, € PZ"" and y € W are such that
b(2+ p)— (b —DpAe=yb(i, +p) — (b — 1)pAy), 4.2.9)

then y = 1. Note that k:= p/b — h is a principal admissible rational number with
denominator b. Dividing both sides of (4.2.9) by b we get:

At p— (b= 1)k +h")Ag =y +p — (b — )k + h¥)Ay) .

So Ai=i+p—~b—1Ik+h")Ay and A;:=21 +p—(b— Dk + h¥)A, are
principal admissible weights such that R = R" = Ry, and A = yA;. Hence
YRy = Ry, therefore there exists t,w € W, such that y = 1,,w. Since b and | J | are
relatively prime and bax € M, we deduce that x € M, hence o = 0 and W =1 (see
Sect. 1.2). Thus, y =1. O

Given 2 e PR " (resp. A" € P% "), we let /, = ¢, (), (resp. A, = ¢p(4)).
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Proposition'4.2. Let (4, ') and (u, it') be elements of P27 "x P% " such that 7' € Q.
We define j € J by letting
I /2 mod Q if peQ or pis even (case 1)
J i+ p modQ otherwise (case 2) ,

and let w; = w; '. Then
Saa iy ey = (= DI 26 (wo)e(w))ep (e (1)
X S\\'g(/), Uy S\ﬁ(/‘"), J

Proof. We rewrite (4.2.3) using the following calculations:

2mip - 2mi o v -
P — B+ Bl + o)) = —(p(A" + ) = P4+ DIy + 2))
eZm(/ + ol + p) Z 8(_}’)@ I YU _ Z g(y)e 7
yeW o yeW
¥R - =
—— (@ (p(+ 4+ p) = p' U+ pYIyE(E + o))
=) e(ye ? (by (4.28))
vew
2T+ B P+ DI + )
7 I >”_,\ . - g o
=ep(W) ), e(ye 7
yeWw
2 o7+ Ly + )
’ ’ = Ty R L
= o (10e0) Y s(e ?
ye W

(by Lemmas 4.2.1b and 4.1.2b).
Similarly, we have:

62711(7'+/3W+p’) Z E(M})e p
we W

2ni _ .
— (P + p) = Pl + p)w(p (i + )
= Z e(w)e P

we W

= ¢ (We(w,) > e(we

we W

2 i =
- %(“‘s(ﬁ + plw(fy + p))

by Lemma 4.1.1a.
Substituting in (4.2.3) and using (4.2.5) gives the result. [

4.3. A Cualculation of the Fusion Rules. First, recall Verlinde’s formula for fusion
rules [35]. Suppose that we have a finite set I of representations of a “chiral
algebra” such that

(i) the vacuum representation, labeled by 0, lies in I;

(i) the linear span of normalized characters {y;};.;is SL,(Z)-invariant and the
action of S e SL,(Z) is given by a matrix (S;,);, 4es-

Then the fusion coefficients N ,;,, are given by the following formula:

Si68455,
Ny = Y, 2heonee
* oel SOo
If, in addition, an involutive map A — ‘2 of I into itself is given, one defines the
fusion algebra as an algebra over € with basis {y,},.; and the following multiplica-
tion:

(4.3.1)

Z).*Xu = Z Nlut\'Xv .

vel
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In the case when the chiral algebra is the affine algebra g and the set of its
representations is L(4), A€ P, the vacuum representation is L(mAy) and one
knows an explicit expression for the fusion coefficients N; , (4w, ve P%) [24,
Exercise 13.35].

Let now k be a principal admissible rational number with the denominator p’
and let p = p'(k + h). Note that p = h and (p, p') = 1. Recall that N% =+ ¢ if and
only if p’ = h (Proposition 1.5a). We consider the set of representations of the
W-algebra W, (g) obtained from the principal admissible representations of g by
a quantum Drinfeld-Sokolov reduction. Recall that (by Proposition 3.4) these
representations are parametrlzed by the set I, , = (PL " x PZ™hy/ W, that the
vacuum representation is labeled by ({(p — h) Ay, (p' — h)A,) and that a representa-
tion labeled by the pair (4, u) has normalized character ¢, “(‘L').

Theorem 4.3. Let p and p’ be integers such that p, p' =z h and (p, p') = (p', | J]) = L.
InAyel, ,(i=1,2,3) choose a representative (4;, A; ) such that A € 0 (see Lemma
4.1.1). Then

(4.3.2)

where N, ,., and N,,,.;. are fusion coefficients for g. (Similar result holds in the case
when (p,|J]) = 1)

First, note the following lemma, which follows immediately from (4.2.6) and
(4.3.1):

Lemma 4.3.1. Let iy, iy, iz€J and /.y, /s, 23€ P% ke N. Then
( ) If A + A + A € Q then Nn 2w wi (2s) = N/f\/zij'
(b) If/l + A + ,0 € Q thtn N‘\\x\,‘(m)«n,l(}z).\\'“(/ﬁ) = N/\’zﬂs' D

A special case of Lemma 43.1ais
Lemma 4.3.2. Let 4y, Ay, ia€ P Then N, win =N, o0

Proof of Theorem 4.3. Let iy = (p — h)Ag, 2o = (p' — h)Ag. Foreacht =0, 1,2 or
3, define j(¢) € J by letting (cf. Proposition 4.2):

1= 4, mod Q in case 1
W=7+ mod Q0 in case 2 .

Ay Ay Ay ™ /L/z/xN/x/ 432

and define i(t) by w;, = wj,,}. In particular, w;, = 1 in case 1, and = w, in case 2.
Now, using Verhndes formula (4.3.1), formula (4.2.6), Proposmon 4.2 and
Lemma 4.2.2 we obtain the following formula:

eN 4 =N, i Nttt wotis) » (4.3.3)
where ¢ = e(W;(1))e(W;2))e(W;(3)) 80, and g, = 1 in case 1, &g = (W,) in case 2.
Furthermore, it follows, for example, from the explicit formula in the affine case
[24] that

A e)

N;I,Z;J:F()implies/i+)_2+)_3€Q_ (434)

In case 1, we may assume, due to (4.3.4), that A;, + A;,, + A;3,€ Q, hence
Aiy + Aiay + Ay € Q by Lemma 4.1.3a. It follows that ¢ =1 and by Lemma
4.3.1a, that N ;i 0n = Nisss proving the theorem.

In case 2 we similarly have A;, + A + A;5) + p € Q, hence Ay + Ay
+A;3) + p € Q by Lemma 4.1.3b. It follows that & = 1 and, by Lemma 4.3.1b, that
=N, O

Wiy (A Wi (72 ) Wi (43) eIVl
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One has the following involutive automorphism of the set /,,
‘(4 Yymod W, )= (‘A A"y mod W, ,

where ‘4 is defined by (1.4.3). Since w is the unique longest element in W, w®
commutes with W, hence this map is well-defined. Theorem 4.3 may be refor-
mulated as follows.

Theorem 4.3'. Let p and p' be relatively prime integers such that p, p’ = h, and assume
that (p,\J|) =1 (resp. (p/,|J|) = 1). Let /PP be the fusion algebra for the W-
algebra Wi (g), where k = p/p’ — h. Given me Z ; let /™ denote the fusion algebra
for the affine algebra g with K = m (and the index set PL) and let o/ denote its
subalgebra spanned by the g, with A e Q. Then:

AP = AR AT (resp. = L PTI@ AT T

Remark 4.3. 1f |J| is a power of a prime number, then either p or p’ is relatively
prime to |J|. Thus, Theorem 4.3 describes fusion rules compietely in all (simply
laced) cases except for § of type A, n not a power or a prime.

The following result takes care of all cases (but it is not as nice as Theorem 4.3).
Its proof is the same as that of Theorem 4.3.

Proposition 4.3. Let p and p’ be relatively prime integers greater than or equal to h.
Choose integers b and b' such that (p — b'p',|J|) =1 and (p' — bp,|J|}) = 1. Let
6 = w, (resp. = 1) if b is even (resp. odd) and ¢’ = w, (resp. = 1) if b is even (resp.
odd). Given /1“’ el, .i=1,2,3, choose their representatives (4;, A;) (resp. (+F, 2}'))
such that b(A; + p) — (A} + p)e Q (resp. b'(AF + p) — (4F + p)e Q). Then

N gogm = Nog g Novyyoyy -
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Communicated by A. Jaffe

Note added in proof. Two of the authors of the present paper have shown recently that the
quantum reduction applied to modular invariant representations of affine superalgebras
osp(1, 2m)Y (resp. sl(1, 2n)™V) gives the “minimal” series of representation of certain W-superal-
gebras. In particular, for n = 1 one recovers all “minimal” representations of N = 1 (resp. N = 2)
superconformal algebras.



