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Let G be a real simple Lie group of classical type having
a compact Cartan subgroup. Then G has discrete series repre-
sentations. The purpose of this paper is to establish explicit
formulas for certain sums of discrete series characters. These
“gveraged’’ discrete series characters have simple formulas
which can be used for certain problems in harmonic analysis
on G, for example, for the computation of the Plancherel
measure on G.

1. Introduction. Let G be a connected, acceptable, semisimple
real Lie group with finite center. Suppose that G has a compact
Cartan subgroup 7. Then G has discrete series representations.
The characters of these representations were initially deseribed by
Harish-Chandra in [2]. The characters have simple formulas on 7.
On the noncompact Cartan subgroups, the formulas are complicated,
and contain certain integer constants which Harish-Chandra did not
compute.

Using the procedure described in [2], these constants can be
computed if related constants are known for each type of simple
root system which is spanned by a strongly orthogonal set of roots.
These are the root systems of types A4, B,, C,, D,,(n = 2), E,, E,, F,,
and G,, and they correspond to the complex simple Lie groups for
which the split real form has a compact Cartan subgroup, and hence
discrete series representations. Partial solutions to the problem of
computing these constants have been given in [4, 5, 6, 7, 8,10, 11,
12]. A complete solution is now available in work of T. Hirai
[11]. Hirai’s formulas express discrete series constants for groups
of arbitrary rank in terms of constants for groups of real rank one
and two.

Explicit formulas for discrete series characters, besides being of
interest for the representation theory of G, are needed for harmonic
analysis on G. However for some of these problems, for example,
computation of the Plancherel measure on G, it is necessary only
to have certain sums of discrete series characters.

Let g and t denote the Lie algebras of G and T respectively,
and gc and t, their complexifications. Then the discrete series characters
of G are parameterized by regular elements ¢ in a lattice L, &
V' =1t*. The Weyl group W of the pair (g to) acts on L,. Instead
of the characters (—1)%(r)d, defined by Harish-Chandra in [2], we
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consider the sum of characters
(—1)7 > e(wr)d,, = (—L)%(7) >, det wh,,. .
wew wew

Here ¢ = (1/2) dim (G/K), K a maximal compact subgroup of G, and
&(t) = +1 satisfies e(wr) = det we(z). Note that if v e L, is singular,
invariant eigendistributions 4, are defined by Harish-Chandra in [3].
However, for singular z, 3, . det wé,. = 0.

These averaged discrete series characters are sufficient for the
Fourier inversion of stabilized invariant integrals

F(t) = D det wFi(w™t,), f € C2(G), t,eT".

Here T is the set of regular elements in T and F'% is the invariant
integral of f with respect to T defined in [1]. F%(¢,) can be regarded
as the integral of f over the orbit of ¢, in G under the adjoint action
of G. Z;7(t,) is the integral of f over the orbit in G under the
adjoint action of G¢, a complex Lie group with Lie algebra g.. Fourier
inversion formulas for .#/(t,) can be used to derive the Plancherel
formula for G.

For the Fourier inversion of .7, it is necessary to have explicit
formulas for the averaged discrete series characters. These formulas
could in theory be obtained by summing the formulas given by Hirai
in [11]. However, the formulas for the averaged discrete series for
the classical infinite families (B,, C,, D,,) having discrete series can
be established independently of Hirai’s general results. The simplicity
of the averaged formulas in these important cases is not obvious
from the general treatment in [9].

‘Thus the purpose of this paper is to establish the formulas for
the averaged discrete series for the classical families of real simple
Lie groups. These formulas will be used for work to appear on the
Fourier inversion of stabilized invariant integrals and Plancherel
theorem. :

2. Averaged discrete series characters. We first establish some
notation. For any reductive group G and Cartan subgroup H, define
W(G, H) = N{H)/H where N,(H) is the normalizer of Hin G. Let
?(gc, De) denote the root system of the complexified Lie algebras of
G and H. Let W(®@) denote the Weyl group of the root system @.
We regard W(G, H) as a subgroup of W(®(g. b.). For nehi, we
define &, on H, by &)(exp H) = exp (MH)), H € %, whenever this gives
a well-defined character of H,. Let @*(g., );) denote a set of positive
roots for @(ge Hc). Let 6 = (1/2) S, ac@t(g;, Hc). Then if G is
acceptable, &; is well-defined on H, and we define
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Ah) = &) T (1 — &(B)™)

Let H' denote the set of regular elements in H; that is, H =
{h e H|A(h) = 0}.

Let G be as in §1. Let K be a maximal compact subgroup of
G containing 7T, and denote by 6 the Cartan involution of G with
fixed point set K. Then g has Cartan decomposition g = | + p where
i is the Lie algebra of K. ILet H be a 6-stable Cartan subgroup of
G with Lie algebra ). Write § and H according to their Cartan
decompositions as § =15, + 5, and H = H H,. Let yeG, satisfy
ady (t;) = b.. Then y induces a mapping from tF to §¥ which we
denote by v — ‘z.

Let he H. Write b = hyxh, where h,c Hy, h,e H,. Let Hj be
the connected component of Hj containing n,. Assume H;i < 7. Let
3 denote the centralizer in g of Hf, Z the connected subgroup of G
with Lie algebra 3. Let @ = @3, tc). We consider @ as a subset of
D(gs, te). Let 07 = {ae@|*allogh,) > 0}. Let ve L, and denote by
f. the corresponding invariant eigendistribution defined by Harish-
Chandra. Then it follows from (2] that:

2.1 0.hzh,) = 4(h)™ > dett D) detse(s:tr: @N)s,,. (yih) .

te W (7, TI\W(F,T) Se i (B
The ¢(s:7: @") are integers satisfying:

(2.2) c(su:t: 0" = ¢(siuc: 0", ue W(Z, T).

LemmA 2.3. Let W =Wl(g,, ), other notation as above. Then
>, det wl,.(h) = [W(G, T)]4(h)™ > det w ¢(wr: M), (y'h)

we W we W

where ¢(t: OF) = Dcvwirn (1 7T @),

Proof. The formula follows directly from (2.1) and (2.2) since
W(G, T) and W(®) can both be regarded as subgroups of W.

The constants ¢(z: @%) have the following properties which can
be deduced from their definition and from the corresponding properties
of the constants c(s: 7: @) proved in [2].

(2.4) c(st: @) = ¢(r: @%) for se W(D).

Let {ay, ---, &} be a set of simple roots for @*. Let 4, ---, 4, in
L, satisfy {4, a;> = 6,;. Then:

(2.5) c(z:0") =0 if {7, 4) >0 forany 1<i<1.
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Let a€®® be a simple root. Let @, = 'ae€®(3, bc). Let X, and
Y,, denote the root vectors for a, and —«, in g satisfying [X,, Y, ] =
2H,./{a, &) where H, €} satisfies B(H.,,) = (B, ,) for all 5 e (g, hc).
Let v = exp (—7V —1(1)/4) ad (X,, + Y.)). Then i =y(ho)Ng is a 6-
stable Cartan subalgebra of g. Let @,={8e @|{B, a)>=0}, o =0,ND*.
Let s denote the reflection in W(®) corresponding to @. Then:

(2.6) c(T: @) + e(st: @F) = ¢(r: OF) + ¢(st: @F) = 2¢(z; D)

since ¢(s7: @) = ¢(r: s@F) = ¢(r: @F) as sB = B for all Bc?,.

Let .# be the real subspace of v/ —1t* spanned by @¢. Forre
v —1t*, ¢ can be written uniquely as ¢ =7, + 7,, where 7,€.%, and
vz, takes purely imaginary values of . Let &' ={eF |, @) #
0, xc ®}. Then &(r: @*) depends only on the component .# * of 7, in
Z'. We write

(2.7) e(F 0% =¢(r: 0%) if e Tt

If o=¢,J--- P, where the 9,1 <17 < s, are simple root
systems, then v €. % ' can be written uniquely as » =X, + -+ + 2,
where for 1 <14 < s, N, €., the real linear span of the elements
of @,. Let #;* be the component of . F;" = {Me F;|{a,\) #0,xcd,}
containing A,. Then if & = @, N O™,

(2.8) T oY) = I:I T 07 .

Note that if @(g, t.) is of classical type, so are all the simple com-
ponents @, in the decomposition of @.

We see that the problem of computing constants for averaged
discrete series characters reduces to the problem of computing certain
constants ¢(& *:0%) connected to a simple root system @, a choice
of positive roots @*, and a component % * = F ', the set of regular
elements in the underlying real vector space of @. We will derive
formulas for these constants for the cases & = B,,C,, or D,,n =1,
where for D, we assume #n is even. (Of course, B, =C, = 4,, and

D, = AL)
Let
{+e, xe;, el i#j7<n} if &=08,;
@z{{ieiiej,i2ei11§'é¢j§n} if o=0C,;
ke, +e;|l<i#-7Zn} if 0=D,.
Assume

le. e 201 <i<j=s=n,1=<K=<n} if 06=C,,

e, e exll<i<jisn,1l<K<nt if 0=8B,,
@+:;
e, xe;l1 i< jsn) if 6=0D,.
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Then a set S of simple roots for @* is given by:

{61 T €y €y T Oyttt Oy T €y, evp} it &= Bn ’
S = {81 T €y G T Lyttt 6y T €y 2en} if o=C

n

{el €y € — €y vty Oy €4y €, T+ eﬂ} if @ :Dn .

In each case an element )\ of % can be written as \ = 3%, mee,,
m;eR. (If N is in the weight lattice for @, the m,s will be
integers or half-integers.) In each case the permutation group S,
on n elements acts on @ and on % by permuting the indices of the
e;’s.  With this action, S, is a subgroup of W(®). Let Si =
{ee8S,|02t —1)<a2),1 <1< [n/2]}and Si* = {oceSF|o(l) < 0(8) <
cee < 02[n/2] — 1)}, For n = D%, me, let N, = My_je, + Mye,, L <
1= [n/2]. If n is odd, let N, = m,e,. If @ is of type B, or C,, let
[4 if 0>n>m or 0> —m>mn

29) Glne - me) =10 herwise

2 if n<0
2.10 ¢,(ne,) = .
( ) (ne.) {O if n>0.
If @ is of type D,, let
4 if —|m|
@2.11) G e, + me,) = { %<l
0 otherwise .

THEOREM 2.12. If ne o, them €(F T: @%) = P(\: @) where

POv: @) = S det o 1T &,((6-\),)
ge Si:f i=1

if m is even

= X det 02,(0™0),) Tl &((07W))

o<

if m is odd.

Proof. The theorem is true for m =1 or 2 because it reduces
to formulas (2.9), (2.10), and (2.11) which are known from averaging
the known discrete series constants for rank one and two groups
[3, 7]. Assume that it is true for root systems of rank less than
n,m=3. We prove in Lemma 2.14 that for any simple root «,
P\ @F) ++ P(sh: @) = 26(\: @) where s is the reflection in W(®)
corresponding to « and @, = {Le@|{B, &) =0} as in (2.6). Then
using (2.6), P(x: @F) + P(sh: @) = ¢(F T: 0%) +&(s& T 0F) for he & ™.
We show in Lemma 2.13 that (& % 0%) = P(\: 0%), ne .5 ¥, for one
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fixed chamber &% of &% '. Then ¢(% ":0%) = P(\: @%), ne % T, for
all chambers, since any chamber .& © can be reached by applying
simple reflections to & %,

LEMMA 2.18. Let 7 *={he v |0y a) >0 forallac®@). Then
7 Q) = P @Y if ve v

Proof. 1t follows from (2.5) that €(& * ¢") =0. For A =
>ame, ve s ¢ implies that m, > [m;] for 1 £4 < j < n. Forany
ceS* and any 1 < ¢ = [n/2], (07N); = Mo ne, + Moune, Where
0(20 — 1) < 0(2i). Thus M,y > [Meen] and using (2.9) or (2.11),
&((o7\),) = 0. Thus P(\: %) = 0.

LEMMA 2.14. Assuwme that Theorem 2.12 1s true for root systems
of rank less then wm. Let a be a simple root for ®F. Then for
e st POyt @) 4 Plsh: @1) = 26(\: @F).

Proof.

Case I. Buppose & =¢ —e,,1<l=mn—1. Let @, , denote
the subset of @ contained in the linear span of {e,, -+, €1y, Cris, ***, Cu)s
@, ,=0,,N@". Let A, denote the rank one root system with
positive root e, + ¢,.,. Then @ = &) , U Af. For » = Dr, me,, let
No= N — e — Myae,, and N o= (my - myy)/2(e ey, Let A =
N + ). Then by (2.8),

En: @) = e\t ADEN 1 D,,) = &.((my + my,)e) POV 05)

by the induction hypothesis. In PQ:®;_.) the sum is taken over
Si* where S, , is considered as the group of permutations of
1,2, -, Il —1,1+2 .-, 0} and (6"\), 1 =1 =< [(n — 2)/2] and
(67\),_., n — 2 odd, have the obvicus meaning.

Let k = [n/2] so that » = 2k or 2k + 1. In formulas for P(\: @7)
the terms ¢,((c7*\),) are included. For the case n = 2k they are
understood not to appear. If s is the reflection in W(®) corresponding
to @ = ¢, — ¢,,,, then s is the permutation which interchanges I and
I+-1. POuot)+ P(sn:@) = 1/k! 35,55 det ale,((07\),) T ex((07'\),) +
e,(((s0)7'A),) Tk ex(((s0)7N))]-

Let S ={oeS}lsceS;}. Then sS =S, and

k k
3, det 07,((s0) ). 1 &(((s0) ) = — S det o7 ((070),) 11 a0 -
If 6eS; and soe S}, then there is an index 7,1 £ 7 < k, for which

0275 — 1) =1,0(27) =1+ 1. Denote this subset of S} by S(j). Then
for 0e8(j), s6(25j —1) =1+1, 502y =1, and for i =+25 — 1, 27,
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s0 (i) = o(i). Further, using (2.9), (2.10), and (2.11), &,((67*\),) +
C(((80)7N);) = Co(mue, + Myye;) + Co(Mmyyie, + Maey) = 2¢,((my + My e,).
Thus

POv: 0%) + Plsh: 0F) = ki é 5 detor((0N),)

NE)
k

X H 6((07N) )26, (my + muy)e) -

=1

i#g

For each 1< £ F,

>, det g¢,((07'\),) II E((07"N),)

oeS(3)
’L#]

= 2, detoc,((67'\),-5) II G(07N),) = (kb — DIC(V: @5o) .

ueS,n 2

Thus
P(\: @F) + P(sh: 0F) = 28, ((my + Mg )e)c(N: @5_,) = 26(N: Of) «

Case II. Suppose @ = B,or C, and &« = ¢, or 2¢,. Then ®,=B,_,
or C,.,. For =37 me, let y, =%\ —m,e, By the induction
hypothesis, ¢(\,: @) = P(\,: &F).

Suppose n = 2k is even. Then S} = U%i,S(j) where S(j) =
{0 e S¥|o(2)) = n}. For ge8(J), (67\); = (67's\); for © # J, (67\); =
Mo(25-1)€1 + My, ANA (CTISN); = Myipjoney — Mye.. Using (2.9) and (2.10),
CoMoini—n€s + Ma8y) + Co(Mogi_riey — Myes) = 2C,(Myizi—yi€y)-

P(: 07F) + P(sn: ©7)
=L 5 S det026,moui-pe) T (07N

Ig! =1 0€8()
i#g

[\

T k-1 Z det 0¢,(1(-)€ JH & ((07N),) = 26(N: OF)

-1

Suppose n = 2k + 1. Define S(j) as above. Then S; = U, S(5) U

+y where Sj., can be identified with {oce€S}|o(n) =n}. For

oe8Si,, (67\), = (07%\);,, L=i1=k, and ¢C,((67'\),) + ¢,((67%8N),) =
¢,(m,e,) + ¢,(—m,e) = 2, using (2.10).

P(n: @) + P(s\: 0F)
3% et 028, (Mns-e)E(mpies) 1T E(07N))

]g! i=1 a€8(g)

+ 25 deto Il @™V, -
k! g€ * =1

Su—l

(2.15) =

i%g
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The second term in (2.15) involving the sum over S;_; is exactly
26(N: @F). Foreachl < 5 <k, let SOt = {oeS() o257 — 1) < o(n)}.
Let S(9) ={0eS(H)|a(2] —1) > o(n)}. Let t denote the permutation
(27—1 =) which interchanges 27 —1 and n. Then S(j)” ={o7|o < S(5)*}
and

k

egg) det aal(mﬂ(Zj-llel)‘;;l(mv(n)e ) H ((0’17\’)5)
¢ gy 4=
e

k

= S% + det G, (1y100) 0 (Mg0i-ne) [T 6,((07"N)s) -

e =
i+ g

Thus the sum over S(j) in (2.15) is zero for each 7, and PO @%) +
P(sn: @) = 260, O7).

Case III. Suppose © = D, where n = 2k is even, and &« — ¢,_, -+ ¢,.
Then &f = D} ,U A7 where A, has positive root e¢,, —¢,. For =
faame, let N =N —m, e, —m,e, and ' = (n,_, — m,/2)e,.. —e,).
Let vy =X +A'. For 1 <7<k, let S(9)={ceS:|02]—1) =n—1,
0(27) =n}. Note Sk)=S;. For 11755k, let S{ j) =
{oeSilo@l) =n—1,02)5) =n). Then S} = U, S U Uixres=: SU, 7)-
For oeS(7), (67\);, = (67%s\), © #= 7, and G, ((67\);) + &,((67s\);) =
¢y (m, _.e, + m,e,) + ¢ (—m,e, —m,_e,) = 2¢,(m,_, — m,)e,) using (2.10)
and (2.11). For ce8({, 7), (67\);, = (67*s\),, © = j or I, and

Co((0780))C((07I8N)) = Co(Mpiojmnys — Moyes@3) Co Mgra1)@y — My 83)
= Co(Mhgaj—r€s + 7?%%_162)'(72(%’?;0(2,_1)61 -+ m,e,)

using (2.11).
Then

P @) + P(sn: &)
k
= Z >, deto [T &((07'\))26,((m,,—, — m,)ey)

]{;Y i=10€8(4) i=1
13

1 ) deto [T (o)

k! iEitisk 08,0

(2.16) +

i#4,1
rd ~ 1
XN Co( g5 + Myy€)C o (Mpiiriey + m.,85)
+ ColMynjmpls + M,05)C (Myini—p@; + M,_16)]

For each

L=i<h 3 d H (™M)

= Z I o,((07N),) = (b — DIe(N: D) .
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For 1<j=#1<k et S, 5" ={oeS{, 5)|e@l —1) < a(2j — 1)}
and S(, j)“ ={oeS{, Nie@ —1)> 027 —1)}. Then S, 7)) =
{or|oeS{, 7)*} where 7 = (25 —1,2l—1). Then the sum over S(I, j)
in (2.16) is zero sinece the sum over S(I, )~ will cancel with the sum
over S, 7)* for each I and j. Thus

POy @F) + P(shy @) = 26, (M,—, — my)e)C(N': Dif_y) = 26(\: @F) .

REFERENCES

1. Harish-Chandra, A formula for semisimple Lie groups, Amer. J. Math., 79 (1957),
733-760.

2. , Discrete series for semisimple Lie groups I, Acta Math., 113 (1965),
241-318.
3. , Two theorems on semisimple Lie groups, Annals of Math., (2) 83 (1966),
74-128.

4. H. Hecht, The characters of Harish-Chandra representations, to appear in Math.
Annalen.

5. R. Herb, Character formulas for discrete series on semisimple Lie groups, Nagoya
Math. J., 64 (1976), 47-61.

6. T. Hirai, Invariant eigendistributions of Laplace operators on real simple Lie
groups I, case of SU(p, q), Japan J. Math., 39 (1970), 1-68.

7. ————, Explicit form of the characters of discrete series representations of semi-
simple Lie groups, Proceedings of Symposia in Pure Math., 26, 281-287, Amer. Math.
Soe., 1973.

8. ————, Invariant eigendistributions of Laplace operators on real simple Lie
groups IV, Characters of discrete series for Sp(n, R), Japan J. Math., 3 (1977), 1-48,
9. , The characters of the discrete series for semisimple Lie groups, to appear.
10. S. Martens, The characters of the holomorphic discrete series, Proc. Nat. Acad.
Sei. USA, 72 (1975), 3275-3276.

11. H. Midorikawa, On the explicit formulae of characters for discrete series repre-
sentations, to appear in J. Math. Soc., Japan.

12. W. Schmid, On the characters of the discrete series, Inventiones Math., 30 (1975),
47-144.

Received March 6, 1978

UNIVERSITY OF MARYLAND
CoLLEGE PARK, MD 20742






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
C.W. CURTIS Los Angeles, California 90007
University of Oregon R. FINN AND J. MILGRAM
Eugene, OR 97403 Stanford University

ford, Cali i 0
C. C. MOORE Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN ‘CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY: STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAIIL

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 80, No. 1 September, 1979
Jeroen Bruijning and Jun-iti Nagata, A characterization of covering dimension by

USE Of Al (X)) oo e ettt e e 1
John J. Buoni and Albert Jonathan Klein, On the generalized Calkin algebra . . . . .. 9
Thomas Ashland Chapman, Homotopy conditions which detect simple homotopy

CQUIVALETICES . ..\ oo 13
John Albert Chatfield, Solution for an integral equation with continuous interval

JURCTIOMS « o oo e e et e e e e e 47
Ajit Kaur Chilana and Ajay Kumar, Spectral synthesis in Segal algebras on

HYDETGIOUDS . . oo oot 59
Lung O. Chung, Jiang Luh and Anthony N. Richoux, Derivations and

COMMULALIVIEY O FINGS .« o v v v ettt et ettt ettt 77
Michael George Cowling and Paul Rodway, Restrictions of certain function spaces

to closed subgroups of locally compact groups . ...........c.ccouviiieeeean.. 91
David Dixon, The fundamental divisor of normal double points of surfaces. . ... ... 105
Hans Georg Feichtinger, Colin C. Graham and Eric Howard Lakien,

Nonfactorization in commutative, weakly selfadjoint Banach algebras. . . . . ... 117
Michael Freedman, Cancelling 1-handles and some topological imbeddings . . .. . .. 127
Frank E., Il Gerth, The Iwasawa invariant u for quadratic fields................. 131
Maurice Gilmore, Three-dimensional open books constructed from the identity

THAD « vttt e et e e e e e e e e e e e e e e 137

Stanley P. Gudder, A Radon-Nikodym theorem for x-algebras . .
Peter Wamer Harley, III and George Frank McNulty, When is a
Charles Henry Heiberg, Fourier series with bounded convoluti

Rebecca A. Herb, Characters of averaged discrete series on se

GEOUDS « oottt
Hideo Imai, On singular indices of rotation free densities . . . . .
Sushil Jajodia, On 2-dimensional CW -complexes with a single
Herbert Meyer Kamowitz, Compact operators of the form uC,
Matthew Liu and Billy E. Rhoades, Some properties of the Che

George Edgar Parker, Semigroups of continuous transformatio
inverse limit sequences ................c.cuiiieuiii...
Samuel Murray Rankin, IlI, Oscillation results for a nonhomog
CQUATION . .« oot et e e e e e
Martin Scharlemann, Transverse Whitehead triangulations . . ..

Gary Joseph Sherman, A lower bound for the number of conjug
finite nilpotent group ... ........... . i

Richard Arthur Shoop, The Lebesgue constants for ( f, d,)-sum

Stuart Jay Sidney, Functions which operate on the real part of
AlGEDTA ...

Tim Eden Traynor, The group-valued Lebesgue decomposition
Tavan Thomas Trent, H (1) spaces and bounded point evaluat
James Li-Ming Wang, Approximation by rational modules on n


http://dx.doi.org/10.2140/pjm.1979.80.1
http://dx.doi.org/10.2140/pjm.1979.80.1
http://dx.doi.org/10.2140/pjm.1979.80.9
http://dx.doi.org/10.2140/pjm.1979.80.13
http://dx.doi.org/10.2140/pjm.1979.80.13
http://dx.doi.org/10.2140/pjm.1979.80.47
http://dx.doi.org/10.2140/pjm.1979.80.47
http://dx.doi.org/10.2140/pjm.1979.80.59
http://dx.doi.org/10.2140/pjm.1979.80.59
http://dx.doi.org/10.2140/pjm.1979.80.77
http://dx.doi.org/10.2140/pjm.1979.80.77
http://dx.doi.org/10.2140/pjm.1979.80.91
http://dx.doi.org/10.2140/pjm.1979.80.91
http://dx.doi.org/10.2140/pjm.1979.80.105
http://dx.doi.org/10.2140/pjm.1979.80.117
http://dx.doi.org/10.2140/pjm.1979.80.127
http://dx.doi.org/10.2140/pjm.1979.80.131
http://dx.doi.org/10.2140/pjm.1979.80.137
http://dx.doi.org/10.2140/pjm.1979.80.137
http://dx.doi.org/10.2140/pjm.1979.80.141
http://dx.doi.org/10.2140/pjm.1979.80.151
http://dx.doi.org/10.2140/pjm.1979.80.159
http://dx.doi.org/10.2140/pjm.1979.80.179
http://dx.doi.org/10.2140/pjm.1979.80.191
http://dx.doi.org/10.2140/pjm.1979.80.205
http://dx.doi.org/10.2140/pjm.1979.80.213
http://dx.doi.org/10.2140/pjm.1979.80.227
http://dx.doi.org/10.2140/pjm.1979.80.227
http://dx.doi.org/10.2140/pjm.1979.80.237
http://dx.doi.org/10.2140/pjm.1979.80.237
http://dx.doi.org/10.2140/pjm.1979.80.245
http://dx.doi.org/10.2140/pjm.1979.80.253
http://dx.doi.org/10.2140/pjm.1979.80.253
http://dx.doi.org/10.2140/pjm.1979.80.255
http://dx.doi.org/10.2140/pjm.1979.80.265
http://dx.doi.org/10.2140/pjm.1979.80.265
http://dx.doi.org/10.2140/pjm.1979.80.273
http://dx.doi.org/10.2140/pjm.1979.80.279
http://dx.doi.org/10.2140/pjm.1979.80.293
http://dx.doi.org/10.2140/pjm.1979.80.293

