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Abstract

We consider graphs made of one-dimensional wires connected at vertices, and on which
may live a scalar potential. We are interested in a scattering situation where such a network
is connected to infinite leads. We study the correlations of the charge in such graphs out of
equilibrium, as well as the distribution of the currents in the wires, inside the graph. These
quantities are related to the scattering matrix of the graph. We discuss the case where the
graph is weakly connected to the wires.

PACS : 03.65.Nk, 73.23.-b

1 Introduction

Within the field of mesoscopic physics, the interest in graphs is motivated by the fact that
they provide simple models for networks of wires, which are most of the time sufficient to
describe the effect of interest (such as Aharonov-Bohm oscillations of the conductance of a
ring for example). Scattering theory plays a central role in mesoscopic physics : it provides a
transparent formalism to study transport properties of phase coherent systems. Moreover, many
other physical quantities can be related to scattering properties, like the current noise [1, 2],
the density of states through the Friedel sum rule, mesoscopic capacitance, relaxation resistance
[3, 4]. Scattering on graphs has attracted the attention of many authors among which we can
quote [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

Despite the scattering matrix is a global quantity characterizing the full system, some local
information can be extracted from it. This idea has been fruitfully exploited in many works of
Büttiker et al (see review articles [15, 16] and references therein). To understand this point let
us first consider the case of an isolated system (an isolated graph for example). In this case, the
spectrum of the Schrödinger operator is discrete : En, ϕn(x). Let us consider a physical quantity
described by the operator X̂, related to a conjugate variable f (that is X̂ = ∂

∂f Ĥ where Ĥ is
the Hamiltonian). Typical examples are provided by a magnetization M, a persistent current
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I, or the local density ρ(x) , which are conjugated to the magnetic field −B, a flux1 −φ and the
potential V (x), respectively. As it is well known, a simple way to obtain the expectation value
of the physical quantity of interest is to compute the derivative of the eigenenergies with respect
to f : Xn = 〈ϕn |X̂ |ϕn 〉 = ∂En

∂f . This result is known as the Feynman-Hellmann theorem.
A natural question is to extend these relations to open systems that are connected to reser-

voirs possibly in an out of equilibrium situation. As it is well known, the scattering approach
will prove to be relevant for this purpose. The open system of interest in the present arti-
cle will be a graph connected to some infinite wires. In this case the spectrum is continuous.

The stationary scattering states ψ̃
(α)
E (x) describing the injection of a plane wave at contact α

provide the convenient basis of states for the discussion. Then we can relate the quantity of
interest (that can give a local information) to the scattering matrix Σ through the relation:

〈 ψ̃(α)
E |X̂| ψ̃(β)

E 〉 = − 1
2iπ

(

Σ† ∂Σ
∂f

)

αβ
. In the case of graphs, this idea will be made explicit in three

cases: (i) when X̂ → ρ̂(x) is the local density of electrons2 (then f → V (x) is the local poten-
tial), (ii) if X̂ → Q̂ is the charge of the graph (f → U is a potential constant inside the graph)
and (iii) if X̂ → Ĵµν is the current in an arc of the graph (f → θµν is the flux along the arc).

The purpose of our article is to study the distribution of charge and current densities in
a graph out of equilibrium. The out of equilibrium regime is obtained by imposing different
potentials at the external leads. A motivation for this study comes from the recent interest in
quantum coherent devices such as Cooper pair boxes used for building charge Qubits (see [20]
for a review). The full spectrum of charge fluctuations is involved in the study of the dephasing
in a Qubit perturbed by the charge fluctuations of another conductor capacitively coupled to
the first one [15, 21, 22]. In the same way, current density fluctuations are a source of de-
phasing for Qubits based on flux states. Since the formalism developed in the present paper
provides a systematic way for evaluating the charge and current density noise fluctuations in
a mesoscopic circuit, it might be useful for estimating the dissipation and decoherence prop-
erties of some experimental systems of Qubits. More precisely, it was shown that transition
rates of a two level system weakly coupled to a quantum environment are directly related to
the unsymmetrized correlator : see for example [23] where the roles of the negative and the
positive part of the spectrum of the unsymmetrized correlator are studied. On the other hand
the relaxation and decoherence rates are related to a symmetrized correlator [20]. Correlators
are more directly accessible in noise measurements : in a recent work, Gavish et al. [24, 25]
proposed a description of the full measurement chain for the current noise of a mesoscopic
sample. In this work, the unsymmetrized correlator is involved in excess noise measurement.
Finally one should mention that experimentalists are now able, using photon assisted tunneling
in a superconductor-insulator-superconductor tunnel junction, to measure the unsymmetrized
current noise correlator in quantum mesoscopic devices [26]. The question of which correlator
(symmetrized or not) to consider depends on the question of interest. Therefore we will consider
in the following the unsymmetrized correlator as the fundamental object3.

In this paper, electron-electron interactions will not be taken into account. However, even
if this limits the applicability of our results, we recall that they can be taken into account in
a mean field Hartree approximation within the scattering approach, as it has been developed
in several papers by Büttiker and collaborators [3, 4, 27] (see also [28] for a review). In this
framework the charge (or the current) contains two contributions : a bare contribution (injected

1The variable conjugate to a flux line threading a loop of a planar graph is the current flowing through the
semi infinite line issuing from the flux [17] (see also [18]). This can also be easily understood in the 2-dimensional
plane [19].

2In this case 〈 ψ̃
(α)
E |ρ̂(x)| ψ̃

(β)
E 〉 = ψ̃

(α)∗
E (x)ψ̃

(β)
E (x) is an off diagonal element of the local DoS [15, 13]

3There are indeed two unsymmetrized correlators depending on the order chosen. But for a system in a
stationary regime, they can be simply related as shown in appendix A.
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charge) and a contribution from screening. Screening affects ac transport or finite frequency
noise. It is not the purpose of our article to consider such interaction effects; in other terms we
will focus on the bare contribution of the charge and its relation to the scattering matrix of a
graph.

This paper is organized as follows: first of all, the basic formalism [10] necessary for the
discussion is recalled. Then the charge distribution inside the graph is analyzed in details.
The first and second moments of the total charge are related to the scattering matrix. Finally
analytic expressions for the full spectrum of charge fluctuations are provided.

In a second part we will show how currents inside the graph can be related to the scattering
matrix. It was shown in [17] that the persistent current can be related to the derivative of
the Friedel phase with respect to the magnetic flux. In this work the possible generalization
to an out of equilibrium situation was not considered because the authors did not identify the
different contributions of the various scattering states associated to the different leads. These
contributions were identified later in [29]. Moreover, in Taniguchi’s work, a formula relating the
current-current correlations and the scattering matrix was proposed. Despite the contributions
of the scattering states to the correlator were given, it is still not sufficient to study current-
current correlations in an out-of-equilibrium situation (this point will be made clear later). Our
results go beyond this limitation and provide the generalization of Taniguchi’s result.

2 Basic formalism : scattering matrix

We consider the Schrödinger operator −D2
x + V (x) on a graph, where Dx = dx − iA(x) is the

covariant derivative (we choose units : ~ = 2m = e = 1). The graph is made of B bonds (αβ),
each being identified with an interval [0, lαβ ] ∈ R. We call xαβ the coordinate that measures
the distance from the vertex α. The Schrödinger operator acts on a scalar function ϕ(x) which
is described by B components ϕ(αβ)(xαβ), one for each bond. The bonds are connected at V
vertices. The adjacency matrix aαβ encodes the structure of the graph : aαβ = 1 if (αβ) is a
bond and aαβ = 0 otherwise.

Vertex formulation

Let us first assume that the wave function is continuous at each vertex. This allows to introduce
vertex variables ; we denote ϕα ≡ ϕ(α) the function at the vertex α. The continuity condition
reads : ϕ(αβ)(xαβ = 0) = ϕα for all vertices β neighbours of α. A second condition is added
to ensure current conservation at the vertices :

∑

β aαβDxϕ(αβ)(xαβ = 0) = λαϕα where the
sum over β runs over all neighbouring vertices of α due to the presence of the adjacency matrix.
λα is a real parameter. The requirement of continuity of the wave function imposes a special
scattering at the vertices : in particular, the transmission amplitudes of a plane wave of energy
E = k2 between two leads issuing from the same vertex of coordinence mα =

∑

β aαβ are all
equal to 2/(mα + iλα/k).

The wave function on the bond (αβ) is :

ϕ(αβ)(xαβ) = eixαβθαβ/lαβ

(

ϕα fαβ(xαβ) + ϕβ e−iθαβfβα(xαβ)
)

(1)

where θαβ is the magnetic flux along the bond (αβ) (the vector potential is Aαβ = θαβ/lαβ). The
two real functions fαβ(x), fβα(x) are the two linearly independent solutions of the Schrödinger
equation [E + d2

x − V(αβ)(x)]f(x) = 0 on the bond satisfying boundary conditions : fαβ(0) = 1,
fαβ(lαβ) = 0, fβα(0) = 0 and fβα(lαβ) = 1. These two functions encode the information
about the potential on the bond. For example, in the absence of potential, V (x) = 0, we have

fαβ(xαβ) =
sin k(lαβ−xαβ)

sinklαβ
.
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The graph is connected to L leads. Each lead is a semi-infinite line plugged at a vertex of
the graph, with a coupling parameter wα ∈ R (see figure 1). The introduction of these couplings
allows to go continuously from an isolated graph to a connected one. The precise physical
meaning of these parameters is given in [10]. In particular, the transmission amplitude through
the box between the graph and the lead is 2wα/(1 + w2

α). We introduce the L× V matrix W :

Wαβ = wα δαβ (2)

where α belongs to the set of vertices connected to leads and β to the set of all vertices of
the graph. This matrix encodes the information about the way the graph is connected to the
external leads.

The scattering matrix Σ is a L×L matrix describing how a plane wave of energy E entering
from a lead is scattered into the other leads by the graph. It is given by

Σ = −1 + 2W
1

M +WTW
WT (3)

where the matrix M is :

Mαβ(−E) =
i√
E

(

δαβ

[

λα −
∑

µ

aαµ
dfαµ

dxαµ
(α)

]

+ aαβ
dfαβ

dxαβ
(β) eiθαβ

)

. (4)

Note that for E > 0, this matrix is antihermitian : M † = −M . It can also be related [10] to
reflexion and transmission coefficients describing the potential on each bond :

Mαβ(−E) = δαβ

(

i
λα√
E

+
∑

µ

aαµ
(1 − rαµ)(1 + rµα) + tαµ tµα

(1 + rαµ)(1 + rµα) − tαµ tµα

)

−aαβ
2 tαβ

(1 + rαβ)(1 + rβα) − tαβ tβα
. (5)

The expressions (4,5), together with (3), generalize results known in the absence of the potential
[6].

wα

α

Figure 1: Example of graph. The boxes represent the couplings between the infinite leads and
the graph.

The vertex formulation that we have just recalled is rather efficient mainly because vertex
matrices are rather compact. However, as we have noticed, it corresponds to a particular choice
of vertex scattering which does not describe all allowed relevant physical situations. In the most
general situation it is not anymore possible to introduce vertex variables and one has to use the
arc formulation that will now be briefly described.
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Arc formulation

An arc is an oriented bond. On each arc i we introduce an amplitude Ai arriving at the vertex
from which i issues and an amplitude Bi departing from it (see figure 2). Equivalently, the
wave function ψi(x) on the bond is matched with Aie

−ikx +Bie
ikx at the extremity of the arc.

It is clear than we have to introduce L such couples of amplitudes, one for each external lead.
These external amplitudes are gathered in L-column vectors Aext and Bext. By definition the
scattering matrix relates these amplitudes : Bext = ΣAext. On the other hand we must introduce
two couples of amplitudes Ai, Bi per bond of the graph, i.e. one couple per arc. We gather
these 2B amplitudes into the column vectors Aint and Bint. Finally we group all amplitudes,
internal and external, in two 2B + L column vectors A and B.

The scattering by the bonds is described by a matrix R coupling reversed internal arcs :
Aint = RBint. The matrix element between arc i and j is given by :

Rij = riδi,j + t̄iδ̄i,j (6)

where ī designate the reversed arc. ri and ti are the reflexion and transmission coefficients
describing the scattering of a plane wave by the potential of the bond (i). The scattering at the
vertices is described by a matrix Q coupling arcs issuing from the same vertex : B = QA. If the
basis of arcs is organized as {internal arcs, external arcs}, the matrix Q can be separated into
blocks:

Q =

(

Qint Q̃T

Q̃ Qext

)

(7)

The scattering matrix reads :

Σ = Qext + Q̃ (R† −Qint)−1 Q̃T . (8)

For more details, see [10]. Historically, the arc approach has been followed in many works, like
[30, 31, 32] since it is the most natural approach. It has been formalized more systematically in
[33] without potential and in [10] in the most general case.

How can we express the wave function inside the graph within the arc formulation ? In
this case, the appropriate basis of solutions of the Schrödinger equation on the bond [E + d2

x −
V(αβ)(x)]f(x) = 0 is not anymore the functions fαβ(x) and fβα(x) introduced above, but the
couple of stationary scattering states φαβ(x) and φβα(x) associated to the potential V(αβ)(x) on
the bond (αβ). If we imagine that the potential V(αβ)(x) is embedded in R, then the function
φαβ(x) is the scattering state incoming on the potential from the vertex α and is matched out
of the bond to : φαβ(x) = eikx + rαβe−ikx for x < 0 and φαβ(x) = tαβeik(x−lαβ) for x > lαβ [10].

α β
βαA

Bβα

αβA

Bαβ
αβ

βα

Figure 2: The internal amplitudes associated to the arcs αβ and βα.

Then the component of the wave function ϕ(x) on the bond (αβ) reads :

ϕ(αβ)(xαβ) = Bαβ φαβ(xαβ) +Bβα φβα(xαβ) . (9)
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3 Charge of the graph

This section is devoted to the study of the charge distribution in the graph. Our discussion will
focus on the average and correlation of the total charge of the graph. The average charge and
the zero frequency charge noise can be related to the graph’s scattering matrix. These relations
provide an extension of the Feynman-Hellman theorem for open systems in an out of equilibrium
situation. Then, we present a detailed study of the charge noise at finite frequency, emphasizing
the effect of the non equilibrium regime. For simplicity, we shall work at vanishing temperature.

It is convenient to use the language of “second-quantization” and introduce the field opera-
tor :

ψ̂(x, t) =

L
∑

α=1

∫ ∞

0
dE ψ̃

(α)
E (x) âα(E) e−iEt , (10)

where âα(E) is the annihilation operator associated to the stationary scattering state ψ̃
(α)
E (x)

corresponding to a plane wave of energy E injected from the lead α. Note that ψ̂(x, 0)| ψ̃(α)
E 〉 =

ψ̃
(α)
E (x)|vacuum 〉.

Studying the charge distribution for graphs with localized states [34, 11, 13] would re-
quire taking into account the contribution of the discrete spectrum in the field operator :
∑

n

∑gn

j=1 ϕn,j(x) ân,j e−iEnt (the function ϕn,j(x) is an eigenstate of energy En localized in the
graph and thus normalized to unity in the graph, and j denotes a degeneracy label). However,
such a situation in not generic but arises from symmetries of the graph. For this reason, we
shall not discuss it here.

In a non equilibrium situation, the quantum statistical average gives : 〈â†α(E)âβ(E′)〉 =
δαβδ(E −E′) fα(E) where fα(E) is the Fermi-Dirac distribution function giving the occupation
of the scattering states coming from the lead α.

Charge operator. The charge operator is :

Q̂(t) =

∫

Graph
dx ψ̂†(x, t)ψ̂(x, t) . (11)

We introduce its matrix elements on the shell of energy E :

ρ(α,β)(E) = 〈 ψ̃(α)
E |Q̂(t)| ψ̃(β)

E 〉 . (12)

Since the spectrum is continuous, these matrix elements have the dimension of a density of states
(DoS). They can be related to the scattering matrix :

ρ(α,β)(E) = − 1

2iπ

(

Σ† dΣ

dU

)

αβ

, (13)

where U is a constant potential added inside the graph only (the variable conjugate to the charge
of the graph). Instead of differentiating with respect to some additional background potential
U , it is also possible to relate it to the derivative with respect to the energy :

ρ(α,β)(E) =

∫

Graph
dx ψ̃

(α)
E (x)∗ ψ̃(β)

E (x) =
1

2iπ

(

Σ† dΣ

dE
+

1

4E
(Σ − Σ†)

)

αβ

. (14)

Note that
∑

α ρ
(α,α)(E) is the DoS of the graph, i.e. the local DoS integrated inside the graph.

These relations are proven in appendix C.

Average charge. The average charge :

〈Q̂(t)〉 =
∑

α

∫ ∞

0
dE fα(E)

∫

Graph
dx |ψ̃(α)

E (x)|2 =
∑

α

∫ ∞

0
dE fα(E) ρ(α,α)(E) (15)

6



involves the injectivities ρ(x, α;E) = |ψ̃(α)
E (x)|2, which are the contributions to the local density

of states (LDoS) coming from the scattering state ψ̃
(α)
E (x). The contribution ρ(α,α)(E) of the

scattering state ψ̃
(α)
E to the DoS of the graph is weighted by the occupation Fermi factor in

the lead α. This illustrates the necessity of the concept of injectivities, emissivities, etc, in the
context of out of equilibrium systems [3, 35] (see also [13] for a discussion in the context of
graphs).

Charge correlation function. The charge correlation function is defined as :

SQQ(ω) =

∫ +∞

−∞
d(t− t′)

(

〈Q̂(t) Q̂(t′)〉 − 〈Q̂(t)〉〈Q̂(t′)〉
)

eiω(t−t′) . (16)

In appendix A, the relation between this unsymmetrized correlator and the other one (Q(t)
and Q(t′) in reverse order) is clarified. Definition (16) matches with the one used reference [23]
which contains a detailed discussion of the relation between the unsymmetrized correlator and
transition rates in a two level system linearily coupled to the charge operator.

Using the relation 〈â†αâβ â
†
µâν〉 − 〈â†αâβ〉〈â†µâν〉 = δαν δβµ fα(1 − fβ) we obtain :

SQQ(ω) = 2π
∑

α,β

∫ ∞

0
dE fα(E)[1 − fβ(E + ω)]

∣

∣

∣

∣

∫

Graph
dx ψ̃

(α)
E (x)∗ ψ̃(β)

E+ω(x)

∣

∣

∣

∣

2

. (17)

Only the zero frequency correlations involve the ρ(α,β)(E) :

SQQ(ω = 0) = 2π
∑

α,β

∫ ∞

0
dE fα(E)[1 − fβ(E)] ρ(α,β)(E) ρ(β,α)(E) . (18)

Using equation (14) the zero frequency noise of the total charge is related to the scattering
matrix of the graph.

Charge fluctuations. The charge fluctuations at a given time involve the integral of the full
spectrum :

q2 = 〈Q̂(t)2〉 − 〈Q̂(t)〉2 =
1

2π

∫

dω SQQ(ω) . (19)

In terms of the stationary scattering states, we get :

q2 =
∑

α,β

∫ ∞

0
dEdE′ fα(E)[1 − fβ(E′)]

∣

∣

∣

∣

∫

Graph
dx ψ̃

(α)
E (x)∗ ψ̃(β)

E′ (x)

∣

∣

∣

∣

2

. (20)

Weakly connected graphs

To go further let us focus on the case of graphs weakly coupled to the leads (wα → 0). Note that
we do not consider charging effect in the following (Coulomb blockade) which is important if the
capacitance describing the Coulomb interaction between the leads and the graph is small (see [36]
for a review article). A description of such effects would require a different approach. However,
in the neighbourhood of the Coulomb peak, a description within the scattering approach can
be sufficient to describe transport, like it has been done very recently in [37] to analyze Fano
profile measurements in a ring with a dot embedded in one of its arm.

If wα → 0 the decomposition of the scattering states over the resonances (levels of the
isolated graph), derived in appendix B, can be used

ψ̃
(α)
E (x) ≃

∑

n

1√
π

iE
1/4
n wαϕ

∗
n(α)

E − En + iΓn
ϕn(x) . (21)

7



Here ϕn(x) denotes the wave function of the eigenstate of energy En of the isolated graph,
normalized to unity in the graph. From this expression we get :

ρ(α,β)(E) ≃
∑

n

1

π

√

Γn,αΓn,β eiχαβ

(E − En)2 + Γ2
n

, (22)

where Γn,α =
√
Enw

2
α|ϕn(α)|2 is the contribution of the contact α to the resonance width

Γn =
∑

α Γn,α. The phase is given by eiχαβ = ϕn(α)∗ϕn(β)
|ϕn(α)ϕn(β)| .

Average charge

Equation (15) gives :

〈Q̂(t)〉 ≃
∑

α

∫ ∞

0
dE fα(E)

∑

n

Γn,α/π

(E − En)2 + Γ2
n

=
∑

n

∑

α

Γn,α

Γn

(

1

π
arctan

Vα − En

Γn
+

1

2

)

(23)
where the sum over n runs over the energies of the resonances (energies of the isolated graph). Vα

is the potential at contact α. This equation was derived in [38] by tracing out the lead’s degrees
of freedom. Since the average charge is the sum of contributions of the various levels, we can
consider only one level En. If the level is below the potentials, En < VR < VL, the occupation of
the level is 1. On the other hand, if the level En is between the potentials, VR < En < VL, and
far enough from them (on the scale Γn), it gives a contribution Γn,L/Γn to the average charge,
which simply expresses that only the left scattering state is contributing to the occupation of
the resonant level.

Charge noise at finite frequency

Let us now discuss the finite frequency structure of the charge noise for weakly connected graphs.
Equation (17) requires evaluating

∣

∣

∣

∣

∫

Graph
dx ψ̃

(α)
E (x)∗ψ̃(β)

E+ω(x)

∣

∣

∣

∣

2

≃
∣

∣

∣

∣

∣

∑

n

1

π

√
Enwαwβϕn(α)ϕ∗

n(β)

(E − En − iΓn)(E + ω − En + iΓn)

∣

∣

∣

∣

∣

2

. (24)

Let us keep only the diagonal elements in the double sum. This diagonal approximation is valid
in the limit of narrow resonances (Γn ≪ |En+1 − En|) since the energies E and E + ω are then
compelled to be both in the neighbourhood of the level En. Then the correlation appears as a
sum of contributions of the different energy levels :

SQQ(ω) ≃
∑

n

S
(n)
QQ(ω) . (25)

The contribution of the level En reads :

S
(n)
QQ(ω) = 2π

∑

α,β

∫

dE fα(E)[1 − fβ(E + ω)]
Γn,α/π

(E −En)2 + Γ2
n

Γn,β/π

(E + ω − En)2 + Γ2
n

. (26)

Performing the integrals leads to

S
(n)
QQ(ω) =

1

2π

1

1 + ω2/4Γ2
n

∑

α,β

Γn,αΓn,β

Γ3
n

θ(ω + Vα − Vβ)A(Vα, Vβ ;ω) (27)

8



where θ(ω) is the Heaviside function and

A(Vα, Vβ ;ω) = arctan

(

Vα − En

Γn

)

− arctan

(

Vβ − En

Γn

)

+ arctan

(

Vα + ω − En

Γn

)

− arctan

(

Vβ − ω − En

Γn

)

+
Γn

ω
ln

[(Vα + ω − En)2 + Γ2
n][(Vβ − ω − En)2 + Γ2

n]

[(Vα − En)2 + Γ2
n][(Vβ − En)2 + Γ2

n]
. (28)

For the particular case of a two terminal geometry the noise reads

S
(n)
QQ(ω) =

1

2πΓ3
n

1

1 + ω2/4Γ2
n

[

Γ2
n,L θ(ω)A(VL, VL;ω) + Γ2

n,R θ(ω)A(VR, VR;ω)

+Γn,LΓn,R θ(ω + V )A(VL, VR;ω) + Γn,RΓn,L θ(ω − V )A(VR, VL;ω)] , (29)

where V = VL − VR > 0 is the voltage drop.

• Equilibrium case : VL = VR = 0.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

En

wL wR

VRVL Γn

Graphwire L wire R

S
(n)
QQ(ω) =

1

2πΓn

θ(ω)

1 + ω2/4Γ2
n

[

arctan

(

ω − En

Γn

)

+ arctan

(

ω + En

Γn

)

+
Γn

ω
ln

[(ω − En)2 + Γ2
n][(ω + En)2 + Γ2

n]

[E2
n + Γ2

n]2

]

. (30)

We consider the case of narrow resonances where Γn is the smallest energy scale, then if the
frequency is smaller than |En|, the contribution is zero, but if ω is sufficiently large to excite an
energy level ω & |En|, we get a contribution :

S
(n)
QQ(ω) ≃ 1

2Γn

θ(ω)

1 + ω2/4Γ2
n

×
{

0 if ω . |En|

1 if ω & |En| .
(31)

Obviously, the transition between the two results is not sharp but occurs on a scale Γn. Practi-
cally all the noise power is concentrated at low frequencies as shown on figure 3.

Note that this contribution is independent of the fact that the level is occupied (En < 0)
or empty (En > 0) since it is an even function of En. At VL = VR, the low frequency charge
noise can be understood using a classical stochastic model describing the relaxation process of
an electron (or a hole) with lifetime 1/2Γn.

• Non equilibrium regime : VL 6= VR.
Zero frequency limit. Then only the term with A(VL, VR; 0) contributes :

S
(n)
QQ(ω = 0) ≃ 1

π

Γn,RΓn,L

Γ3
n

{

arctan

(

VL − En

Γn

)

+ arctan

(

En − VR

Γn

)

+
Γn(VL − En)

(VL − En)2 + Γ2
n

+
Γn(En − VR)

(En − VR)2 + Γ2
n

}

. (32)
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Figure 3: Equilibrium noise in terms of −10 < ω/Γn < 10 and of the energy of the level
(−En)/Γn (this is equivalent to vary the energy or the chemical potential).

Each energy level brings a contribution only if it is between the potentials (VR < En < VL) and
far enough from them (on the scale Γn). In this case, the zero frequency charge noise is given
by :

S
(n)
QQ(ω = 0) ≃ Γn,RΓn,L

Γ3
n

. (33)

We recognize the factor Γn,RΓn,L characteristic of partition noise : if one of the couplings vanishes
(Γn,R = 0 or Γn,L = 0) the occupation of the level is either 0 or 1 and does not fluctuate. These
fluctuations are a signature of the non equilibrium regime of the mesoscopic circuit. The charge
fluctuations at fixed time can be obtained by integrating the noise spectrum (19). Using the
approximate expression (21) in (20) we obtain

q2 ≃
∑

n

∑

α,β

Γn,αΓn,β

Γ2
n

(

1

π
arctan

Vα − En

Γn
+

1

2

)(

1

π
arctan

En − Vβ

Γn
+

1

2

)

(34)

In the two leads case, only the levels between the two potentials bring the contribution :

q2 ≃ Γn,LΓn,R

Γ2
n

. (35)

Note that this result cannot be simply infered from the current shot noise. Near a resonance,
the transmission probability through the graph is T (E) ≃ 4Γn,LΓn,R

(E−En)2+Γ2
n
. The average current in

the lead is given by the Landauer formula 〈I〉 = 1
2π

∫ VL

VR
dE T (E) whereas the current and the

shot noise by SII(ω = 0) = 1
2π

∫ VL

VR
dE T (E)(1 − T (E)) [1, 2, 39]. If only one level En lies

between the two potentials, we obtain in this non linear regime [40] : 〈I〉 ≃ 2
Γn,RΓn,L

Γn
and

SII(ω = 0) ≃ 2
Γn,RΓn,L

Γ3
n

(Γ2
n,R + Γ2

n,L).

Finite frequency noise. Let us choose the origin of the energies in such a way that : VR = 0,
VL = V > 0. Four energy scales must be considered : En, Γn, V and ω. Several regimes can
be observed according to the frequency. To help the discussion we neglect the smallest scale,
supposed to be Γn, as we did above.
(i) Let us first discuss the case of a fully occupied level : En < VR = 0.
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At small frequencies, correlations are roughly zero. When ω reaches VR−En, contributions from
the second and third terms appear, while all terms contribute for ω larger than VL − En. To
summarize these three regimes :

S
(n)
QQ(ω) ≃ 1

2Γn

1

1 + ω2/4Γ2
n

×















0 if ω . VR − En

Γn,R

Γn
if VR − En . ω . VL − En

1 if VL − En . ω ,

(36)

where we have factorized the equilibrium result.
In the second regime VR − En . ω . VL − En, the energy ω is sufficient to excite the state

originating from the right reservoir but not from the left reservoir. This is the origin of the
ratio Γn,R/Γn. In the third regime, both reservoirs contribute to the noise. At fixed non zero
bias voltage, this leads to a double peak structure in terms of the ω which corresponds to the
threshold for creating electron-holes pairs involving the left and right leads (see figure 4). At
small V these two peaks tend to merge into a single more pronounced one. At large V the second
peak occurs at a larger frequency and is less pronounced because of the Lorentzian factor.

Figure 4: Non equilibrium noise in terms of −20 < ω/Γn < 100 and of the voltage drop V/Γn

for a fully populated level (VR = En + 50Γn).

(ii) Let us now discuss the case of an empty level : En > VL.
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Graph

The physical picture can be obtained using a hole picture. Three different regimes can also be
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distinguished :

S
(n)
QQ(ω) ≃ 1

2Γn

1

1 + ω2/4Γ2
n

×















0 if ω . En − VL

Γn,L

Γn
if En − VL . ω . En − VR

1 if En − VR . ω .

(37)

(iii) Finally we consider the case of a level between the two potentials VR < En < VL.
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Graph

Considering the case where the level is closer to VL than to VR, we obtain

S
(n)
QQ(ω) ≃ 1

2Γn

1

1 + ω2/4Γ2
n

×















































0 if ω . −En + VR

Γn,LΓn,R

Γ2
n

if −En + VR . ω . −VL + En

2Γn,LΓn,R

Γ2
n

if −VL + En . ω . VL − En

2Γn,LΓn,R+Γ2
n,L

Γ2
n

if VL − En . ω . En − VR

1 if En − VR . ω

(38)

The fluctuation spectrum is symmetric in the interval centered around ω = 0 with width of
order V . The main contribution to the noise appears at low frequency as can be seen from figure
5. The multiple plot (figure 6) shows how the low frequency peak develops when VL crosses the
energy level.

Figure 5: Non equilibrium noise in terms of −40 < ω/Γn < 40 and of V/Γn. The right lead
chemical potential is fixed to −10Γn. Case (iii) corresponds to V > 10Γn and exhibits an
important low frequency noise whereas V < 10Γn corresponds to case (ii).

Interestingly, correlations are proportional to the partition factor Γn,RΓn,L only for small
frequencies |ω| ≪ V (or large time scales t≫ 1/V ). For large frequencies |ω| ≫ V , the partition
factor does not appear. The high frequency part of the charge fluctuation spectrum is insensitive
to the fact that the system is out of equilibrium. In this limit, the equilibrium result (31) is
recovered.
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ω/Γ100-10

(d)

(c)

(b)

(a)

Figure 6: Multiple plots of non equilibrium charge noise in terms of −20 < ω/Γn < 20 for
different values of V/Γn. The right lead chemical potential is fixed as on figure 5. (a) V/Γn = 4,
(b) V/Γn = 8, (c) V/Γn = 9 and (d) V/Γn = 14.

4 Currents inside the graph

A possible way to probe a mesoscopic device is to attach some leads to it, through which some
currents are injected. Some information can be extracted from transport or noise properties :
average values and correlations of currents in the external leads. All these properties can be
related to the scattering matrix (see [40] for a review). If one is now interested in local infor-
mation on the system, like the measurement of a persistent current, a natural way would be to
introduce some local probe. However, as we have recalled in the introduction, local information
can also be extracted from scattering properties. Here, we investigate the currents in the inter-

nal wires, and show the relation to the scattering properties. The starting point, exposed in the
introduction, is the relation between the current in a wire and the derivative of the scattering
matrix with respect to its conjugate variable, the flux in the wire. This idea comes from [17] and
has been elaborated further in [29] to include derivation of correlations of the current density.
Here, we focus on the case of graphs in the context of which we will generalize these previous
results to the non equilibrium situation.

4.1 Current in a closed graph

First we derive an expression for the current density in a closed graph. It is convenient to
introduce the spectral determinant of the Schrödinger operator

S(γ) = det(−∆ + V (x) + γ) =
∏

n

(En + γ) (39)

where γ is a spectral parameter. The set of En’s is the spectrum of the Schrödinger operator
on the graph. It was shown in [41, 42, 43, 44] that the spectral determinant, which is the
determinant of an unbounded operator, can be related to the determinant of a finite size matrix.
In the vertex approach, the formula (100) involves a V × V matrix, whereas in the arc language
the spectral determinant involves a 2B × 2B matrix : S(−E) ∝ det(1 − QR) [42, 44]. Note

13



that for a closed graph, the vertex scattering matrix Q has the same dimension as the bond
scattering matrix. We introduce the current density j(E) associated to the states in the interval
[E,E + dE[. The current density in the arc a is :

ja(E) = −
∑

n

δ(E − En)
∂En

∂θa
=

1

π
Im

∂

∂θa
lnS(−E + i0+) , (40)

where θa is the magnetic flux along this arc.

Example : Consider a closed ring of perimeter l threaded by a flux θ. Its spectral determinant
is S(γ) = ch(

√
γ l)− cos(θ) [42]. We write : γ = −k2 + i0+, then ch(

√
γl) = cos(kl)+ i0+ sin(kl)

and we get for the current density in the ring :

j(E) = − sin θ sign(sin kl) δ(cos kl − cos θ) =
∑

n

δ(E − En) In , (41)

with In = −∂θEn where En = (2nπ − θ)2/l2.

4.2 Current in open graphs

Now we consider a graph connected to infinite leads.
The current operator is

Ĵ(x, t) =
1

i

[

ψ̂†(x, t)Dxψ̂(x, t) − D∗
xψ̂

†(x, t) ψ̂(x, t)
]

(42)

where Dx = dx − iA(x) is the covariant derivative.
We introduce the current matrix elements

j(α,β)
µν (E) = 〈 ψ̃(α)

E |Ĵ(x, t)| ψ̃(β)
E 〉 for x ∈ µν (43)

which can be shown to be independent of the coordinate x along the arc (only if the two states
have the same energy). This matrix element can then be computed at the vertex µ (x = 0) :

j(α,β)
µν (E) =

1

i

(

ψ̃(α)∗
µ Dxψ̃

(β)
(µν)(µ) − D∗

xψ̃
(α)∗
(µν)(µ) ψ̃(β)

µ

)

. (44)

The quantum and statistical average of the current operator in the arc µν gives :

Jµν = 〈Ĵ(x ∈ µν, t)〉 =
∑

α

∫

dE fα(E) j(α,α)
µν (E) . (45)

The correlations (unsymmetrized in time or frequency) between the currents in the arcs µν and
µ′ν ′, defined as

SJµνJµ′ν′
(ω) =

∫ +∞

−∞
d(t− t′)

(

〈Ĵ(x, t) Ĵ(x′, t′)〉 − 〈Ĵ(x, t)〉〈Ĵ(x′, t′)〉
)

eiω(t−t′) , (46)

for x ∈ µν and x′ ∈ µ′ν ′. They can be rewritten at zero frequency as :

SJµνJµ′ν′
(ω = 0) = 2π

∑

α,β

∫

dE fα(E)[1 − fβ(E)] j(α,β)
µν (E) j

(β,α)
µ′ν′ (E) . (47)
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Vertex formulation

Now we look for a relation between the current density and the scattering matrix. We start
from the expression of the scattering state in the arc µν :

ψ(µν)(x) = eiθµνx/lµν

(

ψµ fµν(x) + ψν e−iθµνfνµ(x)
)

. (48)

Then :

j(α,β)
µν =

1

i

(

−ψ̃(α)∗
µ

dfµν

dxµν
(ν) e−iθµν ψ̃(β)

ν + ψ̃(α)∗
ν

dfνµ

dxνµ
(µ) eiθµν ψ̃(β)

µ

)

(49)

where we have used the fact that the Wronskian of fµν(x) and fνµ(x) reads :
dfνµ

dxµν
(µ) = − dfµν

dxµν
(ν).

From the definition of the matrix M , we see that :

j(α,β)
µν = −k

i

(

ψ̃(α)∗
µ

dMµν

dθµν
ψ̃(β)

ν + ψ̃(α)∗
ν

dMνµ

dθµν
ψ̃(β)

µ

)

(50)

Only the two elements Mµν and Mνµ depend on the flux θµν , then :

j(α,β)
µν = −k

i

(

Ψ̃† dM

dθµν
Ψ̃

)

αβ

, (51)

where Ψ̃ is the V ×L-matrix that gathers the values of the L stationary states at the V vertices :

Ψ̃µα ≡ ψ̃
(α)
µ . This matrix is [10, 13] :

Ψ̃ =
1√
πk

1

M +WTW
WT . (52)

We can rewrite the current density in terms of matrices M and W :

j(α,β)
µν = − 1

iπ

(

W
1

−M +WTW

dM

dθµν

1

M +WTW
WT

)

αβ

. (53)

Our aim is now to find the relation of this expression with the scattering matrix. We use the
relation d

dηA(η)−1 = −A(η)−1 dA(η)
dη A(η)−1 that gives the derivative of the inverse of a square

matrix A(η) depending on a parameter η. In the expression (3) only M depends on the fluxes,
it follows that :

dΣ

dθµν
= −2W

1

M +WTW

dM

dθµν

1

M +WTW
WT . (54)

If we multiply this expression by Σ† from the left, it replaces the M in the left fraction by −M .
We conclude that the off-diagonal elements of the current density reads :

j(α,β)
µν (E) =

1

2iπ

(

Σ† dΣ

dθµν

)

αβ

. (55)

Note that this result is reminiscent to the one obtained by Taniguchi in [29] who derived some
relation between the scattering matrix and the “current density”, i.e. the diagonal elements
(α = β) of (55).
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Arc formulation

Let us now reformulate the previous demonstration in the arc language which allows to consider
the most general case.

As explained in the introduction, the wave function on the bond (µν) can be expressed as :

ψ(µν)(xµν) = Bµν φµν(xµν) +Bνµ φνµ(xµν) (56)

where φµν(xµν) and φνµ(xµν) are the left and right stationary scattering states for the bond
potential V(µν)(xµν). Using the expressions of these functions at the extremities of the bond
given in the introduction, we get the derivative of the wave function at the vertex µ :

Dxψ(µν)(µ) = ik [Bµν(1 − rµν) −Bνµtνµ] . (57)

We call B̃
(α)
µν the internal amplitude corresponding to the stationary scattering state ψ̃

(α)
E (x).

These amplitudes are obtained by solving the equations B = QA and Aint = RBint with external
amplitudes Aext describing the injection of a plane wave on the lead arriving at vertex α : its

components are Ã
(α)ext
i = 1√

4πk
δi,arc α where “arcα” designates the arc related to the lead issuing

from α. Then the amplitude

B̃(α)
µν =

1√
4πk

[

(1 −QintR)−1Q̃T
]

µν,arc α
(58)

is related to the matrix element between the internal arc µν and the external arc “arc α”.
After a little bit of algebra, we get for the current density on the arc µν :

j(α,β)
µν = 2k

[

B̃(α)∗
µν |tµν |2B̃(β)

µν + B̃(α)∗
µν t∗µνrνµB̃

(β)
νµ − B̃(α)∗

νµ t∗νµrµνB̃
(β)
µν − B̃(α)∗

νµ |tνµ|2B̃(β)
νµ

]

. (59)

We have used t∗µνrνµ = −r∗µνtνµ coming from the unitarity of R. In the bond scattering matrix

R, only the transmissions depend on the magnetic fluxes : tµν ∝ eiθµν . It follows that, in the

matrix dR†

dθµν
R, only the 2 × 2 block related to the arcs µν and νµ is different from zero. It is

given by :

i

(

−|tµν |2 −t∗µνrνµ

t∗νµrµν |tνµ|2
)

(60)

Then it is straightforward to see that :

j(α,β)
µν = −2ik

∑

i,j

B̃
(α)∗
i

(

dR†

dθµν
R

)

i,j

B̃
(β)
j (61)

where the sum over i, j runs over the 2B internal arcs. Using the expression (58) for the
amplitudes, we obtain :

j(α,β)
µν = − 1

2iπ

(

Q̃∗(1 −R†Qint †)−1 dR†

dθµν
R (1 −QintR)−1Q̃T

)

α,β

(62)

= − 1

2iπ

(

Σ†Q̃(R† −Qint)−1 dR†

dθµν
(R† −Qint)−1Q̃T

)

α,β

(63)

=
1

2iπ

(

Σ†Q̃
d

dθµν
(R† −Qint)−1Q̃T

)

α,β

=
1

2iπ

(

Σ† dΣ

dθµν

)

α,β

. (64)

We have recovered the formula (55) within the arc language 4. This demonstrates that equation
(55) applies to the most general situation, as expected.

4We have used the relation Σ†Q̃(R†−Qint)−1 = Q̃∗(1−R†Qint †)−1, coming from the unitarity of the scattering
matrices [13].
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Average current and current correlations in terms of the scattering matrix

The average current can we written, as could have been guessed from the general discussion of
the introduction :

Jµν =
∑

α

∫

dE fα(E)
1

2iπ

(

Σ† dΣ

dθµν

)

αα

. (65)

The correlations of currents at zero frequency rewrite in terms of scattering matrix :

SJµνJµ′ν′
(ω = 0) = − 1

2π

∑

α,β

∫

dE fα[1 − fβ]

(

Σ† dΣ

dθµν

)

αβ

(

Σ† dΣ

dθµ′ν′

)

βα

. (66)

If µν = µ′ν ′ this gives the noise of the persistent current. At equilibrium, all potentials are equal
fα(E) = f(E) ∀α, and we recover an expression reminiscent of the one given in [29] :

SJµνJµ′ν′
(ω = 0) =

1

2π

∫

dE f(E)[1 − f(E)] Tr

{

dΣ

dθµν

dΣ†

dθµ′ν′

}

. (67)

In his work, Taniguchi identifies the contribution
(

dΣ
dθµν

dΣ†

dθµ′ν′

)

αα
of a given scattering state to

this trace. However we see that it is not sufficient to go back to the expression (66) describing
the non equilibrium situation.

4.3 Gauge invariance

Since many formulae involve the fluxes along the wires, it is important to discuss how a gauge
transformation would affect them and to check that all the measurable quantities are indeed
gauge invariant. A gauge transformation changes the vector potential according to A(x) →
A(x) + ∂xχ(x), where χ(x) is a scalar function. The magnetic flux θµν along the arc µν is then
modified according to :

θµν −→ θ′µν = θµν + χµ − χν (68)

where χµ ≡ χ(µ) is the value taken by the function at the vertex µ. In the vertex approach, we
immediatly see from its defintion that the matrix M is changed as :

Mµν −→ M ′
µν = Mµν eiχµ−iχν . (69)

We can write M ′ = UMU† where the diagonal unitary matrix reads : Uαβ = δαβeiχα . Since
WTW is also diagonal it is clear that (±M ′+WTW )−1 = U(±M+WTW )−1U†. The scattering
matrix changes in the same way :

Σαβ −→ Σ′
αβ = Σαβ eiχα−iχβ . (70)

From (53) or (55) we see that the matrix elements of the current operator pick up a phase
through a gauge transformation

j(α,β)
µν −→ j(α,β)

µν eiχα−iχβ . (71)

Nevertheless, the average current (45) and the correlations (47) are gauge invariant, as they
should.
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4.4 Weakly connected graphs

As we did for the charge distribution, it is interesting to consider the case of graphs weakly
connected to the leads (wα → 0) for which interesting results can be derived. The starting
point is again the expression (21) of the scattering state near a resonance (when E is close to
an eigenenergy of the isolated graph). Using this relation, the current density matrix element
can be expressed as

j(α,β)
µν (E,E′) = 〈 ψ̃(α)

E |Ĵ(x ∈ µν, t = 0)| ψ̃(β)
E′ 〉 (72)

≃
E,E′∼En

√
En

π

wαϕn(α)

E − En − iΓn

wβϕ
∗
n(β)

E′ − En + iΓn
In
µν , (73)

where In
µν is the current in the arc µν associated to the eigenstate ϕn(x) of the isolated graph :

In
µν = −iϕ∗

n(x)Dxϕn(x) + c.c. for x ∈ µν . (74)

Note that in principle the current matrix element (72) between scattering states of different
energies depends on the coordinate x, however in the weak coupling limit, since the two scattering
states are proportional to the same eigenstate ϕn(x), the matrix element becomes x independent.

Equation (72) shows that the calculation of the average current is very similar to the calcu-
lation of the charge (23) :

Jµν ≃
∑

α

∫ ∞

0
dE fα

∑

n

In
µν Γn,α/π

(E − En)2 + Γ2
n

=
∑

n

In
µν

∑

α

Γn,α

Γn

(

1

π
arctan

Vα − En

Γn
+

1

2

)

. (75)

The contribution of the resonant level can be written :

J (n)
µν ≃ In

µν 〈Q̂(t)〉(n) (76)

where 〈· · ·〉(n) designates the contribution of the resonant level n.
Similarly we obtain for the correlations :

S
(n)
JµνJµ′ν′

(ω) ≃ In
µν I

n
µ′ν′ S

(n)
QQ(ω) . (77)

For example, for a situation with two contacts with a potential drop V and only one resonant
level contributing we get :

Jµν ≃ In
µν

Γn,L

Γn
(78)

and

SJµνJµ′ν′
(0) ≃ In

µν I
n
µ′ν′

Γn,LΓn,R

Γ3
n

(79)

4.5 Example

Let us focus on the simple example of a ring with two leads (see figure 7).
The scattering matrix of the ring reads :

Σ = −1 +
2

S̃

(

iw2
1 sin kl + w2

1w
2
2sasb iw1w2(sbe

−iθa + sae
iθb)

iw2w1(sbe
iθa + sae

−iθb) iw2
2 sin kl + w2

1w
2
2sasb

)

(80)

where θa and θb are the fluxes of the two arcs and θ = θa + θb the total flux threadening the
ring. We have denoted sa,b ≡ sin kla,b.

S̃ = sasb det(M +WTW ) = 2(cos θ − cos kl) + i(w2
1 + w2

2) sin kl + w2
1w

2
2sasb (81)
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a

b

1 2θ
w1

w2

Figure 7: A ring with two arms of lengths la and lb, threaded by a flux θ and coupled with
two leads, with coupling parameters w1,2. The boxes represent the tunable couplings, with
transmission amplitudes 2w1,2/(1 + w2

1,2) (see [10]).

is the modified spectral determinant. The matrix involved in the current density in the arc a
is :

Σ† dΣ

dθa
=

2 sin θ

S̃
(1 + Σ†) +

2w1w2sb

S̃

(

−Σ∗
21e

iθa Σ∗
11e

−iθa

−Σ∗
22e

iθa Σ∗
12e

−iθa

)

(82)

from which we get the contribution of the scattering state ψ̃(1)(x) to the current density in the
arc a :

j(1,1)
a =

1

2iπ

(

Σ† dΣ

dθa

)

11

=
2

π|S̃|2
[

−w2
1 sin θ sin kl + w2

1w
2
2(s

2
b + sasb cos θ)

]

. (83)

Let us now study the weak coupling limit w1,2 → 0. Close to a resonance, we obtain :

j(1,1)
a (k2) ≃

k∼k±
n

∓ 1

l

w2
1

w2
1 + w2

2

γ/π

(k − k±n )2 + γ2
(84)

where γ =
w2

1+w2
2

2l . Integrating the contribution of the resonance peak, we get :

∫ k±
n +δK

k±
n −δK

dk 2k j(1,1)
a (k2) ≃ w2

1

w2
1 + w2

2

4π

l2

(

∓n− θ

2π

)

. (85)

In the r.h.s we recognize the persitent current of the level of the isolated ring − ∂
∂θ (k±n )2 =

− ∂
∂θ

(

2πn±θ
l

)2
, multiplied by the “relative weight”

w2
1

w2
1+w2

2
of the scattering state ψ̃(1)(x), as

expected from (76).

4.6 Graphs with localized states

In this section we discuss the consequence of the possible existence of localized states in certain
graphs. These states are not probed by scattering, consequently their contributions to the
current is not given by the expressions derived above.

For the sake of simplicity our discussion will be focused on the example of a ring in the regime
of the integer quantum Hall effect, with one edge state. The potential hill at the middle is called
an antidot (figure 8, left). This example must be thought more as a toy model to understand
the idea of localized states in graphs, than as a reallistic model to describe current distribution
in a quantum Hall device where the effect of screening is important (the interested reader will
find some discussion on the nature of edge currents and the role of screening in [45, 46]). The
system can be modeled by a ring with chiral scattering at the vertices (figure 8, right). The ring
has two bonds, i.e. four internal arcs : two arcs a and b carrying fluxes θa and θb and the two
reversed arcs denoted with a bar : ā and b̄. The two leads are described by arcs 1 and 2.
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Figure 8: Left : A mesoscopic device in the regime of the IQHE with an antidot at the middle.
One edge state is open. Right : The graph that models this arrangement. The scattering at the
vertices is chiral.

In the basis of arcs {a, b̄, ā, b |1, 2}, its vertex scattering matrix and bond scattering matrix
are :

Q =

















0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

0 1 0 0 0 0
0 0 1 0 0 0

















=

(

Qint Q̃T

Q̃ Qext

)

(86)

The off diagonal blocks are not anymore transposed due to the breaking of the time reversal
symmetry at the vertices (chiral scattering), however we keep the same notation as above for
simplicity since there is no possible confusion. On the other hand

R =









0 0 eikla−iθa 0
0 0 0 eiklb+iθb

eikla+iθa 0 0 0
0 eiklb−iθb 0 0









. (87)

We recall that Qij is the transmission amplitude from arc j to arc i due to vertex scattering,
and Rij describes bond scattering due to the potential.

Scattering. The scattering matrix can be computed from Q and R with equation (8), however
the result is obvious here, due to the absence of multiple scattering :

Σ =

(

0 eiklb+iθb

eikla+iθa 0

)

(88)

The current density in the arc a is given by the matrix :

Σ† dΣ

dθa
=

(

i 0
0 0

)

(89)

From (55) we get the contribution of the scattering state ψ̃(1)(x) to the current density in the

arm a : j
(1,1)
a = 1

2π , whereas the contribution of ψ̃(2)(x) obviously vanishes j
(2,2)
a = 0, since this

latter scattering state does not send current into the arc a.

Localized states. We follow the discussion of [11, 13] : if localized states are present, their
discrete spectrum is given by solving det(R† −Qint) = 0. Here, we see that the equation indeed
possesses a set of solutions since det(R† − Qint) = e−ikl(e−ikl − e−iθ) where θ = θa + θb. The
spectrum of localized states is kn = (2πn+θ)/l for n ∈ N if θ ∈ [0, 2π[, since k > 0 by convention.
These states describe a clockwise motion of the electron in the loop of the graph (right part of
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figure 8). In the quantum Hall ring picture, they correspond to states whose wave functions
are localized on the edge of the antidot (left part of figure 8). The current associated to the
state of energy k2

n in the arc a is − ∂
∂θk

2
n = −2(2nπ + θ)/l2. Note that if one introduces some

scattering on the bonds, the localized states are hybridized with the states of the continuum
and the discrete part of the spectrum disappears.

The discrete spectrum also brings some contribution to the current in the arms of the ring,
which cannot be obtained from the scattering properties. Since the state ψ̃(2) does not contribute,
the total average current in arm a finally reads :

Ja =

∫ ∞

0
dE f1(E) j(1,1)

a (E) −
∞
∑

n=0

fint(k
2
n)

2

l2
(2nπ + θ) (90)

where f1(E) is the Fermi distribution for the lead 1 and fint(E) the Fermi distribution for the
localized states inside the graph.

Now we can give the general expression for the current in the arc a for a graph with localized
states. Since the discrete spectrum of localized states {En} is given by the equation

0 = det(R† −Qint) ∝
∏

n

(E − En) (91)

we have

Ja =
∑

β

∫

dE fβ(E)
1

2iπ

(

Σ† ∂Σ

∂θa

)

ββ

+

∫

dE fint(E)
1

π
Im

∂

∂θa
ln

(

det(R† −Qint)
∣

∣

∣

E→E+i0+

)

, (92)

where fint(E) is the Fermi distribution associated to localized states. The first term is the
contribution of the scattering states whereas the second is the contribution of the localized
states.

5 Summary

In this paper we have studied the two first cumulants of the charge of a graph connected to
infinite wires, as well as the distribution of currents in the wires inside the graph. In particular,
we have shown the relation with the scattering matrix, allowing to study these quantities in an
out of equilibrium situation, when the graph is connected to wires put at different potentials.
We have obtained a formula for the average current and the current correlations that generalizes
previous results known for the equilibrium situation [17, 29].

We have also emphasized that the scattering matrix contains information only on the con-
tinuous part of the spectrum related to scattering states. If some states remain localized in
the graph, they give an additional contribution to the current not taken into account by the
scattering approach.

We have considered the case of graphs weakly coupled to the leads. It is interesting to
remark that the results obtained in this context are expected to be of much more generality
than graphs, since the starting point was to use an approximation of the scattering state near
a resonant level (21), a form of great generality. In particular, the contribution of the resonant
level n to the average of some quantity X defined inside the graph reads

〈X̂(t)〉(n) ≃ Xn 〈Q̂(t)〉(n) , (93)
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where Xn = 〈ϕn |X̂ |ϕn 〉 is the expectation of X in the eigenstate |ϕn 〉 of the isolated system.
Similarly the contribution of the n-th resonant level to the correlations of two observables X
and Y reads :

S
(n)
XY (ω) ≃ Xn Yn S

(n)
QQ(ω) . (94)

These results apply to a situation with narrow resonances (Γn ≪ |En+1 − En|). We repeat
that we have not considered the effect of electron electron interactions in this article (weakly
connected devices with resonant tunneling present in principle Coulomb blockade). It would be
interesting to incorporate some effects of interaction. This could be already done in a mean field
approximation to describe the effect of screening in the charge and current distribution following
Büttiker’s approach [3, 4, 27].
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A Relation between the different unsymmetrized correlators

Let us consider A and B two hermitian operators associated to physical quantities in our system.
There are two unsymmetrized correlation functions:

SA,B(ω) =

∫ +∞

−∞
dτ eiωτ (〈A(t+ τ)B(t)〉 − 〈A(t+ τ)〉 〈B(t)〉) (95)

S̃A,B(ω) =

∫ +∞

−∞
dτ eiωτ (〈B(t)A(t + τ)〉 − 〈B(t)〉 〈A(t + τ)〉) . (96)

These correlators do not depend on t for a system in a stationary state5. Note that, even if we
consider out of equlibrium situations, only stationary states are considered in the present paper.

In this case, using time translation invariance of one and two point correlation fonctions, we
have :

S̃A,B(ω) =

∫ +∞

−∞
dτ eiωτ (〈B(t− τ)A(t)〉 − 〈B(t− τ)〉 〈A(t)〉) (97)

and this gives:
S̃A,B(ω) = SB,A(−ω) . (98)

When A = B, it shows that one unsymmetrized correlator determines the other one:

S̃A,A(ω) = SA,A(−ω). . (99)

Finally, note that the correlator SA,A(ω) is real since the correlator in time obeys SA,A(τ)∗ =
SA,A(−τ).

B Structure of the stationary states near a resonance

If we consider a graph weakly coupled to the leads, we expect the stationary scattering states
to be closely related to the eigenstates of the isolated graph. The purpose of the appendix is
to demonstrate the precise relation. The relations we will obtain are very reminiscent of the

5Glassy systems are an example for which this is not possible since the system never reaches a stationary state
(weak ergodicity breaking).
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Hamiltonian approach of chaotic scattering [47] (see also [48]). In this latter case some small
couplings are introduced between an isolated system and the leads, whereas we rather start from
a situation where the coupling can be arbitrary large and study the weak coupling limit to see
how the properties of the isolated graph emerges from its scattering properties.

Let us consider a graph G, whose spectrum is supposed to be non degenerate for simplicity
(the occurence of degeneracies leads to complications related to possible existence of localized
states in the graph non probed by scattering [11, 13]). In a first step we describe how the
eigenstates of the Schrödinger operator in the graph are constructed and in a second step we
will establish the relation with stationary states in the weak coupling limit.

Isolated graph. The spectrum of the Schrödinger operator in the graph is given by the equa-
tion : S(γ) = 0, where S(γ) =

∏

n(γ + En) is the spectral determinant, whose construction
is explained in [41, 42] for the case of free graphs, in [43, 49] for graphs with potential and in
[44] for graphs with general boundary conditions (more general than the continuity of the wave
function at vertices). If the wave function is continuous at vertices :

S(γ) = γV/2
∏

(αβ)

(

dfβα

dxαβ
(α)

)−1

detM(γ) . (100)

The product runs over all the bonds of the graph. We recall that the functions fαβ(x) involved
in M(γ) are the solutions of the Schrödinger equation on the bond [γ − d2

x + V(αβ)(x)]f(x) = 0
for an energy E = −γ. In general S(γ) = 0 possesses the same set of solutions as

detM(γ) = 0 . (101)

We do not discuss here the case where the sets of zeros of both equations do not coincide, which
is a little bit pathological and would require to refine the following arguments. Let us however
quote few examples of free graphs (V (x) = 0) for which it is the case : the graph made of one
line (in this case detM = 1 is independent of γ), the complete graph [42, 11],...

The component of the wave function ϕn(x) on the bond (αβ) is :

ϕn(αβ)(x) = eiAαβx
(

ϕn,α fαβ(x) + ϕn,β e−iθαβfβα(x)
)

(102)

where ϕn,α is the wave function at the vertex α and Aαβ = θαβ/lαβ the vector potential. (Do
not confuse the label n of the eigenstate with the greek labels that designate vertices). If we
gather the wave function at the nodes in the V -dimensional column vector ϕn, the eigenstate of
energy En is solution of

M(−En)ϕn = 0 . (103)

Normalization. The normalization condition for the eigenstate reads :

∫

Graph
dx |ϕn(x)|2 =

∑

(αβ)

∫ lαβ

0
dx
∣

∣ϕn(αβ)(x)
∣

∣

2
= 1 . (104)

If we use the following relations [43] :

∫ lαβ

0
dxαβ fαβ(xαβ)2 = −∂γ

dfαβ

dxαβ
(α) (105)

∫ lαβ

0
dxαβ fαβ(xαβ)fβα(xαβ) = ∂γ

dfαβ

dxαβ
(β) (106)
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we obtain
∫

Graph
dx |ϕn(x)|2 =

∑

(αβ)

[

ϕ∗
n,α ∂γ

(

−dfαβ

dxαβ
(α)

)

ϕn,α + ϕ∗
n,α ∂γ

(

dfαβ

dxαβ
(β) e−iθαβ

)

ϕn,β

+ϕ∗
n,β ∂γ

(

dfβα

dxβα
(α) eiθαβ

)

ϕn,α + ϕ∗
n,β ∂γ

(

−dfβα

dxβα
(β)

)

ϕn,β

]

(107)

If we replace the sum over bonds by a sum over vertices, the matrix M appears. Finally, the
normalization condition reads for the V -vector ϕn :

ϕ†
n∂γ [

√
γM(γ)]ϕn = 1 , (108)

where the spectral parameter is taken, after derivation, equal to the eigenenergy γ = −En − i0+.

Graph weakly connected to leads. When the graph is weakly coupled to leads (wα → 0)

we expect that the stationary state ψ̃
(α)
E (x) is proportional to the wave function of the isolated

graph near the resonance E ≃ En : ψ̃
(α)
E (x) ∝ ϕn(x) for x ∈ G. The question is how to recover

precisely this relation from our formalism ?
The resonance width. As a preliminary question, it is instructive to find an expression for the
resonance widths. For this purpose, let us consider the determinant of the scattering matrix
[11] :

detΣ = (−1)L
det(M −WTW )

det(M +WTW )
(109)

and find an approximation near a resonance En.
For any fixed energy E > 0, M is an antihermitian matrix and can be written in terms of

its purely imaginary eigenvalues iλα(E) and its associate eigenvectors vα(E) :

M(−E) = i

V
∑

α=1

λα(E) vα(E)v†α(E) . (110)

The eigenvectors are normalized as v†αvα = 1. If the energy E is equal to the energy En of
an eigenstate of the isolated graph, one of the eigenvalues of M is vanishing : λ1(En) = 0.
We suppose the spectrum of the isolated graph to be non degenerate. The eigenvector v1(En)
coincides with the eigenstate : v1(En) = ν−1

n ϕn ; however these vectors are not normalized in
the same way and differ in the multiplicative factor νn.

Since detM(−E) is proportional to the spectral determinant and the spectrum supposed
to be non degenerate, the eigenvalue λ1(E) behaves linearly near the energy En : λ1(E) ≃
(E − En)βn. The normalization condition (108) reads :

− ϕ†
n ∂E

(

−i
√
E

V
∑

α=1

iλα(E) vα(E)v†α(E)

)

∣

∣

∣

∣

E=En

ϕn = 1 (111)

then
− βn

√

Enϕ
†
nv1(En) v†1(En)ϕn = 1 (112)

We obtain the normalization constant : νn = 1/
√
−knβn where En = k2

n.
We now come back to detΣ. In the weak coupling limit wα → 0 we can compute perturba-

tively the eigenvalues of M ±WTW to express the determinant :

det(M(−E) ±WTW ) ≃
E∼En

V
∏

α=1

(

iλα(E) ± v†α(E)WTWvα(E)
)

(113)

≃
(

iβn (E − En) ± v†1(En)WTWv1(En)
)

V
∏

α=2

iλα(En) (114)
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We can use the relation v1(En) =
√
−knβn ϕn to get :

det(M(−k2) ±WTW ) ≃
k∼kn

(

k − kn ± i

2
ϕ†

nW
TWϕn

)

2iβnkn

V
∏

α=2

iλα(k2
n) . (115)

Then :

det Σ ∝ k − kn − iγn

k − kn + iγn
(116)

where the resonance width in k-scale is : γn = 1
2ϕ

†
nWTWϕn = 1

2

∑L
α=1 w

2
α|ϕn,α|2. This result

is very satisfactory since it shows that the lead α brings a contribution to the resonance width
proportional to the transmission probability w2

α between the graph and the lead6 and to the
probability density |ϕn,α|2 ≡ |ϕn(α)|2 associated to the eigenstate of the isolated graph, taken
at the vertex α where the graph is connected. In energy scale the resonance width reads :

Γn = 2knγn =
√

En ϕ
†
nW

TWϕn =

L
∑

α=1

Γn,α (117)

where
Γn,α =

√

Enw
2
α|ϕn(α)|2 (118)

is the contribution of the lead α.
The wave function. We recall that the V ×L-matrix Ψ̃ that gathers the values of the L scattering
states at the V vertices is [10] :

Ψ̃ =
1√
πk

1

M +WTW
WT . (119)

We call ψ(α) the V -column vector gathering the values of ψ(α)(x) at the V vertices : ψ(α) =

(ψ
(α)
1 , · · · , ψ(α)

V )T. The matrix Ψ is obtained by gathering these L column vectors : Ψ =
(ψ(1), · · · , ψ(L)). In the weak coupling limit (wα → 0) and near the resonance En we can
keep only the contribution of the vanishing eigenvalue iλ1(E) of M to compute :

1

M +WTW
≃ 1

iβn(E − En) + v†1(En)WTWv1(En)
v1(En)v†1(En) . (120)

It follows that the scattering state at the vertex µ is :

ψ̃(α)
µ = Ψ̃µα ≃ 1√

πk

i/2

k − kn + iγn
ϕn,µ (ϕ†

nW
T)α =

1√
4πk

iwα ϕ
∗
n,α

k − kn + iγn
ϕn,µ . (121)

Since the vertex µ could be any point of the graph because we have always the freedom to
introduce an additional vertex of weight λ = 0 on any bond without changing the properties of
the graph, we can rewrite more elegantly :

ψ̃
(α)
k2 (x) ≃

k∼kn

1√
4πkn

iwαϕ
∗
n(α)

k − kn + iγn
ϕn(x) (122)

Or using energy scale :

ψ̃
(α)
E (x) ≃

E∼En

1√
π

iE
1/4
n wαϕ

∗
n(α)

E − En + iΓn
ϕn(x) . (123)

6the transmission amplitude is 2wα

1+w2
α

for finite wα [10].
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The local density of states. The contribution of the scattering state ψ̃
(α)
E (x) to the off-diagonal

LDoS 〈x |δ(E −H)|x′ 〉 is :

ψ̃
(α)
E (x) ψ̃

(α)∗
E (x′) ≃

E∼En

Γn,α/π

(E − En)2 + Γ2
n

ϕn(x)ϕ∗
n(x′) . (124)

The LDoS is obtained by summing these contributions over α.
The scattering matrix. The same discussion can be done to find an approximation for the
scattering matrix. We obtain the well-known Breit-Wigner structure :

Σαβ(E) ≃
E∼En

− δαβ +
2i
√
Enwαϕn(α)wβϕ

∗
n(β)

E − En + iΓn
. (125)

C Matrix elements of the charge operator

Our aim is to relate

ρ(α,β)(E) =

∫

Graph
dx ψ̃

(α)
E (x)∗ ψ̃(β)

E (x) =
∑

(µν)

∫ lµν

0
dx ψ̃

(α)∗
(µν)(x) ψ̃

(β)
(µν)(x) (126)

to the scattering matrix. The sum runs over the B bonds. The relation (14) was proven for
α = β in [11] using a different method.

The computation of this integral follows exactly the lines of the one done discussing the
normalization of the states in the isolated graph. Then we obtain :

ρ(α,β)(E) =
∑

µ,ν

ψ̃(α)∗
µ ∂E

(

i
√
EMµν

)

ψ̃(β)
ν , (127)

that is :

ρ(α,β)(E) =

(

Ψ̃† d

dE

(

i
√
EM

)

Ψ̃

)

αβ

(128)

= − 1

2iπ

(

W
1

−M +WTW

[

2
dM

dE
+

1

E
M

]

1

M +WTW
WT

)

αβ

(129)

where we have used (119). From (3) and

dΣ

dE
= −2W

1

M +WTW

dM

dE

1

M +WTW
WT (130)

we finally obtain the desired relation :

ρ(α,β)(E) =
1

2iπ

(

Σ† dΣ

dE
+

1

4E
(Σ − Σ†)

)

αβ

. (131)

An alternative way to relate ρ(α,β)(E) to derivative of the scattering matrix is to introduce
the variable conjugate to the charge : a constant potential U in the graph. The total potential
now reads V (x)+U θG(x) where θG(x) = 1 if x ∈ G and θG(x) = 0 if x belongs to the leads. In the
presence of U , the function fαβ(x) involved in M is solution of [E+d2

x−V(αβ)(x)−U ]fαβ(x) = 0.

These functions are obtained by a shift of the spectral parameter : fU
αβ(x;E) = f0

αβ(x;E − U).
It immediately follows that :

ρ(α,β)(E) = −
(

Ψ̃† d

dU

(

i
√
EM

)

Ψ̃

)

αβ

. (132)
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Using the same arguments as above we get :

ρ(α,β)(E) = − 1

2iπ

(

Σ† dΣ

dU

)

αβ

. (133)

It is interesting to compare this relation with (131) : it shows that it is not similar to differentiate
with respect to a constant potential U or with respect to the energy since the potential does not
live in the wires. The difference however vanishes at high energy (WKB limit).

A relation between the stationary states and the functional derivative of the scattering matrix
[15]

− 1

2iπ

(

Σ† δΣ

δV (x)

)

αβ

= ψ̃
(α)∗
E (x) ψ̃

(β)
E (x) (134)

was proven for graphs [13] where it is explained how it can be computed with algebraic calcu-
lations only. It follows that we can rewrite the equation (131) :

−
∫

Graph
dx

δΣ

δV (x)
= −d Σ

dU
=

d Σ

dE
+

1

4E

(

Σ2 − 1
)

. (135)

The first equality, which is obtained by identification of (126,134) with (133), is also a conse-
quence of the definition of the functional derivative.
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[3] M. Büttiker, Capacitance, admittance, and rectification properties of small conductors, J.
Phys. Cond. Matter 5, 9361 (1993).
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