Charge-based MOS Transistor Modeling

The EKV model for low-power and RF IC design

Christian C. Enz Eric A. Vittoz

John Wiley & Sons, Ltd

Contents

Foreword				
Pr	eface			XV
Li	st of S	Symbol	s	xvii
1	Introduction			1
	1.1	The Ir	nportance of Device Modeling for IC Design	1
	1.2	A Sho	rt History of the EKV MOS Transistor Model	2 5
	1.3	The B	ook Structure	5
Pa	rt I	The B	asic Long-Channel Intrinsic Charge-Based Model	7
2	Definitions			9
	2.1	The N	-channel Transistor Structure	9
	2.2	Defini	tion of Charges, Current, Potential, and Electric Fields	10
	2.3	Transi	stor Symbol and P-channel Transistor	11
3	The Basic Charge Model			13
	3.1	Poisso	on's Equation and Gradual Channel Approximation	13
	3.2	Surfac	e Potential as a Function of Gate Voltage	17
	3.3	Gate Capacitance		18
	3.4	Charge Sheet Approximation		20
	3.5		ty of Mobile Inverted Charge	21
		3.5.1	Mobile Charge as a Function of Gate Voltage and Surface Potential	21
		3.5.2	Mobile Charge as a Function of Channel Voltage and	
			Surface Potential	23
	3.6		e-Potential Linearization	23
			Linearization of $Q_i(\Psi_s)$	23
			Linearized Bulk Depletion Charge Q_b	26
			Strong Inversion Approximation	27
			Evaluation of the Slope Factor	29
		3.6.5	Compact Model Parameters	32

viii CONTENTS

4	Stat	ic Drain Current	33	
	4.1	Drain Current Expression	33	
		Forward and Reverse Current Components	35	
	4.3	Modes of Operation	36	
	4.4	Model of Drain Current Based on Charge Linearization	37	
		4.4.1 Expression Valid for All Levels of Inversion	37	
		4.4.2 Compact Model Parameters	39	
		4.4.3 Inversion Coefficient	40	
		4.4.4 Approximation of the Drain Current in Strong Inversion	41	
		4.4.5 Approximation of the Drain Current in Weak Inversion	43	
		4.4.6 Alternative Continuous Models	45	
	4.5	Fundamental Property: Validity and Application	46	
		4.5.1 Generalization of Drain Current Expression	46	
		4.5.2 Domain of Validity	46	
		4.5.3 Causes of Degradation	48	
		4.5.4 Concept of Pseudo-Resistor	49	
	4.6	Channel Length Modulation	50	
		4.6.1 Effective Channel Length	50	
		4.6.2 Weak Inversion	52	
		4.6.3 Strong Inversion	52	
		4.6.4 Geometrical Effects	53	
5	The Small-Signal Model			
	5.1	The Static Small-Signal Model	55	
		5.1.1 Transconductances	55	
		5.1.2 Residual Output Conductance in Saturation	60	
		5.1.3 Equivalent Circuit	61	
		5.1.4 The Normalized Transconductance to Drain Current Ratio	62	
	5.2			
	5.3	The QS Dynamic Small-Signal Model	72	
		5.3.1 Intrinsic Capacitances	72	
		5.3.2 Transcapacitances	74	
		5.3.3 Complete QS Circuit	75	
		5.3.4 Domains of Validity of the Different Models	77	
6	The Noise Model			
	6.1	Noise Calculation Methods	81	
		6.1.1 General Expression	81	
		6.1.2 Long-Channel Simplification	, 86	
	6.2	Low-Frequency Channel Thermal Noise	87	
		6.2.1 Drain Current Thermal Noise PSD	87	
		6.2.2 Thermal Noise Excess Factor Definitions	89	
		6.2.3 Circuit Examples	91	
	6.3	Flicker Noise	96	
		6.3.1 Carrier Number Fluctuations (Mc Worther Model)	96	
		6.3.2 Mobility Fluctuations (Hooge Model)	101	
		6.3.3 Additional Contributions Due to the Source and		
		Drain Access Resistances	103	

		6.3.4	Total 1/f Noise at the Drain	104
		6.3.5		105
	6.4	Apper	106	
			ndix: The Nyquist and Bode Theorems	106
			ndix: General Noise Expression	108
7	Tem	111		
	7.1	Introd	luction	111
	7.2	Tempe	erature Effects	112
		7.2.1	•	112
		7.2.2	e e	116
		7.2.3	6	118
			Variation of the Current–Charge Characteristics	120
	7.3	Match	•	120
		7.3.1		120
			Deterministic Mismatch	121
		1.3.3	Random Mismatch	125
Pa	rt II	The l	Extended Charge-Based Model	131
8	Non	idaal F	Effects Related to the Vertical Dimension	133
0	8.1		function	133
	8.2		ity Reduction Due to the Vertical Field	133
	8.3		niform Vertical Doping	138
	0.2	8.3.1	Introduction and General Case	138
		8.3.2	Constant Gradient Doping Profile	139
		8.3.3	Step Profile	141
		8.3.4	Effect on the Basic Model	147
	8.4	Polysi	148	
*		8.4.1	Definition of the Effect	148
		8.4.2	Effect on the Mobile Inverted Charge	149
		8.4.3	Slope Factors and Pinch-Off Surface Potential	150
		8.4.4	Voltage Slope Factor n_v	152
		8.4.5	Charge Slope Factor n_q	153
		8.4.6	Effect on $Q_i(V)$, Currents, and Transconductances	154
		8.4.7	Strong Inversion Approximation	155
	8.5		Gap Widening	156
		8.5.1	Introduction	156
		8.5.2	Extension of the General Charge–Voltage Expression	158
·	8.6	8.5.3 Gate I	Extension of the General Current–Voltage Expression Leakage Current	160 161
9			nnel Effects	167
	9.1		ity Saturation	167
		9.1.1	Velocity-Field Models	169
		9.1.2	Effect of VS on the Drain Current	171
		9.1.3	Effect of VS on the Transconductances	181

x CONTENTS

	9.2	Channel Length Modulation				
	9.3	189				
		9.3.1 In	troduction	189		
		9.3.2 E	valuation of the Surface Potential	189		
		9.3.3 E	ffect on the Drain Current	194		
		9.3.4 E	ffect on Small-Signal Parameters in Weak Inversion	196		
	9.4	Short-Ch	annel Thermal Noise Model	197		
		9.4.1 T	hermal Noise Drain Conductance	198		
		9.4.2 E	ffect of VS and Carrier Heating on Thermal Noise	205		
		9.4.3 E	ffects of Vertical Field Mobility Reduction and Channel			
		L	ength Modulation	209		
		9.4.4 St	ummary	211		
10	The	e Extrinsi	c Model	213		
	10.		sic Part of the Device	213		
	10.2		s Resistances	215		
			Source and Drain Resistances	215		
		10.2.2		217		
	10.1	10.3 Overlap Regions		220		
			Overlap Capacitances	220		
			Overlap Gate Leakage Current	223		
	10.4		e and Drain Junctions	223		
		10.4.1	Source and Drain Diodes Large-Signal Model	223		
		10.4.2	Source and Drain Junction Capacitances	224		
		10.4.3	Source and Drain Junction Conductances	226		
	10.:	5 Extrin	sic Noise Sources	226		
Par	•t III	The Hi	gh-Frequency Model	229		
11	Eq	uivalent (Circuit at RF	231		
	11.	I RF MO	OS Transistor Structure and Layout	231		
	11.2	2 What (Changes at RF?	231		
	11.	3 Transis	stor Figures of Merit	232		
		11.3.1	1 5	232		
		11.3.2	Maximum Frequency of Oscillation f_{max}	236		
		11.3.3	8	238		
		11.3.4		239		
	11.4	-	lent Circuit at RF	240		
		11.4.1	Equivalent Circuit at RF	240		
		11.4.2	1 0			
			Networks	242		
		11.4.3	Practical Implementation Issues	247		
12	The Small-Signal Model at RF					
	12.	1 The Ec	quivalent Small-Signal Circuit at RF	249		
	12.2	•		251		
	12.1	3 The La	arge-Signal Model at RF	257		

13	The Noise Model at RF			
	13.1	The HF	Noise Parameters	261
		13.1.1	The Noisy Two-Port	261
		13.1.2	The Correlation Admittance	263
		13.1.3	The Noise Factor	265
		13.1.4	Minimum Noise Factor	266
	13.2	The Hig	gh-Frequency Thermal Noise Model	267
		13.2.1	Generalized High-Frequency Noise Model	268
		13.2.2	The Two-Transistor Approach at High Frequency	269
		13.2.3	Generic PSDs Derivation	272
		13.2.4	First-Order Approximation	273
		13.2.5	Higher Order Effects	279
	13.3	HF Noi	se Parameters of a Common-Source Amplifier	282
		13.3.1	Simple Equivalent Circuit Including Induced Gate Noise and	
			Drain Noise	282
		13.3.2	Equivalent Circuit Including Induced Gate Noise, Drain Noise,	
			Gate and Substrate Resistances Noise	288
Ref	References			291
Ind	ex			299