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ABSTRACT  

A series of selenophenes with redox-active amine end-capping groups was synthesized and 

investigated. A combination of cyclic voltammetry, optical absorption, EPR spectroscopy and 

quantum-chemical calculations based on Kohn-Sham density functional theory was used to 

explore charge delocalization in the monocationic mixed-valence forms of these selenophenes, 

and the results were compared to those obtained from analogous studies of structurally identical 

thiophenes. The striking finding is that the comproportionation constant (Kc) for the 

experimentally investigated biselenophene is more than two orders of magnitude lower than for 

its bithiophene counterpart (in CH3CN with 0.1 M TBAPF6), and the electronic coupling 

between the two amine end-capping groups in the mixed-valent biselenophene monocation is 

only roughly half as strong as in the corresponding bithiophene monocation. These are 

surprisingly large differences given the structural similarity between the respective 

biselenophene and bithiophene molecules. However, the computationally determined 

comproportionation constants for biselenophene and bithiophene are almost identical, and the 

electronic coupling in the monocationic biselenophene is only slightly smaller than that in the 

monocationic bithiophene. We assume that the external electric field may be responsible for the 

differences in monocation stabilities between experiment and computation. Our findings indicate 

that charge delocalization across individual selenophenes tends to be less pronounced than across 

individual thiophenes, and this may have important implications for long-range charge transfer 

across selenophene oligomers or polymers. 
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INTRODUCTION 

 

Conducting oligomers and polymers have found use in many different applications including 

for example photovoltaic cells or light-emitting diodes.1,2 Polythiophene is one of the most 

investigated conducting polymers.3 Recently there has been increasing interest in polymers of 

other chalcogenophenes, that is, in polyfuranes,4,5 polyselenophenes,6-8 and polytellurophenes.9-11 

Whether or not selenophenes might be even better building blocks for the formation of charge 

conducting polymers than thiophenes is an intriguing question. In this context it seemed useful to 

explore to what extent charge can be delocalized over individual chalcogenophene monomer 

building blocks or over short oligomers thereof. One fairly simple possibility to do this is to 

attach redox-active groups to the two ends of the molecules of interest and to oxidize (or reduce) 

one of these end-capping groups in order to generate mixed-valence species.12-15 This 

experimental approach has been applied numerous times to thiophene derivatives,14,16-25 but 

selenophenes are comparatively poorly explored in this regard.26 We have recently reported the 

first comparative study of charge delocalization across the entire chalcogenophene series ranging 

from furan to tellurophene.27 

As redox-active units for mixed-valence studies ferrocenes,5,28 ruthenium complexes,29,30 and 

triarylamines are particularly popular choices.12,13,31 We have chosen the latter because 
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bis(triarylamine) monocations tend to give intervalence absorption bands which are readily 

detectable. In Scheme 1 the amine end-capped selenophenes which were investigated in the 

present study (1, 2, 3, 4) are shown along with thiophene analogs (I, II, IV) which we have 

previously explored.23 

 

Scheme 1. Chemical structures of the amino-decorated selenophenes investigated in this work (1 

– 4) and of their thiophene analogs which we recently explored (I – IV).23 

 

 

Selenophenes 1 – 3 were investigated by a combination of cyclic voltammetry, optical 

absorption, and EPR spectroscopy. Our study reveals certain analogies but also some remarkable 

differences between the selenophenes and the corresponding thiophenes. 

 

RESULTS AND DISCUSSION 

 

Synthesis. Compounds 1 – 4 were obtained using a palladium(0)-catalyzed C,N-cross coupling 

reaction between one equivalent of 2,5-dibromoselenophene or 5,5’-dibromo-2,2’-biselenophene 

and two equivalents of secondary amine. For compound 4, 2-bromoselenophene was reacted 
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with one equivalent of secondary amine. Our attempts to isolate a terselenophene analog to 1 and 

2 were unsuccessful because of purification problems of the final product. 

All compounds were purified by column chromatography on silica gel, and they were 

characterized by high-resolution mass spectrometry, NMR spectroscopy, and by elemental 

analysis. Detailed synthetic protocols and product characterization data for all new compounds 

are in the Supporting Information. 

 

Computational methodology. Oxidation potentials: Molecular and electronic structures of 

neutral, monocationic and bicationic forms of 1, 2, 3, I and II were optimized employing Kohn-

Sham density-functional theory (KS-DFT) combined with a protocol by Renz and Kaupp 

developed for the prediction of electronic communication in organic mixed-valence 

compounds.32-34  This protocol includes the use of the BLYP35 hybrid functional (35% exact-

exchange admixture) 32,35-37 of Ahlrichs’ def-TZVP basis set 38 and of the conductor-like 

polarizable continuum model (CPCM) to consider solvent effects.39,40 We chose the dielectric 

constant of acetonitrile because this was the solvent in the experimental investigations. The 

BMK hybrid functional 41 (42% exact-exchange admixture) and the BLYP80 35-37 hybrid 

functional (80% exact-exchange admixture) were additionally employed. Furthermore, single-

point calculations were performed on the monocations with the optimized neutral molecular 

structure and on the bications with the optimized monocationic molecular structure. For further 

details and the choice of initial structures, see the Supporting Information. The term “ionization 

potential” might be technically more correct for our calculated values but we will use the term 

“oxidation potential” throughout this manuscript to make the relationship between experiment 

and calculation more evident. 
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Optical absorption spectra: Optimized (BLYP35/TZVP/CPCM:MeCN) molecular structures 

of neutral and monocationic forms of 1, 2, 3, I and II were used as input to calculate the three 

lowest-energy excitations employing time-dependent density-functional theory (TD-DFT) 

combined with the mentioned protocol by Renz and Kaupp. We chose the dielectric constants of 

acetonitrile and dichloromethane because these two solvents were used for the experimental UV-

Vis-NIR studies. The BMK hybrid functional and the M06HF hybrid functional (100% exact-

exchange admixture) were additionally employed.42,43 

 

Cyclic voltammetry. Figure 1 shows cyclic voltammograms of compounds 1 (a), 2 (b), and 3 

(c) in dry and deoxygenated acetonitrile measured in the presence of 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) electrolyte at scan rates of 100 mV/s. The waves at -0.51 V vs. 

Fc+/0 (marked by the dotted vertical line) are due to decamethylferrocene which was added for 

internal potential calibration, the experimental uncertainty associated with our potential 

measurements is on the order of 0.03 V. 

 

 

Figure 1. Cyclic voltammograms of compounds 1 – 3 in dry and deoxygenated CH3CN 

measured in presence of 0.1 M TBAPF6 electrolyte: (a) compound 1; (b) compound 2; (c) 
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compound 3. The waves at -0.51 V vs. Fc+/0 (dashed vertical line) are due to added 

decamethylferrocene. The scan rate was 100 mV/s.  

 

In the voltage range shown in Figure 1 the voltammograms of all three compounds exhibit two 

reversible waves which are clearly separate from each other. They are attributed to one-electron 

oxidation of the two amine end-capping groups. For a given wave, the average separation 

between oxidative and reductive peak currents is 65 mV. Expectedly, reference molecule 4 

exhibits only one oxidation wave in the same potential range (Figure S1 of the Supporting 

Information) because it contains only one amino group. Moreover, oxidation is irreversible in 

this case, and this is presumably due to electropolymerization phenomena. Analogous 

experiments with 1 – 3 in dichloromethane produce lower quality voltammograms (Figure S2) in 

which for a given oxidation wave the voltage separation between oxidative and reductive peak 

current is substantially larger (on average 260 mV) than in acetonitrile. The electrochemical 

potentials for one- and two-electron oxidation of compounds 1 – 3 in acetonitrile and 

dichloromethane are summarized in Table 1. 

 

Table 1. Electrochemical potentials for one- and two-electron oxidation of compounds 1 – 3 in V 

vs. Fc+/0 in acetonitrile and dichloromethane. The supporting electrolyte was 0.1 M TBAPF6.  

 CH3CN CH2Cl2 

compd E1/2
+/0 E1/2

2+/+ ∆E [mV] Kc E1/2
+/0 E1/2

2+/+ ∆E [mV] Kc 

1
 a
 -0.23 0.16 393 4.6×106 -0.27 0.23 502 3.2×108 

2
 a
 -0.17 -0.06 109 7.0×101 -0.21 0.06 269 2.5×104 

3 
a
 0.09 0.41 321 2.8×105 0.06 0.44 372 2.0×106 
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∆E = E1/2
+/0 – E1/2

2+/+. Kc is the comproportionation constants as defined in the text. a This 
work; b from ref. 23. 

 

Compounds 1 and 2 only differ in the length of the selenophene bridge, resulting in a similar 

first oxidation potential (E1/2
+/0, second column of Table 1) in both solvents. Compounds 1 and 3 

both contain a monoselenophene bridge but differ in their amino groups. The first oxidation 

potential is significantly less positive for 1 than for 3 which may be caused by the higher electron 

density at the nitrogen atoms in 1 due to electron-donating methoxy groups. The less positive 

oxidation potential is confirmed by DFT calculations (Table S2 in the Supporting Information).  

Of particular relevance in the context of mixed-valence phenomena are the differences (∆E) 

between the electrochemical potentials for oxidation of the first (E1/2
+/0) and the second (E1/2

2+/+) 

redox center (fourth column of Table 1). On the basis of these ∆E values the comproportionation 

constants (Kc=10(∆E/59 mV)) can be estimated (fifth column of Table 1). Kc is a measure of the 

stability of the monocationic (mixed-valent) state of compounds 1 – 3.44 The comproportionation 

constant is often largely determined by electrostatic effects, and it can be tricky to extract 

meaningful information on electronic coupling matrix elements on the basis of electrochemical 

data.45 In acetonitrile, Kc decreases by roughly 5 orders of magnitude between compounds 1 and 

2, but the Kc values of compounds 1 and 3 differ by only a factor of 16. Expectedly, an increase 

in bridge length has a far greater influence on Kc than a change in electronic structure at the 

redox-active unit. 

Comparison with the Kc values of the thiophene analogs I and II is particularly interesting. 

Direct comparison is possible in this case because I and II were investigated under precisely the 

I 
b
 -0.23 0.22 450 4.2×107     

II 
b
 -0.17 0.08 250 1.7×104     
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same conditions,23 i. e., using the same solvent and the same electrolyte hence solvation and ion 

pairing effects are expected to be similar in both studies.28 For monothiophene compound I in 

CH3CN with TBAPF6 we found Kc = 4.2⋅107 (Table 1) which is nearly an order of magnitude 

greater than the Kc value obtained for the monoselenophene compound 1 (4.6⋅106, Table 1). For 

bithiophene compound II we found Kc = 1.7⋅104 which is a factor of 240 greater than the Kc 

value (70) obtained for biselenophene compound 2. 

The key finding from the cyclic voltammetry studies is that the comproportionation constants 

for selenophenes 1 and 2 are substantially lower than those of the corresponding thiophenes I 

and II. Moreover, Kc decreases significantly more when going from the monoselenophene (1) to 

the biselenophene (2) (a factor of ~65000) than when going from the monothiophene (I) to the 

bithiophene (II) (a factor of ~2500). The lower Kc values in the selenophenes (and their more 

pronounced distance-dependence) may be a manifestation of weaker (through-bond) electronic 

communication across mono- and biselenophene than across mono- and bithiophene. However, it 

may also be important to consider electrostatic effects even though the distances between the 

redox moieties are almost the same in both cases. Moreover, since organic mixed-valence 

compounds are known to exhibit a significant fraction of spin on the bridge, the external electric 

field might influence the two bichalcogenophenes to a different extent because of the larger 

polarizability of selenium compared to sulfur (vide infra).  

  

Optical absorption spectroscopy. The black traces in Figure 2 are the optical absorption 

spectra of compounds 1 – 3 in acetonitrile at room temperature. None of the three molecules 

shows any significant absorption below 17000 cm-1 in the charge-neutral form. The colored 

traces were measured after addition of increasing amounts of Cu(ClO4)2 which led to chemical 
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oxidation of the selenophene compounds. In Figure 2 we show the spectra which were detected 

after addition of 0.5 (purple), 1.0 (green), 1.5 (orange), and 2.0 equivalents (red) of Cu(ClO4)2 to 

4.0⋅10-5 M solutions of the selenophenes.  

 

 

Figure 2. Optical absorption spectra of 4.0⋅10-5 M solutions of (a) selenophene 1, (b) 

selenophene 2, and (c) selenophene 3 in CH3CN (black traces). The colored traces were 

measured after addition of Cu(ClO4)2 as a chemical oxidant. 

 

Initially, addition of Cu(ClO4)2 oxidant to solutions containing mono- (1) and biselenophene 

(2) leads to new absorption bands at ∼14000 cm-1 and ∼10700 cm-1 (blue traces in Figure 2a/b). 

These bands reach maximal absorbance after addition of 1 equivalent of oxidant (green traces) 

and then decrease upon further addition of Cu(ClO4)2 (orange and red traces). In other words, 

these low-energy bands are observed when substantial concentrations of the one-electron 

oxidized species 1+ and 2+ are present. Qualitatively, the spectra of 1+ and 2+ are very similar to 

those of I+ and II+ which were measured previously under identical conditions.23 Upon oxidation 

of the bis(4-chlorophenyl)amino-decorated selenophene (3) there is a new band at  ∼15200 cm-1 

(blue trace in Figure 2c) which we interpret as the analog to the 14000 cm-1 band of 1+ (Figure 
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2a). Replacement of methoxy groups on the amines by chloro-substituents thus induces a blue-

shift of the lowest energetic monocation absorption. As a consequence, the lowest-energetic 

absorption of 3+ comes energetically close to electronic transitions of different origin (and 

possibly due to different species such as for example 32+), and this might explain why even after 

addition of 2 equivalents of Cu(ClO4)2 there is still significant absorbance around 15000 cm-1 in 

the particular case of Figure 2c (red trace). Quantum-chemical calculations 

(BLYP35/TZVP/CPCM:MeCN) support this hypothesis (see Table S9). Moreover, the 

substantially higher oxidation potential of 3+ (compared to 1+ and 2+) makes the second 

oxidation with Cu(II) less favorable in this case. There is no indication for the formation of 

degradation products on the timescale on which these UV-Vis studies were performed. 

The lowest-energy absorption bands of bis(triarylamine) monocations are commonly 

interpreted as intervalence (or charge resonance) absorption bands.12,13,22,46 The fact that such 

bands are observed is an indication of significant electronic interaction between the individual 

redox centers. In the following we perform a quantitative analysis of the intervalence absorptions 

detected in Figure 2. 

The black traces in Figure 3 are the experimental absorption spectra of 1+ (a), 2+ (b), and 3+ (c) 

in CH3CN at room temperature after addition of 1.0 eq of Cu(ClO4)2 to 4.0⋅10-5 M solutions of 

the charge-neutral compounds.47 The colored traces in Figure 3 are Gaussian fits to the 

experimental data. The Gaussians marked in green were used to fit the low-energy intervalence 

absorption bands, whereas the Gaussians represented by dashed purple traces were necessary to 

fit the higher-energy portions of the experimental spectrum. The latter are of no further interest. 

The dotted red traces represent the sums of the individual (green and purple) Gaussians. They 

match the experimental (black) traces nearly perfectly. 

Page 11 of 42

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

12

 

 

Figure 3. Black traces: Experimental absorption spectra of 1+ (a), 2+ (b), and 3+ (c) in CH3CN. 

Blue and green traces: Gaussian fits to the experimental data. Dotted red traces: Sums of the 

individual Gaussian fit functions. The parameters from the Gaussian functions used to fit the 

intervalence absorption bands (dotted green lines) are listed in Table 2.  

 

Table 2. Parameters obtained from analysis of the intervalence absorptions in Figure 3. 

compd ν1/2[high] 

[cm-1] 

ν1/2[low] 

[cm-1] 

ν1/2[high]/ν1/2[low] νmax,G1 

[cm-1] 

νmax,G2 

[cm-1] 

ν1/2,G1 

[cm-1] 

ν1/2,G2 

[cm-1] 

ν1/2,class II 

[cm-1] 

1
+
 5605 4055 1.38 13535 15955 3520 3110 5675 

2
+
 3130 2905 1.08 10275 11670 2390 1950 4965 

3
+ 4880 4420 1.10 14110 16005 3035 4170 5960 

ν1/2[high] and ν1/2[low] are defined in the text. νmax,Gi is the energetic position of the maximum of 
the i-th Gaussian (dotted green traces in Figure 3). ν1/2,Gi is the full width at half-maximum 
(FWHM) of the i-th Gaussian. ν1/2,class II is the FWHM expected for pure class II behavior based 
on equation 1. 

 

The IVCT bands of all three monocations (1+, 2+, 3+) can only be fitted satisfactorily when 

using two Gaussians. Based on Hush theory, so-called class II mixed-valence species, i. e., those 

exhibiting only partial charge delocalization,48 are expected to exhibit Gaussian-shaped IVCT 
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bands.49-52 The finding that the low-energy bands of 1+, 2+, and 3+ cannot be fitted adequately 

with single Gaussians can therefore be interpreted as a deviation from pure class II behavior. 

Completely delocalized class III systems are known to exhibit strongly asymmetrical IVCT 

bands,51 but in our case the asymmetry is not very pronounced, and it seems plausible that 1+, 2+, 

and 3+ are in fact borderline class II / class III systems like numerous other bis(triarylamine) 

monocations.12,13,46 A simple measure of the asymmetry is the ratio ν1/2[high]/ν1/2[low] (fourth 

column of Table 2). ν1/2[high] is twice the bandwidth on the high-energy side of the IVCT band 

(second column of Table 2) and ν1/2[low] is twice the bandwidth on the low-energy side of the 

IVCT band (third column of Table 2). The ν1/2[high]/ν1/2[low] ratios vary between 1.08 and 1.38, i. 

e., the asymmetry is not very pronounced as noted above. 

For the IVCT bands of class II mixed-valence species, one expects a relation between IVCT 

bandwidth (ν1/2,class II) and energetic position of the IVCT band maximum (νmax) as described by 

equation 1.51 νmax was extracted directly from the experimental absorption spectra in Figure 3 

(maximum of the lowest-energy band). 

 

maxIIclass,2/1 2310 ν⋅=ν         (eq. 1) 

 

The last column of Table 2 lists the ν1/2,class II values calculated on the basis of the νmax values 

extracted from the experimental spectra in Figure 3. The bandwidths calculated in this manner 

for 1+, 2+, and 3+ are all significantly broader than the experimentally observed bandwidths. For 

instance, for 1+ one calculates ν1/2,class II = 5675 cm-1, whereas the experimental value ((ν1/2[high] + 

ν1/2[low])/2) is 4830 cm-1. For 2+ and 3+ the calculated ν1/2,class II values are ~40% and ~20% higher 

than the experimental bandwidths. These sizeable discrepancies between calculated ν1/2,class II 
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values and experimental bandwidths can be interpreted as an additional indication for a deviation 

from pure class II behavior. 

The solvent dependence of the IVCT bands is non-negligible. Figure 4 displays absorption 

spectra of 1+ (a), 2+ (b), and 3+ (c) in acetonitrile (black traces) and dichloromethane (red traces). 

This change in solvent causes shifts of the IVCT band maxima by 1030 cm-1 (1+), 250 cm-1 (2+), 

and 850 cm-1 (3+). Poor solubility precluded measurements in less polar solvents. The IVCT 

bands of completely delocalized class III mixed-valence compounds tend to exhibit weaker 

solvent dependencies than those observed here. 

 

 

Figure 4. Optical absorption spectra of (a) 1+, (b) 2+, and (c) 3+ in acetonitrile (black traces) and 

in dichloromethane (red dotted traces). 

 

The conclusion from this section is that clear-cut assignment of 1+, 2+, 3+ to either class II or 

class III is difficult. Some of the experimental evidence is more compatible with class III 

(asymmetry and relatively narrow widths of IVCT bands) whereas other evidence points towards 

class II (solvent dependence). The systems considered here most likely belong to a family of 
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compounds named borderline class II / class III systems.46,51,52 For the thiophene analogs I+, II+, 

and III+ we have previously arrived at the same conclusion.23 

 

Determination of electronic coupling matrix elements. The matrix element quantifying the 

electronic coupling between individual redox centers (HAB) is in relation to the transition dipole 

moment (µge) associated with the IVCT as described by equation 2.22,46,49 

 

Re
HAB ⋅

ν⋅
=

maxgeµ

         (eq. 2) 

 

νmax is the energetic position of the IVCT band maximum (see above), R is the effective charge 

transfer distance, and e is the elemental charge. The transition dipole moment in units of e⋅Å can 

be determined from integration of the IVCT band as described by equation 3.22,46,49 

 

max
ge

d)(
09584.0

ν
∫ ν⋅νε

⋅=µ
        (eq. 3) 

 

The µge values reported in the fifth column of Table 3 were determined on the basis of the two 

Gaussian functions needed to fit the experimental IVCT bands (dotted green traces in Figure 3). 

Equation 3 assumes that the IVCT spectra are properly represented in the form of extinction 

coefficient (in M-1 cm-1) versus wavenumber (in cm-1). 

 

Table 3. Estimation of electronic coupling matrix elements (HAB values).  

compd dNN [Å] νmax [cm-1] µge [D] µge [e�Å] HAB [cm-1] 
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R = dNN R = 2/3·dNN 

1
+ a 5.2 13950 5.5 1.1 3080 4620 

2
+ a
 9.1 10660 4.2 0.9 1010 1520 

3
+ a 5.2 15385 4.2 0.9 2620 3920 

I
+ b 5.2 13850 5.7 1.2 3160 4790 

II
+ b 9.1 10620 7.7 1.6 1870 2835 

a This work; b From ref. 23. dNN is the N-N distance estimated from molecular modeling, νmax is 
the energetic position of the IVCT absorption band maximum, µge is the transition dipole 
moment associated with the IVCT.  

 

The trickiest part in evaluating HAB on the basis of equations 2 and 3 is the determination of the 

effective electron transfer distance. Many prior examples have shown that R need not correspond 

to the geometrical distance between redox centers.22,53-55 Moreover, in organic mixed-valence 

compounds the redox activity usually cannot be pinpointed to a single atom hence it is inherently 

difficult to determine R. One possibility is to use Stark spectroscopy, another is to perform 

calculations.22,56,57 For our purposes it seems sufficient to consider two limiting cases: The upper 

limit of R is taken as the geometrical distance between nitrogen atoms (dNN). For the lower limit 

we assume that R = 2/3⋅dNN based on prior studies of comparable organic mixed-valence 

compounds.12,13,23,53 The resulting electronic coupling matrix elements based on these two 

limiting assumptions are reported in the last two columns of Table 3. 

The first thing we note is that HAB for monoselenophene 1+ and monothiophene I+ are very 

similar, regardless whether the R = dNN or the R = 2/3⋅dNN limit is considered. In the latter limit, 

HAB = 4620 cm-1 for 1+ and HAB = 4790 cm-1 for I+. By contrast, biselenophene 2+ exhibits HAB 

values which are roughly 45% lower (in both limits) compared to the electronic coupling matrix 

element of bithiophene II+. In other words, HAB decreases much more strongly between 1+ and 2+ 
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than between I+ and II+. This is in line with the much stronger decrease in Kc between 1 and 2 

(factor of ~65’000) than between I and II (factor of ~2500), see above. 

According to superexchange theory,58 electronic coupling matrix elements exhibit an 

exponential distance dependence following equation 4.59 

 

( ) 







−⋅⋅−⋅= )(

2

1
exp)( )0(0

RRHRH
ABAB

β
       (eq. 4) 

 

Here, HAB
(0) is the electronic coupling matrix element at a reference distance R(0), and β is the 

so-called distance decay constant. The factor of ½ is used to make the β values from equation 4 

directly comparable to the distance decay constants extracted from studies of electron transfer 

rates (which are proportional to HAB
2). On the basis of the HAB values for 1+ and 2+ in Table 3 we 

find β = 0.57 Å-1 in the R = dNN limit and β = 0.85 Å-1 in the R = 2/3⋅dNN limit (third row of 

Table 4). For I+ and II+ we find β = 0.27 Å-1 and β = 0.40 Å-1, respectively (bottom row of Table 

4). Alternatively, the use of dimensionless distance decay constants (βn), characterizing the 

decrease of HAB per σ-bond between the redox active centers (here taken as the two N-atoms), is 

customary.13 We obtain βn = 0.74 for the selenophenes and βn = 0.35 for the thiophenes (last 

column of Table 4). Derivations of the equations used for determining β and βn are found in the 

Supporting Information.  

 

Table 4. Distance decay constants for the electronic coupling matrix elements in the 

selenophenes and thiophenes from Scheme 1.  

 β [Å
-1] βn 
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compounds R = dNN R = 2/3⋅dNN  

1
+ → 2+ a 0.57 0.85 0.74 

I
+ → II+ b 0.27 0.40 0.35 

a This work; b From ref. 23. β is the distance decay constant as defined in equation 4. βn is the 
dimensionless decay constant characterizing the decrease of HAB per σ-bond between the two 
nitrogen atoms.  

 

It is clear that the determination of β and βn is preferably based on more than two HAB values, 

but this is not possible in the present case (see synthesis section). The β and βn values in Table 4 

nevertheless capture an important difference between the selenophenes and thiophenes from 

Scheme 1, but extrapolation to longer oligoselenophenes and oligothiophenes should be made 

with caution. The key finding from this section is that the exponential drop-off in HAB between 

the mono- and biselenophene is more than twice as pronounced as for structurally analogous 

mono- and bithiophenes. 

To put our distance decay constants from Table 4 into somewhat broader perspective we note 

that β values for oligo-p-phenylene bridges are usually in the range from 0.4 Å-1 to 0.8 Å-1, 

depending on the attached redox-active units.60-62 For a series of phenylene-bridged 

bis(triarylamines) βn = 0.32 was found.13,46 A recent study of ferrocene-decorated oligofuranes 

reported βn = 0.13 Å-1.5 Note that β is not a strictly bridge-specific property. A given molecular 

bridge can produce drastically different β values depending on the nature of the attached redox-

active units.63,64 

The influence of the redox-active moiety on HAB is illustrated by the comparison of 

monoselenophenes 1+ and 3+. The less electron-donating nature of the chloro-substituted amine 

in 3+ causes a non-negligible decrease of HAB (roughly 15%). This is a well-known effect,65 and 
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HAB is expected by theory to depend on the so-called tunneling-energy gap which is a function of 

the donor and bridge redox potentials.58,64 

 

EPR Spectroscopy. Additional insight into the delocalization of the unpaired electron in the 

one-electron oxidized forms of the compounds from Scheme 1 can be gained from EPR 

spectroscopy. The solid lines in Figure 5 represent X-band EPR spectra of ~10-3 M solutions of 

1
+ (a), 2+ (b) and 3+ (c) in acetonitrile. The radical cations were generated by chemical oxidation 

using Cu(ClO4)2 as described above. 
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Figure 5. Solid traces: Experimental X-band EPR spectra  of  selenophene bridged monocations 

(a) 1+, (b) 2+, and (c) 3+ in ~10-3 M acetonitrile solution at room temperature. Dashed traces: 

simulated EPR spectra using the EPR parameters given in Table 5. The simulations were 

performed using the WinSim 2012 software. 

 

For all three radical monocations the EPR spectra are centered at values of the gyromagnetic 

factor g of 2.003-2.035, which is characteristic for triarylamine radical cations (Figure 5).22 The 

hyperfine structure of all three radical cations is due to the interaction of the unpaired electron 
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with nuclear spins of nitrogen and hydrogen, as previously reported for the structurally identical 

thiophene compounds I+ and II+.23 The hyperfine coupling constants are slightly higher for 1+, 

2
+, and 3+ than the values reported for their thiophene analogs I+ and II+ (Table 5). The slight 

difference in hyperfine interaction might be due to the higher polarity of acetonitrile (used as 

solvent in the case of 1+, 2+, and 3+) compared to dichloromethane (employed in our prior study 

of I+ and II+). The simulation of the EPR spectra for the monocation radicals 1+ and 3+ is similar 

to that reported for I+: the unpaired electron simultaneously interacts with two equivalent 

nitrogen nuclei (with aN = 4.7 G for 1+ and 3+), and two equivalent hydrogen nuclei (with aH = 

3.9 G for 1+, and 3.8 G for 3+, respectively). The aN values of monocation radicals 1+ and 3+ are 

compatible with complete delocalization of the unpaired electron on the EPR timescale, i. e., 

with class III mixed-valence behavior.22 The simulation of the EPR spectrum for monocation 

radical 2+ indicates a simultaneous interaction of the unpaired electron with two equivalent 

nitrogen nuclei with aN = 3.1 G, and two nonequivalent hydrogen nuclei with aH1 = 2.9 G and 

aH1 = 2.1 G. Both the aN value smaller than 4.5 G and the magnetic nonequivalence of hydrogen 

nuclei interacting with the unpaired electron are compatible with class II mixed-valence behavior 

in radical 2+.23  

The nitrogen hyperfine constant decreases from 4.7 G to 3.1 G when going from 1+ to 2+, and a 

similar observation has been made previously for I+ and II+.23 This finding can be attributed to 

spin delocalization away from the nitrogen atoms towards the center of the chalcogenophene 

bridge.22 It is likely that this phenomenon is caused by an increase in π-conjugation when going 

from the mono- to the bichalcogenophenes. In other words, with increasing bridge length the 

amino-decorated chalcogenophene monocations are to be considered more and more as bridge-

oxidized rather than amino-oxidized species. The spin density on the selenophene bridge is 
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increased at the expense of that on the nitrogen atom as also seen for alkoxyphenyl amino radical 

cations.22 This interpretation is supported by density-functional theory (vide infra as well as 

Tables S6 and S7; note that the spin density is distributed symmetrically in the DFT results). 

 

Table 5. EPR parameters (g factors and hyperfine coupling constants) for selenophene and 

thiophene cations.  

compd g aN [G] aH1 [G] aH2 [G] 

1
+ a 2.0030 4.7 3.9  

2
+ a 2.0035 3.1 2.9 2.1 

3
+ a 2.0030 4.7 3.8  

I
+ b 2.0050 4.3 2.6  

II
+ b 2.0050 2.9 2.4 2.0 

a This work, measured in CH3CN; b From ref. 23, measured in CH2Cl2.  

 

Quantum-chemical studies of oxidation potentials and intervalence charge transfer. On 

average, density-functional based calculations are the best compromise between computational 

cost and accuracy in quantum-chemical studies. Unfortunately, those methods tend to over-

delocalize the system’s electrons due to inherent self-interaction errors, which is particularly 

critical for mixed-valence compounds.11 For this purpose, Renz and Kaupp developed a protocol 

to avoid the problems without increasing the computational cost too much.32-34 The use of a 

hybrid functional with intermediate exact-exchange admixture (35-42%) adjusts over-

delocalization, whereas the use of the conductor-like polarizable continuum model (CPCM) is 

supposed to consider individual solvent polarities. It was shown that the protocol performs well 

for bis-triarylamine radical cations, neutral triarylamine-triarylmethyl radicals, dinitroaryl radical 
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cations and diquinone radical anions.32-34 Our calculations show that in the course of oxidation to 

the mono- and the dicationic forms, our systems adopt an increasingly quinoidal structure, 

without any significant differences between thiophene and selenophene compounds (Tables S3 

to S5). 

Table 6 summarizes the relevant differences between measured and calculated vertical (VOP) 

and adiabatic (AOP) oxidation potentials (see Supporting Information for raw data and for more 

details on the definition of AOP and VOP), where we have assumed that the experimental values 

given in volts can be expressed as given in electron volts because one-electron processes are 

studied. Note that two different conformers of the bichalcogenophenes were employed in the 

calculations (Scheme S1). As their energies are almost the same in each case, we present, for the 

sake of brevity, Boltzmann-weighted averages with an assumed standard temperature throughout 

this work (the temperature is not considered in the calculations, but since the deviation to the 

arithmetic averages is less than 1%, the use of Boltzmann weights is not an unreasonable 

choice). Energy values for the individual conformers are listed in the Supporting Information 

(individual energies obtained with the BMK hybrid functional are listed in Table S1). 

 

Table 6. Differences between different kinds of experimentally (∆Eox) and computationally 

(BLYP35/TZVP/CPCM:MeCN) determined oxidation potentials. AOP and VOP are defined in 

the Supporting Information. 

1st oxidation potential ∆AOP [meV] ∆VOP [meV] ∆Eox [meV] 

2 – 1 33.5 -102 ~60 

3 – 1 409 502 ~320 
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II – I 33.4 -70.0 ~60 

I – 1 44.7 51.6 ~0 

II – 2 44.7 83.8 ~0 

2nd oxidation potential    

2 – 1 -303 -227 ~-220 

3 – 1 335 372 ~250 

II – I -275 -210 ~-140 

I – 1 37.6 35.0 ~60 

II – 2 65.9 52.1 ~140 

2nd – 1st oxidation potential    

1 917 538 393 

2 581 412 109 

3 843 406 321 

I 910 521 450 

II 602 381 250 

 

Considering that the typical error for energy differences obtained from KS-DFT calculations is 

on the order of  5-10 kJ/mol (~50-100 meV), the relations of the first AOPs are remarkably close 

to the experimental benchmark, whereas those of the first VOPs are less close. The average 

relations of the second AOPs and VOPs are moderately close to the experimental results for the 

selenophene compounds and the monochalcogenophenes, and less close for the thiophene 

compounds and the bichalcogenophenes. Finally, the differences between the first and second 

oxidation potentials are very poorly reproduced by the computations compared to the 
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experimental benchmark (even though the qualitative trends are roughly correct when using 

adiabatic oxidation potentials). Table S2 lists individual oxidation potentials obtained with 

BLYP35 and BMK hybrid functionals, respectively. 

To interpret these results, it is important to keep in mind that the molecules in the experimental 

setup are exposed to an external electric field and to counter ions, which was not considered in 

the calculations. As the external field increases in the course of an oxidative potential sweep, the 

oxidation of the neutral compounds is presumably less influenced by this field than oxidation of 

the monocations (which requires higher potentials). Furthermore, spin analyses of the optimized 

monocations (Tables S6 and S7) reveal that the spin is significantly more distributed over the 

bridges of the bichalcogenophenes than over those of the monochalcogenophenes. This 

observation might explain why the oxidation-potential differences of the bichalcogenophenes are 

less close to the experiment than those of the monochalcogenophenes: Due to the relatively large 

polarizabilities of the chalcogen atoms, the external electric field is assumed to increasingly 

influence those compounds which reveal large spin densities at the bridge. However, this 

argumentation does not give a clue why the results of the selenophene compounds are closer to 

the experiment than those of the thiophene compounds. It might be that the oxidation potentials 

of the selenophene compounds change more linearly with the increase of the external field 

because the polarizability of selenophene is significantly lower than that of thiophene.66 This 

hypothesis is supported by the findings that (i) the computationally determined differences 

between first and second oxidation potentials (for a given species) differ significantly from those 

obtained by cyclic-voltammetry, but (ii) relations between different species for a given oxidation 

potential differ much less between computation and experiment, particularly for the selenophene 

compounds and monochalcogenophenes (Table 6). Introducing a single PF6
− anion and 
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performing another structure optimization does not change the similarity of ionization potentials 

between thiophene and selenophene compounds (cf. Cartesian coordinates and Table S2 in the 

Supporting Information). 

A different course to interpreting the results is to assume that the optimized structures do not 

represent the experimentally relevant ones. Therefore, we made different attempts to obtain the 

correct minimum on the potential energy surface. First, we employed two different types of 

asymmetric initial structures (see the Supporting Information) for the optimizations of the radical 

cations. Second, we additionally employed the BMK and BLYP80 hybrid functionals (both 

contain a larger exact-exchange admixture favoring electron localization). Third, we considered 

two different conformers for the bichalcogenophenes (Scheme S1), respectively. Fourth, we also 

performed optimizations for bichalcogenophenes with mutually orthogonal heterocycles to 

impede electronic communication. However, in all cases we obtained the same symmetric 

optimized structures revealing a completely delocalized unpaired electron, compatible with 

Robin-Day class III (see Tables S3-S5 for relevant bond lengths and dihedral angles of all 

molecular structures as a function of the total electric charge). Thus, there is much evidence that 

the optimized structures indeed represent the real equilibrium structures in acetonitrile (assuming 

that the combinations of exchange-correlation functionals and the solvation model employed are 

suitable for the problem under study, as suggested by refs. 32-34). 

To summarize, the calculated results (Table 6) confirm the experimental finding that the length 

of the bridge has a significantly stronger influence on the comproportionation constant than the 

electronic structure of the redox-active units. On the other hand, the large difference between the 

comproportionation constants of biselenophene and bithiophene is not reproduced by our KS-

DFT computations. It might be that this difference is only pronounced in the presence of an 
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external electric field. The computed equivalence of the monocation stability does not 

necessarily mean that both biselenophene and bithiophene exhibit an equivalent extent of 

electronic communication,44,45 particularly because stability is a steady-state phenomenon 

whereas communication is a dynamic process. Transition dipole moments related to electronic 

excitations, which are not covered by time-independent computations, can play a decisive role in 

electronic communication. Quantum-chemical studies of the spectroscopic properties of the 

radical cations may provide an answer to this problem and serve to evaluate the quality of our 

previous structure optimizations. 

For this purpose, we examined the IVCT bands of the radical cations from a computational 

perspective. To evaluate the calculations, we additionally computed the lowest-energy transition 

of the neutral compounds (Table S8) which do not exhibit intervalence charge transfers. The 

wavenumbers of the computed lowest-energy transitions match qualitatively with the 

experimental results, but are overestimated by about 2000 cm-1, which is an indication of a class 

III situation (Figure 6 and Table 7).38,a,c,d Furthermore, we also observed a blue shift of the IVCT 

band from 1+ to 3+ (16665 cm-1 vs 18259 cm-1) employing BLYP35. 
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Figure 6. Experimental UV/Vis/NIR spectra (black lines) and computed (TD-DFT: 

BLYP35/TZVP/CPCM:MeCN) transitions (gray sticks) for (a) the monoselenophene radical 

cation 1+ and (b) the biselenophene radical cation 2+ (dark gray: SeCCSe dihedral angle of 180°; 

light gray: SeCCSe dihedral angle of 0°). 

 

Table 7. Energy of ICVT band maxima (in wavenumbers) obtained from experiment and 

computations (TD-DFT: BLYP35;BMK;M06HF/TZVP/CPCM:MeCN). Optimized structures 

obtained from BLYP35 calculations were employed. 

cmpd (max,exp) 

[cm-1] 

(max,BLYP35) 

[cm-1] 

(max,BMK) 

[cm-1] 

(max,M06HF) 

[cm-1] 

1
+ 13970 16665 17252 21356 

2
+ 10670 13180 13460 15624 

I
+ 13850 16129 16659 20800 

II
+ 10620 12962 13171 15211 

 

In order to determine the extent of electronic communication in the studied compounds, it is 

important to investigate solvent effects and to explicitly calculate electronic coupling elements, 

particularly as the computations do not provide band widths and band asymmetries. In contrast to 

the experiment, the computational results for dichloromethane only reveal slight red shifts of 

about 200 cm-1 (Table S9) when compared to the results for acetonitrile. This may be due to the 

use of molecular structures optimized by employing the dielectric constant of acetonitrile also in 

the single-point calculations based on a dichloromethane solvent model. 
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Table 8 summarizes the transition dipole moments of the lowest-energy transitions and N-N 

distances of optimized radical cations. The computed electronic coupling matrix elements 

reproduce the experimental trend (Figure 7), although the difference between biselenophene and 

bithiophene is significantly smaller compared to the experiment. This decrease also leads to a 

decay constant for the selenophenes (0.33 Å-1) that is only slightly larger than that of the 

thiophenes (0.30 Å-1). The M06HF hybrid functional suggests IVCT band maxima that are too 

high in energy compared to the results obtained from employing BLYP35 and BMK, 

respectively, which may be due to the use of molecular structures optimized with BLYP35. 

 

Table 8. Computed transition dipole moments of the lowest-energy transition and N-N distances 

of optimized radical cations (TD-DFT:BLYP35;BMK;M06HF/TZVP/CPCM:MeCN). The 

values for the bichalcogenophene are averages due to the use of two different conformations. 

 µ [D] 

(BLYP35) 

µ [D] 

(BMK) 

µ [D] 

(M06HF) 

d(N—N) [Å] 

(BLYP35) 

1
+
 7.3 7.2 6.9 5.23 

2
+
 8.1 8.4 9.1 9.14 

I
+
 7.6 7.5 7.3 5.11 

II
+
 9.3 9.4 9.9 8.84 

 

The striking result is that the selenophene radical cations reveal a smaller extent of electronic 

communication compared to the thiophene radical cations (4% for the mono compounds and 

11% for the bi compounds on average, respectively), even though their stabilities (expressed in 

terms of comproportionation constants Kc) seem to be similar in absence of an external electric 

field (according to computation). In order to evaluate the quality of the optimized molecular 
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structure of the biselenophene, whose computed electronic coupling element is still far away 

from the experimentally determined one, we modified the dihedral angle between the 

heterocycles of both conformers (Scheme S1) by only a few degrees, i.e., by 5°, 10° and 20°, 

respectively. The arithmetic average HAB value (TD-DFT: BLYP35/TZVP/CPCM:MeCN) is 

found to be 2475(69) cm-1 instead of 2434(40) cm-1 (Figure 7) when taking only the two 

optimized conformers into account. This change is not significant, and we conclude that the 

computed structures for biselenophene are satisfactory within the frame of the method developed 

by Renz and Kaupp. It appears that more sophisticated solvent models, possibly combined with 

relativistic effects would have to be considered in order to reproduce the experimental trends 

quantitatively. A first calculation including spin-orbit interactions in combination with a pure 

exchange-correlation functional and neglecting solvent effects could not explain the observed 

experimental trends (Table S10), but further studies combining the Renz/Kaupp protocol with 

relativistic electronic-structure calculations may provide further insight. Renz and Kaupp also 

showed that the direct conductor-like screening model for real solvents (D-COSMO-RS) is a 

promising solvent model going beyond continuum models at small extra cost.33 

 

Figure 7. Experimentally and computationally (TD-DFT: 

BLYP35;BMK;M06HF/TZVP/CPCM:MeCN) determined electronic coupling matrix elements 
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(in cm-1) for radical cations 1+, 2+, I+ and II+. Tables 7 and 8 list the explicit values used for the 

calculation of the presented couplings. 

 

SUMMARY AND CONCLUSIONS 

 

A combination of cyclic voltammetry, optical absorption, and EPR spectroscopy leads to the 

conclusion that the extent of charge delocalization in the monoselenophene and monothiophene 

cations 1+ and I+ is similar. By contrast, in biselenophene 2+ the electronic coupling matrix 

element HAB is roughly 45% lower than in bithiophene II+, and the comproportionation constant 

for compound 2 is a factor of 240 lower than that of compound II. These are rather dramatic 

differences given the structural similarity between these compounds. However, the 

computationally determined comproportionation constants of biselenophene and bithiophene are 

almost identical and the coupling element of the monocationic biselenophene is only about 15% 

smaller than that of the monocationic bithiophene. While it is reassuring that KS-DFT 

calculations thus suggest the same qualitative trend as the experiment, the underestimation of the 

decrease of communication in biselenophene 2+ along with deviations in UV/VIS absorption 

band positions may point to shortcomings in the employed exchange-correlation functionals 

and/or solvent models. It could also be due to a neglect of spin-orbit coupling in the calculations, 

and this could be problematic because spin-orbit coupling is considerably stronger for selenium 

than for sulfur. The deviating monocation stabilities suggested by cyclic-voltammetry 

measurements and KS-DFT calculations may be caused by the external electric field employed 

in the experiment (which is not considered in the calculations). 
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It is not possible to extrapolate from our mono- and biselenophenes to polyselenophene. 

However, to put things carefully, from our study it would appear that the exchange of the 

chalcogenophene heteroatom from sulfur to selenium is not necessarily associated with a benefit 

in terms of charge transfer, at least in short oligomeric structures. 
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TOC SYNOPSIS 

 

Charge delocalization in amino-decorated thiophene and selenophene monocations is similar but 

there are significant differences between analogous bithiophene and biselenophene monocations. 
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