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Résumé. — Pour un plasma classique & une composante en deux dimensions (avec une interaction logarithmique),
on peut calculer exactement la densité 4 un corps quand la constante de couplage a la valeur particuliére I' = 2.
On étudie le comportement de cette densité prés de la paroi de la boite circulaire qui contient le systéme. S’il y a
une charge en exces, elle se concentre prés de la paroi. La densité sur la paroi est reliée a la pression cinétique, qui

différe de la pression thermique.

Abstract. — For a classical two-dimensional one-component plasma (with a logarithmic interaction), the one-
body density can be calculated exactly when the coupling constant has the special value I' = 2. The behaviour
of this density is studied near the wall of the circular box which encloses the system. If there is an excess charge, it
concentrates near the wall. The density at the wall is related to the kinetic pressure, which differs from the thermal

pressure.

1. Introduction. — Recently, exact results have been
obtained on the equilibrium statistical mechanics of
a classical two-dimensional one-component plasma [1],
through methods of the theory of random matrices [2].
The model is a system of N identical particles of
charge e embedded in a uniform neutralizing back-
ground of opposite charge. In two dimensions,
the Coulomb interaction potential between two par-
ticles at a distance r from one another is

() = — eIn(r/L), a.n
where L is a length scale. The dimensionless coupling
parameter is I' = e%/ky T, where kg is Boltzmann’s
constant and T is the temperature. At the special
value I' = 2, it is possible to compute exactly the
thermodynamic functions and the distribution func-
tions. In the present Letter, we study in some detail
the one-body distribution function for a system of
particles confined in a disc, with special attention
to the behaviour of this function near the edge of
the disc.

The one-body distribution is interesting in itself ;
here is a model of interacting charged particles for
which it is possible to compute without approxima-

tions how a wall distorts the distribution in its neigh-
bourhood. A non-neutral system can also be treated,
and it is amusing to be able to see how the excess
charge concentrates near the walls as expected.

The model also provides an illustration for the
different non-equivalent « pressures » in a one-compo-
nent plasma [3, 4]. If a « thermal pressure » p@ is
defined in the usual way by differentiating the free
energy with respect to the volume, keeping constant
the total charge of the particle plus background
system, the resulting equation of state has the simple
exact form [5]

P = (kBT"%ez>P, (1.2)

where p is the number density. This thermal pressure
becomes negative at low temperatures (the same
phenomenon also occurs in three dimensions). A
negative pressure for a one-component plasma is
not a serious trouble, since the background can be
considered as maintained rigid at a given density
by some external constraint. However, it is possible
to give other definitions of the pressure, not all of
which are equivalent in the case of a one-component
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system with long-range forces. One of these defi-
nitions is the «kinetic pressure » which is exerted
by the particles on the walls; for a spherical box,
this pressure is

(k) —

P =pwksT, (1.3)

where py, is the particle density at the wall. This kinetic
pressure is always positive. It can also be obtained by a
proper use of the virial theorem. In the present model,
at I' = 2, it is possible to compute the exact value
of py and therefore of p), and to verify that a general
expression [4] for p® — p@ is indeed valid.

2. Neutral system. — We consider a system of
N particles of charge e in a disc of radius R. The disc
is filled with a uniform background of total charge
— Ne. An average interparticle distance is defined
as a = R/\/N. The average particle number density
is p = N/nR? = 1/na®. The distance r to the disc
centre can be expressed by the dimensionless (1)
variable z = r/a. When I' = 2, using the method
described in reference [1], one finds [2] for the one-
body density p(2)

p(Z) . N-1 ZZ"
— =e 7 — 2.1
P LomrLym @D
where
N
y(n + 1, N) =J~ e 't de 2.2
0

is the incomplete gamma function.

If we take the thermodynamic limit N — oo for
fixed values of p and of the distance z, p(z) goes to the
constant value p : away from the walls, the particle
charge density is a constant which is exactly compen-
sated by the background charge density. We are
more interested however in the behaviour of p(z)
in the disc at some fixed distance from the edge. The
edge is at z = \/JV Therefore, we set z = \/% -
and look for the limit of (2.1) as N — oo, for fixed
values of p and y. This limit is computed as follows.
We assume that the important values of n in (2.1)
are such that N — n is of the order of /N (this will
be verified a posteriori). An asymptotic expression for
y(n + 1, N) can then be obtained by rewriting the
integrand in (2.2) as exp(— ¢ + nln{), expanding
— t + nln ¢t around its maximum at ¢ = n up to the
order (+ — n)?, and extending the integration range
of t to (— oo, N). One finds [6]

y(n + 1,N) = 2 nn)'’? exp(— n + nlnn) x
1 N-—n

x> [1 + <p<7—2_n—) + O(\-};)] 2.3

(*) In reference [1], z was defined with a different normalization.

JOURNAL DE PHYSIQUE — LETTRES

No 11
where

d(x) = exp(— t?) dt

2 j )
Vndo
is the error function. (If (N — n)/\/ 2n> 1, (2.3) is

just Stirling’s formula.) Using (2.3) in (2.1), we
obtain

p(z) Nol2exp(—z2 +nlnzi+n—nlnn)

P om0 (g gmyii2 [1 + d’(f/;—:)]
<[ +o<ﬁ)] @4

Expanding the argument of the exponential in (2.4)
as a function of n around its maximum at n = z2
up to the order (n — z2)?, discarding terms of order
1/\/_]\7, and using the variable x = (N — n)/\/2 N, in
the thermodynamic limit one transforms the sum (2.4)

.into the integral

pY) _

2]

where the position is now defined by y, the distance
to the edge in units of 4. Since the integral (2.5)
converges as x — 0o, our assumption that the relevant
values of N — n are of the order of \/N is justified.

For y = 0, i.e. at the wall on the disc edge, one
finds from (2.5)

exp[— (x — y/2)%] &, 2.9)
1 + &(x) ’

pw=p0)=pn2, (2.6)

and the corresponding kinetic pressure is given

by (1.3).
For large values of y, i.e. far away from the walls,

ply)/p
15}
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Fig. 1. — The density profile as a function of the distance to the
wall. The full line is for a neutral system (Eq. (2.5)), the dashed
line for a large defect of particles (Eq. (3.5)), the dotted line for a
large excess of particles (Eq. (3.7)).



Ne 11

p(p) goes to its bulk value p. For arbitrary values of y,
the integral (2.5) must be performed numerically.
The resulting density profile p(y) is plotted in figure 1.
It shows an oscillation. Using (2.5), one can check
after some manipulations that the total charge near
the wall is zero

aJ [p(») — pldy =0. 2.7
(4]

3. Non-neutral system. — We still consider a sys-
tem of N particles of charge e in a disc of radius R.
The disc is filled with a uniform background of total
charge — N, e, and now N, may be different from N.
We define the length g as a = R/\/Nb and the back-
ground density as p = Ny/nR? = 1/na®. The dis-
tance r to the disc centre is expressed by the dimen-
sionless variable z = r/a. WhenI' = 2, instead of (2.1)
one finds for the one-body density p(z)

. N-1 2n
PO _g2y __Z° ()
p n=0 Y(n + la Nb)

We choose an excess of defect | N — N, | of the
order of \/I_V,,, and define a surface charge density
ec by ¢ = (N — Np)/2 nR. The dimensionless dis-
tance to the disc edge is y = \/Wb — z. We take the
thermodynamic limit of (3.1) as Ny, —» oo for fixed
values of p, o, and y. Through a minor modification
of the argument of section 2, we now obtain

I T epl- -y
ez 1+ O

M _ 2
P Jn

At the wall on the disc edge, the density becomes

3.2

pw = p(0) = pln (3.3)

2
1 — &(nac \/5) ’

and the corresponding kinetic pressure is given by
(1.3). For large values of y, i.e. far away from the
wall, p(y) goes to the background density p ; there-
fore the net charge density e[ p(y) — p] does concen-
trate near the walls, as it should. Using (3.2), one
can check that the total surface charge density has
the right value :

af [p(») — p]ldy = 0. (3.4
0

The detail of the shape of p(y) can be obtained by
numerical integration of (3.2), for every value of .
Here, we consider explicitly two extreme cases, as
follows.

If there is a large defect of particles (¢ large and
negative), it is convenient to introduce the neutrality
radius R, defined (in the thermodynamic limit) by
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R — R, = na? | ¢ |; this value is such that the disc
of radius R, contains a background charge just
opposite to the total charge Ne of the particles.
Within the integration range of x, ®(x) can be.replaced

by 1, and one finds
_RO
- )ﬁ]} 3.5)

1 R
2o

This density p(y) is plotted in figure 1. The particles
neutralize the background up to the neighbourhood
of the neutrality radius R,, where the particle density
falls to zero on a distance of the order of a. Equa-
tion (3.5) can also be obtained by considering.from
the start a disc of infinite radius which gives a dis-
tribution [7]

N-1
@: e_zz Z
p n=0

(N, z%)

2 AN
nt!— wN-=-D!

3.6

in the neighbourhood of z = \/N, using (2.3), one
recovers (3.95).

If there is a large excess of particles (¢ large and
positive), p(y) approaches the limiting form

pG) _ 2 j ?oexpl— (- y V27
P Jrla 1+ &(x)
The integral (3.7) has been performed numerically
and the resulting density p(y) is plotted in figure 1;
it diverges for small values of y. The excess charge
is still concentrated near the wall, even in that extreme
case.
For a non-neutral system, by a straightforward
extension of the scaling argument [5] which gave (1.2),
one obtains a thermal pressure

3.7

o = (k,,T—‘l‘e2>p+7te2 . (3.9

The last term in (3.8) has the correct form [8, 9] of
the electrostatic pressure created by the excess charge
2 nReo localized at the surface and having an elec-
trostatic energy — (1/2) (2 mRecs)? In (R/L).
Choquard et al. have derived the identity [4]

o)

3.9

p® — p® = 2 g2 pazj [p(») — plydy.

0

Using (1.3), (3.3), (3.8) and (3.2), after some mani-
pulations in the integral in (3.9), it is possible to
check that this identity is indeed satisfied at I' = 2.

Finally, note that a surface charge density es in
a semi-infinite plasma can be induced by a surface
charge density — es on the wall. Therefore, equa-
tion (3.2) also gives the density profile near a charged
wall.
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