
489

Progress of Theoretical Physics, Vol. 128, No. 3, September 2012

Charge-Exchange Excitations with Skyrme Interactions in a
Separable Approximation

Alexey P. Severyukhin,1 Victor V. Voronov1 and Nguyen Van Giai2

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,

141980 Dubna, Moscow Region, Russia
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Starting from a Skyrme interaction we propose an extension of the finite rank separable
approximation for the case of charge-exchange nuclear modes. This approximation enables
one to reduce considerably the dimensions of the matrices that must be diagonalized to
perform QRPA calculations in very large configuration spaces. First, we check that the
approximation reproduces reasonably well the full charge-exchange RPA results of the spin-
dipole resonances in the nuclei 90Zr and 132Sn. The approach is then applied to the study
of the Gamow-Teller and the spin-dipole resonances in the neutron-rich Cd isotopes, within
the quasiparticle random phase approximation.
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§1. Introduction

The study of spin-isospin excitations in neutron-rich nuclei is presently an im-
portant problem not only from the nuclear structure point of view but also because
of the special role they play in many astrophysical processes. Many fundamental
issues depend on our quantitative understanding of phenomena like beta decays of
nuclei, nuclear electron capture or the r-process in nucleosynthesis. It is desirable to
have theoretical models which can describe the data wherever they can be measured
and which can predict the properties related to spin-isospin excitations in systems
too short-lived to allow for experimental studies.

Recent progress in measurements of charge-exchange modes have stimulated
developments of the nuclear models. For example, the neutron skin thickness of
nuclei could be in principle obtained from data on properties of spin-dipole (SD)
excitations.1)–3) If such neutron skin measurements could be done on 208Pb one
would have an independent and accurate check of the expected results from the
ambitious PREX project at CEBAF4),5) and thus, a reliable determination of the
density dependence of the nuclear symmetry energy.

At the same time, the experimental studies using the multipole decomposition
analysis (MDA) of the (n, p) and (p, n) reactions2),3),6) have clarified the longstand-
ing problem of the missing experimental Gamow-Teller (G-T) strength in nuclei,7),8)

hence resolving the discrepancy between the random phase approximation (RPA)
predictions and G-T measurements. Thus, the field of charge-exchange nuclear ex-
citations is a cornerstone in the study of atomic nuclei, and it is our purpose here
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490 A. P. Severyukhin, V. V. Voronov and N. Van Giai

to propose a method which can simplify the microscopic calculations of such excited
states.

The quasiparticle random phase approximation (QRPA) with the Skyrme inter-
action is a standard microscopic approach in nuclear structure theory.9),10) Many
charge-exchange versions of it were developed during the last decade.7),8),11)–16)

Their common feature is that they allow to relate the properties of the ground states
and excited states through the same energy density functional. On the other hand,
it would be desirable to extend the description beyond the QRPA scheme in order
to include damping effects observed experimentally. There have been such attempts
in the past17),18) which allow one to understand the damping of charge-exchange
resonances and their particle decay. Recently, the damping of the G-T mode was in-
vestigated using Skyrme RPA plus particle-vibration coupling.19) However, the size
of the configuration space increases very rapidly and one has to study only a limited
number of typical cases. It would be helpful to have an approach where the size
of the calculations does not depend directly on the size of the configuration space.
At the RPA and QRPA levels such approaches were introduced many years ago by
Brown and Bolsterli20) and by Soloviev et al.21)–23) using a separable form for the
residual particle-hole (p-h) interaction.

More recently, several attempts have been made to reduce the numerical effort
when performing RPA and QRPA calculations with Skyrme-type interactions. One
type of simplification is to replace the full p-h Skyrme interaction by a finite sum
of products of one-body operators appropriately chosen.24)–26) Another type which
is well suited for spherically symmetric systems is the so-called finite rank separable
approximation (FRSA) for the Skyrme p-h residual interaction.27),28) The FRSA
has been used to study the electric low-lying states and giant resonances within the
QRPA and beyond.29),30) Alternative schemes to factorize the p-h interaction have
also been applied to the study of the deformation effects on the β-decay proper-
ties.31),32)

In this paper we introduce the FRSA to the QRPA description of charge-
exchange excitation modes, and especially of spin-isospin excitations, in spherical
nuclei. The aim of this work is first to present the method and to assess its accuracy
by comparing its results to calculations done with the complete p-h Skyrme interac-
tion. Then, we apply the FRSA to calculate G-T and SD strength distributions in
the T+ and T− channels, in some neutron-rich Cd isotopes.

This paper is organized as follows: in §2 we sketch our method and we show
how to use the FRSA in charge-exchange QRPA. The explicit solution of the corre-
sponding QRPA equations is given. In §3 the FRSA is checked on the properties of
the GTR and the SDR in some spherical nuclei. Results of QRPA calculations for
the GTR and SDR in 126−130Cd are discussed in §4. Conclusions are drawn in §5.

§2. Finite rank approximation for charge-exchange modes

The RPA and QRPA methods within the FRSA have been introduced in Refs. 27)
and 29). In this section we present their extension to the case of charge-exchange
excitations.33),34) The quasiparticle states are labelled by a, b, ... (α, β, ...) for neu-
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Charge-Exchange Excitations with Skyrme Interactions 491

tron (proton) states. Assuming spherical symmetry for the nuclei considered here,
each state a = (a, ma) is defined by the quantum numbers a = {Ea, la, ja} and the
angular momentum projection ma. Here, Ea = (ǫ2

a + ∆2
a)

1/2 is the corresponding
quasiparticle energy expressed in terms of the Hartree-Fock (HF) single-particle en-
ergy ǫa and pairing energy ∆a. The starting point of the method is the HF-BCS
description35) of the parent ground state. The method could be extended to the
Hartree-Fock-Bogoliubov (HFB) framework and the corresponding QRPA equations
would have the same structure if one expresses them in the canonical quasiparticle
basis. Denoting by c+

a
, ca (resp. c+

¸
, c¸) the creation and annihilation operators of a

neutron (resp. proton) in a single-particle state, the creation and annihilation oper-
ators of neutron quasiparticles – d+

a
, da – are obtained by the canonical Bogoliubov

transformation:
c+

a
= uad

+
a

+ (−1)ja−mavada
′ , (2.1)

where a′ ≡ (a,−ma), and ua, va are the BCS amplitudes. Similar relations apply for
the proton states.

To each quasiparticle state a corresponds a HF wave function:

ϕa(r, σ) =
fa(r)

r
Ya(r̂, σ) . (2.2)

In practice, the HF mean field is calculated with a Skyrme-type interaction whereas
the BCS equations are solved self-consistently with a density-dependent, zero-range
pairing force of the type:36)

Vpair(r1, r2) = V0

(

1 − η

(

ρ (r1)

ρ0

)α)

δ (r1 − r2) , (2.3)

where V0, η, α are adjusted parameters, ρ(r) is the HF-BCS ground state density,
ρ0 being the nuclear matter saturation density. The parameters are determined by
adjusting the empirical odd-even mass differences of the nuclei in the region under
study. One thus obtains the sets of proton and neutron quasiparticle states, α

and a, with the corresponding wave functions (ϕ¸ and ϕa), quasiparticle energies
(Eα and Ea) and BCS amplitudes (uα, vα and ua, va). The continuum part of
the quasiparticle spectrum is generally discretized by various methods like harmonic
oscillator expansion or box boundary conditions.

To build the QRPA equations on the basis of quasiparticle states as defined above
and using consistently the residual interactions (derived from the Skyrme force in the
particle-hole channel and from the zero-range pairing force in the particle-particle
channel) is a standard procedure.9) This leads to the familiar QRPA equations in
configuration space:

(

A B
−B −A

)(

X
Y

)

= ω

(

X
Y

)

, (2.4)

where the dimensions of the matrices A and B grow very rapidly with the size of the
nuclear system unless severe and damaging cutoffs are made to the 2-quasiparticle
configuration space. It is well known that, if the matrix elements of the A and B
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492 A. P. Severyukhin, V. V. Voronov and N. Van Giai

matrices take a separable form the eigenvalues of Eq. (2.4) can be obtained as the
roots of a relatively simple secular equation.20),23) In the case of the Skyrme inter-
action this feature has been exploited by different authors.24),25),27) In particular,
a method has been proposed in Refs. 27) and 29) to calculate non charge-exchange
excitations, and we extend here this method to the case of non closed-shell nuclei and
charge-exchange excitations. The main step is to replace the Skyrme particle-hole
interaction by its Landau-Migdal approximation and to keep only the l = 0 terms.
We recall that the central terms of the Skyrme force do not act in states with relative
momentum l ≥ 2. It has been shown14) that the effect of the two-body spin-orbit
residual interaction on the G-T excitations is small, and furthermore, we do not con-
sider here versions of the force having a two-body tensor component. Thus, keeping
only l = 0 might not be that bad, and this will be discussed in the next section.

We write the p-h interaction in the spin-isospin channel in the following form:

Vres(r1, r2) = N−1
0 [F

′

0(r1) + G
′

0(r1)σ
(1) · σ(2)]τ (1) · τ (2)δ(r1 − r2) , (2.5)

where σ(i) and τ (i) are the spin and isospin operators, and N0 = 2kF m∗/π2
�

2 with
kF and m∗ standing for the Fermi momentum and nucleon effective mass in nuclear
matter. F

′

0, G
′

0 are functions of the position r through their density dependence, and
their expressions in terms of the Skyrme force parameters can be found in Ref. 37).

When calculating particle-hole matrix elements of the interaction (2.5) one ob-
tains a sum of products of angular momentum coefficients times one-dimensional ra-
dial integrals. These integrals are numerically calculated by choosing a large enough
cutoff radius R and using an N -point integration Gauss formula with abscissas rk

and weights wk.
27) Thus, one is led to deal with a problem where the Vph,p′h′ matrix

elements are sums of products, ΣnVph(n)Vp′h′(n), and the number Ñ of terms in

the sums depends only on N (Ñ = 4N for the cases studied here). One can call
it a separable approximation of finite rank Ñ since finding the roots of the secular
equation amounts to find the zeros of a Ñ × Ñ determinant, and the dimensions of
the determinant are independent of the size of the configuration space, i.e., of the
nucleus considered.

Let us briefly explain the main steps leading to the FRSA solutions of the QRPA
equations. Our goal is to express the matrix elements of the angular momentum
coupled matrices Aaα,bβ and Baα,bβ appearing in the QRPA equations (2.4) as sums
of products of terms depending on (a, α) or (b, β). We separate in the calculations the
cases of natural parity states (L = J) and unnatural parity states (L = J±1), where
L and J are the orbital and total angular momenta of the excitations considered.

First, we introduce the interaction strengths κ
(k)
F , κ

(k)
G at points rk by the following

definitions:
(

κ
(k)
F

κ
(k)
G

)

= −N−1
0

Rwk

2r2
k

(

F
′

0(rk)

G
′

0(rk)

)

, (2.6)

where all quantities are defined in the preceding paragraph. Next, we introduce
the quantities hJ,k

aα and gLJ,k
aα which are related to reduced matrix elements of the

operators YJ and TLJ = (YL ⊗ σ)J , respectively:

h(J,k)
aα = fa(rk)fα(rk)〈a||iJYJ ||α〉,
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Charge-Exchange Excitations with Skyrme Interactions 493

Table I. The coefficients κ(n) (resp. d
(n)
aα ) appearing in Eq. (2.8) expressed in terms of the quantities

defined in Eq. (2.6) (resp. Eq. (2.7)). The index k runs from 1 to the number of Gauss points

N .

L = J ± 1 L = J

n κ(n) d
(n)
aα κ(n) d

(n)
aα

k κ
(k)
G g

(J−1,J,k)
aα κ

(k)
G g

(J,J,k)
aα

k + N κ
(k)
G g

(J+1,J,k)
aα κ

(k)
F h

(J,k)
aα

g(L,J,k)
aα = fa(rk)fα(rk)〈a||iLTLJ ||α〉 . (2.7)

Now, the matrix elements of the QRPA matrices take the form:

Aaα,bβ = −2Ĵ−2(uavαubvβ + vauαvbuβ)
2N
∑

n=1

κ(n)d(n)
aα d

(n)
bβ + εaαδabδαβ ,

Baα,bβ = −2Ĵ−2(uavαvbuβ + vauαubvβ)

2N
∑

n=1

κ(n)d(n)
aα d

(n)
bβ . (2.8)

Here, Ĵ =
√

2J + 1 and the 2-quasiparticle energies are εaα = Ea + Eα. The κ(n)

interaction strengths and d
(n)
aα matrix elements in Eq. (2.8) are defined in Table I.

Now, we show how to construct the secular equation in a determinantal form.

In the 4N -dimensional space we introduce a vector
„

D+

D−

«

by its components:

Dνn
± =

∑

aα

d(n)
aα u(±)

aα (Xν
aα ± Y ν

aα) , (2.9)

where u
(±)
aα = uavα ± vauα, n = 1, 2, ...2N , and the index ν refers to the ν-th QRPA

state. The QRPA amplitudes (X, Y ) can be expressed in terms of the D± as:

Xν
aα =

1

εaα − ων

2N
∑

n=1

d(n)
aα κ(n)

(

Dνn
+ u(+)

aα + Dνn
− u(−)

aα

)

, (2.10)

Y ν
aα =

1

εaα + ων

2N
∑

n=1

d(n)
aα κ(n)

(

Dνn
+ u(+)

aα − Dνn
− u(−)

aα

)

. (2.11)

Now, the QRPA equations (2.4) become:
(

M1 − 1
2I M2

M2 M3 − 1
2I

)(

D+

D−

)

= 0 , (2.12)

where the matrix elements of the 2N × 2N matrices Mk (k = 1, 2, 3) have the
following expressions:

Mnn′

1 =
κ(n′)

Ĵ2

∑

aα

d
(n)
aα d

(n′)
aα

(

u
(+)
aα

)2
εaα

ε2
aα − ω2

, (2.13)
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494 A. P. Severyukhin, V. V. Voronov and N. Van Giai

Mnn′

2 =
κ(n′)

Ĵ2

∑

aα

d
(n)
aα d

(n′)
aα u

(+)
aα u

(−)
aα ω

ε2
aα − ω2

, (2.14)

Mnn′

3 =
κ(n′)

Ĵ2

∑

aα

d
(n)
aα d

(n′)
aα

(

u
(−)
aα

)2
εaα

ε2
aα − ω2

. (2.15)

The eigenvalues ω of Eq. (2.4) are the roots of the equation:

det

(

M1 − 1
2I M2

M2 M3 − 1
2I

)

= 0. (2.16)

Since the vector
„

D+

D−

«

satisfies Eq. (2.12) the QRPA amplitudes Xν
aα, Y ν

aα are

obtained by Eqs. (2.10), (2.11) and the normalization condition:
∑

aα

|Xν
aα|2 − |Y ν

aα|2 = 1 . (2.17)

The excitation energies with respect to the parent ground state are

E∓
ν = ων ∓ (λn − λp) , (2.18)

where ων denotes the QRPA energies in the T∓ channels, λn and λp being the neutron
and the proton chemical potentials, respectively.

§3. Quantitative check of the FRSA

In this section we evaluate the accuracy of the FRSA by comparing results
obtained using this separable approximation with those from a full treatment of
the Skyrme-type p-h residual interaction. In the literature one can find full charge-
exchange calculations of SD states built on 90Zr, carried out either in RPA7) or in
RPA and TDA.14) We select the SD transitions in the T− and T+ channels from the
parent ground states of 90Zr and 132Sn as illustrative cases. For the sake of simplicity
the check is done within the Tamm-Dancoff approximation (TDA) without pairing
effects. The RPA results would be similar because the backward-going graphs are
somewhat blocked in these charge-exchange channels, and in any case we are just
interested here in assessing the validity of the FRSA.

The calculations are done with the Skyrme parameter set SGII37) which was de-
signed to give reasonable values for the spin-isospin Landau parameters. In Eq. (2.5)
F ′

0 and G′
0 at saturation density are equal to 0.73 and 0.50, respectively. The HF

mean field is first calculated in coordinate space, then the single-particle spectra
necessary for the TDA calculations (energies and wave functions) are obtained by
diagonalizing the HF mean field in a 12-shells harmonic oscillator basis and keeping
all states below 100 MeV. This is sufficient to exhaust the Ikeda sum rule 3(N−Z)38)

for the G-T strength as well as the SD sum rule:1),2)

S− − S+ =
9

4π

(

N〈r2〉n − Z〈r2〉p
)

, (3.1)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

2
8
/3

/4
8
9
/1

8
4
1
6
6
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Charge-Exchange Excitations with Skyrme Interactions 495

Table II. SD sum rule values in 90Zr and 132Sn, expressed in fm2. S(rn, rp) stands for the r.h.s. of

Eq. (3.1). The experimental data are taken from Refs. 2) and 7).

rn (fm) rp (fm) S(rn, rp) S− S+ S− − S+

90Zr full 4.253 4.198 142.9 279.2 135.7 143.4

FRSA 4.253 4.198 142.9 279.6 136.0 143.7

Expt. 271±14 124±11 147±13

132Sn full 4.856 4.658 607.7 694.3 87.3 607.1

FRSA 4.856 4.658 607.7 694.3 87.3 607.1

Fig. 1. Spin-dipole strength distributions in the T− channel of the parent nucleus 90Zr. The results

with the FRSA for the p-h interaction (dashed lines), and with the full p-h interaction (solid

lines) are shown. The experimental data shown by the black dots are taken from Refs. 2) and

7).

where
S∓ =

∑

ν

|〈N ∓ 1, Z ± 1; ν|Ô∓|N, Z〉|2 (3.2)

are the total SD transition strengths to the neighbouring daughter nuclei induced
by the operators

Ô∓ =
∑

i,m,µ

rit∓(i)σm(i)Y µ
1 (r̂i) . (3.3)

From our previous studies of the FRSA applied to non charge-exchange excita-
tions28),30) we could conclude that a value N = 45 for the number of Gauss points in
the radial integrals is sufficient for the desired accuracy in all nuclei with A ≤ 208.
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496 A. P. Severyukhin, V. V. Voronov and N. Van Giai

Fig. 2. Same as Fig. 1, for the T+ channel.

For example, choosing N = 60 would change the calculated energies and transition
probabilities by less than 1%. Thus, we adopt here the value N = 45. All cal-
culations are without any quenching factor. In the figures, the calculated strength
distributions are folded out with a Lorentzian distribution of 1 MeV width.

In Table II, we compare the SD sum rule (3.1) calculated in FRSA and with the
full SGII force. To compare with experimental data in 90Zr we choose the energy
interval E ≤ 50 MeV for the T− channel and E ≤ 26 MeV for the T+ channel.2),7)

One can see that the FRSA sum rules are quite close to those of the full calculations.
The calculated values S−, S+ agree well with experimental data2),7) in 90Zr. In
132Sn a perfect agreement is obtained between the r.h.s. of Eq. (3.1) and the l.h.s.
calculated either in FRSA or full Skyrme TDA.

The SD sum rule (3.1) is an integral characteristic and it is less sensitive to
the details than the SD strength distribution. The calculated T− and T+ strength
distributions in various Jπ channels are shown in Figs. 1 and 2, for the 90Zr case.
The excitation energies refer to the ground state of the parent nucleus 90Zr. The
experimental strength distributions2),7) for the T− and T+ channels are results of
the multipole decomposition analysis done for the 90Zr(p, n)90Nb and 90Zr(n, p)90Y
reactions, respectively. From Figs. 1 and 2, it can be seen that the FRSA repro-
duces the essential features of the SD strength distributions with a downward shift
about 0.9 MeV in the positions of the high energy peaks for the T− and T+ channels.
Thus, the p-h interaction in the FRSA is slightly weaker than the original interac-
tion. The difference between the full calculation and the FRSA is small in global
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Charge-Exchange Excitations with Skyrme Interactions 497

Fig. 3. The spin-dipole strength distributions summed over Jπ = 0−, 1−, 2− in both T∓ channels

in 132Sn. Same notations as in Figs. 1 and 2.

comparison with the experimental data. There is the missing of significant part of
the experimental strength distribution in the region above the main peaks. One can
expect a redistribution of strength if the coupling of the 1p-1h configurations to more
complex 2p-2h configurations is taken into account.22),39),40) The p-h interaction of
the form Eq. (2.5) allows one to simplify the calculation of such couplings, and this
study is now in progress. It is worth mentioning that the SD strength distributions
in 90Zr are rather well studied within the 1p-1h configuration space (for example,
see Refs. 7), 14) and 41)). The effect of the tensor correlations on the SD strength
distributions is studied in Ref. 8).

We have done a similar check of the FRSA in the case of the parent nucleus
132Sn. The SD strength distributions summed over the three Jπ components in both
T− and T+ channels are shown in Fig. 3. As can be seen from Fig. 3, the FRSA
treatment changes slightly the energies of the peaks in 132Sb. However, we find
that the general structure remains the same. The two low-lying peaks are due to
the 2− excitations. The main configuration of the peak at E = 2.0 MeV (1.5 MeV

in the FRSA case) is {π1g 7
2ν1h11

2

−1}. At the same time the leading contribution
of the peak at E = 9.1 MeV (8.8 MeV in FRSA) comes from the configuration

{π1h11
2 ν1g 7

2

−1}. The peak around E = 17.9 MeV is related with the collective 0−,
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498 A. P. Severyukhin, V. V. Voronov and N. Van Giai

Fig. 4. Comparison of the G-T strength distribution, in 132Sn, calculated with the p-h interac-

tion (2.5) (solid line) and with the FRSA, N=15 (dotted line). See the text for the discussion.

1−, and 2− states. The peak energy is moved downward by about 0.5 MeV in FRSA.
The main features of the high-energy broad bump are well reproduced by the FRSA.
For the T+ channel, the Pauli blocking of the neutron excess in 132Sn is the reason
why there is only one sharp peak in the strength distribution, and the S+ value is
much smaller than the S− value (see Table II). The Jπ = 0−, 1−, and 2− states
in the daughter nucleus 132In are concentrated in the sharp peak at E = 14.1 MeV
which is shifted downward by 0.5 MeV if one uses the FRSA. The 0− and 1− states

are due to the {ν1h9
2π1g 9

2

−1} configuration. The main configurations of the 2− state

are the {ν1h9
2π1g 9

2

−1} and {ν2f 5
2π1g 9

2

−1}.
One can thus conclude that the FRSA can reliably be used for the study of

charge-exchange modes in the 90Zr as well as 132Sn regions. The computational
gains brought about by the FRSA in charge-exchange modes can be illustrated by
the case of 132Sn where typical dimensions of RPA matrices to be diagonalized are
223, 596, 844 for 0−, 1−, 2− channels whereas in FRSA the RPA eigenenergies
are the roots of a determinant of dimension 4N where N is typically around 30-40
and independent of the spin and parity of the excitation. Another advantage is the
possibility of looking only for the eigenvalues located within some energy interval. As
can be seen from Fig. 4, the finite rank N = 15 is already large enough to reproduce
the G-T strength distribution in the resonance energy interval of 132Sn, for example.
The solid line corresponds to the standard diagonalization procedure performed with
the p-h interaction (2.5).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/1

2
8
/3

/4
8
9
/1

8
4
1
6
6
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2
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Table III. Ikeda sum rule values of G-T states. S−, S+ correspond to the T− and T+ channels,

respectively.

S− S+ S− − S+

126Cd QRPA 90.6 0.7 89.9

RPA 90.4 0.4 90.0

128Cd QRPA 96.6 0.6 96.0

RPA 96.4 0.4 96.0

130Cd QRPA 102.5 0.5 102.0

RPA 102.5 0.5 102.0

Fig. 5. Effects of pairing correlations on the G-T strength distribution in 126Cd. Solid and dotted

lines correspond to calculations with and without pairing correlations, respectively.

§4. Application to 126`130Cd nuclei

There is a relation between the N = 82 shell closure and the A ≈ 130 peak
of the solar r-process abundance distribution.42) The N = 82 isotones below 132Sn
are important for stellar nucleosynthesis, see, e.g., Refs. 43)–46). It is interesting
to study the properties of the G-T and SD states in 126−130Cd within the QRPA
with Skyrme forces. In Ref. 47) the Cd isotopes were studied using the Fayans
energy density functional, but the velocity-dependent parts were dropped in the
Landau parameters of the spin-isospin channel. Here, we keep the contributions of
the velocity-dependent terms of the p-h interaction.

First we examine the effects of the pairing correlations. We use the isospin-
invariant surface-peaked pairing force (2.3), with η = 1, α = 1 and the value
ρ0 = 0.16 fm−3 of the nuclear saturation density corresponding to the SGII force.
The strength V0 is taken equal to −870 MeV fm3 to get a reasonable description of
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Fig. 6. Spin-dipole strength distributions in the T− channel in 126Cd, calculated in RPA and in

QRPA. Same notations as in Fig. 5.

Fig. 7. Same as Fig. 6, for the T+ channel.
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Table IV. SD sum rule values in Cd isotopes, expressed in fm2. S(rn, rp) stands for the right-hand

side of Eq. (3.1).

rn (fm) rp (fm) S(rn, rp) S− S+ S− − S+

126Cd QRPA 4.808 4.602 563.4 621.4 56.8 564.6

RPA 4.803 4.599 561.5 605.7 49.7 556.0

128Cd QRPA 4.831 4.614 605.4 655.8 51.5 604.3

RPA 4.828 4.612 604.1 647.0 46.2 600.8

130Cd QRPA 4.852 4.626 647.0 688.9 46.2 642.7

RPA 4.852 4.625 647.1 692.0 45.7 646.3

Fig. 8. The G-T strength distributions in 126Cd (solid line), 128Cd (dashed line), 130Cd (dotted

line).

the experimental pairing energies given by

PN =
1

2
(B (N, Z) + B (N − 2, Z) − 2B (N − 1, Z)) (4.1)

for 126,128Cd. The definition of the pairing force (2.3) involves the energy cutoff of
the single-particle space to restrict the active pairing space. We use the soft cutoff
at 10 MeV above the Fermi energies as proposed in Refs. 29) and 48).

Results of our calculations within the RPA and QRPA for the G-T Ikeda sum
rules in 126−130Cd are shown in Table III. It is worth mentioning that the RPA
calculations are made by the filling approximation.35) The pairing effects do not
change the total sum rule values, but they change the contributions in separate T−

and T+ channels. The T+ channel is more sensitive to the changes in the pairing.
As an illustration of the pairing effects on strength distributions we show in Fig. 5
the G-T strengths in 126Cd calculated with and without pairing correlations. The
pairing induces a 1 MeV shift of the main peak in this nucleus. Looking at the
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main peak we find that the main configuration is {π1h9
2ν1h11

2 } (65% and 61% of the
QRPA and RPA wave function, respectively). The unperturbed two quasiparticle
energy (resp. p-h energy) is 12.6 MeV (resp. 11.5 MeV), while the peak energy is
14.9 MeV (resp. 14.1 MeV). This seems to indicate that the difference in peak energies
is due mostly to a gap effect. For 130Cd, the strength distributions calculated with
and without the pairing coincide. The strong difference in the neutron and proton
chemical potentials plays the key role to explain this peculiarity which is rather a
general feature in heavy spherical nuclei with large neutron excess.

Effects of the pairing correlations on the SD sum rules (3.1) of 126,128,130Cd are
shown in Table IV. Pairing effects lead to an increase of both S+ and S− sum rules
(except for S− in 130Cd). A comparison of the calculated SD sum rule with the right-
hand side of Eq. (3.1) shows that the SD sum rule is fulfilled with a good accuracy.
The SD strength distributions in the T− channel of the three Jπ components in
126Cd are shown in Fig. 6, while Fig. 7 shows the corresponding results for the T+

channel. One can see that the pairing effects in 126Cd lead to a slight widening of
the SD resonance. On the other hand, this effect vanishes in the case of 130Cd which
has N = 82 and therefore, no neutron pairing correlations can be effective.

We turn now to the properties of G-T states in 126,128,130Cd. Figure 8 shows
the evolution of the G-T strength distributions in these 3 nuclei. One can see that
the major part of the strength is concentrated in the peaks at E = 14.9, 14.3, and
13.8 MeV for 126Cd, 128Cd, and 130Cd, respectively. The largest contribution in the
peaks comes from the configuration {π1h9

2ν1h11
2 }. About 99% of the G-T strength

distribution is located below 30 MeV with respect to the parent ground state. Taking
into account the QRPA tensor correlations within our approach49) can improve the
results. The tensor correlations can shift up about 10% of the G-T strength to the
higher energy region in the case of 90Zr and 208Pb.15),16),49)

The evolution of the SD strength is shown in Figs. 9 and 10. Table IV shows
the slight increase in the S− value and the noticeable decrease in the S+ value when
the mass number grows. It is worth mentioning that the ratio 5 : 3 : 1 of the three
Jπ components of the S− − S+ value is fulfilled in our calculations. As can be seen
from Fig. 9, for the T− channel the fragmentation of the SD strength distributions
increases with the value of J . The distributions are shifted to lower energies as one
goes from 126Cd to 130Cd. In particular, the peak energy of the Jπ = 0− mode
of the SDR is 26.4, 25.7, and 25.0 MeV in 126Cd, 128Cd, and 130Cd, respectively,
and many configurations contribute to these structures. For the 1− excitations, the
shift of the main sharp peak is about 1 MeV. At the same time the contribution
of the leading configuration {π2i11

2 ν1h11
2 } is decreasing from 54% for 126Cd to 45%

for 130Cd. The spectrum of the 2− states is fragmented in a wide energy range.
There are two peaks in the strength distribution at lower energies. These low-
energy excitations are of noncollective nature. In all three nuclei, the lowest peak is
mainly due to the configuration {π1g 7

2ν1h11
2 }, while the dominant configuration of

the second one is {π1h11
2 ν1g 7

2}. It is worth pointing out that these configurations
induce the low-energy peaks obtained in 132Sn, as is discussed above. Most of the
2− strength is concentrated in the two peaks around 17.5(16.4) and 23.8(22.6) MeV
in 126Cd(130Cd). Thus, the three Jπ modes of the SDR in 126,128,130Cd keep to the
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Fig. 9. Spin-dipole strength distributions of the T− channel in 126Cd (solid line), 128Cd (dashed

line), 130Cd (dotted line).

Fig. 10. Same as Fig. 9, for the T+ channel.
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504 A. P. Severyukhin, V. V. Voronov and N. Van Giai

energy hierarchy E(2−) < E(1−) < E(0−) as already found in 90Zr.7),14),41)

The general behavior of the sharp peaks in the T+ strength distribution is dis-
played in Fig. 10. With increasing mass number, the peak energy is moved upward
from 14.0 MeV in 126Cd to 14.8 MeV in 130Cd. As expected, the Pauli blocking
effect leads to a small contribution to the SD sum rule (3.1). The peaks in the 0−

and 1− distributions have a noncollective structure with a dominant configuration
{ν1h9

2π1g 9
2}. In the case of the 2− states, the leading configurations are {ν2f 5

2π1g 9
2}

and {ν1h9
2π1g 9

2}. The situation is similar to the 132Sn case. The structure pecu-
liarities of the SD strength distributions are related with the shell structure in this
region of nuclei.

§5. Summary and perspectives

We have extended the finite rank separable approximation of Skyrme-type forces
to the case of charge-exchange excitations, and more specifically to the spin-isospin
channels. We have shown that the determination of the QRPA eigenenergies requires
to calculate the zeros of a determinant whose dimensions do not depend on the size
of the 2-quasiparticle configuration space. The method is validated in the case of
the nuclei 90Zr and 132Sn by using the FRSA to calculate in TDA the Gamow-Teller
and spin-dipole strength distributions in the T+ and T− channels, and comparing
them with HF-TDA results obtained without the separable approximation.

As an application of the method we have studied the G-T and spin-dipole
strength distributions of the parent nuclei 126,128,130Cd in the T+ and T− channels
by performing QRPA calculations with the FRSA and the Skyrme parametrization
SGII. The effects of pairing on the spin-isospin modes are important in these nuclei,
and a QRPA approach is thus appropriate. Similarly to the case of 90Zr we find
that the peak energies of the spin-dipole distributions in these Cd isotopes obey the
energy hierarchy E(2−) < E(1−) < E(0−).

As an extension of the present version of the FRSA for spin-isospin modes, one
should now develop a finite rank form of a tensor p-h interaction derived from a
Skyrme-type tensor force,8) because this component of the interaction is important
for these modes. One could also envisage to use the separable form of the p-h
interaction to simplify the evaluation of the coupling of QRPA phonons to more
complex configurations and to calculate thus the fragmentation and damping of the
QRPA excitations.
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19) Y. F. Niu, G. Colò, M. Brenna, P. F. Bortignon and J. Meng, Phys. Rev. C 85 (2012),

034314.
20) G. E. Brown and M. Bolsterli, Phys. Rev. Lett. 3 (1959), 472.
21) V. A. Kuzmin and V. G. Soloviev, J. of Phys. G 10 (1984), 1507.
22) V. A. Kuzmin and V. G. Soloviev, J. of Phys. G 11 (1985), 603.
23) V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics,

Bristol and Philadelphia, 1992).
24) V. O. Nesterenko, J. Kvasil and P.-G. Reinhard, Phys. Rev. C 66 (2002), 044307.
25) V. O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.-G. Reinhard and D. S. Dolci, Phys.

Rev. C 74 (2006), 064306.
26) P. Vesely, J. Kvasil, V. O. Nesterenko, W. Kleinig, P.-G. Reinhard and V. Yu. Ponomarev,

Phys. Rev. C 80 (2009), 031302.
27) Nguyen Van Giai, Ch. Stoyanov and V. V. Voronov, Phys. Rev. C 57 (1998), 1204.
28) A. P. Severyukhin, Ch. Stoyanov, V. V. Voronov and Nguyen Van Giai, Phys. Rev. C 66

(2002), 034304.
29) A. P. Severyukhin, V. V. Voronov and Nguyen Van Giai, Phys. Rev. C 77 (2008), 024322.
30) A. P. Severyukhin, V. V. Voronov and Nguyen Van Giai, Eur. Phys. J. A 22 (2004), 397.
31) P. Sarriguren, E. Moya de Guerra and A. Escuderos, Nucl. Phys. A 691 (2001), 631.
32) P. Sarriguren, E. Moya de Guerra and A. Escuderos, Phys. Rev. C 64 (2001), 064306.
33) A. P. Severyukhin, N. N. Arsenyev, V. V. Voronov and Nguyen Van Giai, Phys. At. Nuclei

72 (2009), 1149.
34) A. P. Severyukhin, V. V. Voronov and Nguyen Van Giai, J. Phys. Conf. Ser. 267 (2011),

012025.
35) P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer, Berlin, 1980).
36) J. Dobaczewski, H. Flocard and J. Treiner, Nucl. Phys. A 422 (1984), 103.
37) Nguyen Van Giai and H. Sagawa, Phys. Lett. B 106 (1981), 379.
38) K. Ikeda, S. Fujii and J. I. Fujita, Phys. Lett. 3 (1963), 271.
39) G. F. Bertsch and I. Hamamoto, Phys. Rev. C 26 (1982), 1323.
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