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We analyze the frequency-dependent current fluctuations induced into a gate near a quantum
point contact or a quantum chaotic cavity. We use a current and charge conserving, effective scat-
tering approach in which interactions are treated in random phase approximation. The current
fluctuations measured at a nearby gate, coupled capacitively to the conductor, are determined by
the screened charge fluctuations of the conductor. Both the equilibrium and the non-equilibrium
current noise at the gate can be expressed with the help of resistances which are related to the
charge dynamics on the conductor. We evaluate these resistances for a point contact and determine
their distributions for an ensemble of chaotic cavities. For a quantum point contact these resistances
exhibit pronounced oscillations with the opening of new channels. For a chaotic cavity coupled to
one channel point contacts the charge relaxation resistance shows a broad distribution between 1/4
and 1/2 of a resistance quantum. The non-equilibrium resistance exhibits a broad distribution be-
tween zero and 1/4 of a resistance quantum.

PACS numbers: 72.70.+m, 73.23.-b, 85.30.Vw, 05.45.+b

I. INTRODUCTION

The investigation of fluctuations in mesoscopic conduc-
tors is an interesting problem which has found consid-
erable attention both experimentally and theoretically.
Two recent reviews provide both an introduction to the
subject as well as a discussion of some of the impor-
tant results [1,2]. In this work we are interested in the
frequency-dependent noise spectra of mesoscopic conduc-
tors away from the low-frequency white-noise limit. The
experimental observation of deviations from the white
noise-limit in the current-fluctuation spectra of well con-
ducting samples requires large frequencies [3]. Here we
investigate the fluctuations induced into a nearby gate,
capacitively coupled to the conductor. These fluctuations
are not a correction to an effect that exists already in the
zero-frequency limit. We present a discussion which de-
scribes the internal potential of the mesoscopic conduc-
tor with a single variable. The Coulomb interactions are
described with the help of a geometrical capacitance C
instead of the full Poisson equation. Furthermore, we will
treat the gate as a macroscopic electric conductor. In this
case the current fluctuations induced into a nearby gate
are determined entirely by the dynamics of the charge
fluctuations of the mesoscopic conductor.

Consider a conductor, for instance the quantum point
contact [4–7], shown in Fig. 1. The conductor is described
by scattering matrices sαβ which relate the amplitudes of
incoming currents at contact β to the amplitudes of the
outgoing currents at α. We find that the charge fluctua-
tions of the mesoscopic conductor can be described with
the help of a density of states matrix

Nδγ =
1

2πi

∑

α

s†αδ

dsαγ

dE
. (1)

The diagonal elements of this matrix determine the den-
sity of states of the conductor N =

∑

γ Tr(Nγγ); the
trace is over all quantum channels. The non-diagonal
elements are essential to describe fluctuations. At equi-
librium and in the zero temperature limit we find that
to leading order in frequency the mean squared current
fluctuations at the gate have a spectrum S00(ω, V = 0) =
2ω2h̄|ω|C2

µRq. Here C−1
µ = C−1+(e2N)−1, is the electro-

chemical capacitance [8] of the conductor vis-à-vis the
gate. The dynamical quantity which determines the fluc-
tuations is the charge relaxation resistance Rq

Rq =
h

2e2

∑

γδ Tr
(

NγδN †
γδ

)

[
∑

γ Tr(Nγγ)]2
. (2)

Büttiker, Thomas and Prêtre [8] showed that the charge
relaxation resistance governs the dissipative part of the
low frequency admittance of mesoscopic capacitors. To-
gether with the electrochemical capacitance Cµ, Rq de-
termines the charge relaxation time RqCµ of the meso-
scopic conductor. Similarly to the equilibrium noise spec-
trum, at zero temperature, the non-equilibrium current
noise spectrum at the gate, S00(V, ω) = 2ω2e|V |C2

µRv, is
determined by a resistance Rv,

Rv =
h

e2

Tr
(

N21N †
21

)

[
∑

γ Tr(Nγγ)]2
. (3)

Whereas the charge relaxation resistance Rq invokes
all elements of the density of states matrix with equal
weight, in the presence of transport the non-diagonal el-
ements of the density of states matrix are singled out. Be-
low we present the derivation of these results and evaluate
the charge relaxation resistance Rq and the resistance Rv
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for the quantum point contact and for a chaotic quantum
dot.

The characterization of the current fluctuations in
terms of resistances can be motivated as follows. The
current fluctuations at the gate contact are directly re-
lated to fluctuations of the charge Q on the conductor,

S00(ω, V ) = ω2SQQ(ω, V ). (4)

In turn, the charge fluctuations are related to the poten-
tial fluctuations by the geometrical capacitance C

SQQ(ω, V ) = C2SUU (ω, V ). (5)

Voltage fluctuations, as is well known, are essentially de-
termined by resistances. However, in contrast to the
Nyquist formula for equilibrium voltage fluctuations, we
deal here with electro-static potential fluctuations inside
the conductor. The resistances Rq and Rv are related
to the charge dynamics rather than the two terminal dc-
resistance.

The resistances Rq and Rv probe an aspect of meso-
scopic conductors which is not accessible by investigating
the dc-conductance or the zero-frequency limit of shot
noise. These resistances are not determined by the scat-
tering matrix alone but also by its energy derivative. Ac-
cording to the fluctuation dissipation theorem, the low-
frequency equilibrium current-fluctuations of a conductor
which permits transmission are determined by the con-
ductance of the system. For a two-terminal conductor the
conductance is simply the sum of all transmission eigen-
values Tn. The low-frequency non-equilibrium noise, the
shot noise [9,10], of a two-terminal conductor is deter-
mined by the sum of the products Tn(1− Tn), where the
Tn = 1 − Rn are again the eigenvalues of the transmis-
sion matrix multiplied by its hermitian conjugate [11,12].
Hence both the equilibrium noise and the shot noise
are governed by the transmission behavior of the sam-
ple. This is even true for correlations on multiterminal
conductors which cannot be expressed in terms of trans-
mission eigenvalues [11,13,14]. In contrast, the dynamic
conductance is determined by oscillations of the charge
distribution in the conductor [15]. Since charge is a con-
served quantity, the oscillatory part of the charge distri-
bution can be represented as a sum of dipoles [16,17].
Similarly, the frequency-dependent fluctuations are gov-
erned by the fluctuations of the charge distributions or
more precisely by the fluctuations of dipolar charges.

The charge-fluctuations of a non-interacting system
can be described with the help of the density of states
matrix Eq. (1). However, the charge distribution of a
non-interacting system is not dipolar. In fact without in-
teractions, charge is not conserved and consequently cur-
rents are not conserved. To achieve a dipolar (or higher
order multipolar) charge distribution it is necessary to
consider interactions. Here we consider the simple ap-
proximation in which the charge distribution is effectively
represented by a single dipole. We permit the charging
of the quantum point contact vis-à-vis the gate. In Fig. 1

this dipole is indicated by the charges Q and −Q. A more
realistic treatment of the charge distribution of a quan-
tum point contact includes a dipole across the quantum
point contact itself [16] and in the presence of the gates
includes a quadrupolar charge distribution [17].

I I

I0

-Q

Q1 2

FIG. 1. Geometry of the quantum point contact.

The frequency-dependence of the noise spectra gener-
ated by the fluctuations of the dipolar charges should
be distinguished from a purely statistical frequency-
dependence arising from the Fermi distribution func-
tions [3,18,19]: Even for a conductor with an energy-
independent scattering matrix there exists a frequency-
dependence due the Fermi distribution functions of the
different reservoirs. For small frequencies the distribu-
tion functions are governed by the temperature kT or
the applied voltage eV and a crossover occurs when the
frequency h̄ω exceeds both kT and eV . We will not fur-
ther emphasize this crossover since it is a property of the
Fermi distribution alone and provides no new informa-
tion on the conductor itself.

Our work is also of interest in view of recent efforts to
discuss the dephasing induced by the shot noise of two
conductors in close proximity [20,21] or due to the fluc-
tuating electro-magnetic field [22]. Our work shows that
what counts are the dipolar charge fluctuations. The
discussion presented below cannot be applied to metal-
lic diffusive conductors for which the potential needs to
be treated as a field [2]. Recently Nagaev’s [23] classical
discussion of shot noise in metallic conductors has been
extended to investigate the effect of a nearby gate [24,25].
In these works the source of the noise is taken to be fre-
quency independent over the entire range of interest. In
contrast for the examples treated here it is not only the
electrodynamic response which is frequency dependent
but also the noise itself.
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There has been a considerable recent interest in the
parametric derivatives of the scattering matrix of chaotic
conductors [26–30]. The energy derivative of the scatter-
ing matrix determines quantities like the density of states
matrix Eq. (1). For electrostatic problems it is the func-
tional derivative of the scattering matrix with respect to
the local potential which matters [31]. Only in the limit
where we describe the internal electrostatic potential as a
single variable (instead of a continuous field), and only if
we are satisfied with a WKB like-description, can the en-
ergy derivatives of the scattering matrix be used. These
two conditions are likely to be fullfilled for a ballistic
quantum dot. Then the energy derivative of the scatter-
ing matrix and the potential derivative differ just by a
sign. For chaotic cavities a theory of the energy deriva-
tive of the scattering matrix has permitted a discussion
of the distribution of capacitances [27–29]. Fyodorov and
Sommers [26,29] used supersymmetric methods to inves-
tigate the energy derivatives of the scattering matrix. For
a chaotic cavity connected to a reservoir via a single chan-
nel lead, Gopar, Mello and Büttiker [27] found the distri-
bution functions for all universality classes by analyzing
directly the statistical properties of the scattering matrix.
The single channel discussion of Gopar et al. [27] has been
generalized by Brouwer, Frahm and Beenakker [30], who
found the distribution of the scattering matrix and its
derivatives for the multi-channel problem. This general-
ization made it possible to investigate the distribution of
parametric conductance derivatives like the transconduc-
tance dG/dV0, where G is the conductance and V0 is the
gate voltage [32]. Here we use the result of Ref. [30] to
find the distribution of the charge relaxation resistance
Rq and the resistance Rv for a chaotic quantum dot cou-
pled to reservoirs via two perfect one-channel leads.

II. CURRENT AND CHARGE FLUCTUATIONS

To find the current-fluctuations for the structures of
interest we discuss in this section an approach which in-
cludes interaction effects in the random phase approxi-
mation (RPA). This approach has been used in Ref. [33]
to find the dynamic conductance of mesoscopic struc-
tures for the case that the self-consistent potential of the
conductor can be taken to be a single variable U . The
fluctuations belonging to this approach are discussed in
Ref. [8] for the case of a mesoscopic capacitor and for a
more general multiprobe conductor capacitively coupled
to a gate in Ref. [34].

A. Fixed Internal Potential

We consider a conductor with a fixed internal potential
(non-interacting problem) and present the results needed
later on to treat the problem with interactions. Con-
sider a conductor described by scattering matrices sαβ

which relate the annihilation operators âβ in the incom-
ing channels in contact β to the annihilation operators

b̂α of a carrier in the outgoing channel of contact α via
[11]

b̂α =
∑

β

sαβ âβ . (6)

In a multichannel conductor the s-matrix has dimensions
Nα × Nβ for leads that support Nα and Nβ quantum
channels. Here α and β run over all contacts of the con-
ductor α, β = 1, 2. (Later, we need indices for the con-
tacts of the conductor and the gate. For this case we will
use the labels µ, ν = 0, 1, 2 ). The current at contact α
is determined by the difference in the occupation of the
incident channels minus the occupation of the outgoing
channels

Îα(ω) =
e

h̄

∫

dE[â†
α(E)âα(E + h̄ω) − b̂†α(E)b̂α(E + h̄ω)].

(7)

Using Eq. (6) to eliminate the occupation numbers of
the outgoing channels in terms of the incoming channels
yields a current operator [11]

Îα(ω) =
e

h̄

∫

dE
∑

βγ

â†
β(E)A0

βγ(α, E, E + h̄ω)âγ(E + h̄ω),

(8)

with a current matrix

A0
δγ(α, E, E′) = δαδδαγ1α − s†αδ(E)sαγ(E′). (9)

Here the upper index 0 indicates that we deal with non-
interacting electrons. The current noise spectra are de-
termined by the quantum expectation value 〈· · ·〉 of the

current operators at contact µ and ν, 1
2 〈∆Îµ(ω)∆Îν(ω′)+

∆Îν(ω′)∆Îµ(ω)〉 ≡ 2πSµνδ(ω + ω′). The spectral densi-
ties in terms of the current matrix are [11]

Sµν(ω) =
e2

h

∑

δγ

∫

dE Fγδ(E, ω) (10)

Tr [A0
γδ(µ, E, E + h̄ω)(A0)†γδ(ν, E, E + h̄ω)],

Fγδ(E, ω) = fγ(E)(1 − fδ(E + h̄ω))

+fδ(E + h̄ω)(1 − fγ(E)). (11)

Here the trace is taken over channels and fγ is the Fermi
distribution function for contact γ. At equilibrium these
fluctuation spectra are related to the ac-conductances of
the non-interacting problem discussed in Ref. [33]. The
current operator for the gate has thus far not been de-
fined: that will be achieved only in the next section.

It is natural to decompose the current matrix into two
contributions, one at equal energies determines the dc-
response of the conductor and one at differing energies
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is associated with the dynamics of the system. Thus we
write

A0
δγ(α, E, E′) = δαδδαγ1α − s†αδ(E)sαγ(E)

−i(E′ − E)Nδγ(α, E, E′) (12)

with a partial density of states matrix

Nβγ(α, E, E′) =
i

2π

s†αβ(E) (sαγ(E) − sαγ(E′))

E′ − E
. (13)

This matrix has a simple interpretation: The elements
of Nβγ(α, E, E′) are the diagonal and non-diagonal ele-
ments of the density of states associated with carriers in-
cident from contact β and γ which eventually contribute
to the current at contact α. From the continuity equa-
tion we find immediately that the total charge fluctu-
ations in the conductor generated by particles incident
from contact β and γ irrespective through which contact
they leave the conductor are determined by the density
of states matrix

Nβγ(E, E′) =
∑

α

Nβγ(α, E, E′). (14)

Some additional combinations of these matrices have a
special meaning [31,35]. We call

N β(E, E′) =
∑

α

Nββ(α, E, E′) (15)

the injectance matrix of contact β and call

Nα(E, E′) =
∑

β

Nββ(α, E, E′) (16)

the emittance matrix. The frequency dependent in-
jectance is the quantum expectation value of the in-
jectance operator Nβ(ω) = 〈∑α N̂ββ(α, E, E + h̄ω)〉.
Similarly the frequency dependent emittance is Nα(ω) =

〈∑β N̂ββ(α, E, E + h̄ω)〉. Below we will often use only

the zero-frequency limit of the density matrix Eq. (14)
(ω → 0) which is given by Eq. (1). Similarly we will
most often use only the zero-temperature, zero-frequency
injectance,

Nβ =
1

2πi

∑

α

Tr

(

s†αβ

dsαβ

dE

)

(17)

and emittance,

Nα =
1

2πi

∑

β

Tr

(

s†αβ

dsαβ

dE

)

. (18)

The density matrices introduced above together with the
injectances and emittances can now be used to character-
ize the charge fluctuations of the conductor. The evalua-
tion of the injectances and emittances in the equilibrium
state of the conductance limits the theory presented be-
low to linear order in the applied voltage.

B. Effective Current Matrix

Our goal is to derive a current matrix which includes
the effect of screening [2] and replaces the current ma-
trix, Eq. (9) of the non-interacting problem. To this ex-

tent we next determine the operator Û for the internal
potential. The charge on the conductor is determined by
the Coulomb interaction. Here we describe the interac-
tion with the help of a single geometrical capacitance.
Hence the charge on the conductor is Q̂ = CÛ . Here we
have assumed that the gate is macroscopic and has no
dynamics of its own. We can also determine the charge
Q̂ as the sum of the bare charge fluctuations eN̂ and
the induced charges generated by the fluctuating induced
electrical potential. In RPA the induced charges are pro-
portional to the average frequency dependent density of
states N(ω) times the fluctuating potential. Thus the
net charge is determined by

Q̂ = CÛ = eN̂ − e2NÛ. (19)

Solving this equation gives us for the operator of the
potential fluctuations

Û = GeN̂ , (20)

with

G(ω) = (C + e2N(ω))−1. (21)

Here G(ω) takes into account the effective interaction
potential.

The total current at probe α is determined by the
particle current and in addition by a current due to
the fluctuating potential. The fluctuation of the inter-
nal potential creates additional currents at all the con-
tacts. The current fluctuations generated by the induced
potential fluctuations at contact α are determined by
iωe2Nα(ω)Û(ω). Here the response to the internal po-
tential is determined by the emittance [31,33] of the con-
ductor into contact α. Thus the total current at contact
α of the conductor is

Îα(ω) = Î0
α(ω) − iωe2Nα(ω)Û(ω), (22)

where Î0
α is the current operator for fixed internal poten-

tial. The current induced into the gate is given by the
time derivative of the total charge and hence by

Îg(ω) = iωCÛ(ω). (23)

Expressing Û in terms of the density of states matrix
gives for the current operators Eqs. (22) and (23) an ex-
pression which is of the same form as Eq. (8) but with
the current matrix Eq. (9) replaced by an effective cur-
rent matrix

4



Aδγ(α, E, E + h̄ω) = A0
δγ(α, E, E + h̄ω)

+iωe2NαGNδγ(E, E + h̄ω). (24)

Eq. (24) determines the current at the contacts of the
conductor. The current induced into the gate contact is
determined by a current matrix

Aδγ(0, E, E + h̄ω) = −iωCGNδγ(E, E + h̄ω). (25)

The sum of all currents at the contacts of the sample and
the current at the gate is conserved. Indeed, labelling the
index which runs over all contacts by ν, (ν = 0, 1, 2) we
find

∑

ν

Aδγ(ν, E, E + h̄ω) = 0. (26)

Eq. (26) follows from the relation between the bare cur-
rent matrix and the density of states matrix, Eqs. (12-14)
and the fact that 1− e2NG = CG. Before continuing we
notice that for these effective current matrices Aδγ(ν),
the index ν runs over all contacts but the indices δ and
γ run only over the contacts of the sample. This “asym-
metry” is a consequence of our macroscopic treatment of
the gate.

C. Charge Fluctuation Spectra

With the help of the effective current matrices
Eqs. (24) and (25) we can find the current fluctuation
spectra Sµν(ω, V ) as in the non-interacting case: In
Eq. (10) we have to replace the bare current matrix
A0

δγ(α) by the effective current matrix Aδγ(ν). This de-

termines a matrix Sµν(ω) of fluctuation spectra for the
mean square current fluctuations at the contacts of the
conductor and the gate and for the correlations between
any two currents. As a consequence of current conser-
vation

∑

µ Sµν(ω) =
∑

ν Sµν(ω) = 0. At equilibrium
the fluctuation spectra which we find with the help of
the effective current matrix are related via the fluctua-
tion dissipation theorem to the frequency dependent con-
ductances of the interacting system given in Ref. [33].
The spectra also agree with the expression given in Ref.
[34]. Here we are interested in the current fluctuations
at the gate determined by the spectrum S00(ω, V ). This
spectrum is entirely determined by the charge fluctua-
tions of the conductor (see Eq. (4)). Defining the fre-
quency dependent capacitance of the conductor to the
gate Cµ(ω) ≡ e2N(ω)CG(ω) and using Eq. (25) we find

SQQ(ω) = C2
µ(ω)N−2(ω)

∑

δγ

∫

dE Fγδ(E, ω)

Tr[Nγδ(E, E + h̄ω)N †
γδ(E, E + h̄ω)]. (27)

Two limits are of special interest. At equilibrium, at
zero temperature, we find for the charge fluctuation spec-
trum in the low frequency limit, SQQ(ω) = 2C2

µRqh̄|ω|

where the electro-chemical capacitance is given by its
zero-frequency value and where the charge relaxation re-
sistance is determined by Eq. (2).

The second limit we wish to consider is the zero-
temperature, low-frequency limit of the charge fluctua-
tions to leading order in the applied voltage V . Evalu-
ation of Eq. (27) gives SQQ(ω) = 2C2

µRv|eV | with a re-
sistance Rv given by Eq. (3). Thus the non-equilibrium
noise is determined by a non-diagonal element of the den-
sity of states matrix. If both the frequency and the volt-
age are non-vanishing we obtain to leading order in h̄ω
and V , SQQ(ω) = 2C2

µR(ω, V )h̄|ω| with a resistance

R(ω, V )h̄|ω| =

{

Rqh̄|ω|, h̄|ω| ≥ e|V |
Rqh̄|ω| + RV (e|V | − h̄|ω|), h̄|ω| ≤ e|V |

(28)

which is a frequency and voltage dependent series com-
bination of the resistances Rq and Rv. Below we discuss
the resistances Rq and Rv in detail for two examples: a
quantum point contact and a chaotic cavity.

III. QUANTUM POINT CONTACT

Quantum point contacts are formed with the help of
gates. It is therefore interesting to ask what the fluc-
tuations are which would be measured at one of these
gates. For simplicity, we consider a symmetric contact:
We assume that the electrostatic potential is symmet-
ric for electrons approaching the contact from the left or
from the right. Furthermore we combine the capacitances
of the conduction channel to the two gates and consider
a single gate as schematically shown in Fig. 1. If only a
few channels are open the potential has in the center of
the conduction channel the form of a saddle [36]:

V (x, y) = V0 +
1

2
mω2

yy
2 − 1

2
mω2

xx2 (29)

where V0 is the electrostatic potential at the saddle and
the curvatures of the potential are parametrized by ωx

and ωy. For this model the scattering matrix is diagonal,
i.e. for each quantum channel ( energy h̄ωy(n + 1/2) for
transverse motion) it can be represented as a 2×2-matrix.
For a symmetric scattering potential and without a mag-
netic field the scattering matrix is of the form

sn(E) =

(

−i
√

Rn exp(iφn)
√

Tn exp(iφn)√
Tn exp(iφn) −i

√
Rn exp(iφn)

)

(30)

where Tn and Rn = 1 − Tn are the transmission and re-
flection probabilities of the n-th quantum channel and φn

is the phase accumulated by a carrier in the n-th channel
during transmission through the QPC. The probabilities
for transmission through the saddle point are [36]

5



Tn(E) =
1

1 + e−πǫn(E)
, (31)

ǫn(E) = 2

[

E − h̄ωy(n +
1

2
) − V0

]

/(h̄ωx). (32)

The transmission probabilities determine the conduc-
tance G = (e2/h)

∑

n Tn and the zero-frequency shot-
noise [10,11] S(ω = 0, V ) = (e2/h)(

∑

n TnRn)e|V |. As
a function of energy (gate voltage) the conductance rises
step-like [4,5]. The shot noise is a periodic function of
energy. The oscillations in the shot noise associated with
the opening of a quantum channel have recently been
demonstrated experimentally by Reznikov et al. [6] and
Kumar et al. [7].

2 4 6 8 10 12 14

E

0

2

4

6

8

10

12

N
(E

)

FIG. 2. Density of states in units of 4/(hωx) for a sad-
dle-point constriction as function of energy, E/(h̄ωx).

To obtain the density of states we use the relation be-
tween density and phase Nn = (1/π)φn and evaluate it
semi-classically. The spatial region of interest for which
we have to find the density of states is the region over
which the electron density in the contact is not screened
completely. We denote this length by λ. The density of

states is then found from Nn = 1/h
∫ λ

−λ
dpn

dE dx where pn

is the classically allowed momentum. A simple calcula-
tion gives a density of states

Nn(E) =
4

hωx
asinh





√

1

2

mω2
x

E − En
λ



 , (33)

for energies E exceeding the channel threshold En and

Nn(E) =
4

hωx
acosh





√

1

2

mω2
x

En − E
λ



 , (34)

for energies in the interval En − (1/2)mω2
xλ2 ≤ E < En

below the channel threshold. Electrons with energies less
than En − 1

2mω2
xλ2 are reflected before reaching the re-

gion of interest, and thus do not contribute to the density
of states. The resulting density of states has a logarith-
mic singularity at the threshold En = h̄ωy(n + 1

2 ) + V0

of the n-th quantum channel. (We expect that a fully
quantum mechanical calculation gives a density of states
which exhibits also a peak at the threshold but which is
not singular). The total density of states as function of
energy (gate voltage) is shown in Fig. 2 for ωy/ωx = 3,
V0 = 0 and mωxλ2/h̄ = 18. Each peak in the density
of states of Fig. 2 marks the opening of a new channel.
With the help of the density of states we also obtain the
capacitance C−1

µ = C−1 + (e2N)−1. For the experimen-

tally most relevant case (e2/C) ≫ N−1 the variations in
the capacitance are small and the noise spectra are dom-
inated by the energy dependence of Rq and Rv which we
will now discuss.

E

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

(a)

(b)

(c)

(d)

R
( 

  
,e

V
) 

h
| 

  
|/

e
V

ω
ω

FIG. 3. Effective resistance, in units of h/e2, as func-
tion of energy, E/(h̄ωx) for the cases a) h̄ω/(eV ) = 0,
b) h̄ω/(eV ) = 0.25, c) h̄ω/(eV ) = 0.5 and d) h̄ω/(eV ) = 1,
where V is bias voltage.

It is instructive to evaluate the resistances Rq and Rv

explicitly in terms of the parameters which determine
the scattering matrix. We find for the density of states
matrix of the n-th quantum channel

N11 = N22 =
1

2π

dφn

dE
, (35)

N12 = N21 =
1

4π

1√
RnTn

dTn

dE
. (36)
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Inserting these results into Eq. (2) gives for the charge
relaxation resistance [33]

Rq =
h

e2

∑

n(dφn/dE)2

[
∑

n(dφn/dE)]2
. (37)

It is determined by the derivatives of the phases (densi-
ties) evaluated at the Fermi energy. The resistance Rv is
given by

Rv =
h

e2

∑

n
1

4RnTn

(

dTn

dE

)2

[
∑

n(dφn/dE)]2
. (38)

It is sensitive to the variation with energy of the trans-
mission probability. Note that the transmission proba-
bility has the form of a Fermi function. Consequently,
the derivative of the transmission probability is also pro-
portional to TnRn. The numerator of Eq. (38) is thus
also maximal at the onset of a new channel and vanishes
on a conductance plateau.

In Fig. 3 the effective resistance R(ω, V ) is shown for
four frequencies h̄ω/(eV ) = 0, 0.25, 0.5, 1, where V is the
applied voltage. At the highest frequency h̄ω/(eV ) = 1
the resistance R(ω, V ) is completely dominated by the
equilibrium charge relaxation resistance Rq. The upper-
most curve (d) of Fig. 3 is nothing but Rq and determines
the noise due the zero-point equilibrium fluctuations.
The fluctuations reach a maximum at the onset of a new
channel since Rq takes its maximum value, Rq = h/e2.
At the lowest frequency h̄ω = 0 the resistance R(ω, V ) is
determined by Rv. The lowermost curve (a) of Fig. 3 is
the nonequilibrium resistance Rv. It is seen that the non-
equilibrium resistance Rv is very much smaller than Rq.
We will encounter such a large difference between these
two resistances also for the chaotic cavity. Furthermore
Rv exhibits a double peak structure: The large peak in
the density of states at the threshold of a quantum chan-
nel nearly suppresses the non-equilibrium noise at the
channel threshold completely. Two additional curves (b
and c for h̄ω/(eV ) = 0.25 and h̄ω/(eV ) = 0.5) describe
the crossover from Rv to Rq.

IV. QUANTUM CHAOTIC CAVITY

The general theory is now applied to a chaotic quantum
dot [37–39] with two ideal single-channel leads and capac-
itive coupling to a macroscopic gate as shown schemat-
ically in Fig. 4. For such samples, averages lose their
meaning and below we give the distribution functions of
the resistances which characterize the noise induced into
the gate contact. We compute the statistical distribution
of the charge relaxation resistance Rq and the resistance
Rv from random matrix theory [40], assuming that the
classical dynamics of the cavity is fully chaotic. We will
again consider the case e2/C ≫ N−1 for which the dis-
tribution function [41] of the electrochemical capacitance
becomes very sharp.

I

I
I

-Q

Q1

2

0

FIG. 4. Quantum dot coupled to two open leads and cou-
pled to a gate.

The distribution of the two-terminal, zero-frequency
shot noise S = T (1−T ) in units of S0 = 2e(e2/h)|V |, fol-
lows from the distribution P (T ) ∝ T−1+β/2 of the dimen-
sionless conductance T . The symmetry index β equals
1 or 2 depending on whether time-reversal symmetry is
present or broken. The latter is a result of the uniform
distribution of the scattering matrix on the set of unitary
(β = 2) or unitary symmetric (β = 1) 2×2 matrices [42].
Thus one finds for the distribution of S ∈ [0, 1/4]

P (S) =







√
1+

√
1−4S+

√
1−

√
1−4S√

16S(1−4S)
, β = 1,

(1/4 − S)−1/2, β = 2.
(39)

For the orthogonal ensemble the distribution of the shot
noise is bimodal and has square root singularities at
S = 0 and S = 1/4. In the unitary ensemble the distri-
bution remains finite at zero shot noise and has a square
root singularity only at S = 1/4.

In contrast, for the low-frequency spectrum Eq. (27)
of the charge fluctuations, one needs the matrices Nαβ ,
which are just blocks of the well-known Wigner-Smith
delay-time matrix 1

2πis
† ds

dE [43]. The distribution of this
matrix has recently been found [30]. To compute P (Rq)
it is sufficient to know the joint distribution of the eigen-
values P ({qi}), whereas for P (Rv) we also need that
the eigenvectors are distributed uniformly, and indepen-
dently from the eigenvalues. Like in Ref. [32] we integrate
over the eigenvalues with an extra weight factor

∑

i qi,
which is the fluctuating density of states. For instance,
the distribution of Rq (in units of h/e2) follows from

P (Rq) =

∫

dq1dq2P (q1, q2)(q1 + q2)δ

(

Rq −
q2
1 + q2

2

2(q1 + q2)2

)

.

(40)
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The weight factor appears because, in the limit e2/C ≫
N−1, the ensemble is generated either by uniformly vary-

ing the total charge (rather than EF ) in case the gate
voltage is swept, or at constant charge (rather than EF )
if an other parameter like the magnetic field is swept. In
both cases the average can be replaced by a random ma-
trix average, provided the density of states is used as a
Jacobian [32]. Thus we find the distribution of the charge
relaxation resistance Rq ∈ [1/4, 1/2]

P (Rq) =

{

4, β = 1,
30(1 − 2Rq)

√

4Rq − 1, β = 2.
(41)

It is shown in Fig. 5.

0.25 0.3 0.35 0.4 0.45 0.5

0

1

2

3

4

5

P
(R

  
)

q

qR

FIG. 5. Distribution of the charge relaxation resistance of
a chaotic quantum dot for the orthogonal ensemble (dashed)
and the unitary ensemble (solid line) line.

For the resistance Rv (also in units of h/e2) the dis-
tribution is shown in Fig. 6. It is limited to the range
Rv ∈ [0, 1/4] and given by

P (Rv) =

{

2 log
[

1−2Rv+
√

1−4Rv

2Rv

]

, β = 1,

10(1 − 4Rv)
3/2, β = 2.

(42)

For the orthogonal ensemble the distribution is singular
at Rv = 0. Both distribution functions tend to zero at
Rv = 1/4.

We see that, as for the quantum point contact, the re-
sistance Rv is always smaller than the charge relaxation
resistance Rq. The distributions shown in Figs. 5 and 6
demonstrate that interesting information can be obtained
from the measurement of frequency-dependent shot noise
on chaotic quantum dots.

0 0.05 0.1 0.15 0.2 0.25

0

2.5

5

7.5

10

12.5

15

17.5

P
(R

  
)

v

 vR

FIG. 6. Distribution of the resistance Rv of a chaotic
quantum dot for the orthogonal ensemble (dashed) and the
unitary ensemble (solid line) line.

V. DISCUSSION

We have investigated the spectrum of the current noise
induced into the gate of a quantum point contact and of
a chaotic cavity. The current noise spectrum is a direct
measure of the charge or potential fluctuations of the con-
ductor. For this calculation, we have assumed that the
external circuit exhibits zero impedance for the fluctua-
tions. If the impedance of the external circuit is not zero,
it is necessary to investigate also the effect of fluctuating
reservoir voltages. The fluctuation spectra of a meso-
scopic sample embedded in a circuit with non-vanishing
impedance will then also depend on the properties of the
external circuit.

We have treated interactions in random phase approxi-
mation. Since exchange effects [13,14] play a role, a treat-
ment of interactions on the Hartree-Fock level is very de-
sirable. The importance to go beyond the single param-
eter potential approximation and to treat a continuous
potential distribution has already been emphasized. A
theory exists already for the low-frequency fluctuations
of a mesoscopic capacitor [2].

We have found it useful to express the noise spectra
with the help of resistances, Rq and Rv. The charge
relaxation resistance has a clear physical meaning since
it also determines the dissipative, low-frequency admit-
tance of a mesoscopic conductor [8]. The charge re-
laxation resistance differs from the two terminal resis-
tance which one might naively want to use to characterize
charge relaxation. Whether the resistance Rv introduced
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here will be useful beyond the discussion of noise prop-
erties is not presently apparent.

The current fluctuations induced into the gate are pro-
portional to the square of the electrochemical capacitance
of the conductor to the gate. The noise will thus be the
smaller the more effectively the charge on the conduc-
tor is screened. The strong dependence on interaction of
the properties discussed in this work are another illustra-
tion of the importance of screening in the discussion of
dynamical effects in mesoscopic samples.

The frequency-dependent noise induced into a nearby
gate is a first order effect: It is not a small correction to
an effect that exists already in the zero-frequency limit.
This lets us hope that experimental detection of this noise
is possible. From our work it is clear that such experi-
ments would greatly contribute to our understanding of
the dynamics of mesoscopic conductors and the role of
interactions.
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[11] M. Büttiker, Phys. Rev. Lett. 65, 2910 (1990); Phys.
Rev. B 46, 12485 (1992).

[12] Th. Martin and R. Landauer, Phys. Rev. B 45, 1742
(1992).

[13] Ya. M. Blanter and M. Büttiker, Phys. Rev. B, (1997).
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(1997). cond-mat/9702067
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[28] P. W. Brouwer and M. Büttiker, Europhys. Lett. 37, 441-

446 (1997).
[29] Y. V. Fyodorov and H. J. Sommers, J. Math. Phys. 38,

1918 (1997).
[30] P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker,

Phys. Rev. Lett. 78, 4737 (1997).
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