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ABSTRACT

We study the critical points of the black hole scalar potential VBH in N = 2, d = 4
supergravity coupled to nV vector multiplets, in an asymptotically flat extremal black hole
background described by a 2 (nV + 1)-dimensional dyonic charge vector and (complex)
scalar fields which are coordinates of a special Kähler manifold.

For the case of homogeneous symmetric spaces, we find three general classes of regular
attractor solutions with non-vanishing Bekenstein-Hawking entropy. They correspond
to three (inequivalent) classes of orbits of the charge vector, which is in a 2 (nV + 1)-
dimensional representation RV of the U -duality group. Such orbits are non-degenerate,
namely they have non-vanishing quartic invariant (for rank-3 spaces). Other than the
1
2
-BPS one, there are two other distinct non-BPS classes of charge orbits, one of which

has vanishing central charge.
The three species of solutions to the N = 2 extremal black hole attractor equations

give rise to different mass spectra of the scalar fluctuations, whose pattern can be inferred
by using invariance properties of the critical points of VBH and some group theoretical
considerations on homogeneous symmetric special Kähler geometry.
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1 Introduction

The charge configurations of stationary, spherically symmetric, asymptotically flat “clas-

sical” extremal black holes in d = 4 dimensions are expressed by the (electric-magnetic

field strengths) representation RV of the duality group G4 ≡ G of the underlying d = 4

supergravity (SUGRA) theory. It has been known for some time [1] that in the case

of scalar manifolds which are symmetric spaces such “charge vectors” belong to distinct

classes of orbits of the representation RV , i.e. that the RV -representation space of G

can be actually divided in disjoint classes of orbits. Such orbits are classified by suitable

constraints on the (lowest order) G-invariant quantity I built out of the representation

RV .

Moreover, for N > 3, d = 4 SUGRAs the scalar manifold of the theory is an homoge-

neous symmetric space G/H , and RV is a real symplectic representation of G. Thus, for

such SUGRAs some relations between the coset expressions of the aforementioned orbits

and different real (non-compact) forms of the stabilizer H of the scalar manifold G/H
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can be established (even though in the cases having I = 0 such relations do not rely on

a critical Attractor Mechanism).

The work of [1] on the classification of the orbits of U-duality1 groups in maximal

supergravity and N = 2 MESGTs in five and four dimensions also suggested that four di-

mensional U-duality groups may act as spectrum generating conformal symmetry groups

in the charge spaces of the corresponding five dimensional theories . In [3] this idea was

developed further and extended to the proposal that the 3 dimensional U duality group

E8(8) of maximal supergravity must similarly act as a spectrum generating quasiconformal

symmetry group in the charge space of black hole solutions in four dimensions extended

by an extra coordinate interpreted as black hole entropy. This proposal extends natu-

rally to 3-dimensional U-duality groups of N = 2 MESGTs acting as spectrum generating

quasiconformal symmetry groups in four dimensions [4]. Remarkably, the quantization of

the geometric quasiconformal action yields directly the minimal unitary representation

of the corresponding U-duality group [5, 6, 7]. More recently it was conjectured that the

indexed degeneracies of certain N = 8 and N = 4 BPS black holes are given by some

automorphic forms related to the minimal unitary representations of the corresponding 3

dimensional U-duality groups [8]. Motivated by these results and conjectures stationary

and spherically symmetric solutions of N ≥ 2 supergravities with symmetric scalar mani-

folds were studied in [9]. By using the equivalence of four dimensional attractor flow with

the geodesic motion on the scalar manifold of the corresponding three dimensional theory

the authors of [9] argued further that the three-dimensional U-duality groups must act as

spectrum generating symmetry groups for BPS black hole degeneracies in 4 dimensions.

In this paper we will study in full generality the critical points (generically referred

to as attractors) of the black hole scalar potential VBH for all N = 2 symmetric special

geometries in d = 4. These extrema describe the regular configurations (BPS as well

as non-BPS) of N = 2, 6, 8 SUGRAs, corresponding to a finite, non-vanishing quartic

invariant I = I4 and thus to extremal black holes with classical non-vanishing entropy

SBH 6= 0 . The related orbits in the RV of the d = 4 duality group G will correspondingly

be referred to as non-degenerate orbits. The attractor equations for BPS configurations

were first studied in [10, 11, 12, 13]. Flow Equations for the general case were given in

[14], and recently non-BPS attractors have been found for N = 2 and N = 8 theories

[15]-[26].

Attractor solutions and their non-degenerate charge orbits in d = 5 have been recently

classified for the case of all rank-2 symmetric spaces in [27].

Let us start by considering N = 8, d = 4 SUGRA. For such a theory the duality

group is the Cremmer and Julia’s [28] one G = E7(7) and the stabilizer is H = SU(8),

which is at the same time the R-symmetry group of the N = 8 supersymmetry algebra

1Here U -duality is referred to as the “continuous” version, valid for large values of the charges, of the
U -duality groups introduced by Hull and Townsend [2].
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and the maximal compact subgroup (m.c.s.) of E7(7). The dimension of the resulting

real scalar manifold
E7(7)

SU(8)
is 70. The complex antisymmetric central charge matrix ZAB

(A = 1, ...., N = 8) sits in the real symplectic, fundamental representation RV = 56 of

E7(7). The two classes of non-degenerate charge orbits of the 56 of E7(7) are classified

by the unique Cartan-Cremmer-Julia quartic E7(7)-invariant [29, 28] I = I4 constructed

from the 56 of E7(7) [1]. Depending on sgn (I4), one gets:

I4 > 0 : O 1
8
−BPS =

E7(7)

E6(2)

=
G

H0

1

8
-BPS; (1.1)

I4 < 0 : Onon−BPS =
E7(7)

E6(6)

=
G

Ĥ0

non-BPS. (1.2)

The real dimension of both orbits is dim (E7) − dim (E6) = 55. No other classes of

non-degenerate orbits exist in this case; this is essentially related to the fact that no

other real (non-compact) forms of E6 exist in E7(7) beside E6(2) and E6(6). The 1
8
-BPS

and non-BPS non-degenerate orbits correspond to the maximal (non-compact) subgroup

of E7(7) to be E6(2) ⊗ U(1) and E6(6) ⊗ SO(1, 1), respectively.

Actually, N = 8 non-degenerate orbits turn out to be classified by 5 moduli-dependent

parameters [30, 31, 12], 4 positive eigenvalues ρ1,..., ρ4 and an overall phase ϕ. Indeed,

by using the fact that under SU(8) the symplectic, fundamental real representation RV

of E7(7) decomposes as 56 = 28 + 28, one can see ZAB as a complex basis in the 56.

Consequently, ZAB can be skew-diagonalized [32] by performing an SU(8) rotation2.

Such a procedure corresponds to nothing but a change of reference frame in the 56-

representation space of E7(7):

Generic frame : ZAB

↓ SU(8) rotation

“Normal” frame : ZAB,normal = eiϕ/4




ρ1

ρ2

ρ3

ρ4


⊗ ǫ,

ρ1, ρ2, ρ3, ρ4,∈ R+, ϕ ∈ [0, 8π) , (1.3)

where ǫ is the 2-dim. symplectic metric

ǫ ≡
(

0 −1
1 0

)
. (1.4)

2Actually, such a skew-diagonalization procedure is nothing but an application of the Bloch-Messiah-
Zumino Theorem [33, 34] to the case of N = 8, d = 4 SUGRA.
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By looking at ZAB,normal, it is immediate to conclude that the overall symmetry of such

a moduli-dependent skew-diagonal 8 × 8 complex matrix in a generic point of the real

70-dim. scalar manifold
E7(7)

SU(8)
is (SU(2))4. Thence, quartic E7(7)-invariant I4 can be

written in the “normal” frame as follows [35]:

I4,normal (ρ1, ρ2, ρ3, ρ4, ϕ) =

=
[
(ρ1 + ρ2)

2 − (ρ3 + ρ4)
2] [(ρ1 − ρ2)

2 − (ρ3 − ρ4)
2]+ 8ρ1ρ2ρ3ρ4(cosϕ− 1).

(1.5)

N = 8 extremal black hole attractor equations [26] have only 2 distinct classes of

regular solutions as expected from the analysis of [1]:

1. 1
8
-BPS solution:

ρ1 = ρ 1
8
−BPS ∈ R+

0 , ϕ ∈ [0, 8π) , ρ2 = ρ3 = ρ4 = 0. (1.6)

As given by Eq. (1.1), the corresponding orbit in the 56 of E7(7) is O 1
8
−BPS =

E7(7)

E6(2)
, with

I4,normal, 1
8
−BPS = ρ4

1
8
−BPS

> 0 and classical entropy given by the Bekenstein-Hawking

entropy-area formula [36]

SBH, 1
8
−BPS = π

√
I4,normal, 1

8
−BPS = πρ2

1
8
−BPS

. (1.7)

2. non-BPS solution:

ρ1 = ρ2 = ρ3 = ρ4 = ρnon−BPS ∈ R+
0 , ϕ = π. (1.8)

As given by Eq. (1.2), the corresponding orbit in the 56 of E7(7) is Onon−BPS =
E7(7)

E6(6)
,

with I4,normal,non−BPS = −16ρ4
non−BPS < 0 and classical entropy

SBH,non−BPS = π
√
−I4,normal,non−BPS = 4πρ2

non−BPS. (1.9)

The deep meaning of the extra factor 4 in Eq. (1.9) as compared with Eq. (1.7) can

be clearly explained when considering the so-called “stu interpretation” of N = 8 regular

critical points [26].

It is interesting to note that the symmetry gets enhanced at the particular points of
E7(7)

SU(8)
given by the aforementioned regular solutions. In general, the invariance properties

of the regular solutions to attractor eqs. are given by the m.c.s. of the stabilizer of the

corresponding charge orbit. In the considered case N = 8, at 1
8
-BPS and non-BPS critical

point(s) the following symmetry enhancements respectively hold:

1
8
-BPS : (SU(2))4 −→ SU(2)⊗ SU(6) = h0 = m.c.s.

(
H0 = E6(2)

)
; (1.10)

non-BPS : (SU(2))4 −→ USp(8) = ĥ0 = m.c.s.
(
Ĥ0 = E6(6)

)
. (1.11)
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The aim of the present work is to extend the results holding for N = 8, d = 4 SUGRA

to the particular class of N = 2, d = 4 symmetric Maxwell-Einstein SUGRA theories

(MESGTs) [37, 38, 39]. Such a class consists of N = 2, d = 4 SUGRAs sharing the

following properties:

i) beside the SUGRA multiplet, the matter content is given only by a certain number

nV of Abelian vector multiplets;

ii) the space of the vector multiplets’ scalars is an homogeneous symmetric special

Kähler manifold, i.e. a special Kähler manifold with coset structure G
H0⊗U(1)

, where G is

a semisimple non-compact Lie group and H0 ⊗ U(1) is its m.c.s.;

iii) the charge vector in a generic (dyonic) configuration with nV + 1 electric and

nV +1 magnetic charges sits in a real (symplectic) representation RV of G of dim (RV ) =

2 (nV + 1).

By exploiting such special features and relying on group theoretical considerations,

we will be able to relate the coset expressions of the various distinct classes of non-

degenerate orbits (of dimension 2nV +1) in the RV -representation space of G to different

real (non-compact) forms of the compact group H0. Correspondingly, we will solve the

N = 2 extremal black hole attractor eqs. for all such classes, also studying the scalar

mass spectrum of the theory corresponding to the obtained solutions.

The plan of the paper is as follows.

In Sect. 2 we review some basic facts about N = 2, d = 4 symmetric MESGTs, their

non-degenerate charge orbits and the relations with the regular solutions of the N = 2

extremal black hole attractor equations.

In Sect. 3 we determine the orbits of the U-duality groups of N = 2 MESGTs

whose scalar manifolds are symmetric spaces, acting on the representation RV of charges.

With the exception of the SU(1,n+1)
SU(1+n)⊗U(1)

family, all such MESGTs have their origin in five-

dimensional N = 2 MESGTs defined by Euclidean Jordan algebras of degree three. The

five-dimensional correspondence between the vector fields (and hence charges) and the

elements of the Jordan algebra extends to a four-dimensional correspondence between the

field strengths (and their magnetic duals) and the elements of Freudenthal triple system

defined over the corresponding Jordan algebra [37, 4, 7]. The automorphism groups of

the FTSs are isomorphic to the U -duality groups of the corresponding four-dimensional

N = 2 MESGTs. Using the action of the automorphism group on the considered FTSs, we

determine the orbits with non-vanishing quartic norms, which correspond to the quartic

invariants of the MESGTs. We find three classes of such non-degenerate charge orbits,

two with positive norm and one with a negative norm3.

Thence, the first two Subsects. of Sect. 4 are devoted to the general analysis of

3This is to be contrasted with the symmetric situation in d = 5, where one finds two orbits with
positive cubic norm and two with negative norm, which are pairwise isomorphic [1, 27].
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the three classes of regular extremal black hole attractors of N = 2, d = 4 symmetric

”magical” MESGTs, and of the corresponding classes of non-degenerate charge orbits in

the symplectic representation space of the relevant d = 4 duality group. In particular,

the 1
2
-BPS solutions are treated in Subsect. 4.1, while the two general species of non-BPS

Z 6= 0 and non-BPS Z = 0 attractors are respectively considered in Subsubsects. 4.2.1

and 4.2.2.

Subsect. 4.3 deal with the two noteworthy cases of N = 2, d = 4 symmetric ”magical”

MESGTs based on the manifolds
E7(−25)

E6⊗U(1)
(Subsubsect. 4.3.2) and SO∗(12)

U(6)
(Subsubsect.

4.3.3). This latter homogeneous symmetric special Kähler manifold is considered also in

Subsubsect. 4.3.1, where its dual role in the interplay between N = 2 and N = 6, d = 4

SUGRAs is pointed out.

The splittings of the mass spectra of N = 2, d = 4 symmetric ”magical” MESGTs

along their three classes of non-degenerate charge orbits are studied in Sect. 5.

Finally, the concluding Sect. 6 contains some general remarks and observations, as

well as an outlook of possible future further developments along the considered research

directions.

Two Appendices conclude the paper; they treat the regular attractors, non-degenerate

charge orbits and critical mass spectra of the N = 2, d = 4 symmetric MESGTs based

on the sequences SU(1,1+n)
U(1)⊗SU(1+n)

(Appendix I) and SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

(Appendix II).

2 BPS and non-BPS Attractors :

Charge Orbits of N = 2, d = 4 MESGTs

The symmetric special Kähler manifolds of N = 2, d = 4 MESGTs have been classified in

the literature [40, 41]. With the exception of the family whose prepotential is quadratic ,

all such theories can be obtained by dimensional reduction of the N = 2, d = 5 MESGTs

that were constructed in [37, 38, 39]. The MESGTs with symmetric manifolds that

originate from 5 dimensions all have cubic prepotentials determined by the norm form of

the Jordan algebra of degree three that defines them [37, 38, 39]. They include the two

infinite sequences

I : SU(1,1+n)
U(1)⊗SU(1+n)

, r = 1; (2.1)

II : SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

, r = 3, (2.2)

where r stands for the rank of the coset. Of these two infinite families, the first family

is the one whose prepotentials are quadratic. The second family has a five dimensional

origin and its associated Jordan algebras are not simple. It is referred to as the generic

Jordan family since it exists for any n. The first elements of such sequences (obtained for

6



n = 0) respectively correspond to the following manifolds and holomorphic prepotential

functions in special coordinates:

I0 : SU(1,1)
U(1)

, F (t) = i
4
(t2 − 1) ; (2.3)

II0 : SU(1,1)⊗SO(2,2)
U(1)⊗SO(2)⊗SO(2)

=
(

SU(1,1)
U(1)

)3

, F (s, t, u) = stu. (2.4)

In general, all manifolds of type I correspond to quadratic prepotentials (Cijk = 0), as

well as all manifolds of type II correspond to cubic prepotentials (in special coordinates

F = 1
3!
dijkt

itjtk and therefore Cijk = eKdijk, where K denotes the Kähler potential and

dijk is a completely symmetric rank-3 constant tensor). The 3-moduli case II0 is the

well-known stu model [42], whose noteworthy triality symmetry has been recently related

to quantum information theory [43, 44, 45].

Beside the infinite sequence II, there exist four other MESGTs defined by simple

Jordan algebras of degree three with the following rank-3 coset manifolds:

III :
E7(−25)

E6⊗U(1)
; (2.5)

IV : SO∗(12)
U(6)

; (2.6)

V : SU(3,3)
S(U(3)⊗U(3))

= SU(3,3)
SU(3)⊗SU(3)⊗U(1)

; (2.7)

V I : Sp(6,R)
U(3)

. (2.8)

The N = 2, d = 4 MESGTs whose geometry of scalar fields is given by the manifolds III-

V I are called “magical”, since their symmetry groups are the groups of the famous Magic

Square of Freudenthal, Rozenfeld and Tits associated with some remarkable geometries

[46, 47]. The four N = 2, d = 4 “magical” MESGTs III-V I, as their 5-d. versions, are

defined by four simple Jordan algebras JO

3 , JH

3 , JC

3 and JR

3 of degree 3 with irreducible

norm forms, namely by the Jordan algebras of Hermitian 3 × 3 matrices over the four

division algebras, i.e. respectively over the octonions O, quaternions H, complex numbers

C and real numbers R [37, 38, 39, 48, 49, 50, 51].

By denoting with nV the number of vector multiplets coupled to the SUGRA one,

the total number of Abelian vector fields in the considered N = 2, d = 4 MESGT

is nV + 1; correspondingly, the real dimension of the corresponding scalar manifold is

2nV = dim (G)− dim (H0)− 1. Since the 2 (nV + 1)-dim. vector of extremal black hole

charge configuration is given by the fluxes of the electric and magnetic field-strength

two-forms, it is clear that dimR (RV ) = 2 (nV + 1).

Since H0 is a proper compact subgroup of the duality semisimple group G, we can de-

compose the 2 (nV + 1)-dim. real symplectic representation RV of G in terms of complex

7



I II

G SU(1, 1 + n) SU(1, 1)⊗ SO(2, 2 + n)
H0 SU(1 + n) SO(2)⊗ SO(2 + n)
r 1 3

dimR

(
G

H0⊗U(1)

)
2 (n + 1) 2 (n+ 3)

nV n+ r = n+ 1 n+ r = n + 3
RV (2 (n + 2))

R
(2 (n + 4))

R

RH0 (n + 1)
C

(n + 2 + 1)
C

dimR (RV ) 2 (n + 2) 2 (n+ 4)
dimR (RH0) 2 (n + 1) 2 (n+ 3)

RV

↓
RH0 + 1C+

+c.c.

(2 (n + 2))
R

↓
(n + 1)

C
+ 1C+

+c.c.

(2 (n + 4))
R

↓
(n + 2 + 1)

C
+ 1C+

+c.c.

Table 1: Basic data of the two sequences of symmetric N = 2, d = 4 MESGTs

representations of H0, obtaining in general the following decomposition scheme:

RV −→ RH0 +RH0 + 1C + 1C = RH0 + 1C + c.c., (2.9)

where “c.c.” stands for the complex conjugation of representations, and RH0 is a certain

complex representation of H0.
4

The basic data of the cases I-V I listed above are summarized in Tables 1 and 2.

It was shown in [1] that 1
2
-BPS orbits of N = 2, d = 4 symmetric MESGTs are coset

spaces of the form

O 1
2
−BPS = G

H0
,

dimR

(
O 1

2
−BPS

)
= dim (G)− dim (H0) = 2nV + 1 = dimR (RV )− 1.

(2.10)

Now, in order to proceed further, we need to consider the N = 2 extremal black

attractor eqs.; these are nothing but the criticality conditions for the N = 2 black hole

scalar potential [52, 11]

VBH ≡ |Z|2 +GiiDiZDiZ (2.11)

in the corresponding special Kähler geometry [14]:

∂iVBH = 0⇐⇒ 2ZDiZ + iCijkG
jjGkkDjZDkZ = 0, ∀i = 1, ..., nV . (2.12)

4As will be discussed in Sect. 3, this decomposition reflects the decomposition of the corresponding
Freudenthal triple system with respect to the underlying Jordan algebra.
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JO

3 ↔ III JH

3 ↔ IV JC

3 ↔ V JR

3 ↔ V I

G E7(−25) SO∗(12) SU(3, 3) Sp(6,R)
H0 E6 SU(6) SU(3)⊗ SU(3) SU(3)
r 3 3 3 3

dimR

(
G

H0⊗U(1)

)
54 30 18 12

nV 27 15 9 6
RV 56R 32R 10R 14′

R

RH0 27C 15C (3, 3′)
C

6C

dimR (RV ) 56 32 20 14
dimR (RH0) 54 30 18 12

RV

↓
RH0 + 1C+

+c.c.

56R

↓
27C + 1C+

+c.c.

32R

↓
15C + 1C+

+c.c.

10R

↓
(3, 3′)

C
+ 1C+

+c.c.

14′
R

↓
6C + 1C+

+c.c.

Table 2: Basic data of the four “magical” symmetric N = 2, d = 4 MESGTs.
14′

R is the rank-3 antisymmetric tensor representation of Sp(6,R). In (3, 3′)
C

the prime
distinguishes the representations of the two distinct SU(3) groups.

Cijk is the rank-3, completely symmetric, covariantly holomorphic tensor of special Kähler

geometry, satisfying (see e.g. [53])

DlCijk = 0, D[lCi]jk = 0, (2.13)

where the square brackets denote antisymmetrization with respect to the enclosed indices.

For symmetric special Kähler manifolds the tensor Cijk is covariantly constant:

DiCjkl = 0, (2.14)

which further implies [38, 40]

GkkGrjCr(pqCij)kCkij =
4

3
G(q|iC|ijp). (2.15)

This equation is simply the four dimensional version of the adjoint identity satisfied by all

Jordan algebras of degree three that define the corresponding MESGTs in five dimensions.

Z is the N = 2 “central charge” function, whereas {DiZ}i=1,...,nV
is the set of its

Kähler-covariant holomorphic derivatives, which are nothing but the “matter charges”

functions of the system. Indeed, the sets5 {q0, qi, p0, pi} ∈ R2nV +2 and {Z,DiZ} ∈ CnV +1

(when evaluated at purely (q, p)-dependent critical values of the moduli) are two equiv-

alent basis for the charges of the system, and they are related by a particular set of

5We always consider “classical” frameworks, disregarding the actual quantization of the ranges of
the electric and magnetic charges q0, qi, p0 and pi. That is why we consider R2nV +2 rather than the
(2nV + 2)-dim. charge lattice Γ̂(p,q).
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identities of special Kähler geometry [52, 54, 55]. The decomposition (2.9) corresponds

to nothing but the splitting of the sets {q0, qi, p0, pi} ({Z,DiZ}) of 2nV + 2 (nV + 1)

real (complex) charges (“charge” functions) in q0, p
0 (Z) (related to the graviphoton, and

corresponding to 1C + c.c.) and in {qi, pi} ({DiZ}) (related to the nV vector multiplets,

and corresponding to RH0 + c.c.).

In order to perform the subsequent analysis of orbits, it is convenient to use “flat”

I-indices by using the (inverse) nV -bein ei
I of G

H0⊗U(1)
:

DIZ = ei
IDiZ. (2.16)

By switching to “flat” local I-indices, the special Kähler metric Gij (assumed to be

regular, i.e. strictly positive definite everywhere) will become nothing but the Euclidean

nV -dim. metric δIJ . Thus, the attractor eqs. (2.12) can be “flatted” as follows:

∂IVBH = 0⇐⇒ 2ZDIZ + iCIJKδ
JJδKKDJZDKZ = 0, ∀I = 1, ..., nV . (2.17)

Note that CIJK becomes an H0-invariant tensor [56]. This is possible because Cijk in

special coordinates is proportional to the invariant tensor dIJK of the d = 5 U -duality

group G5. G5 and H0 correspond to two different real forms of the same Lie algebra [38].

As it is well known, 1
2
-BPS attractors are given by the following solution [14] of

attractor eqs. (2.12) and (2.17):

Z 6= 0, DiZ = 0⇔ DIZ = 0, ∀i, I = 1, ..., nV . (2.18)

Since the “flatted matter charges” DIZ are a vector of RH0 , Eq. (2.18) directly yields

that 1
2
-BPS solutions are manifestly H0-invariant. In other words, since the N = 2,

1
2
-BPS orbits are of the form G

H0
, the condition for the (nV + 1)-dim. complex vector

(Z,DiZ) to be H0-invariant is precisely given by Eq. (2.18), defining N = 2, 1
2
-BPS

attractor solutions.

Thus, as for the N = 8 regular solutions (1.6) and (1.8), also for the N = 2 1
2
-BPS

case the invariance properties of the solutions at the critical point(s) are given by the

m.c.s. of the stabilizer of the corresponding charge orbit, which in the present case is the

compact stabilizer itself. Thus, at N = 2 1
2
-BPS critical points the following enhancement

of symmetry holds:

S −→ H0, (2.19)

where here and below S denotes the compact symmetry of a generic orbit of the real

symplectic representation RV of the d = 4 duality group G.

However, all the scalar manifolds of N = 2, d = 4 symmetric MESGTs have other

species of regular critical points VBH (and correspondingly other classes of non-degenerate

charge orbits).
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In recent months (N = 2 non-BPS) non-supersymmetric extremal black hole attrac-

tors have been studied in the literature [15]-[25], also in the case of non-homogeneous (and

non-symmetric) special Kähler manifolds, e.g. in the large volume limit of Calabi-Yau

compactifications of Type IIA superstrings [17]. Away from such a limit, exact non-BPS

solutions have been given for nV = 1 in the case of quintic in CP 4 (working in the IIB

mirror description) and of sixtic in WP 4
1,1,1,1,2 respectively in [17] and [18]. While all

treated cases are N = 2 non-BPS, Z 6= 0 attractors, in [18] the first (and, as far as we

know, the only) known example of N = 2 non-BPS, Z = 0 attractor is presented.

Concerning the N = 2, d = 4 symmetric MESGTs, the rank-1 sequence I has one

more, non-BPS class of orbits (with vanishing central charge), while all rank-3 aforemen-

tioned cases II-V I have two more distinct non-BPS classes of orbits, one of which with

vanishing central charge.

The results about the classes of non-degenerate charge orbits of N = 2, d = 4 sym-

metric MESGTs are summarized in Table 36.

3 Freudenthal Triple Systems

and

Orbits of Symmetric N = 2, d = 4 MESGTs

In those symmetric N = 2, d = 5 MESGTs whose cubic norm form is taken to be the

norm form of an Euclidean Jordan algebra J of degree three, there is an one-to-one

correspondence between the vector fields (and hence their charges) and the elements of

J [37, 38, 39].

Under dimensional reduction to d = 4, such a correspondence gets extended to a

correspondence between the field strengths of the vector fields (and their magnetic duals)

and the Freudenthal triple system (FTS) [57, 46] F (J ) defined over J [37, 3, 1, 4, 7],

and it can be realized as 2× 2 “matrices” :




F 0

µν F i
µν

F̃ µν
i F̃ µν

0



⇐⇒




α x

y β



 ∈ F (J ) , (3.1)

6It is here worth remarking that the column on the right of Table 2 of [1] is not fully correct.
Indeed, such a column coincides with the central column of Table 3 of the present paper (by disregarding

case I and shifting n→ n− 2 in case II), listing the non-BPS, Z 6= 0 orbits of N = 2, d = 4 symmetric
MESGTs, which are all characterized by a strictly negative quartic E7-invariant I4. This does not match
what is claimed in [1], where such a column is stated to list the particular class of orbits with I4 > 0 and
eigenvalues of opposite sign in pair.

Actually, the statement of [1] holds true only for the case I (which, by shifting n → n − 1, coincides
with the last entry of the column on the right of Table 2 of [1]). On the other hand, such a case is the
only one which cannot be obtained from d = 5 by dimensional reduction. Moreover, it is the only one
not having non-BPS, Z 6= 0 orbits, rather it is characterized only by a class of non-BPS orbits with
Z = 0 and I4 > 0.
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1
2
-BPS orbits
O 1

2
−BPS = G

H0

non-BPS, Z 6= 0 orbits
Onon−BPS,Z 6=0 = G

Ĥ

non-BPS, Z = 0 orbits
Onon−BPS,Z=0 = G

H̃

I SU(1,n+1)
SU(n+1)

− SU(1,n+1)
SU(1,n)

II SU(1,1)⊗SO(2,2+n)
SO(2)⊗SO(2+n)

SU(1,1)⊗SO(2,2+n)
SO(1,1)⊗SO(1,1+n)

SU(1,1)⊗SO(2,2+n)
SO(2)⊗SO(2,n)

III
E7(−25)

E6

E7(−25)

E6(−26)

E7(−25)

E6(−14)

IV SO∗(12)
SU(6)

SO∗(12)
SU∗(6)

SO∗(12)
SU(4,2)

V SU(3,3)
SU(3)⊗SU(3)

SU(3,3)
SL(3,C)

SU(3,3)
SU(2,1)⊗SU(1,2)

V I Sp(6,R)
SU(3)

Sp(6,R)
SL(3,R)

Sp(6,R)
SU(2,1)

Table 3: Non-degenerate orbits of N = 2, d = 4 symmetric MESGTs

where α, β ∈ R and x, y ∈ J . F 0
µν is the d = 4 graviphoton field strength, i.e. the field

strength of the vector field coming from the d = 5 graviton; F i
µν denote the field strengths

of the vector fields that already exist in d = 5 (notice that i = 1, ..., n̂+1 = nV , where nV ,

n̂ respectively stand for the number of Abelian vector multiplets in d = 4, 5 dimensions)

[37, 38, 39].

Consequently, one can associate an element of the FTS F (J ) with the electric and

magnetic charges {q0, qi, p0, pi} ∈ R2nV +2 (fluxes of the corresponding field strengths) of

an N = 2, d = 4 (extremal) black hole:




p0 pi

qi q0



⇐⇒




α x

y β



 ∈ F (J ) , (3.2)

where α = p0, β = q0, x = piji and y = qij
i, with {ji}i=1,...,nV

denoting the set of basis

vectors of J .

In general, an FTS is defined as a vector space M with a trilinear product (P,Q,R)

and a skew-symmetric bilinear form 〈P,Q〉, P,Q,R ∈ M. One can always modify the

triple product (P,Q,R) by adding terms like 〈P,Q〉R in order to make it completely
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symmetric. In our treatment we shall assume the triple product to be completely sym-

metric, and we will follow the conventions of Brown [58] , who axiomatized the triple

systems introduced by Freudenthal in his study of the exceptional groups of the Magic

Square [57, 46].

As reformulated by Ferrar [59], an FTS is a vector spaceM endowed with a trilinear

product (P,Q,R) and a skew-symmetric bilinear form 〈P,Q〉 = −〈Q,P 〉, such that

(∀P,Q,R, S ∈M):

A1. (P,Q,R) is completely symmetric;

A2.

Q (P,Q,R, S) ≡ 〈P, (Q,R, S)〉 (3.3)

is a non-zero completely symmetric 4-linear form;

A3.

((P, P, P ) , P,Q) = 〈Q,P 〉 (P, P, P ) + 〈Q, (P, P, P )〉P. (3.4)

For FTSs defined over an (Euclidean) Jordan algebra J of degree three, it is customary

to denote the elements of M as follows:

M∋ P =




α x

y β


 ≡ (α, β, x, y) ;

M∋ Q =




γ w

z δ



 ≡ (γ, δ, w, z) ,

(3.5)

where α, β, γ, δ ∈ R and x, y, w, z ∈ J .

Thence

〈P,Q〉 ≡ αδ − βγ + T (x, z)− T (y, w) , (3.6)

where T (x, z) ≡ Tr (x ◦ z), with “Tr” denoting the trace of the (3 × 3 matrix repre-

sentation of the) elements of J , and “◦” standing for the symmetric Jordan product7 in

J .

The quartic norm of an element P ∈M is defined as

I4 (P ) ≡ Q (P, P, P, P ) , (3.7)

7It should be mentioned that the symmetric Jordan product ◦ satisfies the famous Jordan identity

[48, 49, 50, 51, 37, 38, 39] (∀x, y elements of the Jordan algebra)

x ◦
(
y ◦ x2

)
= (x ◦ y) ◦ x2.
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and it can be normalized such that8 [60]

I4 (P ) = −{αβ − T (x, z)}2 − 4
{
αI3 (y) + βI3 (x)− T

(
x#, y#

)}
, (3.8)

where I3 denotes the cubic norm of J and “#” stands for the quadratic adjoint map of

J . By introducing the Freudenthal cross (symmetric) product

x ∧ y ≡ x ◦ y − 1

2
[Tr (x) y + Tr (y)x] +

1

2
[Tr (x)Tr (y)− Tr (x ◦ y)] , (3.9)

the quadratic adjoint map of x ∈ J can be defined as

x# ≡ x ∧ x, (3.10)

and it can be shown that it has the iteration property [61]

x## = I3 (x) x. (3.11)

The automorphism group Aut (F (J )) of the FTS defined over an Euclidan Jordan

algebra J of degree three contains as proper subgroup the structure group Str (J ) of J ,

i.e. the group which leaves the cubic norm I3 of J invariant up to a real overall scale

factor λ. Furthermore, those transformations belonging to Str (J ) that leave the cubic

norm I3 invariant (i.e. such that λ = 1) form the reduced structure group [49] Str0 (J )

of J , which is nothing but the U -duality group G5 of the corresponding N = 2, d = 5

symmetric MESGT. Indeed, the symmetric N = 2, d = 5 MESGTs whose cubic norm

form is taken to be the norm form of an Euclidean Jordan algebra J of degree three are

endowed with homogeneous symmetric real9 manifolds of the form

G5

H5
=
Str0 (J )

Aut (J ) ,
(3.12)

where Aut (J ) = m.c.s. (Str0 (J )) denotes the automorphism group of J . For further

elucidation on the J -related symmetric N = 2, d = 5 MESGTs, see [37, 38, 39, 62] and

[1, 27].

With the exception of the family with the scalar manifold SU(1,1+n)
U(1)⊗SU(1+n)

, all symmetric

N = 2, d = 4 MESGTs can be obtained from the corresponding d = 5 theories by

dimensional reduction [37, 38, 39, 62]. The automorphism group Aut (F (J )) of F (J )

8Eq. (3.8) corrects a misprint in Eq. (2-15) of [1], by substituting the factor 6 with 4 and introducing
an overall sign.

9Sometimes in the literature the geometry of such manifolds is referred to as real special geometry,
whereas the geometry of the manifolds of the corresponding d = 4 MESGTs obtained by dimensional
reduction is sometimes named very special Kähler geometry.
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is nothing but the U -duality group G ≡ G4 of the J -related MESGT in d = 410:

II : Aut (F (R⊕ Γn+2)) = SU(1, 1)⊗ SO(2, 2 + n);

III : Aut
(
F
(
JO

3

))
= E7(−25);

IV : Aut
(
F
(
JH

3

))
= SO∗ (12) ;

V : Aut
(
F
(
JC

3

))
= SU(3, 3);

V I : Aut
(
F
(
JR

3

))
= Sp(6,R).

(3.13)

Thus, the homogeneous symmetric special Kähler scalar manifold of J -related symmetric

N = 2, d = 4 MESGTs can be generally written as

G4

H4
=

Aut (F (J ))

m.c.s. (Aut (F (J )))
=
Aut (F (J ))

H0 ⊗ U(1)
, (3.14)

and the following chain of strict group inclusions hold:

H5 = Aut (J ) = m.c.s. (G5)  G5 = Str0 (J )  Str (J )  Aut (F (J )) = G ≡ G4.

(3.15)

The global action of Aut (F (J )) on F (J ) is generated by the structure group Str (J )

of J Sλ (·) (λ ∈ R), by a discrete transformation τ and by two additional J -parameterized

transformations φ(C) and ψ(D). The λ-parameterized action of Str(J ) reads

Str (J ) : (α, β, x, y) 7−→
(α
λ
, λβ, Sλ (x) , S̃λ(y)

)
, (3.16)

where Sλ and and S̃λ respectively denote the action of Str(J ) on J and its adjoint. The

transformation τ acts as

τ : (α, β, x, y) 7−→ (−β, α,−y, x) . (3.17)

The additional transformations (parameterized by elements of J ) act as :

φ (C) : (α, β, x, y) 7−→ (α′, β, x′, y′) ,






α′ ≡ α + βI3 (C) + T (x, C ∧ C) + T (y, C) ;

x′ ≡ x+ βC;

y′ ≡ y + 2x ∧ C + βC ∧ C;

C ∈ J ;

(3.18)

10R⊕ Γn+2 denotes the generic family of reducible Euclidean Jordan algebras of degree 3. R denotes
the one dimensional Jordan algebra and Γn+2 denotes the Jordan algebra of degree 2 associated with
a quadratic form of Lorentzian signature. This signature is required for the Jordan algebra J to be
Euclidean, which is defined as a Jordan algebra in which the equation x2 +y2 = 0 implies that x = y = 0
for all elements x, y of J .
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ψ (D) : (α, β, x, y) 7−→ (α, β ′′, x′′, y′′) ,






β ′′ ≡ β + αI3 (D) + T (y,D ∧D) + T (x,D) ;

x′′ ≡ x+ αD ∧D + 2y ∧D;

y′′ ≡ y + αD;

D ∈ J .

(3.19)

We should note that [49, 63]

I3 (S(x)) = λI3(x) (3.20)

and

S̃ (x ∧ y) = S(x) ∧ S(y). (3.21)

Furthermore, Str(J ) can be written as the direct product of the reduced structure group

Str0(J ) times the dilatation group D:

Str(J ) = Str0(J )⊗D. (3.22)

Now, as it was shown by Krutelevich [64], by suitably acting with Aut (F (J )) one

can bring a generic element of F (J ) to the noteworthy form

(1, β, x, 0) ∈ F (J ) , β ∈ R, x ∈ J . (3.23)

Note that Str0 (J ) preserves such a simplified form; indeed, Eq. (3.16) with λ = 1 yields

Str0 (J ) : (1, β, x, 0) 7−→ (1, β, S0 (x) , 0) . (3.24)

Moreover, by suitably acting with Aut (J ) = H5, one can bring a generic element

x ∈ J to the diagonal form:

x
Aut(J )7−→ λ1E1 + λ2E2 + λ3E3, (3.25)

where λ1, λ2, λ3 ∈ R are the real “eigenvalues”11 of x and E1, E2, E3 are the three

irreducible idempotents of J (see further below).

Thus, by using Eqs. (3.23) and (3.25) and by acting with the transformation φ (C = εE1)

followed by the transformation ψ (D = −ε (λ3E2 + λ2E3)) (recall definitions (3.18) and

(3.19)), it can be shown that a generic element of F (J ) can be brought to the form [64]

(1, β − 2λ2λ3ε, λ
′
1E1 + λ2E2 + λ3E3, 0) ∈ F (J ) ,

λ′1 ≡ −λ2λ3ε
2 + βε+ λ1.

(3.26)

11For the simple Euclidean Jordan algebras of degree three they are the usual eigenvalues of the 3× 3
Hermitian matrix representing x, while for the generic Jordan family R + Γn+2 they correspond to the
values when a given element x is brought to the form (3.25).
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Consequently, by choosing

R0 ∋ ε : 2λ2λ3ε = β, (3.27)

one can further simplify the form (3.26) into

(1, 0, λ′′1E1 + λ2E2 + λ3E3, 0) ∈ F (J ) ,

λ′′1 ≡ λ2λ3ε
2 + λ1.

(3.28)

Eq. (3.28) shows that the sign of λ′′1 ∈ R might differ from the sign of λ1, depending

on the sign of λ2λ3 and on the relative magnitude of λ1 versus λ2λ3ε
2. In other words,

the sign of the “eigenvalues” of the elements of J in the FTS F (J ) could be changed

by the action of Aut (F (J )).

Now, by a suitable action of Str0 (J ) one can bring a generic element x ∈ J to the

diagonal form (ν ≡ λ1λ2λ3) [27]

xdiag,1st = E1 + E2 + νE3 (3.29)

if at least two “eigenvalues” of x are positive, or to the diagonal form

xdiag,2nd = −E1 − E2 + νE3 (3.30)

if at least two “eigenvalues” of x are negative (clearly, up to permutations of the indices

1, 2, 3).

For the case of F
(
JO

3

)
, it has been shown in [65] that for ν > 0 the element

(1, 0, E1 + E2 + νE3, 0) ∈ F
(
JO

3

)
(3.31)

(having all three “eigenvalues” > 0) can be transformed into the element

(1, 0,−E1 − E2 + νE3, 0) ∈ F
(
JO

3

)
(3.32)

(having two “eigenvalues” < 0 and one “eigenvalue” > 0) - and viceversa - by a suitable

action of Aut
(
F
(
JO

3

))
= E7(−25) (recall Eq. (3.13)); instead, for ν < 0 it was proven that

such two elements of F
(
JO

3

)
cannot be transformed one into each other by the action of

E7(−25):

ν > 0 : (1, 0, E1 + E2 + |ν|E3, 0)
E7(−25)←→ (1, 0,−E1 −E2 + |ν|E3, 0) ;

ν < 0 : (1, 0, E1 + E2 − |ν|E3, 0)
E7(−25)
= (1, 0,−E1 − E2 − |ν|E3, 0) .

(3.33)

Since the proof of [65] involves the idempotent elements E1, E2, E3 ∈ J , it is easy to

show that such a proof actually holds true for all F (J ), where J is a Euclidean Jordan

algebra of degree three.
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We shall use Str0 (J )  Aut (F (J )) to determine the stabilizer (also called little

group or isotropy group) of the various classes of charge orbits. Starting from a generic

element of F (J ) with at least two positive “eigenvalues” and using Str0 (J ), one can

recast it in the form
(
1, 0, |ν|1/3 (E1 + E2 + sgn (ν)E3) , 0

)
(3.34)

which in turn, by applying the scale transformation τ , can be shown to become

κ (1, 0, (E1 + E2 + sgn (ν)E3) , 0) , (3.35)

where κ ≡ |ν|1/4 ∈ R+
0 . On the other hand, when at least two of the “eigenvalues” are

negative one can bring the considered element of F (J ) to the form
(
1, 0, |ν|1/3 (−E1 −E2 + sgn (ν)E3) , 0

)
(3.36)

using Str0 (J ), and then, through the scale transformation τ , to the form

κ (1, 0, (−E1 −E2 + sgn (ν)E3) , 0) . (3.37)

We shall refer to the vector notations (3.35) and (3.37) of elements of F (J ) as reference

vectors.

In order to determine the little groups of the reference vectors belonging to each class

of charge orbits, we shall use the action of the Lie algebra Aut (F (J )) of Aut (F (J )).

At the level of Aut (F (J )), the generators of the little groups of the various classes of

charge orbits annihilate the corresponding reference vectors. The subgroups of Str0 (J )

that leave the above reference vectors invariant are known from [1, 27].Therefore, in order

to determine the stability group of a class of orbits under the action of Aut (F (J )), we

need only to determine the generators outside the Lie algebra Str (J ) of Str (J ) (also

called the structure algebra of J ) that annihilate the considered reference vector.

The group actions defined by Eqs. (3.18)-(3.19) can be shown to lead to the following

actions by the elements of Aut (F (J )) outside Str (J ) (i.e. by the infinitesimal genera-

tors of Aut (F (J )) which are not generators of Str (J )  Aut (F (J ))) [57, 46, 58, 66]:

T (A,B) (α, β, x, y) = (α′, β ′, x′, y′) ,





α′ ≡ T (A, y) ;

β ′ ≡ T (B, x) ;

x′ ≡ 2B ∧ y + βA;

y′ ≡ 2A ∧ x+ αB;

A,B ∈ J .

(3.38)
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The Hermitian conjugate of T (A,B) is defined as

T † (A,B) ≡ T (B,A) , (3.39)

and the non-compact generators are Hermitian, while the compact ones are anti-Hermitian.

We recall that for the simple Euclidean Jordan algebras of degree three JA

3 a generic

element A can be realized as a 3 × 3 Hermitian matrix over the underlying division

algebras A = R,C,H,O as follows:

A =




α1 a3 a∗2

a∗3 α2 a1

a3 a∗1 α3



, (3.40)

where αi ∈ R, ai ∈ A (i = 1, 2, 3), and “∗” denotes conjugation in A. The Jordan product

◦ of two such elements A and B is simply

A ◦B ≡ 1

2
(A× B +B × A), (3.41)

where “×” stands for the standard “row-column” matrix product. The irreducible idem-

potents of a Jordan algebra are those elements E such that

E2 ≡ E ◦ E = E (3.42)

and

Tr (E) = 1. (3.43)

We shall denote the irreducible idempotents as Ei (i = 1, 2, 3), such that

Tr(A ◦ Ei) = αi. (3.44)

The cubic norm I3 of a simple Euclidean Jordan algebra of degree three is simply the

determinant of its 3× 3 Hermitian matrix realization

I3(A) ≡ α1α2α3 − α1|a1|2 − α2|a2|2 − α3|a3|2 + 2Re(a1a2a3), (3.45)

where Re(a) ≡ 1
2
(a + a∗) denotes the real part of a ∈ A, and

Re(a1a2a3) = Re[a1(a2a3)] = Re[(a1a2)a3] (3.46)

holds true for all elements of A.

Concerning the generic reducible Jordan family J = R⊕Γn+2 (n ∈ N∪{0}), a generic

element X can be represented in the form

(ζ ; ξ01 +
−→
ξ · −→σ ) (3.47)
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where ζ ∈ R, ξ0 ∈ R ,
−→
ξ ∈ Rn+1 and σi are the gamma matrices in Rn+1:

{σi, σj} = 2δij , i, j = 1, ..., n+ 1. (3.48)

The cubic norm of such an element is given by [37, 7]

I3 (X ) ≡
√

2ζ
[
(ξ0)

2 −−→ξ · −→ξ
]
. (3.49)

For brevity we shall denote the element (ζ ; ξ01 +
−→
ξ · −→σ ) as

X = (ζ ; ξ0,
−→
ξ ). (3.50)

The three irreducible idempotents of R⊕ Γn+2 are

E1 ≡ (1; 0,
−→
0 );

E2 ≡ (0; 1
2
, 1

2
, 0, ..., 0);

E3 ≡ (0; 1
2
,−1

2
, 0, .., 0),

(3.51)

with the identity element 1 ∈ R⊕ Γn+2 given by

1 = E1 + E2 + E3 = (1; 1,
−→
0 ). (3.52)

The automorphism group Aut (R⊕ Γn+2) is SO(n+ 1) and the reduced structure group

Str0 (R⊕ Γn+2) is SO(n + 1, 1)⊗ SO(1, 1). The identity element 1 is manifestly invari-

ant under Aut (R⊕ Γn+2), and the little group of the element b ≡ −E1 − E2 + E3 =

(−1; 0,−1, 0, .., 0) is SO(n, 1).

Let us now determine the explicit form of the generators T (A,B) (3.38) annihilating

the corresponding reference vector in each class of charge orbits:

1. For

(α, β, x, y) = κ (1, 0, E1 + E2 + E3, 0) (3.53)

the annihilation condition

T (A,B)κ (1, 0, E1 + E2 + E3, 0) = 0 (3.54)

requires 




α′ = 0;

β = 0⇒ β ′ = 0 = Tr (B) ;

x′ = 0;

y = 0⇒ y′ = 0 = −A +B,

(3.55)
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implying that

A = B, Tr(A) = 0. (3.56)

Consequently, the generators T (A,A) with Tr(A) = 0 annihilate the reference vector

(3.53). They correspond to dim (J ) − 1 = nV − 1 = n̂ = dimR

(
G5

H5

)
non-compact

(Hermitian) generators outside Str (J ).

The subgroup of Str0(J ) that leaves the reference vector (3.53) invariant is Aut (J ) =

H5, which is compact. Hence, the stability group of the reference vector (3.53) is non-

compact and isomorphic (not identical) to the reduced structure group Str0(J ); we shall

denote it as Str∗0(J ).

Therefore, the corresponding non-degenerate charge orbits, listed in Table 4, are of

the form

Aut (F (J ))

Str∗0(J )
=
G4 ≡ G

Ĥ
, (3.57)

with m.c.s. (Str∗0(J )) = Aut (J ) = ĥ = H5.

Now, the quartic invariant of a vector of the form (α, 0, (λ1E1 + λ2E2 + λ3E3), 0) ∈
F (J ) is simply

I4 = −αλ1λ2λ3 ≡ λ0λ1λ2λ3 (3.58)

where we identify −α ≡ λ0. Furthermore, using the dilatation symmetry one can rescale

α relative to the eigenvalues λi, and hence one can assume α = 1 without any loss of

generality.

Thus, the orbits Aut(F(J ))
Str∗0(J )

have negative quartic invariant

I4 = −κ4 = −λ1λ2λ3 < 0, (3.59)

and a single negative “eigenvalue” λ0 = −1.

As it can be seen at a glance, such orbits can be interpreted as the non-BPS, Z 6= 0

ones (the right column of Table 4 coincides with the column of Onon−BPS,Z 6=0 orbits in

Table 3).

2. For

(α, β, x, y) = κ (1, 0,−E1 − E2 −E3, 0) (3.60)

the annihilation condition

T (A,B)κ (1, 0,−E1 − E2 − E3, 0) = 0 (3.61)

requires 




α′ = 0;

β = 0⇒ β ′ = 0 = −Tr (B) ;

x′ = 0;

y = 0⇒ y′ = 0 = A+B,

(3.62)
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J Aut(F(J ))
Str∗0(J )

II R⊕ Γn+2
SU(1,1)⊗SO(2,2+n)
SO(1,1)⊗SO(1,1+n)

III JO

3
E7(−25)

E6(−26)

IV JH
3

SO∗(12)
SU∗(6)

V JC

3
SU(3,3)
SL(3,C)

V I JR
3

Sp(6,R)
SL(3,R)

Table 4: Class Aut(F(J ))
Str∗0(J )

of non-degenerate charge orbits with a negative quartic

invariant and a single negative “eigenvalue” for all N = 2, d = 4 MESGTs
defined by Euclidean Jordan algebras of degree three.

implying that

A = −B, Tr(A) = 0. (3.63)

Consequently, the generators T (A,−A) with Tr(A) = 0 annihilate the reference vector

(3.60). They correspond to dim (J ) − 1 compact (anti-Hermitian) generators outside

Str (J ).

The subgroup of Str0(J ) that leaves the reference vector (3.60) invariant is, as in case

1, the compact automorphism group Aut (J ). Thus, the stability group of the reference

vector (3.60) is the compact form of Str0(J ), which we denote as Ktr0(J ). Therefore,

the corresponding non-degenerate charge orbits are of the form

Aut (F (J ))

Ktr0(J )
=
G4 ≡ G

H0
, (3.64)

with Ktr0(J ) = m.c.s.(Aut(F(J )))
U(1)

= H0. They have positive quartic invariant

I4 = κ4 = |λ1λ2λ3| > 0 (3.65)

and all four“eigenvalues” negative.

These orbits correspond to the N = 2, 1
2
-BPS orbits, and they are listed in Table 5

(whose right column coincides with the column of O 1
2
−BPS orbits in Table 3).
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J Aut(F(J ))
Ktr0(J )

II R⊕ Γn+2
SU(1,1)⊗SO(2,2+n)

SO(2)⊗SO(2+n)

III JO

3
E7(−25)

E6

IV JH
3

SO∗(12)
SU(6)

V JC

3
SU(3,3)

SU(3)⊗SU(3)

V I JR
3

Sp(6,R)
SU(3)

Table 5: Class Aut(F(J ))
Ktr0(J )

of non-degenerate charge orbits with positive quartic in-
variant and all negative “eigenvalues” for all N = 2, d = 4 symmetric MESGTs
defined by Euclidean Jordan algebras of degree three.

3. For

(α, β, x, y) = κ (1, 0,−E1 − E2 + E3, 0) (3.66)

the annihilation condition

T (A,B)κ (1, 0,−E1 −E2 + E3, 0) = 0 (3.67)

requires α′ = 0, x′ = 0 and




β = 0⇒ β ′ = 0 = T (B, x) = Tr (B ◦ (−E1 −E2 + E3)) ;

y = 0⇒ y′ = 0 = 2A ∧ x+B = 2A ∧ (−E1 − E2 + E3) +B.
(3.68)

For generic elements A, B belonging to the simple Euclidean Jordan algebra of degree

three JA

3 (where A = O, H, C, R), the general solution of Eqs. (3.68) yields non-

compact (Hermitian) generators of the form T (A,A) with (the 3 × 3 Hermitian matrix

representation of A reading)

A =




α1 a3 0

a∗3 α2 0

0 0 α1 + α2



, dimR (A) = 2 + dimR (A) (3.69)
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and compact (anti-Hermitian) generators of the form T (B,−B) with (the 3×3 Hermitian

matrix representation of B reading)

B =




0 0 a∗2

0 0 a1

a2 a∗1 0



, dimR (B) = 2dimR (A) . (3.70)

a1, a2 and a3 are elements of the division algebra A, whereas α1 and α2 are real numbers.

The subgroup of Str0 (J ) that leaves the reference vector (3.66) invariant is a (non-

compact) real form of Aut (J ), which we will denote as H̆ (J ).

The non-compact generators T (A,A) and the compact generators T (B,−B) (with A

and B respectively given by Eqs. (3.69) and (3.70)) form a representation of H̆ (J )  

Str0 (J ) of dimension

dimR (A) + dimR (B) = 2 + 3dimR (A) = dim (J )− 1. (3.71)

Furthermore, the non-compact generators T (A,A), the compact generators T (B,−B)

(with A and B respectively given by Eqs. (3.69) and (3.70)) and the generators of H̆ (J )

all together generate the non-compact stability group of the reference vector (3.66), which

we will denote as Σ0 (J ).

A similar treatment can be given also for the reducible case J = R⊕ Γn+2 . By also

using the results of [1, 27], in Table 6 we list the groups H̆ (J ) and Σ0 (J ) for all the

symmetric N = 2, d = 4 MESGTs related to an Euclidean Jordan algebra of degree three

J .

Since Σ0 (J ) ∼ Str∗0 (J ), the charge orbits of case 1 and the charge orbits Aut(F(J ))
Σ0(J )

of the present case overlap:

G4 ≡ G

Ĥ
=
Aut (F (J ))

Str∗0 (J )
∼ Aut (F (J ))

Σ0 (J )
. (3.72)

This is consistent with the result that the corresponding reference vectors (3.53) and

(3.66) can be mapped into each other by the action of Aut (F (J )), as discussed above

(κ1, κ3 ∈ R+
0 ):

κ1 (1, 0, E1 + E2 + E3, 0)
Aut(F(J ))←→ κ3 (1, 0,−E1 − E2 + E3, 0) . (3.73)

The orbits Aut(F(J ))
Σ0(J )

can be interpreted as the non-BPS, Z 6= 0 ones with a negative

quartic invariant

I4 = −4κ4 = −4λ1λ2λ3 < 0, (3.74)

and with three negative “eigenvalues”.

4. For

(α, β, x, y) = κ (1, 0, E1 + E2 − E3, 0) (3.75)
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J H̆ (J ) Σ0 (J )

II R⊕ Γn+2 SO(n, 1) SO(n+ 1, 1)× SO(1, 1)

III JO

3 F4(−20) E6(−26)

IV JH
3 USp(4, 2) SU∗(6)

V JC

3 SU(2, 1) SL(3,C)

V I JR
3 SL(2,R) SL(3,R)

Table 6: Non-compact group H̆ (J )  Str0 (J ) and non-compact stability group
Σ0 (J ) ∼ Str∗0 (J ) of the reference vector κ (1, 0,−E1 − E2 + E3, 0) of the FTSs
corresponding to all N = 2, d = 4 MESGTs defined by Euclidean Jordan
algebras of degree three.

the annihilation condition

T (A,B)κ (1, 0, E1 + E2 −E3, 0) = 0 (3.76)

requires α′ = 0, x′ = 0 and





β = 0⇒ β ′ = 0 = T (B, x) = −Tr (B ◦ (−E1 −E2 + E3)) ;

y = 0⇒ y′ = 0 = 2A ∧ x+B = −2A ∧ (−E1 − E2 + E3) +B.
(3.77)

For generic elements A,B ∈ JA

3 (A = O, H, C, R), the general solution of Eqs. (3.77)

yields compact (anti-Hermitian) generators of the form T (A,−A) and non-compact (Her-

mitian) generators of the form T (B,B), with (the 3×3 Hermitian matrix representations

of) A and B respectively given by Eqs. (3.69) and (3.70).

The subgroup of Str0 (J ) that leaves the reference vector (3.75) invariant is H̆ (J )

as in case 3. However, in the present case the number of compact and non-compact

generators outside Str (J ) is respectively equal to 2 + dimR (A) and 2dimR (A), i.e. the

opposite of what happens in case 3.

Furthermore, the compact generators T (A,−A), the non-compact generators T (B,B)

(with A and B respectively given by Eqs. (3.69) and (3.70)) and the generators of H̆ (J )
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J H̆ (J ) Aut(F(J ))
∆0(J )

II R⊕ Γn+2 SO(n, 1) SU(1,1)⊗SO(2,2+n)
SO(2)⊗SO(2,n)

III JO

3 F4(−20)
E7(−25)

E6(−14)

IV JH
3 USp(4, 2) SO∗(12)

SU(4,2)

V JC

3 SU(2, 1) SU(3,3)
SU(2,1)⊗SU(1,2)

V I JR
3 SL(2,R) Sp(6,R)

SU(2,1)

Table 7: Non-compact group H̆ (J ) and class Aut(F(J ))
∆0(J )

of non-degenerate charge
orbits with a positive quartic norm and two negative “eigenvalues” for all
N = 2, d = 4 symmetric MESGTs defined by Euclidean Jordan algebras of
degree three.

all together generate the non-compact stability group of the reference vector (3.75), which

we will denote as ∆0 (J ).

A similar treatment can be given also for the reducible case J = R ⊕ Γn+2 using

results of [1, 27].

Therefore, the corresponding non-degenerate charge orbits are of the form

Aut (F (J ))

∆0 (J )
=
G4 ≡ G

H̃
. (3.78)

They have positive quartic invariant

I4 = 4κ4 = 4 |λ1λ2λ3| > 0 (3.79)

and two negative “eigenvalues”.

By also using the results of [1, 27], in Table 7 we list the groups H̆ (J ) and the orbits
Aut(F(J ))

∆0(J )
for all the symmetric N = 2, d = 4 MESGTs defined by Euclidean Jordan

algebras of degree three J . The orbits Aut(F(J ))
∆0(J )

correspond to the non-BPS, Z = 0 ones

(the right column of Table 7 coincides with the column of Onon−BPS,Z=0 orbits in Table

3).
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Notice that, consistently with the previous treatment, the reference vectors (3.60) and

(3.75) (both having λ1λ2λ3 < 0) cannot be mapped into each other by Aut (F (J )), and

therefore the corresponding non-degenerate charge orbits do not overlap (κ2, κ4 ∈ R+
0 ):

κ2 (1, 0,−E1 − E2 − E3, 0)
Aut(F(J ))
= κ4 (1, 0, E1 + E2 − E3, 0) (3.80)

⇓

O 1
2
−BPS =

G4 ≡ G

H0

=
Aut (F (J ))

Ktr0(J )
6= Aut (F (J ))

∆0 (J )
=
G4 ≡ G

H̃
= Onon−BPS,Z=0. (3.81)

4 Classification of Attractors

The three classes of orbits in Table 3 correspond to the three distinct classes of solutions

of the N = 2, d = 4 extremal black hole attractor equations (2.12) and (2.17).

4.1 1
2-BPS solutions

As already mentioned, the class of 1
2
-BPS orbits corresponds to the solution (2.18) deter-

mining N = 2, 1
2
-BPS critical points of VBH . Such a solution yields the following value

of the black hole scalar potential at the considered attractor point(s) [14]:

VBH, 1
2
−BPS = |Z|21

2
−BPS +

[
GiiDiZDiZ

]
1
2
−BPS

= |Z|21
2
−BPS . (4.1.1)

The overall symmetry group at N = 2 1
2
-BPS critical point(s) is H0, stabilizer of O 1

2
−BPS =

G
H0

. The symmetry enhancement is given by Eq. (2.19). For such a class of orbits

I4, 1
2
−BPS = |Z|41

2
−BPS > 0. (4.1.2)

4.2 Non-BPS solutions

The two classes of N = 2 non-BPS non-degenerate charge orbits respectively correspond

to the following solutions of N = 2 attractor eqs. (2.12):

non-BPS, Z 6= 0:





Z 6= 0,

DiZ 6= 0 for some i ∈ {1, ..., nV } ,

I4,non−BPS,Z 6=0 = −
(
|Z|2non−BPS,Z 6=0 +

(
GijDiZDjZ

)
non−BPS,Z 6=0

)2

=

= −16 |Z|4non−BPS,Z 6=0 < 0;

(4.2.1)
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non-BPS, Z = 0:






Z = 0,

DiZ 6= 0 for some i ∈ {1, ..., nV } ,

I4,non−BPS,Z=0 =
(
GijDiZDjZ

)2

non−BPS,Z=0
> 0.

(4.2.2)

In Subsubsects. 4.2.1 and 4.2.2 we will show how the general solutions of Eqs. (2.12),

respectively determining the two aforementioned classes of N = 2 non-BPS extremal

black hole attractors, can be easily given by using “flat” local I-coordinates in the scalar

manifold.

Otherwise speaking, we will consider the “flatted” attractor eqs. (2.17), which can be

specialized in the regular non-BPS cases as follows:

non-BPS, Z 6= 0: 2ZDIZ = −iCIJKδ
JJδKKDJZDKZ;

(4.2.3)

non-BPS, Z = 0: CIJKδ
JJδKKDJZDKZ = 0.

(4.2.4)

Thus, by respectively denoting with Ĥ (H̃) the stabilizer of the N = 2, non-BPS, Z 6= 0

(Z = 0) classes of orbits listed in Table 3, our claim is the following: the general solution

of Eqs. (4.2.3) ( (4.2.4)) is obtained by retaining a complex charge vector (Z,DIZ) which

is invariant under ĥ ( h̃
U(1)

), where ĥ ( h̃) is the m.c.s.12 of Ĥ ( H̃).

As a consequence, the overall symmetry group of the N = 2, non-BPS, Z 6= 0 (Z = 0)

critical point(s) is ĥ ( h̃
U(1)

). Thus, at N = 2, non-BPS, Z 6= 0 (Z = 0) critical point(s)

the following enhancement of symmetry holds:

N = 2, non-BPS, Z 6= 0 : S −→ ĥ = m.c.s.
(
Ĥ
)

;

N = 2, non-BPS, Z = 0 : S −→ h̃
U(1)

=
m.c.s.(H̃)

U(1)
.

(4.2.5)

It is worth remarking that the non-compact group Ĥ stabilizing the non-BPS, Z 6= 0

class of orbits of N = 2, d = 4 symmetric MESGTs, beside being a real (non-compact)

form of H0, is isomorphic to the duality group G5 of N = 2, d = 5 symmetric MESGTs

12Indeed, while H0 is a proper compact subgroup of G, the groups Ĥ , H̃ are real (non-compact) forms

of H0, as it can be seen from Table 3 (see also [67, 68]). Therefore in general they admit a m.c.s. ĥ, h̃,
which in turn is a (non-maximal) compact subgroup of G and a proper compact subgroup of H0.

It is interesting to notice that in all cases (listed in Table 3) G always admits only 2 real (non-compact)

forms Ĥ , H̃ of H0 as proper subgroups (consistent with the required dimension of orbits). The inclusion

of Ĥ , H̃ in G is such that in all cases Ĥ ⊗ SO(1, 1) and H̃ ⊗ U(1) are different maximal non-compact
subgroups of G.
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H0 Ĥ H̃ ĥ ≡ m.c.s.
(
Ĥ
)

h̃′ ≡ m.c.s.(H̃)
U(1)

I SU(n + 1) − SU(1, n) − SU(n)

II
SO(2)
⊗

SO(2 + n)

SO(1, 1)
⊗

SO(1, 1 + n)

SO(2)
⊗

SO(2, n)
SO(1 + n)

SO(2)
⊗

SO(n)

III E6 ≡ E6(−78) E6(−26) E6(−14) F4 ≡ F4(−52) SO(10)

IV SU(6) SU∗(6) SU(4, 2) USp(6)
SU(4)
⊗

SU(2)

V SU(3)⊗ SU(3) SL(3,C)
SU(2, 1)
⊗

SU(1, 2)
SU(3)

SU(2)
⊗

SU(2)⊗ U(1)

V I SU(3) SL(3,R) SU(2, 1) SO(3) SU(2)

Table 8: Stabilizers and corresponding m.c.s.s of the non-degenerate classes of
orbits of N = 2, d = 4 symmetric MESGTs. Ĥ and H̃ are real (non-compact) forms
of H0, the stabilizer of 1

2
-BPS orbits.

and was denoted as Str∗0(J ) in Sect. 3 (see Table 4) 13. Consequently, in the cases II-V I

of Table 3, Eq. (3.15) can be completed as follows:

H5 = Aut (J ) = m.c.s. (G5)  Ĥ = Str∗0 (J )  Aut (F (J )) = G ≡ G4. (4.2.6)

Since the scalar manifolds of N = 2, d = 5 symmetric MESGTs are endowed with a

real special geometry (see Footnote 10) [37, 38, 39], the complex representation RH0 of H0

decomposes in a pair of irreducible real representations
(
Rĥ + 1

)
R
’s of ĥ = m.c.s.

(
Ĥ
)
 

H0 (see Subsubsect. 4.2.1, and in particular Eq. (4.2.1.1)). As we will see in Subsubsects.

4.2.1 and 4.2.2, such a fact crucially distinguishes the non-BPS, Z 6= 0 and Z = 0 cases.

The stabilizers (and the corresponding m.c.s.s) of the non-BPS, Z 6= 0 and Z = 0

classes of orbits of N = 2, d = 4 symmetric MESGTs are given in Table 8.

13Such a feature is missing in the N = 2, d = 4 symmetric MESGTs whose scalar manifolds belong to
the sequence I, simply because such theories do not have a class of non-BPS, Z 6= 0 orbits.
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4.2.1 Non-BPS, Z 6= 0 solutions

Let us start by considering the class of non-BPS, Z 6= 0 orbits of N = 2, d = 4 symmetric

MESGTs.

As mentioned, the “flatted matter charges” DIZ are a vector of RH0 . In general, RH0

decomposes under the m.c.s. ĥ ⊂ Ĥ as follows:

RH0 −→
(
Rĥ + 1

)
C
, (4.2.1.1)

where the r.h.s. is made of the complex singlet representation of ĥ and by another non-

singlet real representation of ĥ, denoted above with Rĥ. As previously mentioned, despite

being complex,
(
Rĥ + 1

)
C

is not charged with respect to U(1) symmetry because, due

to the 5-dimensional origin of the non-compact stabilizer Ĥ whose m.c.s. is ĥ, actually(
Rĥ + 1

)
C

is nothing but the complexification of its real counterpart
(
Rĥ + 1

)
R
. The

decomposition (4.2.1.1)yields the following splitting of “flatted matter charges”:

DIZ −→
(
DÎZ,DÎ0

Z
)
, (4.2.1.2)

where Î are the indices along the representation Rĥ, and Î0 is the ĥ-singlet index.

By considering the related attractor eqs., it should be noticed that the rank-3 sym-

metric tensor CIJK in Eqs. (4.2.3) corresponds to a cubic H0-invariant coupling (RH0)
3.

By decomposing (RH0)
3 in terms of representations of ĥ, one finds

(RH0)
3 −→

(
Rĥ

)3
+
(
Rĥ

)2
1C + (1C)3 . (4.2.1.3)

Notice that a term Rĥ (1C)2 cannot be in such a representation decomposition, since it

is not ĥ-invariant, and thus not H0-invariant. This implies that components of the form

CÎ Î0Î0
cannot exist. Also, a term like (1C)3 can appear in the r.h.s. of the decomposition

(4.2.3) since as we said the ĥ-singlet 1C, despite being complex, is not U(1)-charged.

It is then immediate to conclude that the solution of N = 2, d = 4 non-BPS, Z 6= 0

extremal black hole attractor eqs. in “flat” indices (4.2.3) corresponds to keep the “flatted

matter charges” DIZ ĥ-invariant. By virtue of decomposition (4.2.1.3), this is obtained

by putting

DÎZ = 0, DÎ0
Z 6= 0, (4.2.1.4)

i.e. by putting all “flatted matter charges” to zero, except the one along the ĥ-singlet

(and thus ĥ-invariant) direction in scalar manifold. By substituting the solution (4.2.1.4)

30



in Eqs. (4.2.3), one obtains

2ZDÎ0
Z = −iCÎ0Î0Î0

(
D

Î0
Z
)2 Z 6=0⇔ DÎ0

Z = − i
2

CÎ0Î0Î0

Z

(
D

Î0
Z
)2

(4.2.1.5)

⇓
∣∣DÎ0

Z
∣∣2
(

1− 1

4

∣∣CÎ0Î0Î0

∣∣2

|Z|2
∣∣DÎ0

Z
∣∣2
)

= 0

m
∣∣DÎ0

Z
∣∣2 = 4

|Z|2
∣∣CÎ0Î0Î0

∣∣2 ; (4.2.1.6)

this is nothing but the general criticality condition of VBH for the 1-modulus case in the

locally “flat” coordinate Î0, which in this case corresponds to the ĥ-singlet direction in

the scalar manifold. Such a case has been thoroughly studied in non-flat i-coordinates in

[54].

All N = 2, d = 4 symmetric MESGTs (disregarding the sequence I having Cijk = 0)

have a cubic prepotential (F = 1
3!
dijkt

itjtk in special coordinates), and thus in special

coordinates it holds that Cijk = eKdijk, with K and dijk respectively denoting the Kähler

potential and the completely symmetric rank-3 constant tensor that is determined by the

norm form of the underlying Jordan algebra of degree three [38]. In the cubic nV = 1-

modulus case, by using Eq. (2.15) it follows that
(
G1s1s

)3

|C1s1s1s
|2 =

∣∣C1f 1f 1f

∣∣2 =
4

3
, (4.2.1.7)

where the subscripts “s” and “f” respectively stand for “special” and “flat”, denoting

the kind of coordinate system being considered. By substituting Eq. (4.2.1.7) in Eq.

(4.2.1.6) one obtains the result
∣∣DÎ0

Z
∣∣2 = 3 |Z|2 . (4.2.1.8)

Another way of proving Eq. (4.2.1.8) is by computing the quartic invariant along the

ĥ-singlet direction, then yielding

I4,non−BPS,Z 6=0 = −16 |Z|2non−BPS,Z 6=0 . (4.2.1.9)

The considered solution (4.2.1.4)-(4.2.1.6), (4.2.1.8) is the N = 2 analogue of the

N = 8, d = 4 non-BPS regular solution discussed in [26], and it yields the following value

of the black hole scalar potential at the considered attractor point(s) [54, 26]:

VBH,non−BPS,Z 6=0 = 4 |Z|2non−BPS,Z 6=0 . (4.2.1.10)

Once again, as for the non-BPS N = 8 regular solutions (see Eq. (1.9)), we find the extra

factor 4.

From the above considerations, the overall symmetry group at N = 2 non-BPS, Z 6= 0

critical point(s) is ĥ, m.c.s. of the non-compact stabilizer Ĥ of Onon−BPS,Z 6=0.
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4.2.2 Non-BPS, Z = 0 solutions

Let us now move to consider the other class of non-BPS orbits of N = 2, d = 4 symmetric

MESGTs.

It has Z = 0 and it was not considered in [1] (see also Footnote 7). We will show

that the solution of the N = 2, d = 4, non-BPS, Z = 0 extremal black hole attractor eqs.

(4.2.4) are the “flatted matter charges” DIZ which are invariant under h̃
U(1)

, where h̃ is

the m.c.s. of H̃, the stabilizer of the class Onon−BPS,Z=0 = G

H̃
.

Differently from the non-BPS, Z 6= 0 case, in the considered non-BPS, Z = 0 case

there is always a U(1) symmetry acting, since the scalar manifolds of N = 2, d = 4

symmetric MESGTs all have the group h̃ of the form

h̃ = h̃′ ⊗ U(1), h̃′ ≡ h̃

U(1)
. (4.2.2.1)

The compact subgroups h̃′ for all N = 2, d = 4 symmetric MESGTs are listed in Table

8. In the case at hand, we thence have to consider the decomposition of the previously

introduced complex representation RH0 under the compact subgroup h̃′  H0. In general,

RH0 decomposes under h̃′  H̃ as follows:

RH0 −→
(
Wh̃′ + Yh̃′ + 1

)
C
, (4.2.2.2)

where in the r.h.s. the complex singlet representation of h̃′ and two complex non-singlet

representations Wh̃′ and Yh̃′ of h̃′ appear. In general, Wh̃′, Yh̃′ and 1C are charged (and

thus not invariant) with respect to the U(1) explicit factor appearing in (4.2.2.1). The

decomposition (4.2.2.2) yields the following splitting of “flatted matter charges”:

DIZ −→
(
DĨ′

W

Z,DĨ′
Y

Z,DĨ′0
Z
)
, (4.2.2.3)

where Ĩ ′W and Ĩ ′Y respectively denote the indices along the complex representations Wh̃′

and Yh̃′, and Ĩ ′0 is the h̃′-singlet index.

Once again, the related N = 2, d = 4 non-BPS, Z = 0 extremal black hole attractor

eqs. (4.2.4) contain the rank-3 symmetric tensor CIJK , corresponding to a cubic H0-

invariant coupling (RH0)
3. The decomposition of (RH0)

3 in terms of representations of h̃′

yields

(RH0)
3 −→

(
Wh̃′

)2 Yh̃′ +
(
Yh̃′

)2
1C. (4.2.2.4)

When decomposed under h̃′, (RH0)
3 must be nevertheless h̃-invariant, and therefore,

beside the h̃′-invariance, one has to consider the invariance under the U(1) factor, too.

Thus, terms of the form
(
Wh̃′

)3
,
(
Yh̃′

)3
, Wh̃′ (1C)2, Yh̃′ (1C)2 and (1C)3 cannot exist in

the h̃-invariant r.h.s. of decomposition (4.2.2.4).

Notice also that the structure of the decomposition (4.2.2.4) implies that components

of the cubic coupling of the form CĨ′
W

Ĩ′0Ĩ′0
, CĨ′

Y
Ĩ′0Ĩ′0

and CĨ′0Ĩ′0Ĩ′0
cannot exist. For such a
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reason, it is immediate to conclude that the solution of N = 2, d = 4 non-BPS, Z = 0

extremal black hole attractor eqs. in “flat” indices (4.2.4) corresponds to keep the “flatted

matter charges” DIZ h̃′-invariant. By virtue of decomposition (4.2.2.4), this is obtained

by putting

DĨ′
W

Z = 0 = DĨ′
Y

Z, DĨ′0
Z 6= 0, (4.2.2.5)

i.e. by putting all “flatted matter charges” to zero, except the one along the h̃′-singlet

(and thus h̃′-invariant, but not U(1)-invariant and therefore not h̃-invariant) direction in

the scalar manifold.

The considered solution (4.2.2.5) does not have any analogue in N = 8, d = 4 SUGRA,

and it yields the following value of the black hole scalar potential at the considered

attractor point(s):

VBH,non−BPS,Z=0 = |Z|2non−BPS,Z=0 +
[
GiiDiZDiZ

]
non−BPS,Z=0

=

=
∣∣∣DĨ′0

Z
∣∣∣
2

non−BPS,Z=0
. (4.2.2.6)

It is here worth remarking that in the stu model it can be explicitly computed that [69]

VBH,non−BPS,Z=0 =
∣∣∣DĨ′0

Z
∣∣∣
2

non−BPS,Z=0
= |Z|21

2
−BPS = VBH, 1

2
−BPS. (4.2.2.7)

From above considerations, the overall symmetry group at N = 2 non-BPS, Z = 0

critical point(s) is h̃′ = h̃
U(1)

, h̃ being the m.c.s. of the non-compact stabilizer H̃ of

Onon−BPS,Z=0.

The general analysis carried out above holds for all N = 2, d = 4 symmetric “magical”

MESGTs, namely for the irreducible cases III-V I listed in Tables 2 and 3. The cases of

irreducible sequence I and of generic Jordan family II deserve suitable, slightly different

treatments, respectively given in Appendices I and II.

4.3 Orbits and Attractors of JO3 and JH3

Let us now apply the above analysis to the N = 2, d = 4 “magical” MESGTs, based on

the symmetric special Kähler manifolds

E7(−25)

E6 ⊗ U(1)
,

SO∗(12)

U(6)
. (4.3.1)

defined by simple Jordan algebras JO

3 and JH

3 of Hermitian 3× 3 matrices over octonions

O and quaternions H, respectively.
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4.3.1 N = 2, 6 SUGRAs and the dual role of SO∗(12)
U(6)

Before proceeding further, also in order to stress the relevance of such two “magical”

MESGTs, it is here worth pointing out some similarities and differences with respect to

N = 8, d = 4 SUGRA, based on
E7(7)

SU(8)
and treated in Sect. 1.

Since the duality groups of N = 8, d = 4 SUGRA and N = 2, d = 4 “magical”
E7(−25)

E6⊗U(1)
-based MESGT are two different real (non-compact) forms of the Lie exceptional

group E7 ≡ E7(−133) (E7(7) and E7(−25), respectively), both their “charge vectors” are in

the real symplectic representation14 56 of E7.

Nevertheless, while the real (non-compact) formE7(7) contains only two different forms

of E6, namely the real (non-compact) forms E6(2) and E6(6), the group E7(−25) contains

three different forms of E6: E6 ≡ E6(−78) and its real (non-compact) forms E6(−14) and

E6(−26). This fact is of course related to the fundamental difference that in N = 8,

d = 4
E7(7)

SU(8)
-based SUGRA there are only two classes of 55-dim. non-degenerate orbits,

whereas all N = 2, d = 4 MESGTs with symmetric scalar manifolds that originate from

5 dimensions , in particular the “exceptional” MESGT with the scalar manifold
E7(−25)

E6⊗U(1)
,

admit three distinct classes of such orbits.

By recalling the criticality conditions (2.12) and (2.17) for VBH , also previously re-

ferred to as the N = 2, d = 4 extremal black hole attractor eqs., let us stress once again

that the aforementioned three classes of N = 2 non-degenerate orbits correspond to the

following three classes of attractor solutions:

1
2
-BPS : Z 6= 0, DiZ = 0, ∀i = 1, ..., nV ;

(non-BPS)
1

: Z 6= 0, DiZ 6= 0, for some i ∈ {1, ..., nV };
(non-BPS)

2
: Z = 0, DiZ 6= 0, for some i ∈ {1, ..., nV }.

Notice that the class (non-BPS)
2
, corresponding to non-degenerate orbits of the class

Onon−BPS,Z=0, does not exist in N = 8, d = 4
E7(7)

SU(8)
-based SUGRA.

As it can be explicitly computed in the manageable yet interestingly rich case of

the stu model [69], the classes 1
2
-BPS and (non-BPS)

2
of solutions, and correspond-

ingly the classes O 1
2
−BPS and Onon−BPS,Z=0 of orbits, have a strictly positive quartic

E7-invariant I4 > 0. On the other hand, the class (non-BPS)
1

of solutions, and thus the

class Onon−BPS,Z 6=0 of orbits, have a strictly negative quartic E7-invariant I4 < 0.

At this point, we notice that both real (non-compact) forms of E7 , namely E7(7) of

Cremmer and Julia [28] and E7(−25) of GST [37] contain the factorized group SO∗(12)⊗
SU(2) as a subgroup, and indeed both manifolds

E7(−25)

E6⊗U(1)
(dimR = 54) and

E7(7)

SU(8)
(dimR =

70) contain as a submanifold the coset space SO∗(12)
U(6)

, which is the symmetric special

14As mentioned in Sect. 1, for E7 the real symplectic and the fundamental representations coincide,
but this is not generally the case.
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Kähler manifold of the N = 2, d = 4 “magical” MESGT defined by the Jordan algebra

JH

3 [37].

Such an observation reveals the dual role of the manifold SO∗(12)
U(6)

: it is at the same

time the σ-model part of an N = 6 SUGRA (if one starts from N = 8, i.e. from E7(7))

and of an N = 2 MESGT (if one starts from N = 2, i.e. from E7(−25)).

The truncation from N = 8 starts from the following decomposition of the real rep-

resentation RH = 70 of the R-symmetry group H = SU(8) in terms of representations

of SU(6)⊗ SU(2) [37, 31]:

70 −→ (15, 1) +
(
15, 1

)
+ (20, 2) . (4.3.1.1)

Under such a splitting the 70 N = 8 real scalars decompose in 15 complex scalars be-

longing to the submanifold SO∗(12)
U(6)

 
E7(7)

SU(8)
and in 20 (half-)hypermultiplet scalars be-

longing to the submanifold
E6(2)

SU(6)⊗SU(2)
 

E7(7)

SU(8)
. Consequently, the SO∗(12)

U(6)
-based model is

then reached by disregarding all the SU(2)-non-singlet terms in r.h.s. of decomposition

(4.3.1.1), namely (20, 2). Such a procedure eliminates two gravitinos from the SUGRA

multiplet, and thus an N = 6, d = 4 SO∗(12)
U(6)

-based SUGRA is obtained.

On the other hand, the truncation from the exceptional N = 2 MESGT yields the

following decomposition of the complex representation RH0 = 27 of H0 = E6 in terms of

representations of its (non-maximal) compact subgroup SU(6)⊗ SU(2):

27 −→ (15, 1) + (6, 2). (4.3.1.2)

Once again, the SO∗(12)
U(6)

-based model is reached by disregarding all the SU(2)-non-singlet

terms in r.h.s. of decomposition (4.3.1.2), namely (6, 2). In this case, the elimination of

SU(2)-non-singlets does not touch the two gravitinos of the SUGRA multiplet, and thus

an N = 2, d = 4 , SO∗(12)
U(6)

-based SUGRA is obtained, namely the “magical” MESGT

defined by JH
3 [37].

Thus, the N = 2 and N = 6 d = 4 SUGRAs with scalar manifold SO∗(12)
U(6)

have

indistinguishable full bosonic sectors, and therefore their charge orbits are the same and

their attractor Eqs. have the same solutions. Since we discussed above that an N = 2,

d = 4 MESGT generally yield three distinct classes of non-degenerate orbits, the same

must hold for the considered N = 6 SUGRA.

This actually holds true, because the “charge vector” C of the N = 6, d = 4 SO∗(12)
U(6)

-

based theory, although it is a pure SUGRA, contains a vector which is a singlet under

SU(6), U(6) being the R-symmetry [70]. Thus, the whole N = 6 “charge vector” can be

written as

C =
(
X, ẐAB

)
, (4.3.1.3)

where X is the SU(6)-singlet “charge vector” and ẐAB (A = 1, ..., N = 6) is the complex

6× 6 antisymmetric central charge matrix.
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Correspondingly, N = 6, d = 4 SO∗(12)
U(6)

-based SUGRA has three distinct classes of

extremal black hole solutions with finite, non-vanishing entropy, corresponding to the

following structures of C [70]:

X = 0, ẐAB 6= 0 (precisely Ẑ12 6= 0, Ẑ34 = 0, Ẑ56 = 0 in the “normal” frame).

This solution is a 1
6
-BPS N = 6 solution, and it has

I4, 1
6
−BPS = |Z|41

6
−BPS > 0. (4.3.1.4)

X 6= 0, ẐAB = 0.

Such a case corresponds to an N = 6 non-BPS solution (since ẐAB = 0), but, due to

the contribution of X, it has

I4,non−BPS,ẐAB=0 = |X|4non−BPS,ẐAB=0 > 0. (4.3.1.5)

X 6= 0, ẐAB 6= 0 (precisely |X| =
∣∣∣Ẑ12

∣∣∣ =
∣∣∣Ẑ34

∣∣∣ =
∣∣∣Ẑ56

∣∣∣ in the “normal” frame).

Such a case corresponds to an N = 6 non-BPS solution with

I4,non−BPS,ẐAB 6=0 = −16 |X|4non−BPS,ẐAB 6=0 < 0. (4.3.1.6)

At a generic point of the scalar manifold SO∗(12)
U(6)

the overall symmetry of the moduli-

dependent matrix ẐAB, which can be put in the skew-diagonal form ẐAB,normal, is (SU(2))
N
2

=3.

Thus, by considering the aforementioned structures of ẐAB at regular solutions, one can

determine the overall symmetry and the coset expression of the corresponding classes of

non-degenerate orbits:

X = 0, 1
6
-BPS solution: overall symmetry SU(2) ⊗ SU(4). Consequently, the

unique choice for the coset expression of the class of non-degenerate N = 6 1
6
-BPS orbits

is (SU(2)⊗ SU(4)⊗ U(1) = m.c.s. (SU(4, 2)))

O 1
6
−BPS =

SO∗(12)

SU(4, 2)
. (4.3.1.7)

X 6= 0, non-BPS, ẐAB = 0 solution: overall symmetry SU(6):

Onon−BPS,ẐAB=0 =
SO∗(12)

SU(6)
. (4.3.1.8)

Notice that such a class of N = 6 solutions does not have an N = 8 analogue; it is

peculiar to N = 6 SUGRA, due to the particular form (4.3.1.3) of the “charge vector” C.
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Orbit N = 6 N = 2

SO∗(12)
SU(6) Onon−BPS,ẐAB=0 :





X 6= 0,

ẐAB = 0,

∀ (A,B) ∈ {1, ..., 6}2
O 1

2
−BPS :





Z 6= 0,
DiZ = 0,
∀i = 1, ..., nV = 15

SO∗(12)
SU(4,2) O 1

6
−BPS :

{
X = 0

ẐAB 6= 0
Onon−BPS,Z=0 :

{
Z = 0
DiZ 6= 0

SO∗(12)
SU∗(6) Onon−BPS,ẐAB 6=0 :

{
X 6= 0

ẐAB 6= 0
Onon−BPS,Z 6=0 :

{
Z 6= 0
DiZ 6= 0

Table 9: N-dependent BPS-interpretations of the classes of non-degenerate
orbits of the homogeneous symmetric special Kähler manifold SO∗(12)

U(6)
. ẐAB 6= 0

and DiZ 6= 0 are generally understood for some values of (A,B) ∈ {1, ..., 6}2 and of
i ∈ {1, ..., nV = 15}, respectively.

X 6= 0, non-BPS, ẐAB 6= 0 solution: overall symmetry is USp(6) and the corre-

sponding orbit reads (USp(6) = m.c.s. (SU∗(6)))

Onon−BPS,ẐAB 6=0 =
SO∗(12)

SU∗(6)
. (4.3.1.9)

It is now immediate to notice that the classes of non-degenerate orbits of the consid-

ered N = 6, d = 4 case are the same of those of the N = 2, d = 4 “magical” MESGT

based on SO∗(12)
U(6)

, but with different BPS features. The N -dependent BPS-interpretations

of the classes of non-degenerate orbits of the irreducible homogeneous symmetric special

Kähler manifold SO∗(12)
U(6)

are summarized in Table 9.

As it can be seen from Table 9, the role of regular BPS orbits and non-BPS orbits

with (all) central charge(s) vanishing is flipped under the exchange N = 2 ←→ N = 6.

Such a kind of “cross-symmetry” is easily understood when noticing that the N = 2

central charge Z corresponds to the SU(6)-singlet component X of the N = 6 “charge

vector” C, and that the 15 complex N = 2 “matter charges” DiZ correspond to the 15

independent complex elements of the 6 × 6 antisymmetric N = 6 central charge matrix

ẐAB.

Also, Table 9 immediately yields another consequence of the “N = 2 ←→ N = 6

cross-symmetry”: while in all N = 2, d = 4 irreducible symmetric MESGTs the class

of regular BPS critical points is more symmetric than both classes of regular non-BPS

critical points, a different result holds for the N = 6, d = 4 SO∗(12)
U(6)

-based SUGRA: the
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most symmetric regular solutions are the non-BPS ones with ẐAB = 0 and X 6= 0, and

not the 1
6
-BPS ones.

4.3.2 Orbits and Attractors of JO

3

Let us now apply the general analysis performed in Sect. 4 to the case of the exceptional

N = 2, d = 4 MESGT with scalar manifold
E7(−25)

E6⊗U(1)
, defined by the exceptional Jordan

algebra JO

3 . As already mentioned above, this is the MESGT with the largest scalar

manifold (apart from the two sequences I and II), and it is the only “magical” MESGT

which is not a consistent truncation of N = 8, d = 4
E7(7)

SU(8)
-based SUGRA [37]. In this

case

G = E7(−25), H0 = E6 =
m.c.s.

(
E7(−25)

)

U(1)
= Ktr0(J

O

3 ). (4.3.2.1)

1
2
-BPS solutions O 1

2
−BPS,JO

3
=

E7(−25)

E6

They are given by

Z 6= 0, DiZ = 0⇔ DIZ = 0, ∀i, I = 1, ..., nV = 27;

VBH, 1
2
−BPS,JO

3
= |Z|21

2
−BPS,JO

3
,

(4.3.2.2)

and they are manifestly E6-invariant.

Non-BPS, Z 6= 0 solutions Onon−BPS,Z 6=0,JO

3
=

E7(−25)

E6(−26)

The non-compact stabilizer of the orbit is Ĥ = E6(−26) = Str∗0(J
O

3 ). The “flatted

matter charges” DIZ sit in the complex representation RH0 = 27 of H0 = E6. Under

ĥ = F4 = m.c.s.(E6(−26)), RH0 decomposes as

27 −→ 26 + 1, (4.3.2.3)

where the r.h.s. is made of the complex representations 1 and 26 of F4. Such a decom-

position yields the following splitting of “flatted matter charges”:

DIZ −→ (D26Z,D1Z) , (4.3.2.4)

where the subscripts “26” and “1” denote the directions along the 26 and the F4-singlet

direction in
E7(−25)

E6⊗U(1)
, respectively. By decomposing (RH0)

3 = (27)3 in terms of represen-

tations of F4, one therefore finds

(27)3 −→ (26)3 + (26)2 1 + 13⇔CIJK −→ {C26,26,26, C26,26,1, C1,1,1} . (4.3.2.5)

Thus, the solution of N = 2, d = 4 non-BPS, Z 6= 0 extremal black hole attractor

eqs. in “flat” indices (4.2.3) for the treated case is obtained by putting

D26Z = 0, D1Z 6= 0, (4.3.2.6)
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constrained by

2ZD1Z = −iC1,1,1

(
D1Z

)2
, (4.3.2.7)

where we recall that (see Eq. (4.2.1.7))

|C1,1,1|2non−BPS,Z 6=0,JO

3
=

4

3
. (4.3.2.8)

The resulting value of the black hole scalar potential at the considered attractor

point(s) is

VBH,non−BPS,Z 6=0,JO

3
= |Z|2non−BPS,Z 6=0,JO

3
+
[
GiiDiZDiZ

]

non−BPS,Z 6=0,JO

3

=

= |Z|2non−BPS,Z 6=0,JO

3
+ |D1Z|2non−BPS,Z 6=0,JO

3
= 4 |Z|2non−BPS,Z 6=0,JO

3
.

(4.3.2.9)

The overall symmetry group at N = 2 non-BPS, Z 6= 0 critical point(s) of JO

3 is ĥ =

F4 = m.c.s.(E6(−26)).

Non-BPS, Z = 0 solutions Onon−BPS,Z=0,JO

3
=

E7(−25)

E6(−14)

The non-compact stabilizer of the orbit is H̃ = E6(−14) = ∆0(J
O

3 ). Under h̃′ =

SO(10) =
m.c.s.(E6(−14))

U(1)
, RH0 = 27 decomposes as

27 −→ 161 + 10−2 + 14, (4.3.2.10)

where Wh̃′ = 161, Yh̃′ = 10−2 and 14 are complex (U(1)-charged) representations of

SO(10), and here the numeric subscripts denote the charges with respect to the explicit

factor U(1) in h̃ = SO(10)⊗ U(1) = m.c.s.(E6(−14)).

The decomposition (4.3.2.10) yields the following splitting of “flatted matter charges”:

DIZ −→ (D16Z,D10Z,D1Z) . (4.3.2.11)

Thence, by decomposing the E6-invariant representation (RH0)
3 = (27)3 in terms of

representations of SO(10), one finds

(27)3 −→ 16116110−2 + 10−210−214⇔CIJK −→ {C16,16,10, C10,10,1} . (4.3.2.12)

Thus, the solution of N = 2, d = 4 non-BPS, Z = 0 extremal black hole attractor

eqs. in “flat” indices (4.2.4) for the treated case is obtained by putting

D16Z = 0 = D10Z,D1Z 6= 0. (4.3.2.13)

The resulting value of the black hole scalar potential at the considered attractor

point(s) is

VBH,non−BPS,Z=0,JO

3
= |D1Z|2non−BPS,Z=0,JO

3
. (4.3.2.14)
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Attention should be paid to distinguish between the D1Z’s appearing in Eqs. (4.3.2.9)

and (4.3.2.14), since they refer to different directions in
E7(−25)

E6⊗U(1)
: in Eq. (4.3.2.9) D1Z

denotes the “flatted matter charge” along the complex F4-singlet, whereas in (4.3.2.14)

D1Z stands for the “flatted matter charge” along the complex (U(1)-charged) SO(10)-

singlet.

The overall symmetry group at N = 2 non-BPS, Z = 0 critical point(s) of JO

3 is

h̃′ = SO(10) = h̃
U(1)

, where h̃ = SO(10)⊗ U(1) = m.c.s.
(
E6(−14)

)
.

4.3.3 Orbits and Attractors of JH

3

Let us now move to consider the case of the N = 2, d = 4 symmetric “magical” MESGT

with scalar manifold SO∗(12)
U(6)

, related to JH

3 .

This is the “magical” MESGT with the largest scalar manifold which can be obtained

as a consistent truncation of N = 8, d = 4
E7(7)

SU(8)
-based SUGRA. The other two N = 2,

d = 4 symmetric “magical” MESGTs with a smaller scalar manifold (namely those based

on SU(3,3)
SU(3)⊗SU(3)⊗U(1)

and Sp(6,R)
U(3)

: see Tables 2 and 3) can actually be obtained as consistent

truncations of such a SO∗(12)
U(6)

-based “magical” MESGT.

Moreover, as pointed out in Subsubsect. 4.3.1, it plays a dual role, since SO∗(12)
U(6)

is

also the scalar manifold of N = 6, d = 4 SUGRA. It is now worth analyzing the same

classes of non-degenerate charge orbits as in Subsubsect. 4.3.1 with an N = 2, d = 4

approach based on special Kähler geometry.

In this case

G = SO∗(12), H0 = SU(6) =
m.c.s. (SO∗(12))

U(1)
= Ktr0(J

H

3 ). (4.3.3.1)

1
2
-BPS solutions O 1

2
−BPS,JH

3
= SO∗(12)

SU(6)

They are given by

Z 6= 0, DiZ = 0⇔ DIZ = 0, ∀i, I = 1, ..., nV = 15;

VBH, 1
2
−BPS,JH

3
= |Z|21

2
−BPS,JH

3
,

(4.3.3.2)

and they are manifestly SU(6)-invariant.

Non-BPS, Z 6= 0 solutions Onon−BPS,Z 6=0,JH
3

= SO∗(12)
SU∗(6)

The non-compact stabilizer of the orbit is Ĥ = SU∗(6) = Str∗0(J
H
3 ). The “flatted

matter charges” DIZ sit in the complex representation RH0 = 15 of H0; under ĥ =

USp(6) = m.c.s.(SU∗(6)), RH0 decomposes as

15 −→ 14 + 1, (4.3.3.3)
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where the r.h.s. is made of the complex representations 1 and 14 of USp(6). Such a

decomposition yields the following splitting of “flatted matter charges”:

DIZ −→ (D14Z,D1Z) . (4.3.3.4)

By decomposing (RH0)
3 = (15)3 in terms of representations of USp(6), one therefore

finds

(15)3 −→ (14)3 + (14)2 1 + 13⇔CIJK −→ {C15,15,15, C15,15,1, C1,1,1} . (4.3.3.5)

Thus, the solution of N = 2, d = 4 non-BPS, Z 6= 0 extremal black hole attractor

eqs. in “flat” indices (4.2.3) for the treated case is obtained by putting

D14Z = 0, D1Z 6= 0, (4.3.3.6)

constrained by Eq. (4.3.2.7), once again with |C1,1,1|2non−BPS,Z 6=0,JH
3

= 4
3
.

The resulting value of the black hole scalar potential at the considered attractor

point(s) is once again

VBH,non−BPS,Z 6=0,JH
3

=

= |Z|2non−BPS,Z 6=0,JH
3

+ |D1Z|2non−BPS,Z 6=0,JH
3

= 4 |Z|2non−BPS,Z 6=0,JH
3
.

(4.3.3.7)

The overall symmetry group at N = 2 non-BPS, Z 6= 0 critical point(s) of JH

3 is ĥ =

USp(6) = m.c.s.(SU∗(6) = Str∗0(J
H
3 ).

Non-BPS, Z = 0 solutions Onon−BPS,Z=0,JH
3

= SO∗(12)
SU(4,2)

The non-compact stabilizer of the orbit is H̃ = SU(4, 2). Under h̃′ = SU(4)⊗SU(2) =
m.c.s.(SU(4,2))

U(1)
, RH0 = 15 decomposes as

15 −→ (4, 2)−1 + (6, 1)2 + (1, 1)−4 , (4.3.3.8)

where Wh̃′ = (4, 2)−1, Yh̃′ = (6, 1)2 and (1, 1)−4 are complex (U(1)-charged) represen-

tations of SU(4)⊗ SU(2), and as above the numeric subscripts denote the charges with

respect to the explicit factor U(1) in h̃ = SU(4)⊗ SU(2)⊗ U(1) = m.c.s.(SU(4, 2)).

The decomposition (4.3.3.8) yields the following splitting of “flatted matter charges”:

DIZ −→
(
D(4,2)Z,D(6,1)Z,D(1,1)Z

)
. (4.3.3.9)

Thence, by decomposing the SU(6)-invariant representation (RH0)
3 = (15)3 in terms of

representations of SU(4)⊗ SU(2), one finds

(15)3 −→ (4, 2)−1 (4, 2)−1 (6, 1)2 + (6, 1)2 (6, 1)2 (1, 1)−4 (4.3.3.10)

m
CIJK −→

{
C(4,2),(4,2),(6,1), C(6,1),(6,1),(1,1)

}
. (4.3.3.11)
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Thus, the solution of N = 2, d = 4 non-BPS, Z = 0 extremal black hole attractor

eqs. in “flat” indices (4.2.4) for the treated case is obtained by putting

D(4,2)Z = 0 = D(6,1)Z, D(1,1)Z 6= 0. (4.3.3.12)

The resulting value of the black hole scalar potential at the considered attractor

point(s) is

VBH,non−BPS,Z=0,JH
3

=
∣∣D(1,1)Z

∣∣2
non−BPS,Z=0,JH

3
. (4.3.3.13)

Once again, attention should be paid to distinguish between the D1Z’s appearing in

Eqs. (4.3.3.7) and (4.3.3.13), since they refer to different directions in SO∗(12)
U(6)

: in Eq.

(4.3.3.7) D1Z denotes the “flatted matter charge” along the complex USp(6)-singlet,

whereas in (4.3.3.13) D(1,1)Z stands for the “flatted matter charge” along the complex

(U(1)-charged) (SU(4)⊗ SU(2))-singlet.

The overall symmetry group at N = 2 non-BPS, Z = 0 critical point(s) of JH

3 is

h̃′ = SU(4)⊗ SU(2) = h̃
U(1)

, where h̃ = SU(4)⊗ SU(2)⊗ U(1) = m.c.s. (SU(4, 2)).

A completely analogous analysis may be performed for the cases V (JC

3 ) and V I (JR

3 )

of Tables 2 and 3. We leave such an analysis as an instructive exercise for the reader.

5 The Mass Spectra at Critical Points

The black hole scalar potential VBH gives different masses to the different BPS-phases

of the considered symmetric N = 2, d = 4 MESGTs. The fundamental object to be

considered in such a framework is the moduli-dependent 2nV × 2nV Hessian matrix of

VBH , which in complex basis reads15 [54]

HVBH ≡




DiDjVBH DiDjVBH

DjDiVBH DiDjVBH


 ≡



Mij Nij

N ji Mij


 ; (5.1)

Mij ≡ DiDjVBH = DjDiVBH =

= 4iZCijkG
kkDkZ + iGkkGllDjCiklDkZDlZ;

(5.2)

Nij ≡ DiDjVBH = DjDiVBH =

= 2
[
Gij |Z|2 +DiZDjZ +GlnGkkGmmCiklCjmnDkZDmZ

]
;

(5.3)

MT =M,N † = N . (5.4)

15The reported formulæ forMij and Nij hold for any special Kähler manifold. In the symmetric case
formula (5.2) gets simplified using Eq. (2.14).
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By analyzing HVBH at regular critical points, it is possible to formulate general conclusions

about the mass spectrum of the corresponding extremal black hole solutions with finite,

non-vanishing entropy, i.e. about the mass spectrum along the related classes of non-

degenerate charge orbits of the symplectic real representation RV of the d = 4 duality

group G.

Let us start by remarking that, due to its very definition (2.11), the N = 2 black hole

scalar potential VBH is positive for any (not necessarily strictly) positive definite metric

Gii of the scalar manifold. Consequently, the stable critical points (i.e. the attractors in a

strict sense) will necessarily be minima of such a potential. As already pointed out above

and as done also in [54, 55], the geometry of the scalar manifold is usually assumed to be

regular, i.e. endowed with a metric tensor Gij being strictly positive definite everywhere.

1
2
-BPS critical points

It is now well known that regular special Kähler geometry implies that all N = 2
1
2
-BPS critical points of all N = 2, d = 4 MESGTs are stable, and therefore they are

attractors in a strict sense. Indeed, the Hessian matrix HVBH
1
2
−BPS

evaluated at such points

is strictly positive definite [14]:

Mij, 1
2
−BPS = 0,

Nij, 1
2
−BPS = 2 Gij

∣∣
1
2
−BPS

|Z|21
2
−BPS > 0,

(5.5)

where the notation “> 0” is clearly understood as strict positive definiteness of the

quadratic form related to the square matrix being considered. Notice that the Hermiticity

and strict positive definiteness of HVBH
1
2
−BPS

are respectively due to the Hermiticity and

strict positive definiteness of the Kähler metric Gij of the scalar manifold.

By switching from the non-flat i-coordinates to the “flat” local I-coordinates by using

the (inverse) Vielbein ei
I of the scalar manifold, Eqs. (5.5) can be rewritten as

MIJ, 1
2
−BPS = 0,

NIJ, 1
2
−BPS = 2δIJ |Z|21

2
−BPS > 0.

(5.6)

Thus, one obtains that in all N = 2, d = 4 MESGTs the 1
2
-BPS mass spectrum in “flat”

coordinates is monochromatic, i.e. that all “particles” (i.e. the “modes” related to the

degrees of freedom described by the “flat” local I-coordinates) acquire the same mass at
1
2
-BPS critical points of VBH .

Non-BPS, Z 6= 0 critical points

In this case the result of Tripathy and Trivedi [17] should apply, namely the Hessian

matrix HVBH

non−BPS,Z 6=0 should have nV + 1 strictly positive and nV − 1 vanishing real

eigenvalues.
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By recalling the analysis performed in Sect. 4, it is thence clear that such massive and

massless non-BPS, Z 6= 0 “modes” fit distinct real representations of ĥ = m.c.s.
(
Ĥ
)
,

where Ĥ is the non-compact stabilizer of the class Onon−BPS,Z 6=0 = G

Ĥ
of non-BPS, Z 6= 0

non-degenerate charge orbits.

This is perfectly consistent with the decomposition (4.2.1.1) of the complex represen-

tation RH0 (dimRRH0 = 2nV ) of H0 in terms of representations of ĥ:

RH0 −→
(
Rĥ + 1

)
C

=
(
Rĥ + 1 +Rĥ + 1

)
R
, dimR

(
Rĥ

)
R

= nV − 1. (5.7)

As yielded by the treatment given in Subsubsect. 4.2.1, the notation “
(
Rĥ + 1

)
C

=(
Rĥ + 1 +Rĥ + 1

)
R
” denotes nothing but the decomplexification of

(
Rĥ + 1

)
C
, which is

actually composed by a pair of real irreducible representations
(
Rĥ + 1

)
R

of ĥ.

Therefore, Tripathy and Trivedi’s result can be understood in terms of real represen-

tations of the m.c.s. of the non-compact stabilizer of Onon−BPS,Z 6=0: the nV − 1 massless

non-BPS, Z 6= 0 “modes” are in one of the two real Rĥ’s of ĥ in the r.h.s. of Eq. (5.7),

say the first one, whereas the nV + 1 massive non-BPS, Z 6= 0 “modes” are split in the

remaining real Rĥ of ĥ and in the two real ĥ-singlets. The resulting interpretation of the

decomposition (5.7) is

RH0 −→




(
Rĥ

)
R

nV − 1 massless


+




(
Rĥ

)
R

+ 1R + 1R

nV + 1 massive


 . (5.8)

It is interesting to notice once again that there is no U(1) symmetry relating the two real

Rĥ’s (and thus potentially relating the splitting of “modes” along Onon−BPS,Z 6=0), since

in all symmetric N = 2, d = 4 MESGTs ĥ never contains an explicit factor U(1) (as

instead it always happens for h̃!); this can be related to the fact that the non-compact

stabilizer is Ĥ = Str∗0(J ) whose ĥ is the m.c.s..

For further elucidation, let us consider the explicit example of the JO

3 -related symmet-

ric N = 2, d = 4 “magical” MESGT with scalar manifold
E7(−25)

E6⊗U(1)
(nV = 27), treated in

Subsubsect. 4.3.2. In the sense of aforementioned decomplexification, the decomposition

(4.3.2.3) of the complex representation RH0 = 27 under ĥ = F4 can also be written as

27 −→ 26 + 1 = 26R + 1R+26R+1R. (5.9)

It is then clear that the mass spectrum of Onon−BPS,Z 6=0,JO

3
splits under F4 as follows: the

26 massless non-BPS, Z 6= 0 “modes” are in one of the two 26R’s of F4 in the r.h.s. of

Eq. (5.9), say the first one, whereas the 28 massive non-BPS, Z 6= 0 “modes” are split

in the remaining 26R of F4 and in the two real F4-singlets. The resulting interpretation

of the decomposition (5.9) is

27 −→




26R

26 massless


+




26R + 1R + 1R

28 massive


 . (5.10)
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Non-BPS, Z = 0 critical points

For the class Onon−BPS,Z=0 of non-degenerate non-BPS, Z = 0 orbits the situation

changes, and Tripathy and Trivedi’s result no longer holds true, due to the local vanishing

of the N = 2 central charge.

In order to illustrate the consequences of Z = 0 along Onon−BPS,Z=0 on the related

mass spectrum, let us consider again the symmetric N = 2, d = 4 “magical” MESGT

with scalar manifold
E7(−25)

E6⊗U(1)
.

In such a case, Onon−BPS,Z=0,JO

3
=

E7(−25)

E6(−14)
, and therefore the non-compact stabilizer

is H̃ = E6(−14). The complex 27 and the E6-invariant (27)3 of E6 decompose under

h̃′ = SO(10) =
m.c.s.(E6(−14))

U(1)
as given by Eqs. (4.3.2.10) and (4.3.2.12), respectively:

27 −→ 161 + 10−2 + 14; (5.11)

(27)3 −→ 16116110−2 + 10−210−214. (5.12)

Consequently, the rank-3 E6-invariant tensor coupling CIJK decomposes in its non-

vanishing components as follows:

CIJK −→ {C16,16,10, C10,10,1} . (5.13)

In Subsubsect. 4.3.2 the solution of N = 2, d = 4 non-BPS, Z = 0 extremal black

hole attractor eqs. in “flat” indices (4.2.4) for the case at hand was found to be given by

Eq. (4.3.2.13):

D16Z = 0 = D10Z, D1Z 6= 0. (5.14)

By using Eqs. (5.13) and (5.14), the block matrix components of the 54× 54 critical

Hessian HVBH

non−BPS,Z=0,JO

3

in “flat” coordinates can be computed to be:

MIJ,non−BPS,Z=0,JO

3
= 0;

NIJ,non−BPS,Z=0,JO

3
=

= 2
[
DIZDJZ + δLNδKKδMMCIKLCJMNDKZDMZ

]

non−BPS,Z=0,J
O

3

.

(5.15)

The only non-vanishing elements of the 27 × 27 critical (diagonal and real) matrix

NIJ,non−BPS,Z=0,JO

3
are the following ones:

N
11,non−BPS,Z=0,JO

3
= 2 |D1Z|2non−BPS,Z=0,JO

3
;

N
1010,non−BPS,Z=0,JO

3
= 2 |C10,10,1|2non−BPS,Z=0,JO

3
|D1Z|2non−BPS,Z=0,JO

3
,

(5.16)
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and therefore one gets (the subscripts denote the matrix dimension)

HVBH

non−BPS,Z=0,JO

3

= 2 |D1Z|2non−BPS,Z=0,JO

3
·

·




027×27

11×1

C·110×10

016×16

11×1

C·110×10

016×16

027×27




,

(5.17)

where C ≡ |C10,10,1|2non−BPS,Z=0,JO

3
∈ R+

0 . The real form [54] of the non-BPS Z = 0

critical Hessian finally reads

HVBH

non−BPS,Z=0,JO

3 ,real
= |D1Z|2non−BPS,Z=0,JO

3
·

·




11×1

C·110×10

016×16

027×27

027×27

11×1

C·110×10

016×16




;

(5.18)

thus, there are 32 vanishing and 22 strictly positive real eigenvalues.

It is then clear that the mass spectrum of Onon−BPS,Z=0,JO

3
splits under SO(10) =

m.c.s.(E6(−14))

U(1)
as follows: there are 32 massless non-BPS, Z = 0 “modes” fitting the 32

real degrees of freedom corresponding to the complex 161 of SO(10) in the r.h.s. of

decomposition (5.11), and 20 + 2 = 22 massive non-BPS, Z = 0 “modes” fitting the

remaining real degrees of freedom corresponding to the complex 10−2 and 14 of SO(10).

The resulting interpretation of the decomposition (5.11) is

27 −→




161

32 massless



+




10−2 + 14

20 + 2 massive



 . (5.19)

By looking at the form of the non-BPS, Z = 0 solution (5.14) in “flat” coordinates,

it is then easy to realize that the 161 of SO(10) remains massless at regular non-BPS,

Z = 0 critical points because it does not couple to the SO(10)-singlet in the representation

decomposition (5.12).
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The results obtained above for the
E7(−25)

E6⊗U(1)
-based “magical” N = 2, d = 4 symmetric

MESGT can be immediately extended to all the other three “magical” N = 2, d = 4

symmetric MESGTs (corresponding to cases IV , V and V I of Tables 2 and 3) as follows.

In all “magical” N = 2, d = 4 MESGTs the complex representation RH0 of H0

decomposes under h̃′ =
m.c.s.(H̃)

U(1)
in the following way (see Eq. (4.2.2.2)):

RH0 −→Wh̃′ + Yh̃′ + 1C, (5.20)

where in the r.h.s. the complex h̃′-singlet and the complex non-singlet representations

Wh̃′ and Yh̃′ of h̃′ appear. Correspondingly, the decomposition of the H0-invariant repre-

sentation (RH0)
3 in terms of representations of h̃′ reads (see Eq. (4.2.2.4))

(RH0)
3 −→

(
Wh̃′

)2 Yh̃′ +
(
Yh̃′

)2
1C. (5.21)

Let us now recall that dimRRH0 = 2nV and dimR1C = 2, and let us define

dimRWh̃′ ≡Wh̃′;

dimRYh̃′ ≡ Yh̃′;




 : Wh̃′ + Yh̃′ + 2 = 2nV . (5.22)

Thus, it can generally be stated that the mass spectrum along Onon−BPS,Z=0 of all

“magical” N = 2, d = 4 symmetric MESGTs splits under h̃′ = m.c.s.(H̃)
U(1)

as follows:

− the mass “modes” fitting the Wh̃′ real degrees of freedom corresponding to the

complex (U(1)-charged) non-h̃′-singlet representation Wh̃′ (which does not couple to the

complex h̃′-singlet in the H0-invariant decomposition (5.21)) remain massless ;

− the mass “modes” fitting the Yh̃′ + 2 real degrees of freedom corresponding to

the complex (U(1)-charged) non-h̃′-singlet representation Yh̃′ and to the (U(1)-charged)

h̃′-singlet 1C all become massive.

The resulting interpretation of the decomposition (5.20) is

RH0 −→




Wh̃′

Wh̃′ massless



+




Yh̃′ + 1C

Yh̃′ + 2 massive



 . (5.23)

The interpretations (5.19) and (5.23) show that, even though the complex represen-

tations Wh̃′ , Yh̃′ and 1C of h̃′ are charged with respect to the explicit factor U(1) always

appearing in h̃, this fact does not affect in any way the splitting of the non-BPS, Z = 0

mass “modes”.

It is worth pointing out that in the N = 2, 6, d = 4 SUGRAs based on SO∗(12)
U(6)

(see

Subsubsects. 4.3.1 and 4.3.3) the splitting of the critical non-BPS, Z = 0 mass spectrum

obtained by the above general analysis is in agreement with the results of the N = 6

analysis of the 1
6
-BPS solutions, yielding 7 massive vector multiplets and 4 massless

hypermultiplets [70].
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The critical mass spectra of the irreducible sequence SU(1,1+n)
U(1)⊗SU(1+n)

and of the reducible

sequence SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

are treated in Appendices I and II, respectively.

Generally, the Hessian HVBH at regular N = 2, non-BPS critical points of VBH exhibits

the following features: it does not have “repelling” directions (i.e. strictly negative real

eigenvalues), it has a certain number of “attracting” directions (related to strictly positive

real eigenvalues), but it is also characterized by some “flat” directions, i.e. by some

vanishing eigenvalues, corresponding to massless non-BPS “modes”.

In order to establish whether the considered N = 2, non-BPS citical points of VBH are

actually attractors in a strict sense, i.e. whether they actually are stable minima of VBH

in the scalar manifold, one has to proceed further with Kähler-covariant differentiation of

VBH , dealing (at least) with third and higher-order derivatives. Tripathy and Trivedi [17]

presented a charge-dependent statement about the stability of N = 2, non-BPS critical

points in the case Z 6= 0 for cubic prepotentials, which would be interesting to check

and interpret for N = 2, d = 4 symmetric MESGTs in the “representation decomposition

approach” exploited above.

We leave the detailed analysis of the issue of stability of both classes of regular non-

BPS critical points (Z 6= 0 and Z = 0) of VBH in N = 2, d = 4 (symmetric) MESGTs

for future work.

6 Conclusion

In the present work we have classified the regular solutions of the N = 2, d = 4 extremal

black hole attractor equations for homogeneous symmetric special Kähler geometries. For

rank-3 symmetric manifolds G
H=H0⊗U(1)

of MESGTs defined by Jordan algebras of degree

three such solutions exist in three distinct classes, one 1
2
-BPS and the other two non-BPS,

one of which corresponds to vanishing central charge Z = 0.

We have also shown that these three classes of solutions are in one to one correspon-

dence with the non-degenerate charge orbits of the actions of the duality groups G on

the corresponding charge spaces that were classified in Sect. 3.

The non-BPS, Z = 0 class of regular solutions has no analogue in d = 5, where a

similar classification has been recently given [27].

For the considered rank-3 symmetric manifolds the tensor Cijk of special Kähler ge-

ometry is covariantly constant, and in “flat” coordinates it is proportional to the nu-

meric symmetric tensor dIJK of the real special geometry of N = 2, d = 5 MESGTs

[37, 38, 39, 62].

The rank-1 family of symmetric manifolds (case I of Table 3) has Cijk = 0. It has only

two classes of regular solutions to the attractor equations: one 1
2
-BPS and one non-BPS

with Z = 0.
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For all the rank-3 symmetric spaces the classical black hole entropy is given by the

Bekenstein-Hawking entropy-area formula [36]

SBH =
AH

4
= π

√
|I4|, (6.1)

where

VBH |∂VBH=0 =
√
|I4| (6.2)

and I4 is the quartic invariant of the charge vector in the considered non-degenerate

charge orbit. For the 1
2
-BPS and non-BPS Z = 0 classes I4 > 0, while the non-BPS

Z 6= 0 class has I4 < 0.

For the family of rank-1 homogeneous symmetric manifolds the invariant is instead

quadratic; it is positive for 1
2
-BPS orbits and negative for the non-BPS ones (see Appendix

I).

We also investigated the (splittings of the) mass spectra of the theory along the three

species of classes of non-degenerate charge orbits, finding an agreement with a result

recently obtained by Tripathy and Trivedi [17], holding true for generic cubic holomorphic

prepotentials and for non-BPS Z 6= 0 critical points of VBH .

In order to proceed further, it would be interesting to extend the analysis performed in

the present work to non-symmetric special Kähler spaces with cubic (holomorphic) prepo-

tentials. A proper subclass of such manifolds is given by the homogeneous non-symmetric

spaces described in [41]. We should stress that all special Kähler cubic geometries have

an uplifting to five dimensions.

In [71] it was shown that the N = 2, d = 5 “magical” MESGTs defined by JC

3 , J
H

3

and JO

3 are simply the “lowest” members of three infinite families of unified N = 2, d = 5

MESGTs defined by Lorentzian Jordan algebras of degree > 3. The scalar manifolds

of such theories are not homogeneous except for the “lowest” members. It would be

interesting to extend the analysis of [27] and of the present work to these theories in five

dimensions and to their descendants in four dimensions, respectively.

Another direction for further investigations could be the analysis of non-cubic (holo-

morphic) prepotentials, corresponding to more general special Kähler geometries, such

as the ones of the moduli spaces of Calabi-Yau compactifications.

Finally, another possible extension of the present work might deal with higher N(=

3, 4) SUGRAs coupled to matter multiplets, which are known to have BPS attractor

solutions [10, 11, 12].
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A Appendix I

The sequence SU(1,1+n)
U(1)⊗SU(1+n)

The N = 2, d = 4 symmetric MESGTs with scalar manifolds belonging to the in-

finite sequence of irreducible rank-1 homogeneous symmetric special Kähler manifolds
SU(1,1+n)

U(1)⊗SU(1+n)
feature another fundamental property: they all have a quadratic prepoten-

tial, and thus globally

Cijk = 0. (AI.1)

Consequently, in such a case the attractor eqs. (2.12) acquire the trivial form

ZDiZ = 0, ∀i = 1, ..., nV , (AI.2)

and therefore they admit only two classes of solutions:

1. 1
2
-BPS solutions:

Z 6= 0, DiZ = 0, ∀i = 1, ..., nV ;

VBH, 1
2
−BPS,I = |Z|21

2
−BPS,I .

(AI.3)

2. non-BPS, Z = 0 solutions:

Z = 0, DiZ 6= 0, for some i ∈ {1, ..., nV } ;

VBH,non−BPS,Z=0,I =
[
GiiDiZDiZ

]
non−BPS,Z=0,I

.
(AI.4)

No non-BPS, Z 6= 0 solutions exist at all.
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Recall that in this case nV = n + 1. Since the little group of the SU(n + 1)-vector

DiZ is SU(n), it is then clear that the non-BPS, Z = 0 solutions (AI.4) are SU(n)-

invariant. On the other hand, since in 1
2
-BPS solutions (AI.3) the vector DiZ vanishes,

the symmetry of the solution gets enhanced to SU(n+ 1). Consequently, the two classes

of non-degenerate charge orbits of the case at hand respectively reads (see Table 3):

O 1
2
−BPS,I = SU(1,n+1)

SU(n+1)
;

Onon−BPS,Z=0,I = SU(1,n+1)
SU(1,n)

.

(AI.5)

Such two species of orbits are classified by a quadratic invariant, which in “flat” coordi-

nates reads

I2 = |Z|2 −
nV∑

I=1

|DIZ|2 . (AI.6)

One thus gets that

VBH, 1
2
−BPS,I = |Z|21

2
−BPS,I = I2, 1

2
−BPS > 0;

VBH,non−BPS,Z=0,I =
∑nV

I=1 |DIZ|21
2
−BPS,I = −I2,non−BPS,Z=0 > 0 .

(AI.7)

For what concerns the critical mass spectrum, 1
2
-BPS case is well known to be always

stable for all N = 2, d = 4 MESGTs, and it has been treated in Sect. 5. Considering

the non-BPS, Z = 0 critical mass spectrum and using Eq. (AI.1), Eqs. (5.2) and

(5.3) immediately yield the following elements of the (2n+ 2)× (2n+ 2) critical Hessian

HVBH

non−BPS,Z=0,I:

MIJ,non−BPS,Z=0,I = 0;

NIJ = 2
[
DIZDJZ

]
non−BPS,Z=0,I

.
(AI.8)

Since the (n+ 1) × (n+ 1) Hermitian matrix
[
DIZDJZ

]
non−BPS,Z=0,I

has rank 1, one

immediately gets that the (2n + 2)× (2n + 2) Hermitian matrix HVBH

non−BPS,Z=0,I has rank

2: it has 2 strictly positive and 2n vanishing real eigenvalues. This is the general splitting

pattern of the mass spectrum along Onon−BPS,Z=0 in the irreducible N = 2, d = 4

symmetric SU(1,1+n)
U(1)⊗SU(1+n)

-based MESGTs.

B Appendix II

The sequence SU(1,1)
U(1) ⊗

SO(2,2+n)
SO(2)⊗SO(2+n)

The case II of Tables 2 and 3 is given by the sequence of N = 2, d = 4 symmetric

MESGTs based on rank-3 reducible homogeneous symmetric special Kähler manifolds
SU(1,1)

U(1)
⊗ SO(2,2+n)

SO(2)⊗SO(2+n)
(n ∈ N ∪ {0}) with real dimension 2(n + 3). The main difference
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with respect to the four “magical” N = 2, d = 4 symmetric MESGTs (cases III-V I) and

the sequence SU(1,1+n)
U(1)⊗SU(1+n)

(case I) treated above is the fact that for case II the scalar

manifold is reducible, being the direct product of two distinct manifolds.

In this case G = SU(1, 1)⊗SO(2, 2+n) and H0 = SO(2)⊗SO(2+n). However, the

holomorphic prepotential F has at most an SO(n+ 1) manifest compact symmetry. For

instance, in a suitable basis of special coordinates, F may be written as follows:

F (t) = t1

[
(
t2
)2 −

(
t3
)2 −

n+3∑

i=4

(
ti
)2
]
, (AII.1)

which can be identified with the norm form of the underlying generic family of non-simple

Jordan algebras (see Sect. 3).

Beside the manifest overall symmetry SO(1, n + 1) (which is clearly related to its

5-dimensional origin, since SO(1, n+ 1) = Ĥ=G5

SO(1,1)
), it should be remarked the full factor-

ization of the holomorphic cubic function (AII.1) in linear and quadratic components, due

to the reducibility of the scalar manifold, which follows from the fact that the underlying

Jordan algebras are not simple.

A particular, noteworthy case is given by the n = 0 element II0 which is the N = 2,

d = 4 symmetric MESGT with nV = 3-moduli usually called stu model [42]. Its scalar

manifold and prepotential are given by Eq. (2.4).

At this point, it is worth recalling that there are actually two other typologies of N =

2, d = 4 symmetric MESGTs, corresponding to the following cosets and prepotentials (in

suitable systems of special coordinates):

V II : SU(1,1)
U(1)

, r = 1, F (t) = 1
3
t3; (AII.2)

V III : SU(1,1)
U(1)

⊗ SO(2,1)
SO(2)

=
(

SU(1,1)
U(1)

)2

, r = 2, F (s, t) = st2. (AII.3)

Notice that, even though they share the same coset structure, the cases I0 and V II

correspond to different prepotential functions: while I0 is the n = 0, 1-modulus element

of the sequence I with quadratic prepotential, the 1-modulus case V II can actually be

obtained from the stu model II0 by putting s = t = u (and rescaling everything by 3
√

3).

On the other hand, the 2-moduli case V III can also be obtained from the stu model II0,

e.g. by putting t = u, or also by putting n = −1 in sequence II.

Summarizing, the cases V II and V III can both be obtained as consistent truncations

of the stu model, simply by identifying some or all moduli, and consequently destroying

the related triality symmetry.

While the nV = 2-moduli case V III has the usual three classes of N = 2 critical

solutions, the nV = 1-moduli case V II has only 1
2
-BPS and non-BPS, Z 6= 0 solutions,

as it can be easily seen by considering the structure of the attractor eqs. (2.12) for
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such cases. Models II0 (stu), V II and V III are important also because in such highly

symmetric cases with a few moduli one can actually manage to analytically solve the

attractor eqs. (2.12) for the purely charge-dependent critical values of the moduli [69].

In order to solve the N = 2 attractor eqs. (2.12) for the SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

-based

N = 2, d = 4 symmetric MESGTs, it is once again crucially convenient to switch to

“flat” I-coordinates, in which the N = 2 attractor eqs. are given by Eqs. (2.17):

∂IVBH = 0⇔ 2ZDIZ = −iCIJKδ
JJδKKDJZDKZ = 0,

∀I = 0, 1, ..., nV − 1 = n+ 2.

(AII.4)

In such a “flat” I-coordinate system, even though it cannot be written as the third partial

derivative tensor of the prepotential (since no F exists at all: see Footnote 6), the rank-3

symmetric tensor CIJK becomes very simple, since its unique non-vanishing components

are simply determined by the norm forms of the underlying reducible family of Jordan

algebras of degree three:

CIJK = C0ĴK̂ = C0δĴK̂ , C0 ∈ C0, (AII.5)

where the “hatted” “flat” indices’ range is {1, ..., n+ 2} and δĴK̂ is the SO(n+2)-invariant

Euclidean metric. Consequently, Eqs. (AII.4) split as follows:





2ZD0Z = −iC0δ
ĴK̂D

Ĵ
ZD

K̂
Z = −iC0

∑n+2

Ĵ=1

(
D

Ĵ
Z
)2

= 0;

2ZDÎZ = −iC0D0ZDÎ
Z = 0.

(AII.6)

Thus, it is immediate to obtain the three classes of regular solutions of N = 2 extremal

black hole attractor eqs. (AII.6) in “flat” I-coordinates for the SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

-

based N = 2, d = 4 symmetric MESGTs:

1
2
-BPS class:

Z 6= 0, D0Z = 0 = DÎZ, ∀Î = 1, ..., n+ 2;

VBH, 1
2
−BPS,II = |Z|21

2
−BPS,II .

(AII.7)

Non-BPS, Z 6= 0 class (recall Eq. (∼) in Footnote 15):

Z 6= 0, D0Z 6= 0, D1Z 6= 0, DĬZ = 0, Ĭ ∈ {2, ..., n+ 2} ;

VBH,non−BPS,Z 6=0,II = |Z|2non−BPS,Z 6=0,II +
∑nV −1=n+2

I=0 |DIZ|2non−BPS,Z 6=0,II =

= |Z|2non−BPS,Z 6=0,II + |D0Z|2non−BPS,Z 6=0,II + |D1Z|2non−BPS,Z 6=0,II =

= 4 |Z|2non−BPS,Z 6=0,II .

(AII.8)
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Non-BPS, Z = 0 classes.

In this case, there are two distinct sets of independent regular non-BPS, Z = 0

solutions to N = 2 extremal black hole attractor eqs. (AII.6); they read:

(non-BPS)1 :






Z = 0, D0Z = 0, D1Z = ±iD2Z, DÎZ = 0, ∀Î = 3, ..., n+ 2;

VBH,non−BPS,Z=0,II,1 = 2 |D1Z|2non−BPS,Z=0,II,1 .

(AII.9)

(non-BPS)2 :





Z = 0, D0Z 6= 0, DÎZ = 0, ∀Î = 1, ..., n+ 2;

VBH,non−BPS,Z=0,II,2 = |D0Z|2non−BPS,Z=0,II,2 .

(AII.10)

Let us analyze the overall symmetry of the solutions (AII.7)-(AII.10).

For the 1
2
-BPS caseD0Z = 0 = DÎZ, thus the compact symmetry is SO(2)⊗SO(2+n).

This is also the case of the type 2 of non-BPS Z = 0 class (see Eq. (AII.10). For the type

1 of non-BPS Z = 0 class (D1Z)2 + (D2Z)2 = 0 and D0Z = 0, therefore the compact

symmetry is SO(2) ⊗ SO(2) ⊗ SO(n). Finally, for the non-BPS Z 6= 0 class D0Z 6= 0

and D1Z 6= 0, thence the compact symmetry is SO(1 + n).

The cases 1
2
-BPS, non-BPS Z 6= 0 and non-BPS Z = 0 type 1 correspond to the three

classes of non-degenerate orbits of N = 2, d = 4 symmetric SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

-based

MESGTs given in Table 3.

The case non-BPS Z = 0 type 2 corresponds instead to the class of orbits SU(1,1)⊗SO(2,2+n)
SO(2)⊗SO(2+n)

,

isomorphic to (but physically distinct from) the 1
2
-BPS class. Indeed, even though in the

case at hand Onon−BPS,Z=0 and O 1
2
−BPS have the same formal coset expression, they ac-

tually correspond to the tips of the two separated branches of the disconnected manifold
SU(1,1)⊗SO(2,2+n)

SO(2)⊗SO(2+n)
, classified by the sign of the quantity Ĩ2 ≡ |Z|2 − |D0Z|2:

Ĩ2, 1
2
−BPS,II = |Z|21

2
−BPS,II > 0;

Ĩ2,non−BPS,Z=0,II,2 = − |D0Z|2non−BPS,Z=0,II,2 < 0.

(AII.11)

For such classes of critical points the quartic invariant reads [12]

I4,II =
(
Ĩ2,II

)2

> 0, (AII.12)

the two cases corresponding to Ĩ2,II ≷ 0 (see Eq. (AII.11)).

This can also be seen in the n = 0 element II0 of the sequence II being treated, i.e.

in the stu model, where explicit calculations are feasible [69].
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Indeed, by setting n = 0 in the third row of Table 3, one obtains the three classes of

non-degenerate orbits of the stu model II0 (the two Z = 0 orbits coincide in this case):
1
2
-BPS class (H0 = (U(1))2):

O 1
2
−BPS,stu =

G

H0
=

(SU(1, 1))3

(U(1))2 ; (AII.13)

Non-BPS, Z = 0 class (H̃ = H0 = (U(1))2):

Onon−BPS,Z=0,stu =
G

H0

=
(SU(1, 1))3

(U(1))2 ; (AII.14)

Non-BPS, Z 6= 0 class (Ĥ = (SO(1, 1))2):

Onon−BPS,Z 6=0,stu =
G

Ĥ
=

(SU(1, 1))3

(SO(1, 1))2
. (AII.15)

The orbits O 1
2
−BPS,stu and Onon−BPS,Z=0,stu, despite having the same coset expression,

correspond to different values of the quantity |Z|2 − |DsZ|2. Indeed, it can be explicitly

computed [69] that:
1
2
-BPS orbit O 1

2
−BPS,stu:

|Z|21
2
−BPS,stu − |DsZ|21

2
−BPS,stu = |Z|21

2
−BPS,stu > 0; (AII.16)

Non-BPS, Z = 0 orbit Onon−BPS,Z=0,stu (recall Eq. (4.2.2.7)):

|Z|2non−BPS,Z=0,stu − |DsZ|2non−BPS,Z=0,stu =

= − |DsZ|2non−BPS,Z=0,stu = − |Z|21
2
−BPS,stu < 0.

(AII.17)

Consequently, the orbits O 1
2
−BPS,stu and Onon−BPS,Z=0,stu correspond to two separated

branches of a disconnected manifold, classified by the local value of the function

sgn
(
|Z|2 − |DsZ|2

)
. Such a result can be easily extended to a generic n ∈ N, i.e. to

a generic element of the sequence SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

.

As for the classes of non-degenerate orbits of cases V II and V III, they respectively

read as follows:

Case VII (G = SU(1, 1))

1
2
-BPS class (H0 = 1):

O 1
2
−BPS,V II =

G

H0
= SU(1, 1), I4 > 0; (AII.18)

Non-BPS, Z 6= 0 class (Ĥ = 1):

Onon−BPS,Z 6=0,V II =
G

Ĥ
= SU(1, 1), I4 < 0. (AII.19)
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Case VIII (G = SU(1, 1)⊗ SU(1, 1)); it can actually be obtained by putting n = −1

in the third row of Table 3:

1
2
-BPS class (H0 = U(1)):

O 1
2
−BPS,V III =

G

H0
= SU(1, 1)⊗ SO(2, 1)

SO(2)
=
SU(1, 1)⊗ SU(1, 1)

U(1)
; (AII.20)

Non-BPS, Z = 0 class (H̃ = H0 = U(1)):

Onon−BPS,Z=0,V III =
G

H0
=
SU(1, 1)⊗ SU(1, 1)

U(1)
; (AII.21)

Non-BPS, Z 6= 0 class (Ĥ = SO(1, 1)):

Onon−BPS,Z 6=0,V III =
G

Ĥ
=
SU(1, 1)⊗ SU(1, 1)

SO(1, 1)
. (AII.22)

Let us now consider the mass spectrum of the reducible sequence II at the regular

critical points of VBH .

From the above analysis, it is clear that for the infinite set of reducible N = 2, d = 4

symmetric MESGTs based on SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

, the structure of the Hessian at
1
2
-BPS and non-BPS, Z = 0 critical points will be the same.

As it was pointed out more than once above, in all N = 2, d = 4 MESGTs (with reg-

ular special Kähler geometry of the scalar manifold) the 2nV ×2nV real form HVBH
1
2
−BPS,real

of the 1
2
-BPS critical Hessian has 2nV strictly positive real eigenvalues, and therefore all

1
2
-BPS critical points of VBH are attractors in a strict sense, i.e. they are stable minima

of VBH . Consequently, one immediately obtains that in the case of SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

the same holds also for all non-BPS, Z = 0 critical points of VBH : they all are attractors

in a strict sense, i.e. they are stable minima of VBH .

Concerning the non-BPS, Z 6= 0 mass spectrum, one can finally say that, despite the

reducibility of such manifolds, the same analysis performed in Sect. 5 for (irreducible)

N = 2, d = 4 “magical” symmetric MESGTs holds also for this case, and Tripathy and

Trivedi’s result [17] is confirmed.

Thus, it can generally be stated that the mass spectrum along Onon−BPS,Z 6=0 of all

reducible N = 2, d = 4 symmetric SU(1,1)
U(1)

⊗ SO(2,2+n)
SO(2)⊗SO(2+n)

-based MESGTs splits under

ĥ = m.c.s.
(
Ĥ
)

= SO(1 + n) as follows: there are nV − 1 = n + 2 massless and

nV + 1 = n + 4 massive non-BPS, Z 6= 0 mass “modes”.

Once again, Tripathy and Trivedi’s result can also be confirmed by performing explicit

calculations in the highly symmetric and manageable case of the stu model16 [69].
16Clearly, since the isolated models V II and V III are consistent truncations of the stu model, once
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