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An understanding of the nature of superconductivity in cuprates has been hindered by the apparent diver-

sity of intertwining electronic orders in these materials. Here we combine resonant X-ray scattering (REXS),

scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe

a charge order that appears consistently in surface and bulk, as well as momentum and real space, with the

Bi2Sr2−xLaxCuO6+δ cuprate family. The observed wavevector rules out simple antinodal nesting in the single

particle limit, but matches well with a phenomenological model of a many-body instability of the Fermi arcs.

Combined with earlier observations in other cuprate families, these findings suggest the existence of a generic

charge-ordered state in underdoped cuprates, and uncover its connection to the pseudogap regime.

PACS numbers:

Since the discovery of cuprate high-temperature supercon-

ductors, several unconventional phenomena have been ob-

served in the region of the phase diagram located between the

strongly localized Mott insulator at zero doping and the itiner-

ant Fermi-liquid state that emerges beyond optimal doping [1–

20]. The so-called ‘pseudogap’ opens at the temperature T ∗

and obliterates the Fermi surface at the antinodes (AN) of the

d-wave superconducting gap function, leaving behind discon-

nected “Fermi arcs” centered around the nodes. In addition,

charge order has been observed on the surface of Bi- and Cl-

based compounds [4–8], in the bulk of La-based compounds

[9–11], and most recently in YBa2Cu3O6+δ (YBCO) [17–20],

indicating this might be the leading instability in underdoped

cuprates. The similarity between the observed charge order-

ing wavevector and the antinodal nesting vector of the high-

temperature Fermi surface has prompted suggestions that a

conventional Peierls-like charge-density-wave (CDW) might

be responsible for the opening of the pseudogap [7, 8, 12, 19].

We use complementary bulk/surface techniques to examine

the validity of this scenario, and explore the connection be-

tween charge ordering and fermiology.

By applying a suite of complementary tools to a single

cuprate material, Bi2Sr2−xLaxCuO6+δ (Bi2201), we reveal

that the charge order in this system emerges just below T ∗,

and that its wavevector corresponds to the Fermi arc tips rather

than the antinodal nesting vector. We quantify the Fermi

surface using ARPES, and we look for charge modulations

along the Cu-O bond directions in both real- and reciprocal-

space, using STM and REXS. The single-layer Bi2201 is well

suited to this purpose owing to: (i) its two-dimensionality and

high degree of crystallinity [22, 23], and (ii) the possibility of

probing the temperature evolution across T ∗, which is better-

characterized [15, 16] and more accessible than in bilayer sys-
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FIG. 1: REXS and STM comparison on Bi2201. (A) Bi2201 low-

and high-temperature scans of the in-plane momentum Q‖, showing

the emergence of a charge-order (CO) peak around QCO ≃ 0.265.

(B) Resonance profile at QCO after background subtraction (red

markers), superimposed onto the Cu-L3 absorption edge (blue line).

(C) Temperature dependence of the CO-peak area for the three

Bi2201 doping levels investigated; dashed lines are linear fits, with

baseline marking the zero intensity position for each dataset. Hollow

(full) markers for UD15K correspond to positive (negative) wavevec-

tors Q‖>0 (Q‖<0), for different samples. The pseudogap temper-

ature T ∗ (grey boxes) is from Knight shift measurements [21]. (D)

Bi2201 dI/dV map, taken at 24 mV bias over a 29 nm region (9 K,

-200 mV, and 250 pA). A charge modulation with period ∼ 4a0 is

clearly seen in real space. (E) FT of (D), after four-fold symmetriza-

tion [black circles mark the position of the Bragg vectors (±1, 0) and

(0,±1)]. Highlighted by the blue box is the region corresponding to

the linecut in (F), whose peak structure is suggestive of a periodic

modulation with wavevector QCO≃0.248.
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tems. This study, by bringing together three different tech-

niques on the same material belonging to the Bi-family, and

together with related observations on La- and Y-based com-

pounds, also suggests the ubiquity of charge ordering in un-

derdoped cuprates [see also the subsequent report for bilayer

Bi2212 [24]].

REXS uses X-ray photons to exchange momentum with the

electrons and the ionic lattice, in order to gain information on

the electronic charge distribution. As opposed to conventional

X-ray diffraction, which is widely used for structural stud-

ies, in REXS the photon energy is tuned to resonance with

one of the element-specific absorption lines. This results in

a strong enhancement of the sensitivity to the valence elec-

trons, and allows the detection of very small variations in the

electronic density profile within the CuO2 planes [11], which

are difficult to determine using nonresonant methods. We per-

formed REXS measurements along the tetragonal crystallo-

graphic a and b axes, with the corresponding reciprocal axes

labeled QH and QK , for 3 doping levels of Bi2201 [25]. Due

to the near-equivalence of QH and QK , we will hereafter

use the common notation Q‖, and define reciprocal lattice

units (r.l.u.) for momentum axes as: 2π/a0 = 2π/b0 = 1,

with a0 ≃ b0 ≃ 3.86Å. Figure 1A shows REXS scans

at high (300 K) and low temperature (20 K) acquired on a

UD15K sample near the Cu-L3 absorption peak at a photon

energy hν = 931.5 eV. An enhancement of scattering inten-

sity, in the form of a broad peak, is clearly visible at 20 K

at |Q‖| = 0.265±0.01, whereas at 300 K it disappears into

the featureless background (dominated by fluorescence). By

subtracting the latter, we can study the dependence of the low-

temperature feature on photon energy, which reveals its reso-

nant behavior at the Cu-L3 edge (Fig. 1B). The resonant en-

hancement, together with the absence of features at the La-

M5 absorption edge (fig. S3), demonstrates that the peak orig-

inates from charge order (CO) occurring in the CuO2 planes.

Furthermore, the gradual dependence of the peak intensity on

the out-of-plane component of the wavevector Q⊥ is similar

to observations in YBCO [19], and indicative of short coher-

ence along the c axis. Figure 1C shows the temperature evo-

lution of the CO peak in REXS: there is a clear onset tem-

perature TCO, but we cannot conclusively determine if TCO

corresponds to a sharp phase boundary. Although the charge

modulation breaks translational symmetry, the system lacks

long-range order as evidenced by the short correlation length

(ξCO∼ 20 − 30Å). The latter evolves only weakly with dop-

ing and temperature (fig. S5), and therefore suggests either

strong disorder or substantial fluctuations persisting down to

low temperatures [26]. In either case, the convergence of TCO

and T ∗ for all doping levels suggests an intimate relationship

between the CO and the PG correlations.

STM is used to detect the charge distribution in real space,

by scanning an atomically sharp tip over the cleaved Bi2201

surface and mapping the differential tunneling conductance

dI/dV (r, V ), which is proportional to the local density of

states at energy ǫ = eV . Here we apply STM to the same

UD15K sample studied by REXS. The map of dI/dV (r, V =

24mV) in Fig. 1D shows an incommensurate charge modula-

tion along the a and b axes – consistent with either a disor-

dered checkerboard or stripe modulation [26]. The Fourier

transform of dI/dV (r, V ) (Fig. 1E) and associated linecut

(Fig. 1F) quantify the CO peak at |Q‖|= 0.248±0.01. This

is in good agreement with QCO from REXS and also with

QCO recently reported in the context of phonon anomalies

in Bi2201 [27]. Furthermore, the feature found in STM has

a correlation length ξCO ∼ 28 Å, again in agreement with

REXS. A summary of the REXS and STM results is presented

in Table I. We therefore arrive at the empirical convergence

of a charge order which onsets right below T ∗ (REXS), and

whose wavevector is consistent on surface (STM) and bulk

(REXS).

The next step is to link the universal surface and bulk charge

order to the fermiology. We quantify and clarify this connec-

tion by using ARPES to map the Fermi surface on the same

UD15K Bi2201 sample studied by REXS and STM [22, 23].

In a similar context, the ARPES-derived ‘octet model’ in

the interpretation of quasiparticle scattering as detected by

STM [28], is a successful example of such a connection, and

demonstrates the importance of low-energy particle-hole scat-

tering processes across the ‘pseudogapped’ Fermi surface.

From the raw ARPES data (Fig. 2C [22]), we deduce that

the charge ordering wavevector connects the Fermi arc tips,

not the antinodal Fermi surface sections as it had been pre-

viously assumed [7, 12, 19]. To better understand the empir-

ical link between charge order and fermiology, we first de-

rive the non-interacting band structure by fitting the ARPES-

measured spectral function Aexp(k, ω) to a tight-binding

model [22, 23, 25]. The corresponding Fermi surface is shown

in Fig. 2A for the case of p=0.12, equivalent to UD15K [29].

The AN nesting, marked by the white arrow, yields an or-

dering wavevector QAN ∼ 0.139, in disagreement with the

REXS/STM average value QCO ∼ 0.256. To account for the

suppression of antinodal zero-energy quasiparticle excitations

– a hallmark of the pseudogap (PG) fermiology – we construct

a model spectral function APG(k, ω) with an appropriate self-

energy ΣPG(k, ω), which combines the features found from

exact diagonalization of the Hubbard model [30] with the

Technique Sample Parameters

QCO (r.l.u.) ξCO (Å) TCO (K) T ∗ (K)

REXS
UD30K 0.243± 0.01 21± 3 180± 30 185± 10
UD22K 0.257± 0.01 23± 3 202± 20 205± 10
UD15K 0.265± 0.01 26± 3 237± 10 240± 10

STM UD15K 0.248± 0.01 28± 2 n/a 240± 10
ARPES UD15K 0.255± 0.01 n/a n/a 240± 10

TABLE I: Comparative summary for the charge-order peak param-

eters as seen with REXS and STM for the various doping levels.

For ARPES, the value listed here corresponds to the observed QHS ,

also shown in Fig. 3C. The pseudogap temperature T ∗ (grey boxes

in Fig. 1C) is from Knight shift measurements [21].
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FIG. 2: ARPES and theory comparison on Bi2201. Modeled evolution of the Fermi surface for hole-doping p = 0.12 from (A) the non-

interacting to (B) the interacting case, via the inclusion of the self-energy ΣPG(k, ω). A further Gaussian smearing (C), with ∆kx =∆ky =
0.03 π/a representing the effective experimental resolution, allows comparison between the calculated and measured Fermi surface from

UD15K Bi2201 [22, 23]. Also shown is the progression from antinodal (AN) nesting at QAN – highlighted by the white arrow – to the

QHS-vector associated with the tips of the Fermi arcs (hot-spots, HS) – marked by the gold connector.

doping-dependent parameters introduced in Ref. 31 (see Sup-

plementary Note 3 for more details). Figure 2B shows how

the non-interacting Fermi surface is transformed by the action

of our ΣPG(k, ω), and also highlights the concurrent shift in

the smallest-Q zero-energy particle-hole excitation (gold con-

nectors). The interacting spectral function APG(k, ω) used

here is tuned to optimize the match with the corresponding

ARPES data [22, 23]; after accounting for instrumental reso-

lution ∆k, the agreement with the experimental data is excel-

lent, as shown in Fig. 2C. The vector connecting the tips of the

Fermi arcs, called hot-spots (HS), is found to be QHS∼0.255,

closely matching the experimental values of QCO found for

the UD15K sample (see also Table I).

In Fig. 3 we report the doping dependence of the charge-

order wavevector QCO as seen experimentally, as well as

QAN and QHS as obtained from the spectral function

A0(k, ω) and APG(k, ω) for the non-interacting and inter-

acting cases, respectively. The Tc-to-doping conversion for

the experimental points is taken from previous studies on La-

substituted Bi2201 [29]; for Pb-substituted Bi2201 [7] this

correspondence might be altered because Pb may contribute

holes as well. The mechanism based on electron-hole scat-

tering between AN excitations, with wavevector QAN , proves

to be inadequate throughout the whole doping range. On the

other hand, both the wavevector magnitude QHS and dop-

ing dependent-slope dQHS/dp agree with the Bi2201 experi-

mental data, thereby establishing a direct connection between

charge order and HS scattering. To gain further phenomeno-

logical insights into a possible link between the ordering of

the electronic density and the available charge dynamics, we

evaluate the momentum-dependent electronic response (sus-

ceptiblity) near the Fermi surface, or χel(Q,Ω) (see Supple-

mentary Note 3 for more details). We approximate χel(Q,Ω)
as a self-convolution of the single-particle Green’s function

G(k, ω), in line with a similar approach successfully used in

the study of magnetic excitations in cuprates [32–34]. De-

spite the simplicity of our model, the results for Re{χel}
along the direction of the experimental charge ordering con-

firm that there is an enhancement of particle-hole scattering

at a wavevector Qχel
closely following QHS (dashed red line

in Fig. 3). This convergence supports the idea that accounting

for the empirical role played by the hot spots is of critical im-

portance for future, more quantitative studies of the electronic

instability.

The convergence between the real- and reciprocal-space

techniques in our study indicates a well-defined length scale

0.3

0.2

0.1

0.4

C
O

 w
a
v
e
v
e
c
to

r 
(r

.l
.u

.)

0.20.150.10.05

Hole doping

REXS - Q
CO

 Bi2201 - This work

STM - Q
CO

 Pb-Bi2201 - Ref. 7

 Bi2201 - This work

 Q
AN

 from A
0
(k,ω)

 Q
HS

 from A
PG

(k,ω)

 Qχel  Hubbard Model

FIG. 3: Doping dependence of the charge order wavevector QCO

as determined by REXS and STM on Bi2201 [this work and [7]];

note that bars represent peak widths, and not errors. Also shown

are evolution of the Fermi surface-derived wavevectors QAN (antin-

odal nesting) and QHS (arc tips) measured from the ARPES spectral
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and coherence associated with the electronically-ordered

ground state. These findings on Bi2201 suggest that the short-

ranged charge correlations in Bi-based cuprates [4–7], and the

longer-ranged modulations seen in Y-based [18, 19, 35, 36]

and La-based compounds [9–11], are simply different man-

ifestations of a generic charge-ordered state (see Ref. 24 for

related findings on Bi2212). That the experimental order-

ing wavevectors can be reproduced through the correlation-

induced Fermi arcs in the PG state demonstrates a quantitative

link between the single-particle fermiology and the collective

response of the electron density in the underdoped cuprates.
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B. Büchner, H. Berger, R. Follath, Phys. Rev. B 75, 172505

(2007)

[33] A.J.A. James, R.M. Konik, T.M. Rice, Phys. Rev. B 86, 100508

(2012)

[34] M.P.M. Dean, A.J.A. James, R.S. Springell, X. Liu, C. Monney,

K.J. Zhou, R.M. Konik, J.S. Wen, Z.J. Xu, G.D. Gu, V.N. Stro-

cov, T. Schmitt, J.P. Hill, Phys. Rev. Lett. 110, 147001 (2013)

[35] S. Blanco-Canosa, A. Frano, T. Loew, Y. Lu, J. Porras, G. Ghir-

inghelli, M. Minola, C. Mazzoli, L. Braicovich, E. Schierle,

E. Weschke, M. Le Tacon, B. Keimer, Phys. Rev. Lett. 110,

187001 (2013)

[36] E. Blackburn, J. Chang, M. Hücker, A.T. Holmes, N.B.
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SUPPLEMENTARY MATERIALS

Materials and Methods

Sample preparation. This study focused on three under-

doped Bi2Sr2−xLaxCuO6+δ single crystals (x = 0.8, p ≃
0.115, UD15K; x=0.6, p≃0.13, UD22K; x=0.5, p≃0.145,

UD30K). The superconducting Tc=15, 22 and 30 K, respec-

tively, were determined from magnetic susceptibility mea-

surements. The Tc-to-doping correspondence is taken from

[29].

Soft X-ray scattering. Resonant elastic soft X-ray measure-

ments (REXS) were performed: (i) at BESSY – beamline

UE46-PGM-1, using a XUV-diffractometer; and (ii) at the

Canadian Light Source – beamline REIXS, using a 4-circle

diffractometer. In REXS, three different UD15K crystals were

studied, hereafter labeled S1, S2 and S3, and one sample each

for UD22K and UD30K. The photon energy was tuned to the

La-M5 (hν = 834.7 eV) and Cu-L3 (hν = 931.5 eV) absorp-

tion edges. The probing scheme hinges on control of incom-

ing polarization (we measured both σ and π channels), while

no outgoing polarization analysis was performed. Reciprocal-

space scans were acquired by rocking the sample angle at

fixed detector position, in the temperature range 10-300 K. In

all cases samples were pre-oriented using Laue diffraction and

mounted with either a or b axis in the scattering plane. Both

in- and ex-situ cleaving procedures were used, yielding con-

sistent results.

Scanning Tunnelling Microscopy. The experiments were

performed on a home-built cryogenic UHV STM at 9 and

40 K. STM tips were cut from Pt/Ir wire and cleaned by field

emission on polycrystalline Au foil prior to the experiments.

Bulk crystals were cleaved in-situ in cryogenic UHV and im-

mediately inserted into the STM. Topographic images were

measured in constant current mode at a fixed sample bias of

-200 mV, and a tunnelling current of 200-250 pA. Differential

conductance spectra were measured out of tunnelling feed-

back at a fixed tip-sample separation using a lock-in technique

with an excitation voltage of 5 to 20 mV and a frequency of

1.115 kHz. Spectroscopic maps were acquired over a 24-48

hour time frame.

Electronic susceptibility calculations. Single-particle

Green’s functions G(k, ω) have been constructed using Dyson

equation G(k, ω) = [ω − ǫbarek − ΣPG(k, ω)]
−1

, with tight

binding parameters for the bare band dispersion ǫbarek as fol-

lows: t=0.4 eV, t′/t=−0.2, t′′/t=0.05, t′′′=0. We adopted

the analytic form for the self-energy ΣPG(k, ω) provided in

[31] [see also Supplementary Note 3 and Fig. S7A-C for more

details]. The doping-dependent pseudogap magnitude and the

parameters for the incoherent continuum have been respec-

tively calibrated to the experimental hump features in the tun-

nelling DOS, and to the energy extension of the characteristic

dispersion of incoherent spectral weight (also known as ‘wa-

terfall’) as seen by ARPES [see Fig. S7E and Fig. S10, B1-B4

and E]. We have subsequently calculated the density-density

correlator by Wick-decomposing the full particle-hole propa-

gator into a self-correlation of the interacting Green’s function

(particle-hole bubble). Analytic continuation onto the real-

frequency axis was performed, and an FFT-based algorithm

was utilized for fast-computation of the correlation functions.

Supplementary Text

Supplementary Note 1 | Resonant X-ray Scattering

Results.

Definition of reciprocal axes. The structural symmetry

of La-substituted Bi2201 crystals is characterized by an or-

thorhombic distortion of the tetragonal unit cell, whose new

axes are at 45◦ with respect to the nearest-neighbour Cu-O

bond directions (which define the a and b axes) and by the

presence of long-range ordered supermodulations along a sin-

gle axis (b*). From the point of view of symmetry, the a and

b axes are equivalent, hence we had to establish an arbitrary

convention to distinguish between them in the actual measure-

ment. Supplementary Figure S1 shows a representative Laue

pattern of a Bi2201 single-crystal. Besides the lowest-order

Bragg reflections, one can see a streak with a high-density of

diffracted spots, which corresponds to the direction of the su-

perstructural modulations Q1 (and Q2), commonly associated

to the orthorhombic QK∗ reciprocal axis. The QH and QK

axes have been defined as indicated by the arrows.
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Q
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Q
K

K*
Q
K*

FIG. S1: Main panel: Laue diffraction pattern of sample UD15K-S4;

the arrows define our convention for the reciprocal axes H and K we

will refer to hereafter.

REXS experimental geometry. The scattering measure-

ments have been performed in two different geometries,

which are conventionally associated to positive and negative

wavevectors. This situation is elucidated by Fig. S2, A and B,

for the case of Q‖ < 0 and Q‖ > 0, respectively. The former

case corresponds to θin > θout, and vice versa for the latter

(angles are measured from the surface normal). An additional

experimental parameter is light polarization. In the soft X-ray

regime control over incoming polarization is straightforward,

and two geometries can be used - σ or π - the former referring

to having the polarization perpendicular to the scattering plane

[see Fig. S2C], while for the latter the light polarization vec-

tor lies in such plane (Fig. S2D). In the same energy range it

is much more difficult and less efficient to select the outgoing

polarization, therefore for this study no polarization analysis

of the scattered light was performed in any of the measure-

ments.

Q
//
<0

Q

k
in

k
out

Q
//

a

b

Q
//
>0

Q

k
in

k
out

Q
//

k
in

k
out

σ

k
in

k
out

πA B C D

FIG. S2: Schematics of the experimental geometry in REXS mea-

surements, which illustrate how the negative (A) and positive (B)

sign of Q‖ are defined based on the position of the exchanged

wavevector Q with respect to the surface normal. (C,D) delineate

the two incoming polarization geometries, vertical (σ) and horizon-

tal (π), respectively. No polarization analysis on the scattered beam

is performed in the current study.

Experimental evidence for planar modulations in the

CuO2 layers. Fig. S3 elucidates the various aspects that mo-

tivate the assignment of the detected peaks in REXS to a mod-

ulation of the electronic charge within the CuO2 planes. Panel

(a) shows a series of rocking curves (scans of the sample an-

gle θ), projected onto the planar component of the wavevector

(Q‖), for different values of the detector angle 2θ. A broader

Q⊥-dependence (i.e., probing periodicities along the c axis) of
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FIG. S3: (A) Projection along Q‖ of REXS θ-scans (rocking curves),

taken at the Cu-L3 edge for different values of detector angle 2θ
(profiles are vertically offset for clarity). The inset shows the Q⊥

dependence of the scattering signal at Q‖ = 0.27 (no fluorescence

subtracted, the black circle denotes the Q⊥ value at which all Q‖-

scans were performed). (B) REXS scans at the La-M5 (834.7 eV)

and Cu-L3 (931.5 eV) edges. (C) Dependence of the scattered inten-

sity on the incoming light polarization (σ and π) at low (20 K) and

high temperature (300 K), at the Cu-L3 edge. In panels A and C,

the gray stripes mark the range where the charge-ordering (CO) peak

was observed.

the scattering signal near the CO wavevector (Q‖ ∼ 0.265) is

plotted in the inset panel. The presence of a peak structure at

different detector angles, and the associated weak modulation

along Q⊥ implies the two-dimensional nature of the under-

lying CO. Fig. S3B shows two Q‖-scans, taken at the Cu-L3

and La-M5 edges (photon energies were defined based on the

maximum of the absorption signal) at 10 K. The absence of

any features at the La-edge reveals that the charge modula-

tion is confined to the CuO2 layers. Fig. S3C shows the tem-

perature and light polarization dependence of the momentum

scans, which indicate that the CO signal is maximum when

the incoming light is σ-polarized. This implies that the charge

modulation originates primarily from the intermediate states

that can be reached in this geometry, i.e. Cu-dx2−y2 . Also,

throughout the rest of the discussion, unless otherwise spec-

ified, it is assumed that all reciprocal space scans have been

performed at a fixed detector angle of 2θ = 167◦, and at the

Cu-L3 edge resonance.

 300 K
 20 K
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60

C
o
u
n
ts

/I
0

0.0 0.2 0.4

UD15KA

0.2 0.4

 200 K
 10 K
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0.2 0.4
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FIG. S4: Low- and high-temperature scattering scans for the dop-

ing levels investigated with REXS: (A) UD15K; (B) UD22K; (C)

UD30K. Data have been taken at the Cu-L3 resonance (hν =
931.5 eV). Blue stars indicate the location of the charge-ordering

wavevector QCO.
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Doping-dependent CO wavevector and correlation

lengths. Fig. S4 displays the high- and low-temperature

REXS scans for the different doping levels investigated,

which are also illustrative of the doping-dependence of the

ordering wavevector and peak intensity, both decreasing with

increasing hole doping. Figs. S5, A and B, show the peak

position (left) and FWHM (right) for the various samples and

doping levels investigated. We have restricted the temperature

axis to the range T < 100K, where these parameters can be

more reliably extracted in virtue of a better signal-to-noise

ratio. For the UD15K, note that red (gray) markers are used

for Q‖ < 0 (Q‖ > 0). The bottom panels (Figs. S5, C and

D) report the results of a statistical analysis applied to the

data shown in the top panels, with averaged parameter values

and error bars extracted for each dataset (gray markers for

UD15K and red markers for UD22K), and further averaged

for the UD15K samples to provide a single-valued final

estimate for this doping level (blue markers). Overall, we get

FWHMs in the range 0.08 to 0.1 (in reciprocal lattice units),

which correspond in turn to correlation lengths of 6 to 8 unit

cells, or approximately 20-30 Å.

Supplementary Note 2 | Scanning Tunnelling Microscopy

Results.

Fig. 6A shows the topographic map T (r), acquired at 4.5 K on

a field of view of approximately 29×29 nm, which images the

topmost BiO layer (the natural cleavage plane in these mate-

rials). The well-known structural supermodulation Q1 can be

already seen in the form of corrugated ripples, but is best vi-

sualized in the Fourier-transformed map T̃ (q) as strong satel-

lite spots (see blue dots in Fig. 6B) forming a line oriented

at 45◦ with respect to the a and b axes. Notably, the sec-

ond supermodulation Q2 is also seen in T̃ (q) (red triangles),

consistent with our previous findings by ARPES and low-

energy electron diffraction [22, 23]. The conductance map

dI/dV (r, V = 24mV) and its Fourier transform (Fig. 6C,D)

show a charge-modulated pattern. The latter is shown in

Fig. 6E to be present for an ample range of bias voltages V

– 8 to 104 mV – and to be nondispersive with V, ruling out the

possibility that it arises from quasiparticle scattering, which

instead would possess a distinctive dependence on V [37].

Supplementary Note 3 | Model Green’s function and

particle hole-propagator.

The underlying phenomenological self-energy. The ba-

sis for our self-energy ΣPG(k, ω) is derived from the

parametrized version provided in [30], which we extended

to more doping values than its original formulation (which

was specific to the cases p = 0, 0.12 and 0.24). Us-

ing this self-energy, we can then proceed to evaluate the

single-particle propagator, or the retarded Green’s function,

as: G(k, ω) = (ω − ǫbarek − ΣPG(k, ω))
−1

. This partic-

ular form for ΣPG(k, ω), obtained by extrapolating to all
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FIG. S5: (A) Summary of the temperature-dependent results for the

CO wavevector and full-width-at-half-maximum (FWHM) for the

UD22K sample, in the range T < 100K. (B) Same as (A), for the

various UD15K samples measured. (C) Statistical analysis of the

CO wavevector: the gray markers (bars) represent the temperature-

averaged values (errors) within each dataset in UD15K, with the blue

marker (and dashed line) being the overall average over different

samples and geometries; the red and green markers are the single

points for UD22K (averaged over temperatures) and UD30K, respec-

tively. (D) Same as (C), for the FWHM.

momenta the exact diagonalization results on a single-band

t− t′ −U Hubbard model, incorporates sharp features – in

the form of a dispersing pole (see red peak in Fig. S7B) -

and broader continua (see dashed green profile in Fig. S7B):

ΣPG(k, ω) = Σpole(k, ω) + Σcont(k, ω). The dispersing

pole is defined as Σpole(k, ω)= |∆PG
k |

2
(ω + ǫpolek )

−1
, where

∆PG
k = ∆PG

0 (cos(kx) − cos(ky)) and ǫpolek = 2tpole(p) ×
(cos(kx) + cos(ky)) + µpole is the reversed nearest-neighbor

hopping (plus a constant offset). The dispersion parameter of

the self-energy pole tpole is taken from [31]. In general, we re-

tained the functional form of the pole and the continua (with

the only addition of a slope component, see Fig. S7B), and

slightly adjusted the underlying parameters in order to guar-

antee optimal matching with the experimental spectral func-

tions. Our underlying bare band parameters for the dispersion

in the (kx, ky)-plane are as follows: t= 0.4 eV, t′/t=−0.2,

t′′/t= 0.05, t′′′ = 0. The doping-dependent chemical poten-

tial µ has been defined using Luttinger sum rule. The over-
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FIG. S6: (A) STM topography with atomic resolution over a 29 nm

region (T = 4.5 K, -200 mV and 20 pA). The inset shows the super-

modulation in higher resolution (8 nm, -1.2 V, 100 pA) (B) Fourier

transform (FT) of (A) [hollow circles indicate Bragg vectors (±1, 0)
and (0,±1)]. The inset shows a linecut through the Bragg, Q1 and

Q2 peaks as indicated by black circles, blue dots, and red triangles,

respectively. Note that Q1 and Q2 are the structural supermodula-

tion peaks along the orthorhombic reciprocal axis QK∗ as defined

in Ref. 23. (C,E) dI/dV map at respectively 24 and -24 mV bias

over a 29 nm region (9 K, -200 mV and 250 pA). A checkerboard

modulation with period ∼ 4a0 is clearly seen in real space. (D,F)

Symmetrized FT of (C,E), respectively. (G) Stack of linecuts of (D),

with vertical offset for clarity, in the range indicated by the orange

rectangle in (D,F), as a function of bias voltage V and wavevector

Q‖, expressed in reciprocal lattice units [red traces correspond to the

bias values used in (D,F)]. A charge-order peak can be seen around

Q‖ ∼ 0.25 in the full range of bias voltages spanning from -56 to

104 mV.

all momentum-energy map (along high-symmetry directions)

is shown in Fig. S7A, while a stack of constant-momentum

slices at high-symmetry points is plotted in Fig. S7B. Note the

vanishing of the pole residue ∆PG
k along the nodal direction

Γ → (π, π). In the case where µpole = 0, which is what

we assumed in our model, the additional line of zeros for Re

G(k, ω = 0) [which arises from a diverging ΣPG(k, ω = 0)]
coincides with the antiferromagnetic (AFM) zone-boundary

(see Fig. S7C), and is de facto responsible for the forma-

tion of the Fermi arcs within this framework. The so-called

’hot-spots’ are also here defined as the points where the non-

interacting Fermi surface intersect the AFM zone-boundary,

or equivalently as the loci in momentum space where ǫbarek =

ǫpolek =0.

Such mechanism is highlighted in the inset of Fig. S7D,

which shows a zoom-in of the spectral function A(k, ω) =

Γ
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FIG. S7: (A) Momentum and energy dependence of the imagi-

nary part of the self-energy ΣPG(k, ω), for the full energy range

used in this model. (B) Stack of constant-momentum cuts of Im

ΣPG(k, ω) at the high symmetry-points specified in panel (A). (C)

Im ΣPG(k, ω=0), showing that the line of zeros for Re ΣPG(k, ω)
coincides with the antiferromagnetic zone boundary (dashed light

blue line). (D) Momentum and energy depdendence of the spec-

tral function A(k, ω), with overlaid the pole in the self-energy (light

blue curve) and the bare band (white curve); the inset is an enlarged

view near EF and the antinode (π, 0). (E) Nodal cut of A(k, ω),
which highlights the crossover from coherent excitations (quasipar-

ticles) near the Fermi energy, onto incoherent, broad excitations at

higher energies. (F) Diagram of the energy- and temperature-scales

used in our model; full symbols mark the doping levels which we

considered in the numerical calculations.

(−1/π) ImG(k, ω) around (π, 0). The Green’s function and

the self-energy are related in such way that the quasiparticle

band ǫQP
k and the pole band ǫpolek cannot cross each other. This

avoided crossing drives the ’back-bending’ of ǫQP
k as it ap-

proaches the crossing between ǫbarek and ǫpolek (see white and

blue curves, respectively) and causes the opening of a ’pseu-

dogap’ near the antinode. The latter also inherits its uncon-

ventional momentum-dependence from the pole residue ∆PG
k .

Note that, when only the sharp dispersing pole is considered,

this model coincides with the RVB-derived self-energy orig-

inally proposed in [31], in which case the derived spectral

function is purely coherent, and therefore not normalized due

to the absence of the incoherent features, which are instead

observed experimentally. Such features are better seen in the

main panel of Fig. S7D, and appear particularly prominent

around the Γ point, in agreement with experiments. This ap-

parent band of incoherent excitations along the nodal direction

(shown in more detail in Fig. S7E), often termed the ’water-

fall’, in our model bottoms down around 1-1.3 eV, in good

agreement with experimental data on different compounds

[2, 38].

Fig. S7F shows the energy- and temperature-scales we used in

the subsequent analysis. Most of the results only use the dop-

ing dependence of ∆PG
0 , which we calibrated by comparing

the pseudogap-induced humps in the density of states to the

expected trend for the pseudogap magnitude [39].
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FIG. S8: (A) Comparison between experimental (YBCO, p= 0.06,

from [2]) and calculated Fermi surface; a Gaussian convolution has

been applied to the calculated map to mimic momentum-resolution

effects. (B) Same as (A), for the case of UD La-substituted Bi2201

(p ∼ 0.12, from [22]). (C) calculated FS for p = 0.12, with black

circles marking the location of the hot-spots (HS). (D) Energetics of

lowest-energy excitations near the FS in presence of the pseudogap;

the blue curve is the k-dependent PG, the red dashed profile is the

non-interacting FS. (E) Cumulative densities of states ρ̃(kx) for the

non-interacting (red dashed) and interacting case (full blue); the kx-

positions of enhanced cumulative DOS are marked with circles.

Fermi surface transformation and cumulative density of

states. The flexibility of the model we just introduced al-

lows achieving an excellent agreement with the experimen-

tally determined spectral functions, as is shown in Fig. S8, A

and B, for the comparison between a calculated Fermi sur-

face (FS) and the corresponding experimental map in under-

doped YBCO [2] and La-substituted Bi2201 [22], respec-

tively. Within the framework of Fermi-arcs, the hot-spots are

defined as those points in the first Brillouin zone where zero-

energy excitations become gapped out; they are marked by the

black circles in Fig. S8C, with the underlying intensity map

representing a calculated FS for p= 0.12. Fig. S8D schema-

tizes the mechanism: zero-energy electronic excitations lying

on the non-interacting FS (dashed red line) are pushed away

from the Fermi level between the antinode (AN) and the HS

(the full blue line is the pseudogap profile ∆PG
k ). As a con-

sequence, the band topology is altered due to the PG-induced

band-bending (see also Fig. S7D) and the pile-up of the local

(in momentum-space) density of states (DOS) migrates from

the AN to the HS. This behavior can be quantitatively captured

by computing the cumulative DOS ρ̃(kx), defined as follows:

ρ̃(kx)=

∫ ∆PG

−∆PG

dω

∫ 2π/a

−2π/a

dkyA(kx, ky, ω) (S1)

which is plotted in Fig. S8E for the case with (full blue line)

and without (dashed red line) the PG. It is clear that when the

latter is turned on, a single peak (at the AN) in ρ̃(kx) evolves

into a profile with two smaller peaks near the HS, thus set-

ting the ground for enhanced electron-hole scattering between

these momentum points.

Doping-dependence of the spectral function. With this phe-

nomenological self-energy in hand, we then proceed to calcu-

late the full Green’s function as a function of doping. The

corresponding Fermi surfaces and momentum-energy maps

(for p = 0.05, 0.08, 0.12 and 0.2) are shown in Fig. S10,

A1-A4 and B1-B4. The panels C1-C4 are the same as B1-

B4, but zoomed in energy around the Fermi energy. The as-

sociated doping-dependent densities of states (DOS) are ob-

tained by tracing out the spectral function over momenta:

ρ(ω) =
∫
dk A(k, ω). The resulting profiles are plotted in

Fig. S10E, showing the progressive opening of the pseudogap

as hole-doping is decreased, in the form of two side-humps

around EF .

Calculation of the electronic response. We made use of

our phenomenological Green’s function to calculate the low-

energy electronic response in Fourier space, as encoded in the

particle-hole propagator G2(Q, iΩn) (Ωn denotes a bosonic

frequency). This quantity, which is generally referred to as the

electronic susceptibility χel, and reduces to the Lindhard func-

tion for a non-interacting system, is defined as the retarded

charge-charge correlation function:

χel(Q, τ) ∝

∫ β

0

dτeiΩnτ 〈Tτ (ρel(Q, τ)ρel(−Q, 0))〉 (S2)

=
∑

k,k′,σ,σ′

〈Tτ (c†k,σ(τ) ck+Q,σ(τ) c
†
k,σ′ck−Q,σ′)〉

(S3)

where Tτ is the imaginary-time ordering operator, and the

Fourier-transformed electronic density operator ρel(Q, τ) has

been expanded in terms of charge creation and annihilation

operators c and c†. We now adopt a generalization of a

Lindhard function (independent particle) approach to the in-

teracting problem, which consists of rewriting Eq. S3 as a

self-convolution of the interacting Green’s function G(k, ω).
This approach neglects the correlation between the particular

electron-(k, σ) and hole-(k + Q, σ) state, but retains the ef-

fects of correlations with all other states, which enter through

the single-particle self-energy ΣPG(k, ω) [in analogy to sim-

ilar approaches in optical spectroscopy [40, 41]]. This proce-

dure has been previously used for the study of magnetic ex-

citations in cuprates [32–34]. In more general contexts, the

real part Re{χel} is in some cases indicative of the electronic

contribution to instabilities of the ionic lattice or of the charge

density [42]. In reality, a complete assessment of the system’s

tendency toward ordering phenomena requires the detailed

evaluation of all the coupling terms between the different in-

terconnected degrees of freedom, in primis electron-phonon

coupling [20, 27, 43] and exchange interactions [33, 44].

Our approach is therefore based on expressing the suscep-

tibility as follows:

χel(Q, τ) ∝
∑
k,σ

G(k+Q, τ, σ)G(k, τ, σ) (S4)

with G(k, τ, σ) = 〈Tτ (ck,σ(τ) c
†
k,σ)〉.
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FIG. S9: (A) Zero-frequency, zero-temperature electronic suscepti-

bility for p = 0.12; overlaid is the cut along QH (full blue line),

and the local maximum at Qχel
∼ 0.26 highlighted. (B) Stack of

doping-dependent χel(Q‖) profiles, with red and gray guides-to-the-

eye tracking the contributions from scattering between HS and AN,

respectively.

This is now equivalent to approximating the electronic sus-

ceptiblity with the particle-hole bubble diagram of the full

Green’s function G. By Fourier-transforming Eq. S4 into

the frequency-domain, we ultimately arrive to a form of

χel(Q, iΩn) which is conveniently expressed as a frequency-

momentum autocorrelation of G:

χel(Q, iΩn) ∝
1

β

∑
k,iωm,σ

G(k+Q, iωm+iΩn, σ)G(k, iωm, σ)

(S5)

where we have here defined β = (kT )
−1

, with Ωn =
2nπ/β and ωm = (2m + 1)π/β representing the bosonic

and fermionic Matsubara frequencies, respectively. The sum-

mation in Eq. S5 is then converted to an integration on the

real-frequency axis (analytic continuation) using the substitu-

tion: iωm → ω + iη (hereafter η = 0.01, unless otherwise

specified). The correlation in the momentum coordinates was

performed using Fast-Fourier Transform (FFT); unless oth-

erwise specified, grids of 256 × 256 k- and Q-points have

been used. The (kx,ky)-momentum ranges were set between

−π/a and π/a, and periodical boundary conditions (PBCs)

have been imposed in the correlation to avoid boundary ef-

fects. Values of η = −0.01 and ∆ω = 0.005 (both in units

of t = 0.4 eV) have been used to guarantee a proper sam-

pling of the energy axis, which is crucial especially near EF

where excitations become more coherent, and the related fea-

tures in G(k, ω) get sharper. The validity and applicability

of the numerical code has been benchmark-tested on the two-

dimensional electron gas (2DEG), whose analytic solution is

known. The zero-temperature, zero-frequency electronic sus-

ceptibility χT=0
el (Q,Ω=0) for p=0.12 is plotted in Fig. S9A,

with overlaid the cut along QH (light blue trace). The shape

of this profile is determined by two contributions: (i) a peak at

Qχel
corresponding to enhanced particle-hole scattering be-

tween the hot-spots; and (ii) particle-hole excitations across

the PG from the AN regions, which populate the “hump”

at lower Q values. This profile shows a local maximum at

Qχel
= 0.252, which closely matches the experimental QCO

observed in Bi2201 (UD15K) and the QHS vector introduced

before. In addition, two-dimensional maps of the electronic

susceptibility have been calculated for a series of different

doping levels, and the corresponding cuts along Q‖ are plot-

ted in Fig. S9B. The doping evolution of the HS and AN com-

ponents is indicated by, respectively, the red and gray guides

overlaid on the plot.

Doping-dependence of the electronic response. Figs. S10,

D1-D4, display the two-dimensional maps of the zero-

frequency, zero-temperature electronic susceptibility as a

function of momentum, for different doping levels. Over-

laid on top of the color maps are the profiles along QH

calculated in different configurations: (i) χ(Q‖,Ω = 0)
from the full Green’s function (full light blue profile); (ii)

χcoh(Q‖,Ω = 0) from the coherent part of Green’s function
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FIG. S10: (A1-A4) Fermi surfaces for different hole-doping levels

(p = 0.05, 0.08, 0.12 and 0.2), obtained as a constant-energy slice

of the spectra function at the Fermi energy A(k, ω = 0), followed

by convolution to an isotropic momentum-resolution Gaussian func-

tion with ∆kx = ∆ky = 0.05 π/a. (B1-B4) Momentum-energy

maps of A(k, ω) along high-symmetry directions within the first

Brillouin-zone (the white curves represent the bare band dispersion).

(C1-C4) Same as (B1-B4), but zoomed in around EF . (D1-D4)

Resulting zero-frequency (Ω = 0) susceptibility profiles, calculated

as the particle-hole bubble of the full Green’s function G(k, ω), at

T =0. Overlaid are Q‖ cuts of χel(Q,Ω=0) for different underly-

ing Green’s functions: (i) full (light blue full line); (ii) coherent part

only (dashed white); (iii) noninteracting (dotted-dashed red). (E)

Doping-dependent density of states. (F,G,H) Dependence of χel on

superconducting gap ∆SC (F), temperature T (G), and scattering

rate Γ (H), for p=0.12.
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only (dashed white); (iii) χnonint(Q‖,Ω = 0) from the non-

interacting Green’s function (dash-dotted red). For illustra-

tive convenience, the various profiles are normalized to their

minimum and maximum; also note that a proper normaliza-

tion of χcoh(Q‖,Ω = 0) is not possible, due to the missing

incoherent contributions. These susceptibility profiles reflect

important aspects of the underlying fermiology. The peaks in

χcoh(Q‖,Ω=0) are mainly controlled by scattering between

the hot-spots, while the non-interacting susceptibility has a

quasi-1D divergence at lower momenta, which is driven by

nesting at the antinodes. As it can be seen at all doping levels,

the full susceptibility bears both tendencies, with the antin-

odal scattering being progressively suppressed as hole-doping

is reduced, and correspondingly the pseudogap increased. The

presence of some remnant contribution from the antinodes is

not surprising, as all electronic states contribute, and not only

the zero-energy single-particle excitations at the Fermi sur-

face. Nonetheless, the contibution from lower-lying states de-

creases as 1/E and is therefore less prominent, in agreement

with the observed doping dependence of the (pseudo)gapped

antinodal component in χ(Q‖,Ω = 0). Also, the incoherent

spectral weight in G(k, ω) contributes to the slowly-varying

(with Q‖) background in χ, in contrast with the sharper pro-

files of χcoh and χnonint.

Dependence of the electronic response on superconduct-

ing gap, temperature and scattering rate. With this ma-

chinery in hand, we can calculate the dependence on vari-

ous other control parameters. In principle it is possible to

extend our Green’s function to the case where a supercon-

ducting ground state is present. In the simplest approxima-

tion, this requires adding the following term to the self-energy:

ΣSC(k, ω) = |∆SC
k |

2
(ω + ǫbarek +ΣPG)

−1
, where ∆SC

k is

the d-wave superconducting order parameter, and ǫbarek is the

full bare band dispersion. The total self-energy then reads

Σ=ΣPG +ΣSC. At the level of susceptibility, this introduces

an additional diagram besides the particle-hole bubble, which

arises from the self-correlation of the anomalous propagator

F (k, ω) (see [31] and [45] for more details on the subject).

The resulting profiles for p = 0.12, as a function of the su-

perconducting gap ∆SC
0 , are shown in Fig. S10F. As it can be

seen, near the wavevector Qχel
that maximizes χ(Q‖,Ω=0),

there is hardly any dependence on ∆SC
0 – a maximum re-

duction of χ(Qχel
,Ω = 0) of 0.5% between the profiles for

∆SC
0 =0 and 0.1 is seen to occur.

Temperature-dependent suceptibility profiles are shown in

Fig. S10G. As temperature is increased, the peak at Qχel
is

progressively reduced and broadened, whereas the antinodal

component at lower Q rises due to thermally-enhanced ac-

cess to excitations around the antinode. The weak temper-

ature dependence of Qχel
vs. temperature is a direct con-

sequence of our model, which requires the underlying self-

energy ΣPG – and therefore the spectral function – to be

temperature-independent. This assumption implies, in partic-

ular, that the poles of the spectral function, and hence also the

hot-spots, will not change location as a function of tempera-

ture. This is not inconsistent with the empirical observation of

temperature-dependent Fermi-arc length, which was recently

explained to arise from the variation in temperature of a sin-

gle parameter (the scattering rate Γ), without needing the rest

of the bandstructure parameters (t, t′, t′′, tpole, and ∆PG) to

change with temperature [46].

Lastly, the dependence of χ(Q‖,Ω=0) on the single-particle

inverse lifetime, or scattering rate Γ (which is introduced

through the imaginary part of the complex frequency using

the substitution ω → ω + iΓ), shown in Fig. S10H reveals

that the Γ-induced broadening of the Green’s function drives

a similar broadening in the main features of the susceptibility,

in a fashion which resembles the one observed with tempera-

ture. This might suggest that susceptibility-driven electronic

instabilities are potentially suppressed by incipient disorder

and/or impurity scattering.
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