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Nuclear charge radii are sensitive probes of different aspects 
of the nucleon–nucleon interaction and the bulk properties of 
nuclear matter, providing a stringent test and challenge for 
nuclear theory. Experimental evidence suggested a new magic 
neutron number at N = 32 (refs. 1–3) in the calcium region, 
whereas the unexpectedly large increases in the charge radii4,5 
open new questions about the evolution of nuclear size in 
neutron-rich systems. By combining the collinear resonance 
ionization spectroscopy method with β-decay detection, we 
were able to extend charge radii measurements of potas-
sium isotopes beyond N = 32. Here we provide a charge radius 
measurement of 52K. It does not show a signature of magic 
behaviour at N = 32 in potassium. The results are interpreted 
with two state-of-the-art nuclear theories. The coupled clus-
ter theory reproduces the odd–even variations in charge radii 
but not the notable increase beyond N = 28. This rise is well 
captured by Fayans nuclear density functional theory, which, 
however, overestimates the odd–even staggering effect in 
charge radii. These findings highlight our limited understand-
ing of the nuclear size of neutron-rich systems, and expose 
problems that are present in some of the best current models 
of nuclear theory.

The charge radius is a fundamental property of the atomic 
nucleus. Although it globally scales with the nuclear mass as A1/3, 
the nuclear charge radius also exhibits appreciable isotopic varia-
tions that are the result of complex interactions between protons 
and neutrons. Indeed, charge radii reflect various nuclear struc-
ture phenomena such as halo structures6, shape staggering7 and 
shape coexistence8, pairing correlations9,10, neutron skins11 and the 
occurrence of nuclear magic numbers5,12,13. The term ‘magic num-
ber’ refers to the number of protons or neutrons corresponding to  

completely filled shells. In charge radii, a shell closure is observed 
as a sudden increase in the charge radius of the isotope just beyond 
magic shell closure, as seen, for example, at the well-known magic 
numbers N = 28, 50, 82 and 126 (refs. 5,12–14).

In the nuclear mass region near potassium, the isotopes with 
proton number Z ≈ 20 and neutron number N = 32 are proposed to 
be magic on the basis of an observed sudden decrease in their bind-
ing energy beyond N = 32 (refs. 2,3) and the high excitation energy 
of the first excited state in 52Ca (ref. 1). Therefore, the experimen-
tally observed strong increase in the charge radii of calcium4 and 
potassium5 isotopes between N = 28 and N = 32, and in particular 
the large radius of 51K and 52Ca (both having 32 neutrons), have 
attracted substantial attention.

One aim of the present study is therefore to shed light on sev-
eral open questions in this region: how does the nuclear size of very 
neutron-rich nuclei evolve, and is there any evidence for the magic-
ity of N = 32 from nuclear size measurements? We furthermore 
provide new data to test several newly developed nuclear models, 
which aim to understand the evolution of nuclear charge radii of 
exotic isotopes with large neutron-to-proton imbalance. So far, ab 
initio nuclear methods, allowing for systematically improvable cal-
culations based on realistic Hamiltonians with nucleon–nucleon 
and three-nucleon potentials, have failed to explain the enhanced 
nuclear sizes beyond N = 28 in the calcium isotopes4,15. Meanwhile, 
nuclear density functional theory (DFT) using Fayans functionals 
has been successful in predicting the increase in the charge radii of 
isotopes in the proton-magic calcium chain10, as well as the kinks in 
proton-magic tin and lead12. All these theoretical approaches have, 
until now, been predominantly used to study the charge radii of 
even-Z isotopes. Here they will be applied to the odd-Z potassium 
isotopes (Z = 19).
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Laser spectroscopy techniques yield the most accurate and pre-
cise measurements of the charge radius for radioactive nuclei. These 
highly efficient and sensitive experiments at radioactive ion beam 
facilities have expanded our knowledge of nuclear charge radii dis-
tributed throughout the nuclear landscape16. Laser spectroscopy 
achieves this in a nuclear-model-independent way by measuring the 
small perturbations of the atomic hyperfine energy levels due to the 
electromagnetic properties of the nucleus. Although these hyper-
fine structure effects are as small as one part in a million compared 
with the total transition frequency, they can now be measured with 
remarkable precision and efficiency, even for short-lived, weakly 
produced, exotic isotopes9.

The Collinear Resonance Ionization Spectroscopy (CRIS) exper-
imental set-up at the ISOLDE facility of CERN allows very exotic 
isotopes to be studied with high resolution and high efficiency9,17. 
Relevant details of the ISOLDE radioactive beam facility and the 
CRIS set-up are depicted in Fig. 1a (Methods). With the CRIS tech-
nique, the energy differences between the atomic hyperfine tran-
sitions are measured by counting the resonantly ionized ions as a 
function of the laser frequency. If measurements are performed on 
more than one isotope, the difference in the mean-square charge 
radius of these isotopes can be obtained from the difference in the 
hyperfine structure centroid frequency of two isotopes (the isotope 
shift) with mass numbers A and A′: δνA,A′=νA − νA′.

To apply the CRIS method to study a light element such as potas-
sium, where the optical transition exhibits a lower sensitivity to the 
nuclear properties, the long-term stability and accurate measure-
ment of the laser frequency had to be investigated. The details of 
the relevant developments are presented in ref. 18, where the method 
was validated by measuring the mean-square charge radii of 38−47K 
isotopes with high precision. For the most exotic isotope, there was 
an extra challenge: a large isobaric contamination at mass A = 52, 
measured to be 2 × 104 times more intense than the 52K beam of 
interest. The resulting background rate was found to be an order 

of magnitude higher than that of the resonantly ionized 52K ions. 
In addition, this background rate was found to strongly fluctu-
ate in time, making a measurement with ion detection impossible 
(see the low-frequency side of the hyperfine structure spectrum in  
Fig. 1b). Taking advantage of the short half-life of 52K (t1/2 = 110 ms) 
and the fact that the isobaric contamination is largely due to the 
stable 52Cr, an alternative detection set-up was developed, which 
can distinguish the radioactive 52K from the stable contamination. 
One thin and one thick scintillator detector (A and B in Fig. 1a) 
were installed behind the CRIS set-up, which were used to count the 
β-particles emitted by 52K implanted in a thin flange. The fluctua-
tions in the background rate and signal-to-background ratio were 
notably improved, as seen in Fig. 1c. The full hyperfine structure 
spectrum of 52K is presented in Fig. 1d. The hyperfine structure 
spectra of 47−51K were remeasured with the standard CRIS method, 
and 50,51K were measured with both ion and β-particle detection 
as consistency checks. Thus, the isotope shifts of 47−52K could be  
determined (Methods).

The changes in the mean-square charge radii δ〈r2〉 are calculated 
from the isotope shift νA,A′ via

δhr2i ¼
1

F
½νAA

0

� ðKNMS þ KSMSÞ
mA �mA0

ðmA þmeÞmA0

: ð1Þ

Here F, KSMS and KNMS are the atomic field shift, specific mass 
shift and normal mass shift factors, respectively (see Methods for 
details). Previously published charge radii of potassium isotopes 
were extracted from the isotope shifts using an F value calculated 
with a non-relativistic coupled-cluster (CC) method and an empiri-
cally determined KSMS value19.

Here, we employ the recently developed analytic response rela-
tivistic CC (ARRCC) theory20 (Methods), to calculate both the F and 
KSMS constants. The newly calculated value, F = −107.2(5) MHz fm−2, 
is more precise and in good agreement with the literature value 
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Fig. 1 | Overview of the experimental method and the hyperfine structure spectrum of 52K. a, The nuclei of interest were produced via nuclear reactions 

after a 1.4 GeV proton beam impinged onto a UCx target. These diffused out of the target, into an ion source and underwent surface ionization. The ion 

beam was then mass separated using a high-resolution separator (HRS), and subsequently cooled and bunched in a linear Paul trap (ISCOOL). The 

bunched ion beam was guided towards the CRIS beamline, where the ions were first neutralized in a charge-exchange cell (CEC) filled with potassium 

vapour. The neutral atoms were then delivered to the interaction region (IR) through the differential pumping region (DP). Here the bunched beam of 

atoms was collinearly overlapped with the laser pulses to achieve resonance laser ionization. The ionized radioactive potassium ions were deflected to a 

detection station, containing a removable MagneToF ion detector and a set of two plastic scintillator detectors labelled A and B. b,c, The left component of 

the 52K hyperfine structure spectrum measured with the MagneToF ion detector (b) and the scintillator detectors (c) as a function of the laser frequency 

detuning. The red line and shaded area in b indicate the expected position of the hyperfine structure peaks. d, The full hyperfine structure spectrum of 
52K measured with the scintillator detectors as a function of the laser frequency detuning. The red line is the best fit. The inset is the hyperfine structure 

scheme corresponding to the full spectrum. Only coincidence events between the A and B detectors were processed by the data acquisition system 

(DAQ). Error bars show the statistical uncertainty.
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(F = − 110(3) MHz fm−2). More importantly, the specific mass shift, a 
highly correlated atomic parameter, could be calculated from micro-
scopic atomic theory. The calculated value, KSMS = −14.0(22) GHz u 
(where u is the atomic mass unit), is more precise than the empirical 
value, KSMS = −15.4(38) GHz u from ref. 9, and shows good agree-
ment. Table 1 presents the isotope shifts, changes in mean-square 
charge radii and absolute charge radii of 36−52K that were extracted 
using these new atomic constants. The isotope shifts and charge 
radii have been re-evaluated using all available data, as described 
in the Methods. In Fig. 2a these changes in the mean-square charge 
radii are compared with values obtained using the atomic factors 
taken from ref. 19. Good agreement is obtained, while the systematic 
error due to the uncertainty on the atomic factors is clearly reduced.

Previously, the nuclear spin and parity of 52K was tentatively 
assigned to be Iπ = (2−) (ref. 21). Here, we have analysed our data 
assuming two other alternative spin options. Given that the I = 1 
and I = 3 assumptions produce unrealistically small and large 
charge radii, respectively (Fig. 2a), our study further supports an 
I = 2 assignment.

The inset in Fig. 2a compares the changes in mean-square charge 
radii of several isotopic chains in this mass region up to Z = 26. A 
remarkable observation is that the charge radii beyond N = 28 fol-
low the same steep increasing trend, irrespective of the atomic num-
ber. Beyond N = 32, data are only available for potassium isotopes 
(this work), and for open-shell manganese (Z = 25) isotopes22 for 
which no subshell closure at N = 32 has been reported. Both charge 
radii trends are very similar, with no pronounced kink at N = 32.

We further investigate the subshell gap at N = 32 by looking at 
the three-point filters of the experimentally measured ground-state 
properties. For binding energies B from refs. 23,24, we define 
Δ
ð3Þ
1n
B ¼ 1

2
ð�1ÞN ½BðN þ 1Þ � 2BðNÞ þ BðN � 1Þ

I

. We can then 
consider the energy gap as ΔE ¼ 2½Δ

ð3Þ
1n
BðNÞ � Δ

ð3Þ
1n
BðN þ 1Þ

I

 for 
even N (ref. 25). This quantity reaches a clear local maximum at magic 

numbers as shown in Fig. 2b. It becomes apparent that ΔE at N = 28 
is notably larger than that at N = 32. It amounts to 1.6 MeV com-
pared with 3 MeV at N = 20 and at N = 28 for the potassium isotopes. 
Similarly, ΔE at N = 32 in calcium, 2.2 MeV, is considerably smaller 
than the values of 4.2 MeV and 3.6 MeV at N = 20 and N = 28, respec-
tively. From the charge radii, the odd–even staggering9 can also 
provide a signature of magicity. This is investigated by calculating 
the parameter Δð3Þ

1n
r ¼ 1

2
ð�1ÞNþ1½rðN þ 1Þ � 2rðNÞ þ rðN � 1Þ

I

 as 
defined in ref. 14. At well-known shell gaps, this parameter is locally 
inverted, as shown for potassium and calcium at N = 28, and also 
for lead13 at N = 126 (Fig. 2c). However, no such inversion is seen at 
N = 32 for potassium. Thus, both the charge radii and the mass data 
of potassium are consistent with the absence of a neutron magic 
gap at N = 32. On the other hand, the local increase in ΔE at N = 32 
seen in Fig. 2b is consistent with a local neutron subshell closure  
around Z = 20.

In the following, we compare the experimental data to recently 
developed nuclear theories. Previously, CC calculations based  
on the NNLOsat interaction26 were used to describe the nuclear 
charge radii for the stable doubly magic 40,48Ca isotopes and their 
immediate neighbours, as well as 51−53Ca (refs. 4,11). These calcula-
tions reproduced the absolute charge radii near 40,48Ca but failed 
to reproduce the observed large charge radii around N = 32. To 
compute the charge radii of the potassium isotopes, we extended 
the CC computations to open-shell nuclei by starting from a 
symmetry-breaking reference state27 (Methods). This allowed  
us to calculate the radii for the full chain of potassium isotopes  
using the NNLOsat interaction, and thus to study the trend beyond 
N = 28. This interaction was optimized to a set of experimen-
tal observables including binding energies and charge radii of  
selected nuclei up to A = 25. We also used the new ΔNNLOGO(450) 
interaction28, with Δ isobar degrees of freedom, which is con-
strained to properties of light nuclei up to mass A ≤ 4 and also by  
nuclear matter properties at the saturation point (Methods). In  
contrast to NNLOsat, this interaction more accurately describes  
the saturation density and symmetry energy in nuclear matter11,28. 
In Fig. 3a, we plot the changes in the mean-square charge radii  
with respect to the N = 28 isotope. This results in reduced sys-
tematic uncertainties near N = 28. Both interactions show a good 
agreement with the experimental results within the systematic 
uncertainty below N = 28, whereas the steep increase beyond  
N = 28 is largely underestimated (see also Extended Data Fig. 1).  
The absolute charge radii are presented in Fig. 3b. The refer-
ence isotope is 39K in this case, the only isotope with a measured  
absolute charge radius (Methods), resulting in the smallest  
systematic uncertainties around the stable isotopes. The NNLOsat 
interaction clearly overestimates the charge radii near stability, 
whereas the ΔNNLOGO(450) interaction shows better agreement, 
but still deviates towards neutron-rich isotopes. The differences 
between the interactions provide a lower estimate of a theoretical 
systematic uncertainty.

The reason for the underestimation of the δhr2i
47;A

I

  
beyond N = 28 in the CC method can perhaps be attributed to  
the approximations employed. Our computations are limited to  
single and double excitations in the cluster amplitudes; they pre-
serve axial symmetry and are lacking angular momentum resto-
ration; the employed interactions are at next-to-next-to-leading  
order in the power counting; higher-order effects, such as  
additional two-body contact interactions and four-body forces,  
are neglected.

DFT is the method of choice for heavy systems. Nuclei with 
Z ≈ 20 cover the region where both methods, DFT and CC, can 
be successfully applied. Our DFT calculations use in particular 
the Fayans functional Fy(Δr, HFB)29 (Methods), which was devel-
oped with a focus on charge radii. This method closely repro-
duces the absolute charge radii of calcium isotopes, including the  

Table 1 | isotope shifts and charge radii of potassium isotopes

A N Iπ δν
39,A (MHz) δ〈r2〉39,A (fm2) Rch (fm)

36 17 2+ −403(9) −0.20(8)[4] 3.405(12)[6]

37 18 3/2+ −264(6) −0.11(6)[3] 3.419(8)[4]

38 19 3+ −126.1(19) −0.075(18)[14] 3.4241(26)[20]

39 20 3/2+ 0 0 3.435(0)[0]

40 21 4− 125.63(9) 0.025(1)[13] 3.4386(1)[19]

41 22 3/2+ 235.47(9) 0.135(1)[26] 3.4546(1)[37]

42 23 2− 352.4(10) 0.128(10)[38] 3.4536(15)[55]

43 24 3/2+ 459.0(12) 0.165(11)[49] 3.4590(16)[71]

44 25 2− 565.1(8) 0.163(7)[60] 3.4586(11)[87]

45 26 3/2+ 661.7(16) 0.203(15)[70] 3.4644(22)[102]

46 27 2− 764.1(14) 0.150(13)[80] 3.4568(19)[116]

47 28 1/2+ 858.4(9) 0.133(8)[90] 3.4543(12)[130]

48 29 1− 926.4(9) 0.328(8)[99] 3.4825(12)[142]

49 30 1/2+ 994.2(11) 0.491(10)[108] 3.5057(15)[154]

50 31 0− 1,065.3(10) 0.592(9)[116] 3.5201(13)[165]

51 32 3/2+ 1,130.6(14) 0.716(13)[124] 3.5377(18)[176]

52 33 (2−) 1,198(5) 0.79(5)[13] 3.549(7)[19]

52 33 (1−) 1,118(5) 1.54(5)[13] 3.652(6)[18]

52 33 (3−) 1,237(5) 0.43(5)[13] 3.497(7)[19]

Evaluated experimental isotope shifts δν39,A, differences in mean-square charge radii δ〈r2〉 

and charge radii (Rch) of 36−52K are presented. Statistical and systematic errors are reported in 

parentheses and square brackets, respectively. The values in bold indicate the nuclear spin of 52K 

suggested from this work. The procedure for the evaluation is discussed in the Methods.
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steep increase beyond N = 28 (ref. 10). Furthermore, Fy(Δr, HFB) 
reproduces the absolute radii of the magic tin12 and cadmium30 
isotopes, as well as the odd-Z copper isotopes9. It should be  
noted, however, that the potassium isotopes are a lighter system  
in which the polarization effects of the odd proton are expected  
to be stronger than in the heavier copper isotopes. To account 
for that, we extended the Fayans–DFT framework to allow for 
deformed HFB solutions. The isotopic chain contains odd–odd 
nuclei and the present DFT and CC treatment does not allow a  
clean spin selection for these. Consequently, the calculations pro-
vide an averaged description for the odd–odd isotopes. As seen in 
Fig. 3b (and Extended Data Fig. 2), except for the neutron-poor 
side, Fy(Δr, HFB) calculations reproduce the average global trend  
well, in particular the steep increase above N = 28. However,  
this model grossly overestimates the odd–even staggering of the 
radii. This is very well captured by the CC calculations, owing to 
the fact that these describe in detail the many-body correlations 
(Methods). In nuclear DFT, local many-body correlations are 
treated less precisely.

In conclusion, the charge radii show no signature of a magic shell 
gap at N = 32, which is not in contradiction with the small subshell 
effect seen in the masses of potassium isotopes. The comparison 
of the experimental results with theoretical calculations highlights 
our limited understanding of the size of neutron-rich nuclei, and 
will undoubtedly trigger further developments in nuclear theory. In 
addition, fully understanding the nuclear structure in this region 
requires measurements of additional charge radii across N = 32 and 
the next proposed magic number, N = 34.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-020-01136-5.
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using NNLOsat and ΔNNLOGO(450) interactions, and with the Fayans–

DFT using the Fy(Δr, HFB) energy density functional. Error bars indicate 

statistical uncertainties, which in most cases are too small to be seen. The 

grey bands represent the systematic error due to the uncertainty on the 

atomic parameters.
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Methods
�e CRIS technique. �e schematic layout of the CRIS set-up is presented in 
Fig. 1a. �e mass selected ions were cooled and bunched in the ISCOOL device, 
which operated at 100 Hz, the duty cycle of the CRIS experiment. �e ion 
bunches typically have a 6 μs temporal width, corresponding to a spatial length of 
around 1 m. First, the bunched ion beam was neutralized in the CRIS beamline 
through collisions with potassium atoms in the charge-exchange cell (CEC). �e 
remaining ions were de�ected just a�er the CEC with an electrostatic de�ector 
plate. In addition, atoms that were produced in highly excited states through 
the charge-exchange process were �eld ionized and de�ected out of the beam. 
�e beam of neutral atoms passed through the di�erential pumping region and 
arrived in the 1.2 m interaction region maintained at a pressure of 10−10 mbar. 
Here the atom bunch was collinearly overlapped with three laser pulses, which 
were used to excite and ionize the potassium atoms in a step-wise manner. A 
detailed study of this particular resonance ionization scheme can be found in 
ref. 18. In the interaction region, ions can also be produced in non-resonant 
processes, introducing higher background rates31. Normally, the ions created 
in the interaction region are guided towards an ion detector (MagneToF). �is 
technique was used for the measurement of 47−51K. �e 51K isotope was produced 
at a rate of less than 2,000 particles per second and its hyper�ne structure 
spectrum was measured in less than 2 h. �e study of 52K, however, required a still 
more selective detection method. �is isotope, produced at a rate of about 360 
particles per second, is an isobar of the most abundant stable chromium isotope, 
which is the main contaminating species in the A = 52 beam, with an intensity of 
6 × 106 particles per second. To avoid the detection of the non-resonantly ionized 
52Cr, the CRIS set-up was equipped with a decay detection station, placed behind 
the end �ange of the beamline. �e MagneToF detector was removed from the path 
of the ion beam, and the ionized bunches were implanted into a thin aluminium 
window of 1 mm thickness, allowing the transmission of β-particles with energies 
larger than 0.6 MeV. �e decay station behind this window consisted of one thin 
and one thick scintillator detector (A and B in Fig. 1a) for a coincidence detection 
of β-particles. �e dimensions of the detectors were 1 mm × 6 cm × 6 cm and 
6 cm × 6 cm × 6 cm. �e β-particle counts detected in coincidence were recorded 
by the data acquisition system (DAQ) together with the laser frequency detuning. 
�e DAQ recorded the number of events in the detectors with a timestamp. �e 
timestamp of the proton bunches impinging into the target of ISOLDE was also 
recorded and used to de�ne the time gates in the data analysis.

Laser system. A three-step resonance ionization scheme was used in this 
experiment. The laser light for the first excitation step was produced by a 
continuous-wave titanium-sapphire (Ti:Sa) laser (M-Squared SolsTiS) pumped 
by an 18 W laser at 532 nm (Lighthouse Photonics). To avoid optical pumping to 
dark states due to long interaction times, this continuous-wave light was ‘chopped’ 
into 50 ns pulses at a repetition rate of 100 Hz by using a Pockels cell17. The 
wavelength of this narrowband laser was tuned to probe the hyperfine structure 
of the 4s 2S1/2 → 4p 2P1/2 transition at 769 nm. Atoms in the excited 4p 2P1/2 state 
were subsequently further excited to the 6s 2S1/2 atomic state by a pulsed dye laser 
(Spectron PDL SL4000) with a spectral bandwidth of 10 GHz. This dye laser was 
pumped by a 532 nm Nd:YAG laser (Litron TRLi 250-100) at a 100 Hz repetition 
rate. The fundamental output of the same Nd:YAG laser (1,064 nm) was used for 
the final non-resonant ionization. The arrival of ion bunches and laser pulses in the 
interaction region was synchronized and controlled using a multi-channel pulse 
generator (Quantum Composers 9520 Series).

Charge radii extraction. The perturbation of the atomic states caused by the 
different nuclear charge distribution in isotopes leads to small differences in the 
atomic transition frequency, δνAA′, between centroids (νA, νA′) of the hyperfine 
structure of two isotopes with mass number A and A′. The isotope shifts of 48−52K 
were extracted from the hyperfine structure spectra, analysed using the SATLAS32 
Python package, as displayed in third column of Extended Data Table 1, along 
with all available results from literature. More details on the analysis process can be 
found in Ref. 18. The changes in the nuclear mean-square charge radii of 36−52K can 
then be extracted from the isotope shifts using:

δν
AA

0

¼ KMS

mA �mA0

mA0 ðmA þmeÞ
þ Fδhr2i

AA
0

; ð2Þ

where KMS and F are the atomic mass shift and field shift, m stands for the 
nuclear mass of isotopes A, A′ and an electron. The nuclear mass was obtained by 
subtracting the mass of the electrons from the experimentally measured atomic 
mass reported in ref. 23. The atomic constants KMS and F were calculated using the 
atomic ARRCC method as described below. The root-mean-square charge radii of 
these isotopes are:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δhr2i þ R
2

39

q

;
ð3Þ

where R39 is the charge radius of 39K taken from ref. 33.

Evaluation of the isotope shifts and charge radii. The isotope shifts of potassium 
isotopes have been measured using several different techniques over many 

years, ranging from magneto-optical trap experiments34 to laser spectroscopy 
of thermal35–37 and accelerated beams38,5,18, relying on photon and ion detection. 
The available results in refs. 34–38 are referenced to the stable 39K isotope, and are 
presented in the second column of Extended Data Table 1. The isotope shifts 
in refs. 5,18 and this work, shown in the third column of Extended Data Table 1, 
were extracted with respect to 47K. The systematic error from the experiments is 
given in curly brackets. Note that the systematic uncertainties in collinear laser 
spectroscopy experiments are mostly related to the inaccuracy of the acceleration 
voltage. In this work, the systematic uncertainty was negligible thanks to the 
well-calibrated high-precision voltage divider (with a relative uncertainty of 
5 × 10−5) from the Physikalisch-Technische Bundesanstalt (PTB). To compile a 
consistent dataset with reliable evaluation of uncertainties, the following steps  
were taken:

 (1) �e isotope shi�s obtained with respect to 47K were recalculated relative to 
39K to link all data to the same reference. For this, the weighted average of 
all available δν47,39 isotope shi�s from refs. 5,18 was used as a reference. �ese 
rereferenced values are listed in the ��h column of Extended Data Table 1 
and their uncertainty was increased due to the additional error associated 
with δν

39;47

I

 (bold value in column six). Note that the systematic errors are 
always taken into account using the linear model 39, σ = σsys + σstat.

 (2) Next, the �nal isotope shi� of each potassium isotope, δν
39;A

I

 (shown in the 
sixth column of Extended Data Table 1), was calculated as the weighted aver-
age (x̂) of the available results (xi) using:

x̂ ¼
Σ
n

i¼1
ðxiσ

�2

i
Þ

Σ
n

i¼1
σ
�2

i

; ð4Þ

where σi is the total uncertainty of the ith measurement. The error of the weighted 
mean was obtained using:

σx̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Σ
n

i¼1
σ
�2

i

s

; ð5Þ

accounting for possible over-, or underdispersion using:

σ̂
2

x
¼ σ

2

x
χ
2
; ð6Þ

where χ2 is the reduced chi-squared.
 (3) �ese evaluated isotope shi�s were used to extract the changes in the 

mean-square charge radii (column 7 of Extended Data Table 1) using the new 
theoretical values for the atomic �eld and mass shi�s, obtained in this work. 
�e systematic errors on δ〈r2〉 shown in the square brackets of column 7 of 
Extended Data Table 1 come from the uncertainty of the calculated atomic 
�eld and mass shi�s. Note that the contribution from the mass uncertainty is 
negligible due to the small relative error (for example, δm

m
>10

�8

I

 for both 51K 
and 52K). �e absolute charge radii of all potassium isotopes (last column of 
Extended Data Table 1) were then calculated using equation (3) relative to the 
absolute radius of the stable 39K (ref. 33).

Atomic CC calculations. The wavefunction of an atomic state with a closed-shell 
and a valence orbital electronic configuration can be expressed using the CC 
theory ansatz as

Ψ vj i ¼ e
~S
Φvj i ¼ e

Tf1þ Svg Φvj i; ð7Þ

where Φvj i
I

 is the mean-field wavefunction and ~S is the CC excitation operator. We 
further divide as ~S ¼ T þ Sv

I

 to distinguish electron correlations without involving 
the valence electron (T) and involving the valence electron (Sv). In the analytic 
response procedure, the first-order energy of the atomic state is obtained by solving 
the equation

ðHat � E
ð0Þ
v
Þ Ψð0Þ

v





E

¼ ðEð1Þ
v

� HintÞ Ψ
ð1Þ
v





E

; ð8Þ

where Hat is the atomic Hamiltonian, Hint is the interaction Hamiltonian, Ψ ð0Þ
v

�

�

�

I

 
is the unperturbed wavefunction with energy Eð0Þ

v

I

, and Ψ ð1Þ
v

�

�

�

I

 is the first-order 
perturbed wavefunction with the first-order energy Eð1Þ

v

I

. Here, Hat involves the 
Dirac terms, the nuclear potential, the lower-order quantum electrodynamics 
corrections and the electron–electron interactions due to the longitudinal and 
transverse photon exchanges, whereas Hint is either the field-shift operator due 
to the Fermi nuclear charge distribution in the evaluation of F or the relativistic 
form of the SMS operator for the determination of KSMS. In the ARRCC theory, the 
unperturbed and perturbed wavefunctions are obtained by expanding

T ’ T
ð0Þ þ λT

ð1Þ
and Sv ’ S

ð0Þ
v

þ λS
ð1Þ
v

ð9Þ

where λ is the perturbation parameter. After solving the amplitudes of both the 
unperturbed and perturbed CC operators, as described in ref. 20, we evaluate the 
first-order energy as
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E
ð1Þ
v

¼ Φvh jðHate
T
ð0Þ

Þ
c
fSð1Þ

v
þ T

ð1Þg Φvj i

þ Φvh jðH inte
T
ð0Þ

Þ
c
f1þ S

ð0Þ
v
g Φvj i;

ð10Þ

in which the subscript c indicates the connected terms. We have considered all 
possible single, double and triple electronic excitation configurations in our 
ARRCC method for performing the atomic calculations.

Nuclear CC calculations. The nuclear CC calculations start from the intrinsic 
Hamiltonian including two- and three-nucleon forces

Ĥ ¼
X

i < j

ðpi � pjÞ
2

2mA

 !

þ
X

i < j < k
V̂

ði;j;kÞ

3N
: ð11Þ

with Pi (Pj) the momentum of ith (jth) nucleon in the nucleus. The nuclear CC 
wavefunction is written as Ψj i ¼ e

T
Φ0j i

I

, where the cluster operator T is a linear 
combination of n-particle-n-hole excitations truncated at the two-particle-two-hole 
level, commonly known as the CC with singles-and-double excitations (CCSD). 
The reference state Φ0j i

I

 is restricted to axial symmetry and is constructed in the 
following way. We start by solving the self-consistent Hartree–Fock equations 
by assuming that the most energetically favourable configuration is obtained 
by filling the states with the lowest angular momentum projection along the z 
axis (prolate deformation). Subsequently, we construct a natural orbital basis 
by diagonalizing the density matrix obtained from second-order perturbation 
theory40. Finally, we normal-order the Hamiltonian (equation (11)) with respect to 
the natural orbital mean-field solution, keeping up to two-body normal-ordered 
contributions. The model-space used in our calculations is given by 13 major 
harmonic oscillator shells (Nmax = 12) with the oscillator frequency ℏΩ = 16 MeV. 
The three-body interaction has the additional cutoff on allowed three-particle 
configurations E3max = N1 + N2 + N3 ≤ 16, with Ni = 2ni + li. This model-space is 
sufficient to converge the radii of all of the potassium isotopes considered in this 
work to within ~1%. We calculate the expectation value of the squared intrinsic 
point proton radius, that is hOi ¼ h1=Z

P
i < jðri � rjÞ

2
δtz ;�1i

I

. The CC expectation 
value of the operator O is given by Φ0h j 1þ Λð Þe�T

Oe
T
Φ0j i ¼ Φ0h j 1þ Λð ÞO Φ0j i

I; here Φ0h jð1 þ ΛÞe�T

I

 is the left ground-state and Λ is the linear combination of 
one-hole-one-particle and two-hole-two-particle de-excitation operators (see, 
for example, ref. 41 for details). To obtain the charge radii we add finite proton/
neutron, the relativistic Darwin–Foldy and spin–orbit corrections to the point 
proton radii. We note that the spin–orbit corrections are computed consistently as 
an expectation value within the CC approach, see ref. 11.

The chiral interaction NNLOsat (ref. 26) was constrained by nucleon–nucleon 
scattering data, and binding energies and charge radii of nuclei up to oxygen. It 
includes nucleon–nucleon and three-nucleon forces up to next-to-next-to leading 
order in the Weinberg power counting. The newly constructed ΔNNLOGO(450) 
interaction by the Gothenburg–Oak Ridge (GO) collaboration28 also includes  
Δ isobar degrees of freedom, has a cutoff of 450 MeV, and is also limited to NNLO. 
Its construction started from the interaction of ref. 42 and its low-energy constants 
are constrained by the empirical saturation point (density and energy) and the 
symmetry energy of nuclear matter, by pion–nucleon scattering43, nucleon–nucleon 
scattering and by selected properties of the A ≤ 4 nuclei. A second interaction, 
ΔNNLOGO(394), was similarly constructed but with a cutoff of 394 MeV. By 
construction, the ΔNNLOGO interactions yield an accurate saturation point and 
symmetry energy of nuclear matter. They are also accurate for binding energies 
and radii, see ref. 28 for details.

To look at the sensitivities in the changes in the mean-square change radii, 
Extended Data Fig. 1a compares results from the newly developed interactions 
with NNLOsat. Although there are differences below N = 28, all interactions yield 
essentially identical results beyond N = 28. This suggests that charge radii beyond 
N = 28 are insensitive to details of chiral interactions at next-to-next-to-leading 
order.

To shed more light on this finding, Extended Data Fig. 1b compares results 
from deformed mean-field calculations with CCSD computations for two 
different interactions. The 1.8/2.0(EM) interaction44 contains contributions at 
next-to-next-to-next-to-leading order and thereby differs from the interactions 
used in this work. First, for the ΔNNLOGO(394) interaction, mean-field and CC 
yield essentially the same results for N > 28, although CC includes many more 
wavefunction correlations. Second, for the 1.8/2.0(EM) interaction, mean-field and 
CC results differ notably by the strong odd–even staggering, which is a correlation 
effect. None of the interactions explain the dramatic increase in the charge radii 
beyond N = 28.

DFT calculations. For the DFT part of this work, we use the non-relativistic 
Fayans functional in the form of ref. 45. This functional is distinguished from 
other commonly used nuclear DFT in that it has additional gradient terms at two 
places, namely in the pairing functional and in the surface energy. The gradient 
terms allow, among other features, a better reproduction of the isotopic trends of 
charge radii46. This motivated a refit of the Fayans functional to a broad basis of 
nuclear ground-state data with additional information on changes in mean-square 
charge radii in the calcium chain4,29. We use here Fy(Δr, HFB) from refs. 4,29, which 
employed the latest data on calcium radii. It is only with strong gradient terms that 

the trends of radii in calcium can be reproduced at all, in particular its pronounced 
odd–even staggering, yet there is a slight tendency to exaggerate the staggering. 
It was found later that Fy(Δr, HFB) performs very well in describing the trends 
of radii in cadmium and tin isotopes12,30. Here we test it again for the potassium 
chain next to calcium. For all practical details pertaining to our Fayans–DFT 
calculations, we refer the reader to ref. 29.

All of the above-mentioned calculations with Fy(Δr, HFB) were done in a 
spherical representation. This choice could be called into question for nuclei far 
from shell closures, and more so for odd nuclei where the odd nucleon induces  
a certain quadrupole moment. The new feature in the present calculations is that 
we use a code in the axial representation that allows for deformations if the  
systems wants any. Figure 3 shows the result from the deformed code47, adapted 
for the Fayans functional. In Extended Data Fig. 2 we illustrate the effect of 
deformation by comparison with spherical calculations. The effects are small,  
but show that there is no uncertainty due to symmetry restrictions. The lack of 
angular momentum projection in DFT calculations induces a systematic error  
on the charge radii. We have estimated this error from the angular momentum 
spread to be below 0.005 fm on average, thus having no consequences for the 
predicted trends.

Data availability
Source data are provided with this paper. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding authors upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Experimental charge radii and the coupled-cluster calculations for 36−52K. a, Changes in mean-square charge radii calculated with 

the newly developed interactions, ΔNNLOGO(394) and ΔNNLOGO(450), and the NNLOsat, compared to experimental data. All calculations underestimate 

the charge radii of neutron-rich isotopes beyond N = 28. Error bars represent the statistical uncertainty. b, Changes in mean-square charge radii calculated 

using different theoretical approaches, deformed mean-field (MF) and coupled cluster with singles-and-double excitations (CCSD), and for two different 

interactions. All calculations are consistent.
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Extended Data Fig. 2 | Absolute charge radii and the Fayans density functional calculations for 36−52K. Charge radii along the chain of potassium 

isotopes from spherical as well as deformed calculations with the functional Fy(Δr,HFB) are compared to experimental data. The predictions of these two 

calculations are in excellent agreement with each other. Error bars show the statistical uncertainty, which in most of the cases are too small to be seen. 

The gray band corresponds to the systematic uncertainly of the experimental data due to the atomic parameters.
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Extended Data Table 1 | Experimental isotope shifts and charge radii of potassium isotopes

Re-evaluated isotope shifts, changes in mean-square charge radii and the absolute charge radii of 36−52K. The second column summarizes the available isotope shifts referenced to the stable 39K isotope. 

The isotope shifts extracted with respect to 47K are shown in the third column. The fourth column contains the reference to the published values reported in the second and third columns. The reevaluated 

isotope shifts referenced to 39K are presented in column 5. In column 6, we present the final isotope shift of each potassium isotope calculated as the weighted average of the available results. Finally, 

the calculated changes in mean-square charge radii, and charge radii of 36−52K are shown in column 7 and 8. Experimental and theoretical systematic errors are reported in curly and square brackets, 

respectively. The statistical uncertainties are presented in brackets. The reference value for the charge radius of 39K is taken from Ref. 33, where it is given without uncertainties.
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