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Charge regulation: A generalized boundary condition?
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Abstract – The three most commonly used boundary conditions for charged colloidal systems
are constant charge (insulator), constant potential (conducting electrode) and charge regulation
(ionizable groups at the surface). It is usually believed that the charge regulation is a generalized
boundary condition that reduces in some specific limits to either constant-charge or constant-
potential boundary conditions. By computing the disjoining pressure between two symmetric
planes for these three boundary conditions, both numerically (for all inter-plate separations) and
analytically (for small inter-plate separations), we show that this is not, in general, the case. In
fact, the limit of charge regulation is a separate boundary condition, yielding a disjoining pressure
with a different characteristic separation scaling. Our findings are supported by several examples
demonstrating that the disjoining pressure at small separations for the charge regulation boundary
condition depends on the details of the dissociation/association process.

Copyright c© EPLA, 2016

Introduction. – Charge colloidal particles do not
usually conform to the simple and popular idea that
they can be characterized either as insulators with fixed
surface charges or conductors with constant surface po-
tential [1]. In fact, when two colloidal particles with ion-
izable surface groups (immersed in an aqueous electrolyte
solution) are brought together, both their surface charge
density and surface electrostatic potential change with
the particle (surface) inter-distance [2,3]. This ubiqui-
tous phenomenon stems from the dissociation/association
of surface ionizable groups and is referred to as charge

regulation (CR). It was elegantly formalized within the
Poisson-Boltzmann (PB) theory of electrostatic interac-
tions by Ninham and Parsegian in the 1970s [4].

The CR formalism can be implemented equivalently ei-
ther through a chemical dissociation equilibrium of sur-
face binding sites (law of mass action) [5–8], or through
a surface-site partition function (free energy) [9–15]. In
both cases, it yields the same self-consistent boundary con-
dition for an effective surface-charge density that differs
from the boundary condition of constant charge (CC) for
charged insulators or constant potential (CP) for conduct-
ing surfaces. The concept of charge regulation has been

(a)E-mail: andelman@post.tau.ac.il

widely applied in different situations: analysis of the sta-
bility of the electrostatic double-layer and its relation to
inter-surface forces [16,17], dissociation of amino acids and
protein interactions [18–20], charge regulation in protein
aggregates such as viral shells [21] and polyelectrolytes
and polyelectrolyte brushes [22–25], as well as for charged
membranes [26–28].

Although the theory of charge-regulated electrostatic
interactions has been previously used in numerous situ-
ations, some conceptually important issues have not been
addressed with sufficient generality. Usually, the CR dis-
joining pressure, ΠCR, is bounded by those stemming from
the CC and CP boundary conditions [29] (for some excep-
tions, see, e.g., refs. [30,31]). However, this does not imply
that, in general, the expression of ΠCR(d) as a function of
the inter-plate separation, d, will properly reduce to the
two implied limits.

In this letter, we show on general grounds that the
disjoining pressure, ΠCR(d), based on the CR boundary
condition has scaling properties in the limit of small inter-
plate separations, which differ from the scaling behavior
of the CC or CP boundary conditions.

Model. – Consider an ionic solution that contains
monovalent symmetric (1:1) salt of charge ±e of bulk
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Fig. 1: (Colour online) Schematic drawing of two symmetric
plates at z = ±d/2 with dissociable ionic groups. The charge
regulation boundary condition is described with a surface in-
teraction parameter, α. The ions are dissolved in an aqueous
solution of dielectric constant, εw.

concentration nb, immersed in aqueous solvent between
two symmetric plates separated by the distance d, and of
infinite lateral extent, as depicted in fig. 1. We consider
three types of boundary conditions: constant charge (CC),
constant potential (CP) and charge regulation (CR). The
water solvent is assumed to be a continuum dielectric
medium characterized by the water dielectric constant,
εw. We choose for convenience to locate the two planes at
z = ±d/2 such that z = 0 is a symmetry plane. Thus, the
electrostatic potential is symmetric about the mid-plane,
yielding a zero electric field, Em ∝ ψ′

m = 0 at z = 0.
The equation that governs the distribution of mobile

ions in solution at finite temperature is the well-
known Poisson-Boltzmann (PB) equation (for details see
ref. [32]). For 1:1 monovalent salts it has the simple form

d2ψ

dz2
= κ2

D sinhψ(z), (1)

where ψ is redefined as a dimensionless electrostatic poten-
tial (eψ/kBT → ψ) and λD = κ−1

D = (8πe2nb/εwkBT )−1/2

is the Debye length in Gaussian units, with kB the
Boltzmann constant and T the temperature. This one-
dimensional PB equation is obtained by taking into ac-
count the translation symmetry in the x-y plane.

The solution of the one-dimensional PB equation can
be expressed in terms of elliptic functions. Exploiting the
symmetry of the system, it is then sufficient to consider
the interval [0, d/2], with ψ′

m = 0 at the z = 0 mid-plane.
The general solution in such a symmetric setup can be
written in terms of the Jacobi elliptic function [32,33],
cd(u|a2), as

ψ = ψm + 2 ln

[

cd

(

z

2λD
√

m

∣

∣

∣
m2

)]

. (2)

with m ≡ exp (ψm) and ψm ≡ ψ(z = 0). The additional
boundary condition at z = d/2 will determine a differ-
ent ψm for the three different cases: CC, CP, and CR at
finite d. Evaluating the above equation and considering
the boundary condition at z = d/2 result in an explicit
relation σ = σ(ψs; d) between the surface charge density,
σ, the surface potential ψs and d. In order to understand
how the three boundary conditions differ and when they

indeed merge, we use the general expression for the dis-
joining pressure, which is valid in all three cases (CC, CP
and CR) as explained in ref. [34],

Π(d) = 4kBTnb sinh2(ψm/2) > 0. (3)

This pressure is a macroscopic measurable quantity that
strongly depends on the inter-plate separation, d.

The difference in the disjoining pressure for the three
boundary conditions becomes substantial only for rela-
tively small separations, d � λD, while in the large-
separation limit, d ≫ λD, the three pressure expressions
coincide. To gain further insight into the different
behavior of the disjoining pressure, we focus on the
small-separation limit, d ≪ λD and d ≪ ℓGC, where
ℓGC ≡ e/(2πℓB|σ|) is the Gouy-Chapman length and
ℓB = e2/εwkBT is the Bjerrum length in Gaussian units.
Our analytical results give the scaling of Π with d and
clearly distinguish between the three boundary conditions.

Let us start with the most common CC boundary
condition,

ψ ′
∣

∣

∣

z=d/2
≡ ψ ′

s = 4πℓB
σ

e
. (4)

Equations (2) and (4) give a relation between the surface
charge density σ, the mid-plane potential ψm and d, in
terms of the Jacobi elliptic functions [32,33],

σ

e
=

κD

4πℓB

m2 − 1√
m

sn(us|m2)

cn(us|m2)dn(us|m2)
, (5)

with us ≡ d/(4λD
√

m) and m ≡ exp (ψm) as defined
above. For fixed surface charge, this relation gives the
mid-plane potential, ψm. Then, the disjoining pressure
can be calculated from eq. (3). When d is the smallest
length scale in the system, it can be shown that the dis-
joining pressure in the so-called ideal-gas regime [32,35,36]
scales as

ΠCC ≃ kBT

πℓBℓGC

1

d
∼ d−1. (6)

The density (per unit volume) of the counterions is almost
constant between the two charged plates and is equal to
2|σ|/(ed). This counterion density neutralizes the surface
charge density, σ, and the main contribution to the pres-
sure comes from the entropy of an ideal-gas behavior of
the counterion cloud.

In the second case of a CP boundary condition, ψs is
fixed, and unlike the CC case, here the counterion con-
centration remains constant near each of the planes, as
it uniquely depends on the value of the surface potential,
ψs, through the Boltzmann factor [37]. The corresponding
surface charge density, σ, is proportional to d at small sep-
aration, σ ∼ d. Therefore, it vanishes for d → 0. Using the
Taylor expansion of elliptic functions [33], one can evaluate
the leading terms in the surface potential for small d as

ψs ≃ ψm −
(

1 − m2
)

u2
s. (7)
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Substituting the above equation into the disjoining pres-
sure expression, eq. (3), yields to second order in d,

ΠCP ≃ kBTnb

(

4 sinh2(ψs/2) − sinh2(ψs)
(κDd)2

8

)

≃ const + O
(

d2
)

. (8)

The above equation shows that the disjoining pressure for
the CP boundary condition goes to a constant value, Π0,
for vanishing inter-plate separation, d → 0, with a leading
correction term proportional to d2.

Single-site process. – As an example of a CR bound-
ary condition, we consider a surface that is composed
of ionizable groups (e.g., charged phospholipids). Each
group can release a counterion into the solution in a single-

site dissociation process. We first focus on such single-site
CR dissociation process and refer to it as CR1. It is the
simplest and most common CR process, and it will be
extended below to multi-site processes. The surface disso-
ciation/association can be described by the reaction

A+ + B− ⇄ AB, (9)

where A denotes a surface site that can be either
ionized (A+) or neutral (AB). The process of disso-
ciation/association is characterized by an equilibrium
constant Kd through the law of mass action

Kd =
[A+][B−]s

[AB]
, (10)

where [A+], [B−]s and [AB] denote the three correspond-
ing surface concentrations. The equilibrium condition of
eq. (10) can be written in terms of φs ≡ σ(ψs)a

2/e ∼ [A+],

φs =
1

1 + φbe−α+ψs

=
1

2
− 1

2
tanh [(lnφb − α + ψs)/2] , (11)

where a3 is the ion volume, φb = a3nb is the ionic volume
fraction and we have introduced a surface interaction
parameter α = ln(a3Kd). From σ(ψs), eq. (5) and eq. (7)
one obtains explicitly ψm. By using the Taylor expansion
of elliptic functions [33] in eqs. (5) and (11), it is clear
that as d → 0, m diverges, but this divergency is weaker
than d−1. It yields a diverging CR1 disjoining pressure for
small d,

Π
(1)
CR ≃

√
2kBT eα/2a−5/2d−1/2 ∼ d−1/2, (12)

where the superscript in Π
(1)
CR indicates that it corresponds

to a CR1 process. Note that just like ΠCC, Π
(1)
CR does not

depend on the bulk salt concentration, nb.
Another possible single-site process is the process of

charging a neutral surface,

A + B+ ⇄ AB+. (13)

Fig. 2: (Colour online) The dimensionless disjoining pres-
sure, Π (in units of kBT/(4πℓBλ2

D)), for the three boundary
conditions: constant charge (CC, dashed red line), constant
potential (CP, dot-dashed blue line) and charge regulation for
single-site dissociation process of eq. (9) (CR1, solid black line).
The pressure inequality, seen in the figure, ΠCC ≥ ΠCR ≥ ΠCP,
is an inequality that holds in general for the case of charge reg-
ulation consisting of a single-site process. The parameters used
are a = 5 Å, nb = 0.1 M and α = −6 (pK ≃ 1.48). In the in-
set we present the same disjoining pressure on a log-log plot,
demonstrating its scaling with the inter-plate distance, d/λD.

The equilibrium condition for this CR1 process can be
written as

φs =
φb

φb + eα+ψs

=
1

2
− 1

2
tanh [(− ln φb + α + ψs)/2] . (14)

Note that eq. (14) reduces to eq. (11) for the mapping:
φs → 1 − φs and ψs → −ψs. Repeating the same proce-
dure as above, we obtain a somewhat different disjoining
pressure,

Π
(1)
CR ≃

√
2kBTnbe

−α/2a1/2d−1/2 ∼ d−1/2, (15)

which also diverges as d−1/2 but with a different prefactor
that is linear in the bulk concentration. Note that these
results do not depend on the sign of the surface site.

A typical pressure isotherm, Π(d), is computed numeri-
cally for the CR1 process of eq. (9) and is shown in fig. 2.
The mid-plane potential, ψm, is obtained as a function
of inter-membrane separation, d/λD, using eqs. (2), (5)
and (11). The pressure is calculated via eq. (3) and the
surface potential from eq. (2). From the extrapolation of
the surface potential value at large inter-plate separations,
we obtain the surface potential and the surface charge for
CP and CC, respectively. The three pressure isotherms
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obey the inequality: ΠCC ≥ ΠCR ≥ ΠCP. This is a gen-
eral inequality that holds for charge regulations consisting
of single-site dissociation process. The log-log plot in fig. 2
clearly shows the distinct d−1/2 scaling for CR1, confirm-
ing our analytical results, eqs. (12) and (15).

An additional interesting observation can be made for
the vanishing inter-plate separation, d→0. The results for

Π
(1)
CR(d→ 0) can be obtained from ΠCC(d→ 0) of eq. (6)

by substituting the surface charge, σ(d), for the single-site
process into the Gouy-Chapman length. This shows a re-
semblance of the CR1 and CC processes, and gives some

insight to the understanding of the different Π
(1)
CR scal-

ings. The Π
(1)
CR divergence is due to counterions that are

bounded between the planes and neutralize the surface
charge, as in the CC case. However, the surface charge
itself is not constant but decreases with d as explained
above. Namely, some of the counterions adsorb onto the
surface in order to neutralize it. Therefore, less counte-
rions are bounded between the planes and the entropic
penalty is reduced, as compared to the CC case.

The CR scaling results differ substantially from the dis-
joining pressure of the CC (ΠCC ∼ 1/d) as well as CP
(ΠCP ∼ const) boundary conditions. There is a funda-
mental difference between the three boundary conditions,
making it clear that the disjoining-pressure scaling for
small separations for the CC and CP boundary conditions
cannot be obtained by any limiting behavior of the CR
boundary condition.

In previous works on charge regulation [2,3,30,38,39],
based on the same dissociation model, additional approx-
imations were used, including linearization of the CR
boundary condition or linearization of the PB equation.
In these works, it has been shown that CR can reduce to
CC or CP in different limits of the differential capacitance.
In contrast, our results show that the three disjoining pres-
sures, ΠCR, ΠCC and ΠCP scale differently in the small-d
limit (as in eqs. (12) and (15)), and point out that the CR
case does not generally reduce to the CC or CP ones. It
is not their generalization but rather a third distinct case
of its own merit.

Multi-site process. – The inadequacy of the pre-
sumed limiting nature of CC and CP boundary conditions
is equally apparent when one considers more complicated
surface dissociation/association processes that involve sev-
eral ionic species. In fact, although the disjoining pressure
in this case is also bound between ΠCC and ΠCP, it has
a different scaling law than in the single-site CR process.
This shows that CR has a rich behavior that depends on
the number of surface dissociation/assciation processes.
As an illustrative example, we consider a dissociable sur-
face with two independent dissociation/association pro-
cesses referred to as CR2 and described by

A1 + B+
1 ⇄ A1B

+
1 ,

A2 + B−
2 ⇄ A2B

−
2 , (16)

where A1,2 are two different surface binding sites. A spe-
cific example for two dissociation processes can be [40]

A1H + H+ ⇄ A1H
+
2 ,

A2H + OH− ⇄ A−
2 + H2O. (17)

The equilibrium condition yields

φs =
pφb

φb + eα1+ψs

− (1 − p)φb

φb + eα2−ψs

, (18)

where α1,2 are two surface interaction parameters for dis-
sociation/association of B1,2, and p = N1/N is the surface
fraction of A1 sites with N being the total number of sites
and N1 the number of the A1 sites. For p = 1 (or p = 0),
eq. (18) reduces to eq. (14) (or a similar equation for nega-
tive binding ions) and the single-site process case (CR1) is
recovered. Note that bulk electro-neutrality dictates the
equality of the bulk concentration of B+

1 and B−
2 (H+ and

OH− in eq. (17)).
Without loss of generality we can focus on the situation

in which α2 → −∞, i.e., strong adsorption of the B−
2 ions,

giving the approximate form of eq. (18) (similar to eq. (6)
in ref. [2]),

φs ≃ pφb

φb + eα1+ψs

− (1 − p), (19)

such that the adsorption of the B−
2 ion is similar to a

constant surface charge that remains fixed.
We repeat the same steps as done above for the CR1

process in order to derive the limiting form of the disjoin-
ing pressure for d → 0, and obtain, to first order in d,

Π
(2)
CR ≃ kBTnb

(m0−1)2

m0

[

1 − d · nba
2

2

p(m0 + 1)2

(1 − p)(2p − 1)m0

]

≃ Π0 − Π1d, (20)

where m = m0 + m1d + . . . , and

m0 =
2p − 1

1 − p
nba

3e−α (21)

is the first term in the expansion of m = exp(ψm) in pow-
ers of d. This result is similar to the CP result as the
disjoining pressure goes to a constant value for d → 0, but
the first correction in CR2 is linear in d, unlike the first
CP correction that scales as d2. This pressure expression

is valid for 0.5 < p < 1, while for p → 1/2, Π
(2)
CR ∼ d−1/2

as for the CR1 case. For smaller 0 < p < 0.5, there are
always some fixed surface charges and the pressure ex-
pression for d → 0 reduces to the one of CC, eq. (6), with
|σ|/e = 1 − 2p. Note that these expressions hold in the
limit α2 → −∞, while for any finite α2, the pressure ex-
pression always has the same limiting behavior as eq. (20),

Π
(2)
CR ≃ C0−C1d, but with different C0 and C1 coefficients.
A typical pressure isotherm, Π(d), is computed numer-

ically for the CR2 process and is shown in fig. 3. The
calculation is exactly the same as for fig. 2, but instead
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Fig. 3: (Colour online) The dimensionless disjoining pressure,
Π (in units of kBT/(4πℓBλ2

D)), for the three different boundary
conditions: constant charge (CC, dashed red line), constant
potential (CP, dot-dashed blue line) and charge regulation for
two-site dissociation process (CR2, solid black line). The dot-
dashed thin (black) line indicates the non-zero slope of the CR2

at d = 0, and the parameters used are as in fig. 2 with p = 0.7.
In the inset, we present the same disjoining pressures on a
log-log plot, demonstrating their scaling with the inter-plate
distance, d/λD.

of eq. (11), we use eq. (19), which corresponds to the
CR2 boundary condition. The log-log plot (inset) clearly
shows that Π(d) tends towards a constant value, Π0, as
d → 0, with a constant negative slope, −Π1 (dot-dashed
thin black line), as derived in eq. (20).

The same calculation can be performed for any multi-

site dissociation processes CRn≥2. It can be shown that

Π
(n≥2)
CR (d → 0) ≃ C

(n)
0 − C

(n)
1 d, where C

(n)
0,1 are the two

coefficients in the small-d expansion, whose value depends
on n ≥ 2. The value of m0 also depends on n ≥ 2 and
is determined by examining the vanishing φs limit in the
equilibrium condition (eq. (18) for the CR2 dissociation
process). This pressure scaling is a result of the compe-
tition between the two (or more) dissociation/association
processes of anions and cations. Unlike the CC and CR1

cases, where counterions have to stay bounded between
the planes to neutralize the surface charge, in the multi-
site process the planes are neutralized by the two (or more)
competing processes. Therefore, no counterions remain
between the plane and there is no entropic penalty.

Conclusions. – In this letter, we have shown that the
CR boundary condition implies a much richer behavior
than just an interpolation between the limiting forms of
the CC and CP boundary conditions. Our conclusions are
based on the full non-linear PB equation, as well as the
non-linear form of the charge regulation conditions. They

differ from previous claims that are based on linearization
schemes [2,3,30,38,39].

We have shown that for both single-site (CR1) and
multi-site (CRn≥2) surface dissociation/association pro-
cesses the disjoining pressure is indeed bounded by the
CC and CP limits, while its scaling for small separations
depends on the process type and, generally, is at odds with
both the CC and CP limiting cases. This is clear from the

different scaling of the single-site process (CR1), Π
(1)
CR that

scales as d−1/2, while ΠCC scales as d−1 and ΠCP tends
to a constant. We note that all considered boundary con-
ditions lead to an identical (universal) separation scaling
for large d.

The single-site case is more similar to the CC bound-
ary condition as it diverges for small separations. As was

explained above, the pressure isotherm, Π
(1)
CR, can be ob-

tained by substituting the surface charge density, σ(d),
into the Gouy-Chapman length of the disjoining pressure
expression, ΠCC of eq. (6), for small d. Furthermore,
for multi-site dissociation processes, we have shown that

Π
(n)
CR (n ≥ 2) is similar to the CP case, as it tends towards a

constant value for small separations, Π
(n)
CR ≃ C

(n)
0 −C

(n)
1 d.

Nevertheless, as is apparent from its negative slope at
d = 0, it differs from the CP case whose slope is zero.

In summary, the CR process is shown to be a distinct
type of boundary condition with particular scaling behav-
ior, and cannot be considered as a generalization of the CC
and CP cases. One should also keep in mind the funda-
mental difference between the CR single-site process and
the multi-site ones.
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