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Abstract—Monitoring bridges with wireless sensor networks
aids in detecting failures early, but faces power challenges in
ensuring reasonable network lifetimes. Recharging select nodes
with Unmanned Aerial Vehicles (UAVs) provides a solution that
currently can recharge a single node. However, questions arise on
the effectiveness of a limited recharging system, the appropriate
node to recharge, and the best sink selection algorithm for
improving network lifetime given a limited recharging system.
This paper simulates such a network in order to answer those
questions. It explores five different sink positioning algorithms to
find which provides the longest network lifetime with the added
capability of limited recharging. For a range of network sizes,
our results show that network lifetime improves by over 350%

when recharging a single node in the network, the best node to
recharge is the one with the lowest power level, and that either
the Greedy Heuristic or LP sink selection algorithms perform
equally well.

I. INTRODUCTION

Failing bridges have become a heated issue given the recent

collapses of the Minneapolis I35 bridge in 2007 [10] and

the California Bay Bridge in 2009 [17]. Work in structural

health monitoring attempts to find methods of automating

the inspections and detections. The process to date involves

instrumenting a bridge with sensors that monitor vibrations [6],

[12], [13], [18]. With this instrumentation, structural engineers

can use techniques such as modal analysis [14] to analyze the

health of the bridge. This and similar techniques require high-

frequency data collection at multiple locations along the bridge

at times when vehicles are driving over the bridge.

Deploying power and communication infrastructure for the

sensors is a significant cost in monitoring bridges. Wireless

sensor networks, on the other hand, could be easily and quickly

deployed, programmed to wake when traffic is detected to

monitor vibrations, and programmed to wirelessly communi-

cate the results back to a data collection point. This removes

the cost associated with cables for communication; however,

powering this bridge-monitoring wireless sensor network still

poses a challenge. Under bridges, solar charging is unavailable

and adding wires to the top or edge of the bridge removes one

of the main benefit of using a wireless sensor network.

Fig. 1. Scenario showing UAV going to recharge sensors on a bridge.

To solve this energy problem, we consider utilizing an

unmanned aerial vehicle (UAV) system to recharge a select

number of nodes through wireless power transfer (see Fig-

ure 1), a system we previously described [8]. This wireless

power transfer system enables the UAV to travel to remote

and hard to reach locations to recharge sensor nodes. At

this time, however, flight time constraints limit the UAV to

charging only one or two nodes per flight. With a system that

can selectively charge only a subset of the overall network,

we need to consider which subset to recharge and how to

effectively utilize the network between recharging.

This paper explores which node to recharge to optimize the

overall lifetime of the network. Other research on optimizing

network life focuses on decreasing power consumption and

increasing energy efficiency through the manipulation of MAC

protocols, routing procedures and node versatility [7], [11],

[20], [23], [25]–[27]. We also examine a subset of these

methods within our novel recharging framework to determine

the impact of selective charging on these algorithms.

The paper asks three questions: (1) does recharging a single

node effectively increase the network lifetime, (2) which



improves network lifetime the most - recharging the sink or

recharging the node with the lowest energy level, and (3)

which sink algorithms and heuristics best utilize the recharging

system to increase network lifetime. To explore the first two

questions, we define a battery capacity level for all nodes,

power discharge equations based on communication (as that

will require the most power), and recharging of only a single

node per iteration. For the third question, we focus on four

main sink positioning methods: static sink positioning, ran-

dom sink movement, controlled sink movement, and dynamic

sink movement (using both greedy and linear programming

methods). These algorithms are taken and applied to an ideal

network definition with the added capability of recharging a

single node.

To explore and understand our questions, we develop a

system simulator in Matlab that models the topology, routing,

and recharging systems. In this simulator, all sensors are

homogeneous and self aware of their position in the network.

Topologies are grids that vary in both x and y dimensions with

nodes equally spaced (similar to an under-bridge installation).

Routing is Euclidean shortest path routing to the sink without

consideration for packet loss. In all experiments, the metric

of note is time to first failure at which point we declare the

network dead.

Our results indicate that limited recharging does improve

network lifetime over 350% compared to no recharging, es-

pecially if the node recharged has the lowest energy, although

recharging the sink does help. In choosing a sink selection

algorithm in a system with limited recharging of the lowest

node, the Greedy Heuristic Sink and Linear Programming (LP)

Sink algorithms provided the longest network lifetimes. As the

Greedy Heuristic requires less computation, it performs the

best overall.

The rest of this paper is organized as follows. Section II

describes the related literature. Section III defines our net-

work system, while Section IV outlines the sink selection

algorithms. Section V introduces our simulation environment

and describes the results and Section VI concludes the paper.

II. RELATED WORK

Existing research extensively studied sink algorithms and

mobility patterns to reduce communications costs in wireless

sensor networks. Some research looked into creating more

efficient and cost effective hardware communication modules

[27]. Medium access control protocols have also been heavily

discussed and researched as an avenue of boosting network

energy efficiency [25], [27].

In addition, a large portion of network communication

research has been spent in data routing strategies such as multi-

ple different dissemination protocols, tree structured protocols

and power and sink aware sensor protocols [2], [3], [7], [11].

Moving the sink via sink selection algorithms provides

four categories of algorithms: static [15], [21], random [5],

controlled sink algorithms [4], [9], [15], [16], [22], [24], and

dynamic sink algorithms [4]. Additional improvements include

making the sink mobile [2]. This type of movement can refer

Fig. 2. UAV wirelessly powering a sensor with a LED.

to either a sink obtaining control of an otherwise normal sensor

node, or the sink physically moving itself from one position

to the next [5], [11], [19]. We selected a representative set

covering the major areas to examine in regards to our set of

recharging questions; Section IV describes them in detail.

Our work adapts these energy efficient sink selection strate-

gies to the novel problem of sink selection in networks that

can selectively recharge specific nodes. To the best of our

knowledge, no prior work explores scheduled recharging of

selected nodes.

III. NETWORK AND RECHARGING MODELS

We now define our network model including the overall

topology, data and communication rates, and routing scheme.

In addition to the network model, we describe the recharging

system and the model used for it. The network model is

simplified to enable detailed analysis of the sink selection

algorithm and recharging, which are the focus of this paper.

Future work will examine implementation of these algorithms

on real sensor network hardware.

A. Network Model

The network model assumes all sensor nodes are homoge-

neous, each with the capability of being the sink. We examine

rectangular grid topologies of varying sizes with equal node

distribution and assume each node is geographically localized.

For communication, we assume that data and packet trans-

mission rates are regular and constant. Each node can commu-

nicate bi-directionally only with its direct neighbors when not

operating as the sink node. In our simulation experiments, we

assume that each transmitted and received packet of informa-

tion is done so without error. We assume that each transmission

uses 0.05 battery units and that each node has a capacity

of 50 units. This means that each node can transmit 1000

times before needing recharging. Future work will examine

implementations on a deployed in-situ network.

For routing, we use a multi-hop, shortest path routing

algorithm to the sink. Each node forwards its packet to the sink

during one time interval. At the start of the next time interval

the sink will move if the implemented algorithm instructs it

to. The time intervals continue until the network lifetime is



reached, which we define here to be the time until the first

node fails or the system reaches 200 iterations.

B. Recharging Models

In prior work we developed a UAV that can travel to

remote locations to wirelessly recharge sensor nodes from

a few feet away [8]. Figure 2 shows the UAV wirelessly

transferring energy to a sensor node that is lighting a LED.

We demonstrated that this system is able to transfer over 5W

in flight and current prototypes can transfer up to 15W. The

main limitation of the system is that the UAV can only carry a

limited amount of energy and is therefore limited to recharging

only one or two sensor nodes per flight. In the simulations we

assume that the UAV can recharge a single node and that it is

able to charge this node with an amount of energy proportional

to the size of the grid. As the grid grows larger, the number of

data packets increases, creating a larger drain on the network

energy. To account for this inequality of energy usage, the

amount of power recharged in one node is higher when the

grid size is larger. In practice, this increased charging can

be achieved by sending out larger or multiple UAVs as the

grid size grows. Details of the simulation are presented in

Section V.

IV. SINK SELECTION ALGORITHMS

Sink algorithms are generally divided based on how the

sink moves: static, random, controlled, and dynamic. We

chose algorithms representative of these categories, with two

in the controlled section, in order to provide insight into

which category and type of selection algorithms performs best

with limited recharging. This section describes the five sink

selection algorithms.

A. Static Sink Positioning

The Static Sink algorithm fixes the sink at a stationary

location throughout the lifetime of the sensor network. In

determining which node to fix as the sink, we examine

early sensor network research that concentrated on finding

the optimal static position of the sink in the network [21].

We utilize the work of Luo et al. [15] which mathematically

proved the best positioning of a static sink is in the center of

the network and therefore fix our static sink in the center.

B. Random Sink Movement

Our second algorithm, Random Sink, moves the sink ac-

cording to a random function and repositions it at every time

interval. This category of sink selection usually focuses on a

mobile sink moving randomly through the system (see [5] as

an example), demonstrating improved performance over static

sinks; as the sink is not mobile in our network, a random

function choosing a new sink best captures this category.

C. Controlled Sink Movement: Circles

The Circles Sink algorithm controls the sink movement

instead of using random motion. It is based on work by

Luo et al. [15], which mathematically showed that program-

ming the sink to move on the perimeter of the network

improves the efficiency of power usage over moving the sink

in a circular pattern closer to the center of the network. In

their multi-hop network, moving the sink around the whole of

the perimeter equalized the load of the communication traffic

through each sensor, thus leading to an increase in the network

lifetime. Our algorithm follows this perimeter walk approach

and moves the sink to the next node around the perimeter.

D. Controlled Sink Movement: LP

A different approach to controlled sink movement utilizes

linear programming model to determine the next sink, pro-

viding our fourth algorithm, LP Sink. This algorithm draws

inspiration from research done by Wang et al. [24] which

explores ways of creating an optimal controlled sink mobility

algorithm in order to increase network lifetime instead of

optimizing energy usage.

Using a gridded, multi-hop network with limited battery

capacity, the paper formulated a linear programming problem

to maximize the network lifetime subject to the constraint that

the cost of a single node transmitting and receiving packets

of data is less than the initial energy of the node. Equations 1

through 3 outline this structure.

Max Network Lifetime:
�

∀k∈N

tk (1)

Subject to: �

∀k∈N

c
k

i
tk ≤ e0 (2)

tk ≥ ∀k ∈ N (3)

Where:

• N is the set of all nodes in the grid.

• k represents the current sink.

• i represents a general node in the grid.

• tk represents the sojourn time spent at each sink.

• c
k

i
represents the cost of one node sending and receiving

data in one time interval when the sink is at position k.

The paper defined the network lifetime as the sum of

the total sink sojourn times before any single node fails.

Simulation of this LP solution improved lifetime by 500%

over a static sink [24].

In our work we recreate the LP model as it fits to our

network constraints. Using equation 2, we apply the network

constraints to our shortest path routing algorithm and the

network’s initial node energy level. After an LP calculation

of the optimal sink sojourn times, we schedule the sink to

move incrementally through the network, cycling through all

indicated sinks until the first time to failure.

E. Dynamic Sink Movement

Dynamic mobility patterns extend controlled mobility pat-

terns to account for continually changing networks. Where and

how the sink moves depends on things such as the changing

energy of the network, whether there have been any loss
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Fig. 3. Energy Drain Over Time with a Static Sink and: (a) No Recharging, (b) Sink Recharging, and (c) Lowest Node Recharging

of nodes or data packets, and any congestion problems that

appear as the network is operating. Our final algorithm, Greedy

Heuristic Sink, uses an approach from this category introduced

in Basagni et al. [4].

This work identified a common problem in multi-hop net-

works in that the nodes surrounding the sink become inundated

with forwarding data packets to the sink, unevenly draining

these nodes of their energy. Using this observation this paper

created a heuristic called Greedy Maximum Residual Energy

(GMRE). The GMRE heuristic dynamically moves the sink

such that it occupies the portion of the network with the

highest energy levels. In simulation, the GMRE heuristic

outperformed the static sink by 200% to 350% [4].

This paper takes this heuristic and applies it to a recharge-

able network. As the network is operating, the sink polls all

of the sensors’ energy levels and compares them in blocks.

Blocks within the network consist of 9 nodes, blocks near the

edges of the network consist of 6 nodes, and blocks on the

corners of the network consist of 4 nodes.

For each block, the algorithm calculates the energy of that

block and selects the center of the largest energy block as the

location of the next sink. Note that the computation of energy

accounts for differing block sizes.

V. RESULTS

Given our models and set of sink algorithms we now

evaluate their performance and parameters. In this section,

we present the simulation environment and results of the

simulations. We divide results based on our three questions

from before: (1) the impact of recharging on network lifetime,

(2) the choice of recharging the sink or the node with least

energy, and (3) the choice of sink algorithms for improved

network lifetime with recharging.

A. Simulation Environment

All results were simulated in MATLAB. Each node began

with a battery charge of 50 battery units and the simulation

was run for a total of 200 time units. Every message that was

sent or received had a cost of 0.05 battery units. We recharged

nodes with a charge amount linearly proportional to the size

of the network. This meant larger networks received a larger

charge. Larger charge could happen in practice by sending

multiple or larger UAVs), although we expect that messaging

costs will go up with the square of the network size.

B. Impact of Recharging on Network Lifetime

To assess the impact of single node recharging on the life of

the network, we created a five by five grid with a static sink

and simulated the three types of recharging: no recharging,

recharging the sink every time unit, and recharging the lowest

powered node. Previous research has proven that the optimal

static sink placement for optimizing network lifetime is in the

center of the grid, so when conducting this research all static

sink algorithms has this sink placement [1]. We then took a

closer look at the effect of the power infusion, or lack thereof,

at specific time units out of each simulation. Figure 3(a) shows

the simulation without any recharging at four different time

units. As seen in the figure, the sink and the nodes closest to

the sink lose their energy quickly with the sink running out

of battery near 40 time units while the perimeter nodes have

most of their energy left.

Figures 3(b) and 3(c) also show the five by five grids with

a static sink; however, this time the system employs a power

recharging method where one node recharges every time unit.

Figure 3(b) demonstrates recharging the sink, which increases

network lifetime over 350% compared to no recharging, dying

at time unit 144. This time it is the nodes closest to the

sink that cause the network to die. The nodes along the

perimeter have more of their energy drained than seen in the

no recharging situation.

Figure 3(c) shows the network with recharging capabilities

applied to the lowest node. This form of recharging keeps

the network alive for an extra 40 time units compared to

recharging the sink. In this situation, the sink and its immediate

neighbors die at the same time.

These results suggest that recharging even a single node

has a large impact on the network lifetime. To further explore

this effect, we simulate a static sink with different sized grids

and compare network lifetimes based on number of nodes

in the network. Figure 4 indicates that limited recharging

does improve network lifetime and that recharging the lowest

node instead of the sink may provide the longest lifetime.

It also demonstrates that network size has a large impact on

network lifetime in the case of limited recharging. As network

size increases, network lifetime decreases because the network

begins to use more energy than limited recharging can supply,

since the messaging growth is quadratic, while the recharging

is defined as linear with the network size. In smaller grid



sizes, adding in recharging capabilities could lead to an infinite

network lifetime as long as the recharging amount is greater

than the node with the heaviest routing cost.

C. Better to Recharge Sink or Lowest Energy Node

Figure 4 tends to indicate that recharging the lowest energy

node significantly outperforms recharging the sink. We explore

this and the impact of the sink selection algorithms in more

detail in this section. To do so, we simulated all five sink

selection and positioning algorithms with the three different

forms of recharging across eighty different grid sizes ranging

from 9 to 360 nodes in a grid.

All but the static algorithm intentionally move the sink to

avoid the situation where the sink’s neighbors limit network

lifetime.

Figure 5 compares the average network lifetime of the vary-

ing grid sizes for the three forms of recharging. For most of

the five sink selection algorithms, recharging the lowest node

produced the longest lifetimes and no recharging produced the

lowest network lifetimes. Note that we limited the number of

network iterations to 200, so recharging the lowest node for

LP and Greedy yielded networks that did not die over this time

frame. Recharging the sink also increased network life but, in

most cases, it only outperformed no recharging by a small

margin. This validates our prior observation that recharging

the lowest energy node is the best approach and also leads to

an easy approach to maximize network life regardless of the

sink selection algorithm that is being employed.

D. Best Sink Positioning Algorithm given Recharging Capa-

bilities
Having shown that recharging the lowest energy node is

optimal in all five sink positioning algorithms, we now inves-

tigate which sink positioning algorithm performs best over a

wide range of network sizes using this recharging approach.

Figure 6 shows the results of this comparison, comparing the

network lifetime as the network size increases. The Random
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Sink algorithm is a good benchmark, as the approach is easy

to implement and provides the average of all possible sink

selection algorithms due to its randomness. We can see that

the Static Sink algorithm performs far worse than the random

approach. This reinforces the poor performance that occurs

when sinks do not move.

On the other hand, choosing a sink by moving along the

perimeter of the network, the Circles Sink algorithm, performs

well until the network size increases beyond 250 nodes at

which point the network lifetime begins to decrease. The

Greedy Heuristic Sink and LP Sink algorithms perform the

best with no decrease in network lifetime as the network

size increases. Considering that the runtime of the LP Sink

algorithm is significantly higher than the Greedy Heuristic

Sink algorithm, we can conclude from these investigations that

the Greedy Heuristic Sink is the best approach to maximize

the network lifetime in a system with limited, single-node

recharging capabilities.



VI. CONCLUSION AND FUTURE WORK

With new capabilities that enable unmanned aerial vehicles

to wirelessly recharge sensor networks it is now feasible, in

certain situations, to consider limited recharging as a viable

solution to the sensor network power problem. This paper

explores how limited recharging of a single node affects the

network lifetime with different sink selection algorithms.

Our results show that recharging the sensor network has a

positive impact on the network lifetime across different grid

sizes from 5 to 350 nodes. We determined that recharging the

lowest powered node at every time unit proved more beneficial

to the network than just recharging the sink. This result is

independent of the how the sink is selected and even holds

true if the sink is randomly changed at each time step.

The results examined the optimal sink positioning algorithm

with the lowest powered node being recharged. It is evident

that a static sink performs poorly compared to the other four

algorithms. The greedy maximal residual energy heuristic and

linear programming formulation performed best throughout

all spans of grid sizes. Considering the drastically different

runtime between the LP approach versus the greedy method,

it is clear that greedy sink selection is a very good approach

in networks with single node recharging capabilities.

For future work, we plan to implement a subset of these

algorithms on our sensor network to verify their performance

under real-world conditions. In addition, we plan to continue

our simulation study to explore the effect of recharging on

more complex network models including variations in topolo-

gies, packet delay, and routing congestion. We also plan to

expand the scenario to explore allowing the UAV to charge

more than one node as well as multiple UAVs recharging larger

networks. Finally, we envision that the UAV can collect data

from the network and perform data muling while recharging

nodes. For this, it would be best if the UAV is in direct

communication range of the sink when recharging nodes.

Therefore, we are also actively exploring approaches to ensure

that the sink is within range of the node being recharged.
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