Received 25 August 2020; accepted 2 September 2020. Date of publication 4 September 2020; date of current version 4 November 2020.

The review of this article was arranged by Editor S. Menon.

Digital Object Identifier 10.1109/JEDS.2020.3021827

# Charge Sheet Super Junction in 4H-Silicon Carbide: Practicability, Modeling and Design

K. AKSHAY<sup>®</sup> (Member, IEEE), AND SHREEPAD KARMALKAR<sup>®</sup> (Member, IEEE)

Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

CORRESPONDING AUTHOR: K. AKSHAY (e-mail: akshaysivadasan@gmail.com)

This work was supported by the Ministry of Education, Government of India, under the Prime Minister's Research Fellows (PMRF) Grant,

**ABSTRACT** We discuss details of the Charge Sheet SuperJunction (CSSJ) in 4H-Silicon Carbide (SiC). This device was earlier proposed in Si material. A CSSJ is obtained by replacing the p-pillar of a SJ by a bilayer insulator, e.g.,  $Al_2O_3/SiO_2$ ; the inter-layer interface of this insulator has a negative charge-sheet, whose magnitude is easily controlled via the insulator deposition temperature. This charge-sheet depletes the n-pillar. Two potential advantages of this structural modification are brought out. First, it can avoid the problems related to SiC SJ's p-pillar fabrication. Second, it can lower the specific-on resistance,  $R_{ONSP}$ , below that of SJ by 5–45 %, since SiC technology allows the insulator to be thinner than the p-pillar. The critical field,  $E_C$ , in SiC is > 10 times higher than that in Si. We give an analytical breakdown voltage,  $V_{BR}$ , model, which shows that the  $V_{BR}$  sensitivity to charge imbalance due to inevitable process variations is inversely proportional to  $E_C$ ; hence, this sensitivity of CSSJ in SiC is > 10 times lower than that in Si. On the other hand, we give numerical simulations to establish that, in spite of  $E_C$  differences, the SiC CSSJ inherits the advantage of upto 15% higher  $V_{BR}$  compared to SiC SJ, from its Si counterparts. We show how our prior analytical procedure of designing a SJ can be adapted to design a CSSJ having a lower  $R_{ONSP}$  than the SJ, at a specified  $V_{BR}$  in 1-10 kV range and charge imbalance  $\leq 20$  %. Our work should strengthen the motivation for fabricating the CSSJ in SiC.

**INDEX TERMS** 4H-SiC, breakdown voltage, specific on-resistance, TCAD simulation, analytical model, charge imbalance.

## I. INTRODUCTION

The performance of a conventional silicon (Si) unipolar device based on the 1-Dimensional (1-D) p-n junction is limited by the so called Si limit, which is the minimum specific on-resistance,  $R_{ONSP}$ , achievable for a given breakdown voltage,  $V_{BR}$  [1]. The superjunction (SJ) structure (see Fig. 1(a)) was proposed [2] to lower the  $R_{ONSP}$  below this limit. In this structure, p-pillars are introduced into the ntype drift layer of the 1-D junction to realize a stack of alternating p- and n-pillars. This configuration transforms the field distribution from 1-D to 2-D, reducing the peak field for a given reverse bias, and hence yielding the  $V_{BR}$ at a much higher doping,  $N_d$ , than the 1-D junction. About a decade ago [3], we presented a variation of the SJ called the Charge Sheet SJ (CSSJ) (see Fig. 1(b)). Here the ppillar of the SJ is replaced by a thin Al<sub>2</sub>O<sub>3</sub> layer deposited on a thermally grown SiO<sub>2</sub> liner. The Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> interface

has a negative fixed charge whose magnitude can be controlled via the  $Al_2O_3$  deposition temperature [4]. Based on qualitative physics and numerical simulation, we showed that the  $R_{ONSP}$  of the  $C_{SSJ}$  is even lower than that of a SJ by upto 50 %, for a given  $V_{BR}$ . Our subsequent work [5] explained the evolution of the CSSJ and SJ structures from a simple  $\Gamma$ -shaped p<sup>+</sup>-n junction, and also, the practicability of the CSSJ concept.

The above devices were discussed in Si material. However, 4H-Silicon Carbide (SiC) has emerged as an alternative to Si for power semiconductor applications due to its superior material properties. Compared to Si devices, 4H-SiC devices provide  $\sim 2000$  times lower  $R_{ONSP}$ , for the same  $V_{BR}$ , [6]. Devices with  $V_{BR}$ ,  $R_{ONSP}=700$  V,  $1.01~\text{m}\Omega\text{-cm}^2$  [7] and 1726 V, 3.6 m $\Omega\text{-cm}^2$  [8], which are close to the 1-D theoretical limit of unipolar 4H-SiC devices, have been reported.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Recently [9], we presented a preliminary account of a CSSJ in SiC using TCAD simulation. We showed that, apart from inheriting a lower  $R_{ONSP}$  for a given  $V_{BR}$  as compared to a SJ from its Si counterparts, the CSSJ in SiC has two additional advantages: a potentially much simpler fabrication process than a SJ in SiC, and 10 times lower  $V_{RR}$  sensitivity to charge imbalance (due to inevitable process variations) than a CSSJ in Si. In the present paper, we discuss these features further to build a strong motivation for actual device fabrication. We derive an analytical model for  $V_{BR}$  sensitivity to charge imbalance, and point out that the fall in  $V_{BR}$  with pillar doping is much less in SiC than in Si. Further, we show how the  $V_{BR}$  model and design procedure developed for SJ can be adapted for CSSJ in spite of some differences in the physics of SJ and CSSJ. Finally we establish how the CSSJ has the potential to solve the fabrication problems of the SJ.

The operation, practicability,  $V_{BR}$  model and design of CSSJ having  $V_{BR} = 1 - 10$  kV are discussed in Sections II, III, IV and V respectively.

### II. DEVICE OPERATION

To provide a background for later sections, we summarize the key features of the CSSJ theory and illustrate them with numerical simulations. The CSSJ theory is presented in comparison to that of SJ to highlight the advantages of the former. Most qualitative aspects presented here follow those reported in [3], [5] considering a Si device. However, the quantitative results are significantly different since the impact ionization and mobility parameters of SiC differ vastly from those of Si. Moreover, the  $R_{ONSP}$  formulae given below include the n-pillar depletion width,  $W_d$ , under zero-bias, denoted  $W_{d0}$ , which was ignored in prior works [3], [5].

The simulations use the Silvaco TCAD tool [10], Selberherr's impact ionization model for SiC with

$$a_n, a_p = 7.26, 6.86 \times 10^6 \text{ cm}^{-1}$$
  
 $b_n, b_p = 23.4, 14.1 \text{ MV cm}^{-1}$  (1)

calibrated against the data in [11], and a mobility,  $\mu_n$ , dependent on the doping,  $N_d$ , of the n-pillar as per

$$\mu_n = 40 + \frac{950 - 40}{1 + \left(\frac{N_d}{2 \times 10^{17}}\right)^{0.76}} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$$
 (2)

which fits into the measured data at T = 300 K [12]. The details of the device structures simulated appear in the relevant figures. The structures are compatible with the state of the art as per which the negative fixed charge  $N_I$  at the insulator/semiconductor interface can be varied in the range of  $2.5-7.9 \times 10^{12}$  cm<sup>-2</sup> [4] and the aspect ratio of the insulator (which fills trenches) and pillars can be as high as 18 [13].

## A. SPECIFIC ON-RESISTANCE

In an SJ (see Fig. 1(a)), the p-pillar does not conduct in the ON-state and so, assuming  $W_p = W_n$  without any loss of

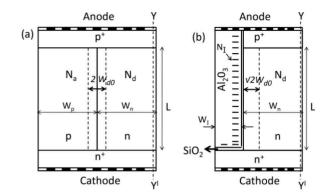



FIGURE 1. Cross section of a *linear* cell of a SuperJunction (SJ) (a) and Charge Sheet SuperJunction (CSSJ) (b). The device consists of lateral repetition of this cell.

generality

$$R_{ONSP} = \frac{2L}{qN_d\mu_n [1 - (W_{d0}/W_n)]}.$$
 (3)

Here, q is the electron charge and  $\mu_n$  is electron mobility. Further,  $W_{d0}$  supports half of the built-in voltage  $V_{bi}$  of the junction between p and n pillars, and is given by

$$W_{d0} \approx \sqrt{\varepsilon_s V_{bi}/qN_d}, \ V_{bi} \approx 2V_t \ln(N_d/n_i),$$
 (4)

where  $\varepsilon_s$  is the dielectric constant,  $V_t$  is the thermal voltage and  $n_i$  is the intrinsic concentration. If the  $R_{ONSP}$  is sought to be reduced by reducing  $W_n$  and increasing  $N_d$  to maintain the charge balance, the  $V_{BR}$  degrades due to the increased peak field at the horizontal  $n^+/p$ -pillar interface. Instead, the CSSJ replaces the p-pillar of the SJ by an insulator film of thickness  $W_I \leq W_n$  (see Fig. 1(b)). The negative interface charge,  $N_I$ , inverts the n-pillar inducing a vertical  $p^+n$  junction over L. The zero bias depletion width of this induced junction is  $\sqrt{2}W_{d0}$  since it drops a potential  $\approx V_{bi}$ . The  $R_{ONSP}$  of CSSJ is given by

$$R_{ONSP} = \frac{L[1 + (W_I/W_n)]}{qN_d\mu_n \left[1 - \left(\sqrt{2}W_{d0}/W_n\right)\right]}.$$
 (5)

Using the approximation  $W_n >> \sqrt{2}W_{d0}$  for simplicity, (3) and (5) show that, for a given  $N_d$ , the  $R_{ONSP}$  of the CSSJ is lower than that of SJ by the factor

$$\frac{R_{ONSP,CSSJ}}{R_{ONSP,SJ}} \approx 0.5 \left(1 + \frac{W_I}{W_n}\right). \tag{6}$$

Fig. 2 compares the  $N_d$  dependencies of the simulated  $R_{ONSP}$  of typical SJ and CSSJ. The devices simulated are balanced, but  $R_{ONSP}$  does not depend on the p-pillar doping,  $N_a$ . The CSSJ is seen to have 40% lower  $R_{ONSP}$  in accordance with (6). The difference in the  $N_d$  dependence of the  $V_{BR}$  of CSSJ and SJ, shown in this figure, is explained below.

## **B. BREAKDOWN VOLTAGE**

We show that breakdown occurs in SiC, i.e., in the n-pillar, because in this condition, the field in SiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub> is below

15

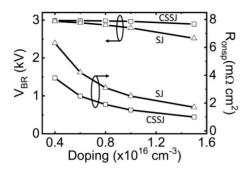



FIGURE 2. Simulated dependence of the breakdown voltage and specific on-resistance on the n-pillar doping,  $N_d$ , of balanced SJ and CSSJ realized in 4H-SiC;  $W_n=Wp=5~\mu m$ ,  $W_I=1~\mu m$  and  $L=18~\mu m$ .

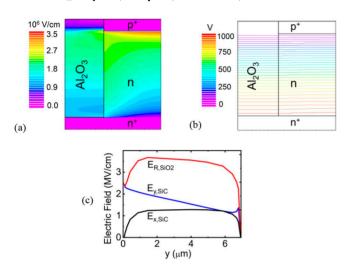



FIGURE 3. Simulations at breakdown in a 4H-SiC CSSJ with  $W_n=0.7~\mu$ m,  $W_I=0.5~\mu$ m,  $L=7~\mu$ m,  $N_d=1~\times~10^{17}~{\rm cm}^{-3}$ ,  $N_I=N_dW_n=7~\times~10^{12}~{\rm cm}^{-2}$  and  $V_{BR}=1~{\rm kV}$ . (a) Field contours; (b) potential lines; (c) vertical and lateral components of the n-pillar field ( $E_{Y,SiC}$  and  $E_{X,SiC}$ ), and the resultant field in SiO<sub>2</sub> liner ( $E_{R,SiO2}$ ) along the Al<sub>2</sub>O<sub>3</sub>/SiC interface over the pillar length, L.

the critical breakdown field of these insulators which is  $\geq$ 5 MV/cm as against  $\sim$  3 MV/cm of SiC [14]. For this purpose, we use the simulated field and potential distributions at breakdown in a device with 20 % charge imbalance and  $V_{BR} = 1$  kV, given in Fig. 3. This is the worst case scenario since the field is lower in devices with higher  $V_{BR}$  and lower charge imbalance. The Silvaco simulator [10] allows the definition of an interface charge at a semiconductor/insulator interface but not at an insulator/insulator interface. We overcome this limitation and derive the accurate field distribution in all regions of the device by exploiting the fact that the  $SiO_2$  liner thickness ( $\sim 7$  nm) is  $<< Al_2O_3(500$  nm) or n-pillar thickness (700 nm). We ignore the SiO<sub>2</sub> liner and place  $N_I$  at the Al<sub>2</sub>O<sub>3</sub>/SiC interface. The field and potential distributions in the SiC and Al<sub>2</sub>O<sub>3</sub> regions of such a structure closely simulate those with  $SiO_2$  included and  $N_I$  placed at the Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> interface. We then obtain the field distribution in SiO<sub>2</sub> using Gauss law, as per which the field  $E_{\nu}$ parallel to the interface is continuous across the SiO<sub>2</sub>/SiC interface while the field  $E_x$  normal to the interface in SiO<sub>2</sub>

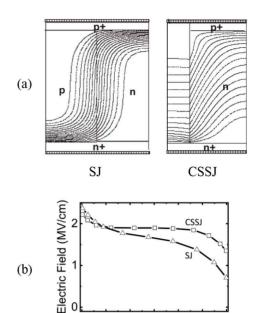



FIGURE 4. (a) Simulated potential lines at 300 V illustrating early lateral depletion in CSSJ than SJ. (b) Simulated field distribution over the pillar length, L, at breakdown, along the cut-line YY<sup>|</sup> of Fig. 1. The devices are realized in 4H-SiC;  $W_p = W_n = 5 \mu m$ ,  $W_l = 1 \mu m$ ,  $L = 18 \mu m$ ,  $N_d = 1.5 \times 10^{16} \text{ cm}^{-3}$  and  $N_l = N_d W_n = 7.5 \times 10^{12} \text{ cm}^{-2}$ .

9 12

Distance (um)

3

is  $\varepsilon_{SiC/}\varepsilon_{SiO2} \approx 2.5$  times that in SiC; the resultant field in SiO<sub>2</sub> is therefore  $E_{R,SiO2} = \sqrt{E_{y,SiC}^2 + (2.5E_{x,SiC})^2}$ , where  $E_{y,SiC}$  and  $E_{x,SiC}$  are the simulated fields at the Al<sub>2</sub>O<sub>3</sub>/SiC interface.

Fig. 3(a) confirms the following: the resultant field is maximum at the top right corner of the n-pillar, and hence maximum impact ionization or breakdown occurs at this point; the field reduces as one moves downward; the field in Al<sub>2</sub>O<sub>3</sub> is less than that in SiC over the pillar length, and is everywhere < 1 MV/cm so that Al<sub>2</sub>O<sub>3</sub> does not breakdown. The almost flat potential lines of Fig. 3(b) confirm that  $E_y >> E_x$  in SiC and Al<sub>2</sub>O<sub>3</sub>. Fig. 3(c) shows the distributions of  $E_{y,SiC}$ ,  $E_{x,SiC}$  and  $E_{x,SiC} = \sqrt{E_{y,SiC}^2 + (2.5E_{x,SiC})^2}$  over the pillar length. It is seen that  $E_{x,SiO2}$  remains well below 5 MV/cm and so breakdown does not occur in SiO<sub>2</sub>. The validity of our simulations is confirmed by the fact that the simulated  $E_{x,SiC} \approx qN_I/\varepsilon_{SiC}\varepsilon_0$  where  $N_I = 7 \times 10^{12}$  cm<sup>-2</sup>, over most of the pillar length.

## B.1. BREAKDOWN VOLTAGE OF BALANCED DEVICES

Fig. 2 shows that the  $V_{BR}$  of a balanced CSSJ is same as that of a comparable SJ at low  $N_d$ . However, CSSJ's  $V_{BR}$  does not degrade as  $N_d$  is raised unlike the SJ's  $V_{BR}$  for the following reason. The reverse bias applied across the CSSJ terminals transfers to the induced inversion layer/n-pillar p<sup>+</sup>n junction, expanding its lateral depletion width,  $W_d$ . However, the body effect shrinks the inversion layer; the shrinkage is more at the n<sup>+</sup> end than the p<sup>+</sup> end due to 2-D effects. The formation and non-uniform shrinkage of the inversion

layer as a function of reverse bias were discussed, illustrated pictorially and validated with TCAD in Section IV-A of our prior work on Si CSSJ [5]. The qualitative features of this work apply to SiC CSSJ as well.

As in zero bias, at other reverse biases too,  $W_d$  of CSSJ is  $\sqrt{2}$  times that of SJ near the p<sup>+</sup> end where inversion layer is present. This is illustrated in Fig. 4(a) with the help of simulated potential lines in comparable SJ and CSSJ compatible with the state of the art [4], [13]. The nearly flat potential lines over  $W_I$  point to negligible voltage drop across the insulator thickness. Consequently, in CSSJ, the n-pillar gets fully depleted laterally at nearly half of the reverse bias required in an SJ; so this bias in CSSJ remains  $<< V_{BR}$  even when  $N_d$  is raised. Once the n-pillar is fully depleted laterally, the field lines due to any more reverse bias emanating from the bottom n<sup>+</sup> directly terminate on the top p<sup>+</sup> as they find no charge left in the pillar to terminate on. Lower the bias for such lateral depletion, more the vertical field lines terminating directly or more uniform the vertical field distribution,  $E_{v}$ , over L, at breakdown. In corollary, even as  $N_d$  is increased, the breakdown field distribution in a CSSJ remains uniform unlike in a SJ (see Fig. 4(b)), and the area under this distribution, i.e.,  $V_{BR}$ , remains constant.

It is of interest to compare the  $V_{BR}$  versus  $N_d$  behavior of SiC CSSJ (see Fig. 2) with that of its Si counterpart with comparable geometry and same  $N_d$  range of 0.4-1.6 x  $10^{16}$  cm<sup>-3</sup> (see Fig. 4 of [3]). It is found that the  $V_{BR}$  of CSSJ in Si falls from 325 V to 150 V. The CSSJ's  $V_{BR}$  in both Si and SiC falls by  $\sim$  175 V. However, the absolute value of  $V_{BR}$  in SiC is  $\sim$  10 times higher than in Si due to the much higher  $E_C$  of the former. Hence, while the Si CSSJ's  $V_{BR}$  falls by a factor > 2, the relative fall in SiC CSSJ's  $V_{BR}$  is very small.

Since, at any  $N_d$ , CSSJ has a significantly lower  $R_{ONSP}$  and the same or slightly higher  $V_{BR}$  than an SJ, the CSSJ's  $R_{ONSP}$  is  $\sim 40\%$  lower for a given  $V_{BR}$  (see Fig. 5).

# B.2. BREAKDOWN VOLTAGE OF IMBALANCED DEVICES

The VBR falls if the charge  $N_dW_n$  in the n-pillar differs from the p-pillar charge  $N_aW_p$  in an SJ or the interface charge,  $N_I$ , in a CSSJ. Such charge imbalance is inevitable due to process variations. For CSSJ, we define a charge imbalance factor as

$$k_{eff} = 1 - (N_I/N_dW_n) \quad N_I \le N_dW_n.$$
 (7)

Here, we have considered the case  $N_I \leq N_d W_n$  rather than  $N_I > N_d W_n$  since the  $V_{BR}$  is less for more n-pillar charge  $N_d W_n$ .

We can define the sensitivity of  $V_{BR}$  to  $k_{eff}$  as

$$S = \left[1 - \frac{V_{BR}(k_{eff})}{V_{BR}(k_{eff} = 0)}\right] \times 100.$$
 (8)

Simulations have shown that the S of SJ and CSSJ realized in the same material differ by < 5% [3]. However, it is significant that S of SJ or CSSJ realized in SiC is  $\sim 10$  times

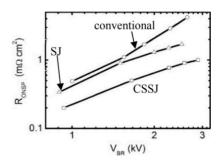



FIGURE 5. Simulated specific on-resistance versus breakdown voltage for theSJ and CSSJ realized in 4H-SiC;  $W_n=W_p=5~\mu\text{m}$ ,  $W_I=1~\mu\text{m}$  and  $N_d=1.5~\text{x}~10^{16}~\text{cm}^{-3}$ ; L is varied to vary the  $V_{BR}$ . Conventional 4H-SiC junction data is shown for reference.

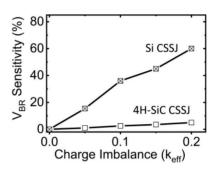



FIGURE 6. Simulated  $V_{BR}$  Sensitivity versus charge imbalance of a Si and 4H-SiC CSSJ with  $N_d=7$  x  $10^{15}$  cm $^{-3}$ ,  $W_n=W_p=2.5$   $\mu m$  and  $W_I=1$   $\mu m$ . For Si CSSJ, data is reproduced from [3].

lower than those realized in Si. This is illustrated for the CSSJ in Fig. 6, where the simulated percentage degradation in  $V_{BR}$  is plotted against  $k_{eff}$ . Charge imbalance of significant degree may be present in a practical device, even with state of the art technology. Hence, apart from achieving a higher  $V_{BR}$  that has long been the motivation for replacing Si with 4H-SiC, the above reduced sensitivity is an added motivation to realize the CSSJ in 4H-SiC.

Considering the above advantages of CSSJ from physics point of view, we are motivated to examine the practicability of CSSJ fabrication in the next section. Subsequent sections describe an analytical model for the  $V_{BR}$  degradation with  $k_{eff}$ , the above material dependence of S and the design of an optimum CSSJ in the presence of charge imbalance.

## III. DEVICE PRACTICABILITY

In [9], we gave the following possible sequence of key steps for fabricating a CSSJ and briefly discussed the practicability of the device.

- 1) Starting n<sup>+</sup> substrate
- 2) Epitaxial growth of the n-type drift layer
- 3) Aluminum implantation of the top p+ region
- 4) High aspect ratio trench formation using Inductively Coupled Plasma (ICP) etching
- 5) SiO<sub>2</sub> liner growth by dry oxidation
- 6) Al<sub>2</sub>O<sub>3</sub> deposition by Atomic Layer Deposition (ALD) at a temperature,  $T_{dep}$ , in the range of 150–350°C

- 7) Filling of the any unfilled trench by Chemical Vapor Deposited (CVD) Al<sub>2</sub>O<sub>3</sub>.
- 8) Contact formation

In the present work, we explain in detail the advantages of CSSJ from fabrication point of view by contrasting the above steps 4) - 7) used to realize the insulator with those used to realize the p-pillar of a SJ in 4H-SiC material.

The fabrication of SJ in 4H-SiC has been problematic. The first two reported works could not make a functional SJ device [16], [17]. The first functional 4H-SiC SJ was reported by Zhong et al. [18], [19] using trench etching and sidewall implantation of p-dopant. However, the fabrication of this 1.35 kV SJ device required six implantations of 40-360 keV energy followed by a high temperature anneal at 200 - 1400°C for 30 minutes, for creating a p<sup>+</sup> liner along the sidewalls of a 6 µm deep trench. Also, the pdopant activation efficiency varied between 20-65 % in the annealing temperature range, and required a trial and error approach to locate the temperature corresponding to the "optimum charge balance" that yields the maximum  $V_{RR}$ . This temperature was found to be 1350°C and applies only to the device fabricated in [18]. A similar trial and error approach is required for fabricating devices with any other  $V_{BR}$ . Considering that the charge imbalance level in Si SJ can go up to 20 % [20], such imbalance levels could be even higher in 4H-SiC SJ due to this added difficulty in controlling the p-dopant activation efficiency [21]. In addition, the above steps of fabricating p-pillars in a 4H-SiC SJ are tedious, expensive and prone to causing severe wafer damage. We shall now assess the CSSJ steps 4) - 6 in the above backdrop.

Consider the trench width in the trench formation step 4). An SJ requires wider and hence lower aspect ratio trench to uniformly implant the trench side walls. The CSSJ could have a narrower trench than SJ, enabling reduction in  $R_{ONSP}$  as per (6). This is because, the CSSJ fabrication involves formation of trenches and subsequent insulator deposition on an SiO<sub>2</sub> liner, which is very well practiced in the case of trench dielectric isolation in CMOS and DRAM cells. These steps are also employed for creating isolation and edge termination in high voltage devices including super junctions [15], [22]. In addition, highly conformal  $Al_2O_3$  deposition by ALD could be achieved in trench with very high aspect ratio up to 50 [23].

Consider the trench depth in the trench formation step 4). Trenches of depth varying from few microns to  $>100~\mu m$  may be required for making devices in the range of 1-10 kV or higher [24]. In SiC, high aspect ratio trenches with depth up to 53  $\mu m$  have been fabricated using ICP etching [13] and up to 200  $\mu m$  using laser ablation method [25]. However, for SJ devices, the number of high energy implantations, required to create a  $p^+$  layer with uniform charge along the walls, may significantly increase for deeper trenches [19]. This limits the voltage range of SJ devices realizable in 4-H SiC. However, the fabrication complexity of CSSJ does not

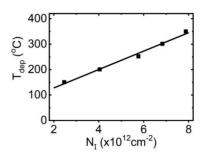



FIGURE 7. The  $Al_2O_3$  deposition temperature versus the negative charge concentration at the  $Al_2O_3/SiO_2$  interface. Line is our model (17); points are experimental data from [4].

increase with  $V_{BR}$  as multiple implantation steps are avoided, Thus, CSSJ is suitable for applications with a wider range of  $V_{BR}$ .

Consider the step 5) involving SiO<sub>2</sub> liner growth. The liner thickness is  $\sim 7$  nm [4] but not critical for three reasons. First, it makes negligible contribution to  $W_I$ (see Fig. 1(b)) which happens to be > 100 nm due to the limitations of the trench realization process. Second, it does not affect  $N_I$  formed at the liner's interface with Al<sub>2</sub>O<sub>3</sub> [4]. Third, there is negligible potential drop over this thickness even at high reverse bias as illustrated by the potential lines of the CSSJ in Fig. 4(a).

Consider the step 6) involving  $Al_2O_3$  deposition by ALD to realize  $N_I$  at  $Al_2O_3/SiO_2$  interface. The magnitude of  $N_I$  can be controllably varied in the range

$$2.5 \times 10^{12} \le N_I \le 7.9 \times 10^{12} \text{cm}^{-2} \tag{9}$$

by varying the deposition temperature,  $T_{dep}$ , in the range 150–350°C (see Fig. 7) [4]. The controllability of the charge at the SiO<sub>2</sub>/4H-SiC interface does not affect the CSSJ operation. This is because, decades of research has reduced this charge from 5 × 10<sup>12</sup> cm<sup>-2</sup> [26] to 3 × 10<sup>11</sup> cm<sup>-2</sup> [27], i.e., to < 10 % of  $N_I$  of (9). Efforts are on to further reduce this charge which degrades inversion layer mobility of SiC MOSFETs.

We recognize that the data of (9) and Fig. 6 correspond to a Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> bilayer realized on a Si substrate [4]. We are justified in using this data for the SiC substrate of our case because of the following reason. Theories of  $N_I$  at the  $Al_2O_3/SiO_2$  interface attribute  $N_I$  to either the uncompensated negative  $(AlO_{4/2})^-$  units at the interface [28], or the OH groups trapped in the volume of the Al<sub>2</sub>O<sub>3</sub> [29]. In either theories, the nature and magnitude of  $N_I$  depend primarily on the Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> layers and their interface, and the role of the substrate on which these layers are deposited is secondary. Thus, [30], [31] report a negative charge of the same order as in (9) at the Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> interface formed on 4H-SiC substrate and explain its origin using the theory of [4] based on Si substrates. This is analogous to the situation for the 2-Dimensional Electron Gas (2-DEG) at the AlGaN/GaN interface. The guidelines for the 2-DEG

in AlGaN/GaN layers on sapphire substrate [32] are widely used for such bilayers on Si or SiC substrates as well.

Thermal cycles at  $500-850^{\circ}\text{C}$  occur after the ALD of Al<sub>2</sub>O<sub>3</sub> during possible trench filling by CVD deposited insulator [33] in step 7) or silicidation during contact formation [18], [34] in step 8). These cycles can be designed to affect the  $N_I$  minimally. For example, [4] showed that annealing at  $700^{\circ}\text{C}$  for 60 minute causes only < 5% increase in  $N_I$  from the as-deposited value. Even if  $N_I$  turns out to be different than [4] for any reason or during further studies, our models and design procedure can still be used with suitable modification of the numbers in (9) and (17).

The CSSJ fabrication involves only a single high energy implantation process given in step 3), thereby saving cost and time, and reduces crystal damage and defects. Unlike this, for an SJ, multiple implantations of appropriately designed energy, dose and tilt angle are crucial in realizing a thin  $p^+$  region with uniform charge along the walls of the trench. The large number of parameters involved makes this a tedious design problem. Process variations in all these parameters contribute to charge imbalance. In contrast, design of the ppillar equivalent charge,  $N_I$ , in CSSJ is simpler as it involves choosing a single parameters,  $T_{dep}$ . Also, the easier control over the  $T_{dep}$  than the p-dopant implantation and activation parameters in SiC, enables fabrication of CSSJ with a lower charge imbalance than SJ.

Reference [22] has given evidence for the lateral depletion of a SJ pillar by fixed charge of the insulator employed between p- and n-pillars to prevent dopant inter-diffusion. Reference [5] has argued that insulator charges do not always pose reliability problems. For instance, in AlGaN/GaN HEMTs, a high interface charge (due to polarization) has been exploited to improve the device performance. Moreover, reliability problems posed by the trapped charge in the gate insulator of small-signal MOSFETs do not apply to the insulator charge providing the charge sheet essential for CSSJ operation. This is because the field in the insulator of a CSSJ is negligible (see Fig. 3(a)), unlike in the gate of a small-signal MOSFET.

Thus, CSSJ has the potential to solve the fabrication problems of SJ. We now discuss how the  $V_{BR}$  model and design procedure developed for SJ can be extended to CSSJ.

## IV. ANALYTICAL MODEL OF THE BREAKDOWN VOLTAGE

We derive a model for the  $V_{BR}$  in balanced and imbalanced CSSJ by considering the vertical breakdown field distribution,  $E_y$ , over L in a CSSJ along the cut-line Y-Y' in the n-pillar (see Fig. 1(b)). Fig. 8 shows this distribution for various  $k_{eff} \leq 1$  as obtained from a TCAD simulator. We can regard this distribution as reducing linearly from an extrapolated peak value,  $E_C$  (the slope is zero for the balanced case  $k_{eff} = 0$ ). This situation is analogous to that in an SJ analyzed in [24], [35], where the linear segment of the  $E_y$  versus y distribution has been shown to have the slope  $= qk_{eff}N_d/2\varepsilon_S$ . Based on this approximation, we write

$$V_{BR} \approx E_C L - 0.25 (q k_{eff} N_d / \varepsilon_S) L^2.$$
 (10)

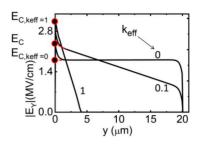
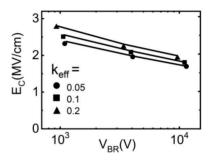




FIGURE 8. Simulated vertical field distribution in a CSSJ at breakdown over pillar length along the cut-line YY $^{||}$  of Fig. 1 for different charge imbalance factors,  $k_{eff}$ . Pillar parameters are  $L=20~\mu m$ ,  $W_n=0.56~\mu m$ , and  $N_d=8\times 10^{16}~cm^{-3}$ .



**FIGURE 9.** Critical electric field as a function of  $V_{BR}$  for several values of charge imbalance factor,  $k_{eff}$ , and  $r_n = 11$ ; values remain unaffected for  $r_n > 11$ . Lines are model results using (12)-(14) and (10) which apply to SJ [24]; solid circles are TCAD simulation results of CSSJ.

A simple formula for S defined in (8) can be derived using (10) and approximating  $E_C$  to be independent of  $k_{eff}$  as

$$S \approx 25qk_{eff}N_dL/\varepsilon_sE_C.$$
 (11)

It is seen that  $S \propto 1/E_C$  for a given value of  $N_d$  and L; as  $E_C$  of 4H-SiC is  $\sim 10$  time higher than Si, the  $V_{BR}$  sensitivity of 4H-SiC CSSJ to charge imbalance is lower than that of Si CSSJ by the same factor.

For accurate estimation of  $V_{BR}$ , the dependence of  $E_C$  on L,  $N_d$  and  $k_{eff}$  should be taken into account. For this purpose, we adopt the following interpolating function given for an SJ [24]

$$E_C = (1 - k_{eff})^{\beta} E_{C, k_{eff} = 0} + k_{eff}^{\beta} E_{C, k_{eff} = 1}$$
 (12)

where  $E_{C,k_{eff}=0}$  is the value at low  $N_d$  and so a function of L alone, and  $E_{C,k_{eff}=1}$  is the breakdown field in a 1-D p-n junction and so a function of  $N_d$  alone, as given below

$$E_{C,k_{eff}=0} = (\gamma L)^{-1/8}, \quad E_{C,k_{eff}=1} = \alpha N_d^{1/8}$$
  
 $\gamma = 4 \times 10^{-48} \text{ cm}^7 \cdot \text{V}^{-8} \quad \alpha = 2.56 \times 10^4 \text{V} \cdot \text{cm}^{-5/8}$   
 $\beta \approx 0.8 + 1.85e^{-0.35r_n} \text{ for } r_n \ge 5.$  (13)

Here,  $r_n$  denotes the aspect ratio of the n-pillar as per

$$r_n = L/2W_n. (14)$$

The  $\alpha$  and  $\gamma$  are based on the impact ionization coefficients of (1). The  $\beta$  expression has been verified upto  $k_{eff}=0.2$ , and reduces to  $\beta\approx0.8$  for  $r_n>11$ . Fig. 9 plots the  $E_C$ 

calculations using (12)-(14) versus  $V_{BR}$  calculated using this  $E_C$  in (10), and compares this plot with TCAD simulations, for  $r_n \ge 11$  or  $\beta = 0.8$ . The agreement between the compared results validates the adoption of SJ's  $E_C$  formula for estimating CSSJ's  $V_{BR}$  using (10).

It is seen that the difference in the breakdown field distributions in the CSSJ and SJ at high  $N_d$  do not matter here. This difference is ultimately traced to the presence of inversion layer along the vertical interface of the n-pillar with the  $Al_2O_3/SiO_2$  in a CSSJ that is absent in the SJ. It is significant that the  $E_C$  and  $V_{BR}$  formulae developed for SJ apply to the CSSJ in spite of this difference in the physics of the two devices.

### V. DEVICE DESIGN

Recently [24], we gave an analytical procedure for designing a SJ having the minimum  $R_{ONSP}$  for a specified  $V_{BR,target}$  and a  $k_{eff}$  governed by technology. We can adapt this procedure to design a CSSJ as follows. We set L and  $N_d$  of the CSSJ equal to the optimum n-pillar parameters –  $L_{opt}$  and  $N_{dopt}$  of the SJ. However,  $W_n$  of the CSSJ can differ from that of the SJ. Moreover, as pointed out in Section III, the present SiC technology allows  $W_I$  of the CSSJ to be much thinner than the p-pillar of the SJ. We choose the maximum possible  $W_n$  and minimum possible  $W_I$  to minimize  $R_{ONSP}$  given by (5), i.e.,

$$W_I = L_{opt}/2r_{I,\text{max}}, \quad W_n = L_{opt}/2r_{n,\text{min}}, \quad N_I = N_{dopt}W_{nopt}.$$

$$(15)$$

Here,  $r_{I,max}$  is the maximum aspect ratio of the insulator permissible in the technology. Further,  $r_{n,min}$  is the minimum aspect ratio of the n-pillar limited by the condition  $N_I \leq N_{Imax}$  which is the maximum value in (9)

$$r_{n,\min} \ge \left(N_{dopt}L_{opt}/2N_{I\max}\right).$$
 (16)

Both  $r_I$  and  $r_n$  differ from aspect ratio r of the pillars of a SJ. Finally, we estimate  $R_{ONSP}$  from (5), and the insulator deposition temperature by the following empirical fit to the measured data (see Fig. 7)

$$T_{dep} = 3.62 \times 10^{-11} N_I + 55.4,$$
 (17)

where  $T_{dep}$  is in °C and  $N_I$  is in cm<sup>-2</sup>.

Reference [24] gave the formulae for  $L_{opt}$  and  $N_{dopt}$  of an SJ as

$$L_{opt} \approx 2.08 \times 10^{-7} V_{BRtarget}^{8/7}$$
 for  $r_n = 5, k_{eff} \ge 0.1$ , (18)

whose values deviate from those of TCAD by  $\leq 5$  % in the validity range, and

$$N_{dopt} = \frac{2\varepsilon_s V_{BRtarget}}{q k_{eff} L_{opt}^2} \left[ \frac{1 - \left(\sqrt{2}W_{d0}/2W_{nopt}\right)}{1 - \left(3\sqrt{2}W_{d0}/4W_{nopt}\right)} \right]$$
for 
$$k_{eff} >> 1/2r_n^2,$$
(19)

where we have used the zero bias depletion width  $\sqrt{2}W_{d0}$  of CSSJ instead of  $W_{d0}$  of SJ used in [24] and given by (4).

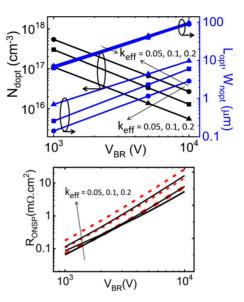



FIGURE 10. (Top) The n-pillar parameters of the CSSJ versus  $V_{BR}$  for different charge imbalance factors; the insulator thickness  $W_I$  is given by (15) using the  $L_{opt}$  data and  $r_{I,max}=18$  [13], [23];  $r_{n,min}$  is varied to yield the optimum results. Lines are our design results and points are TCAD simulations. (Bottom)  $R_{ONSP}$  versus  $V_{BR}$  plots for the CSSJ (solid lines) and for a SJ with r=5 (dashed lines).

We can get a quick approximate estimate of the various parameters in closed-form using (15)-(19) in the following sequence:  $L_{opt}$  from (18),  $W_{nopt}$  and  $W_{Iopt}$  from (15),  $N_{dopt}$  from (19) where  $W_{d0}$  is calculated from (4) using the value of  $N_{dopt}$  with  $W_{d0} = 0$ ,  $N_I$  from (15) and  $T_{dep}$  from (17).

For accurate results with a general  $k_{eff}$  and  $r_n$ , an iterative calculation is done as follows by including (10) and using  $L_{opt}$  from (18) as initial condition. A numerical calculator does this in < 1 s, while our MATLAB code [36] takes  $\approx$  70 ms.

- a)  $r_{n,min} = 1$ , which is an initial guess.
- b)  $W_{nopt} = L_{opt}/2r_{n,min}$ .
- c)  $N_{dopt}$  from (19), where  $W_{d0}$  is estimated using  $N_{dopt}$  for  $W_{d0} = 0$  for the first time, and using the previous  $N_{dopt}$  thereafter.
- d)  $E_C$  from (12)-(14) and  $L_{opt}$  as the root of the quadratic (10). Iterate a)—c) until successive values of  $L_{opt}$  differ by < 1 %.
- e) If  $W_{nopt}N_{dopt} > N_{Imax} = 7.9 \text{ x } 10^{12} \text{ cm}^{-2}$  increment  $r_{n,min}$  by 0.2 and repeat a) d).
- f)  $W_{Iopt} = L_{opt}/2r_{I,max}$

Fig. 10 (Top) shows that the above calculations of the CSSJ parameters for  $V_{BR,target}=1-10$  kV and  $k_{eff}=0.05-0.2$  agree with TCAD simulations. Fig. 10 (Bottom) compares the  $R_{ONSP}$  of the CSSJ so designed with that of a SiC SJ having the same  $V_{BR,target}$  and  $k_{eff}$ . It can be seen that for  $V_{BR,target}$  in the range of 1–10 kV, the  $R_{ONSP}$  of CSSJ is lower than that of SJ by 5–30%, 19–45%, and 36% for  $k_{eff}=0.05, 0.1$  and 0.2 respectively. Thus, CSSJ is a viable alternative to SJ in 4H-SiC material with superior electrical performance for high voltage applications in the range 1-10 kV.

## VI. CONCLUSION

It was shown that the Charge Sheet SuperJunction (CSSJ) proposed earlier in Silicon (Si) has significant advantages over SJ in 4-H Silicon Carbide (SiC) material. These include, as compared to SJ in SiC, potentially simpler fabrication process, lower charge imbalance and 5–45 % lower specific ON-resistance for a given breakdown voltage. Further, a CSSJ in SiC is > 10 times less sensitive to charge imbalance than that in Si. The theory, modeling and design of SJ can be easily extended to CSSJ over 1-10 kV in spite of some differences in the physics of these two devices. Our work provides a strong motivation for fabricating the 4H-SiC CSSJ proposed.

## **REFERENCES**

- B. J. Baliga, Fundamentals of Power Semiconductor Devices. New York, NY, USA: Springer, 2008.
- [2] T. Fujihira, "Theory of semiconductor superjunction devices," *Jpn. J. Appl. Phys.*, vol. 36, no. 10, pp. 6254–6262, Oct. 1997, doi: 10.1143/JJAP.36.6254.
- [3] S. Srikanth and S. Karmalkar, "Charge sheet superjunction (CSSJ) A new superjunction concept," in *Proc. Int. Workshop Phys. Semicond. Devices (IWPSD)*, Mumbai, India, Dec. 2007, pp. 795–798.
- [4] J. Buckley et al., "Reduction of fixed charges in atomic layer deposited Al<sub>2</sub>O<sub>3</sub> dielectrics," *Microelectron. Eng.*, vol. 80, no. 5, pp. 210–213, 2005. [Online]. Available: https://doi.org/10.1016/j.mee.2005.04.070
- [5] S. Srikanth and S. Karmalkar, "On the charge sheet superjunction (CSSJ) MOSFET," *IEEE Trans. Electron Devices*, vol. 55, no. 12, pp. 3562–3568, Dec. 2008, doi: 10.1109/TED.2008.2006545.
- [6] B. J. Baliga, Silicon Carbide Power Devices. Singapore: World Sci., 2006.
- [7] Y. Tanaka et al., "Fabrication of 700V SiC-SIT with ultra-low onresistance of 1.01mΩ cm2," in Proc. Int. Conf. Silicon Carbide Related Mater. (ICSCRM), Sep. 2005, pp. 1219–1222. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.527-529.1219
- [8] J. H. Zhao, K. Tone, X. Li, P. Alexandrov, L. Fursin, and M. Weiner, "3.6 mΩ cm2, 1726V 4H-SiC normally-off trenchedand-implanted vertical JFETs," in *Proc. 15th Int. Symp. Power Semicond. Device ICs*, Cambridge, U.K., Apr. 2003, pp. 50–53, doi: 10.1109/ISPSD.2003.1225228.
- [9] K. Akshay, M. G. Jaikumar, and S. Karmalkar, "Charge sheet super junction in 4H-silicon carbide," in *Proc. 4th IEEE Electron Devices Technol. Manuf. Conf. (EDTM)*, Penang, Malaysia, Apr. 2020, pp. 1–3, doi: 10.1109/EDTM47692.2020.9117845.
- [10] ATLAS User's Manual. Santa Clara, CA, USA: SILVACO Int., 2006.
- [11] A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefeltd, "Ionization rates and critical fields in 4H silicon carbide," *Appl. Phys. Lett.*, vol. 71, no. 1, pp. 90–92, Jul. 1997, doi: 10.1063/1.119478.
- [12] M. Roschke and F. Schwierz, "Electron mobility models for 4H, 6H, and 3C SiC," *IEEE Trans. Electron Devices*, vol. 48, no. 7, pp. 1442–1447, Jul. 2001, doi: 10.1109/16.930664.
- [13] K. M. Dowling, E. H. Ransom, and D. G. Senesky, "Profile evolution of high aspect ratio silicon carbide trenches by inductive coupled plasma etching," *J. Microelectromech. Syst.* vol. 26, no. 1, pp. 135–142, Feb. 2017, doi: 10.1109/JMEMS.2016.2621131.
- [14] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-k gate dielectrics: Current status and materials properties considerations," *J. Appl. Phys.*, vol. 89, no. 10, p. 5243, May 2001, doi: 10.1063/1.1361065.
- [15] K. P. Gan, X. Yang, Y. C. Liang, G. S. Samudra, and L. Yong, "A simple technology for superjunction device fabrication: Polyflanked VDMOSFET," *IEEE Electron Device Lett.*, vol. 23, no. 10, pp. 627–629, Oct. 2002, doi: 10.1109/LED.2002.803770.
- [16] R. Kosugi et al., "Development of SiC super-junction (SJ) device by deep trench-filling epitaxial growth," Mater. Sci. Forum, vols. 740 742, pp. 785–788, Jan. 2013. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.740-742.785

- [17] R. Kosugi et al., "First experimental demonstration of SiC superjunction (SJ) structure by multi-epitaxial growth method," in Proc. Int. Symp. Power Semicond. Device ICs, Jun. 2014, pp. 346–349, doi: 10.1109/ISPSD.2014.6856047.
- [18] X. Zhong, B. Wang, and K. Sheng, "Design and experimental demonstration of 1.35 kV SiC super junction Schottky diode," in *Proc. Int. Symp. Power Semicond. Device ICs*, Prague, Czechia, Jun. 2016, pp. 231–234, doi: 10.1109/ISPSD.2016.7520820.
- [19] X. Zhong, B. Wang, J. Wang, and K. Sheng, "Experimental demonstration and analysis of a 1.35-kV 0.92-mΩ .cm<sup>2</sup> SiC superjunction schottky diode," *IEEE Trans. Electron Devices*, vol. 65, no. 4, pp. 1458–1465, Apr. 2018, doi: 10.1109/TED.2018.2809475.
- [20] E. Napoli, H. Wang, and F. Udrea, "The effect of charge imbalance on superjunction power devices: An exact analytical solution," *IEEE Electron Device Lett.*, vol. 29, no. 3, pp. 249–251, Mar. 2008, doi: 10.1109/LED.2007.915375.
- [21] L. Yu and K. Sheng, "Modeling and optimal device design for 4H-SiC super-junction devices," *IEEE Trans. Electron Devices*, vol. 55, no. 8, pp. 1961–1969, Aug. 2008, doi: 10.1109/TED.2008.926648.
- [22] S. Balaji and S. Karmalkar, "Effects of oxide-fixed charge on the breakdown voltage of superjunction devices," *IEEE Electron Device Lett.*, vol. 28, no. 3, pp. 229–231, Mar. 2007, doi: 10.1109/LED.2007.891261.
- [23] E. Shkondin et al., "Fabrication of high aspect ratio TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanogratings by atomic layer deposition," J. Vac. Sci. Technol. A, vol. 34, no. 3, Apr. 2016, Art. no. 031605, doi: 10.1116/1.4947586.
- [24] K. Akshay and S. Karmalkar, "Quick design of a superjunction considering charge imbalance due to process variations," *IEEE Trans. Electron Devices*, vol. 67, no. 8, pp. 3024–3029, Aug. 2020, doi: 10.1109/TED.2020.2998443.
- [25] V. Khuat, Y. Ma, J. Si, T. Chen, F. Chen, and X. Hou, "Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching," *Appl. Surf. Sci.*, vol. 289, pp. 529–532, Jan. 2014, doi: 10.1016/j.apsusc.2013.11.030.
- [26] L. A. Lipkin and J. W. Palmour, "Improved oxidation procedures for reduced SiO<sub>2</sub>/SiC defects,," *J. Electron. Mater.*, vol. 25, no. 5, pp. 909–915, May 1996, doi: 10.1007/BF02666657.
- [27] X. Yang, B. Lee, and V. Misra, "Electrical characteristics of SiO<sub>2</sub> deposited by atomic layer deposition on 4H SiC after nitrous oxide anneal," *IEEE Trans. Electron Devices*, vol. 63, no. 7, pp. 2826–2830, Jul. 2016, doi: 10.1109/TED.2016.2565665.
- [28] G. Lucovsky and J. C. Phillips, "Limitations for aggressively scaled CMOS Si devices due to bond coordination constraints and reduced band offset energies at Si-high-k dielectric interfaces," *Appl. Surf. Sci.*, vol. 166, nos. 1–4, pp. 497–503, Oct. 2000, doi: 10.1016/S0169-4332(00)00482-7.
- [29] P. Ericsson, S. Bengtsson, and J. Skarp, "Properties of Al<sub>2</sub>O<sub>3</sub>-films deposited on silicon by atomic layer epitaxy," *Microelectron. Eng.*, vol. 36, nos. 1–4, pp. 91–94, Jun. 1997, doi: 10.1016/S0167-9317(97)00022-1.
- [30] M. Usman, "Impact of ionizing radiation on 4H-SiC devices," Ph.D. dissertation, Dept. Microelectron. Appl. Phys., KTH Royal Inst. Technol., Stockholm, Sweden, 2012.
- [31] M. Shukla, G. Dutta, M. Ramanjaneyulu, and N. DasGupta, "Electrical properties of reactive-ion-sputtered Al<sub>2</sub>O<sub>3</sub> on 4H-SiC," *Thin Solid Films*, vol. 607, pp. 1–6, May 2016.
- [32] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," J. Appl. Phys., vol. 85, pp. 3222–3233, Mar. 1999.
- [33] A. N. Gleizes, C. Vahlas, M.-M. Sovar, D. Samélor, and M.-C. Lafont, "CVD-fabricated aluminum oxide coatings from aluminum tri-isopropoxide: Correlation between processing conditions and composition," *Chem. Vap. Deposition*, vol. 13, no. 1, pp. 23–29, Jan. 2007, doi: 10.1002/cvde.200606532.
- [34] S.-K. Lee, C.-M. Zetterling, M. Östling, J.-P. Palmquist, and U. Jansson, "Low resistivity ohmic contacts on 4H-silicon carbide for high power and high temperature device applications," *Microelectron. Eng.*, vol. 60, pp. 261–268, Jan. 2002, doi: 10.1016/S0167-9317(01)00603-7.
- [35] M. Alam, D. T. Morisette, and J. A. Cooper, "Design guidelines for superjunction devices in the presence of charge imbalance," *IEEE Trans. Electron Devices*, vol. 65, no. 8, pp. 3345–3351, Aug. 2018, doi: 10.1109/TED.2018.2848584.
- [36] K. Akshay and S. Karmalkar. Charge Sheet Super-Junction Design. Accessed: Aug. 23, 2020. [Online]. Available: https://codeocean.com/capsule/9644664



**K. AKSHAY** (Member, IEEE) received the B.Tech. degree in electronics and communication engineering from the National Institute of Technology, Calicut, India, in 2017. He is currently pursuing an accelerated Ph.D. degree with the Department of Electrical Engineering, Indian Institute of Technology Madras, India, as a Prime Minister's Research Fellow. His current research interests include design, modeling and simulation of power semiconductor devices, and CMOS image sensors.



SHREEPAD KARMALKAR (Member, IEEE) received the B.Tech. and an accelerated Ph.D. degrees in electrical engineering from the Indian Institute of Technology Madras, Chennai, India, in 1983 and 1989, respectively, where he is currently a Professor of Electrical Engineering. He has held visiting research/teaching assignments with the University of California, Santa Barbara, Rensselaer Polytechnic Institute, Troy, NY, USA, and the University of South Carolina, Columbia. His areas of interest include semiconductor devices

and education. He has authored video courses on Solid State Devices, Semiconductor Device Modeling and Introduction to Research, hosted on YouTube. His recent research has focussed on modeling and simulation of power devices, GaN HEMTs, nanowire devices, and solar cells. He is the recipient of 2005 Vikram Sarabhai Research Award and the 2007 IBM faculty Award. He is an Associate Editor of the IEEE TRANSACTIONS ON EDUCATION.