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Charge symmetry breaking from a chiral extrapolation of moments
of quark distribution functions
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We present a determination, from lattice QCD, of charge symmetry violation in the spin-independent

and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating

recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton

distribution functions of octet baryons to the physical point. We find small chiral corrections for the

polarized moments, while the corrections are quantitatively significant in the unpolarized case.

DOI: 10.1103/PhysRevD.87.094515 PACS numbers: 12.38.Gc, 12.39.Fe, 14.20.Dh

I. INTRODUCTION

Charge symmetry refers to the equivalence of u quarks
in the proton and d quarks in the neutron, and vice versa.
Precisely, it is the invariance of the strong interaction under
a rotation of 180� about the ‘‘2’’-axis in isospin space. At
low energies, charge symmetry is obeyed to a precision of
order 1% [1]. It would be natural to expect that partonic
charge symmetry should hold to a similar extent.
Traditionally, this expectation has been applied to parton
phenomenology [2,3], and the assumption of good charge
symmetry has been used to reduce the number of indepen-
dent quark distribution functions by a factor of 2.

Recently, charge symmetry violating (CSV) effects have
been included in phenomenological parton distribution func-
tions for the first time [4], and theoretical estimates of the size
of such effects have been made [5,6]. Experimental upper
limits on partonic CSVare in the range 5%–10% [2,3]. CSV
of this magnitude would produce important effects in tests of
physics beyond the standard model, for example in neutrino
deep inelastic scattering experiments [7].

The first two Mellin moments of the spin-dependent
quark distribution functions of the octet baryons, and the
second spin-independent Mellin moment, have recently
been determined from Nf ¼ 2þ 1 lattice simulations by

the QCDSF/UKQCD Collaboration [8,9]. The first analy-
sis of this lattice data used a linear flavor expansion about
the simulation SU(3) symmetric point to extract values for
the charge symmetry violating distributions [8]. Using
chiral extrapolation formulas for the Mellin moments of
quark distribution functions [10–16], recently extended to
include CSV effects [17], we improve on the original
analysis by extrapolating the lattice results to the physical
point. We find that chiral physics generates small correc-
tions to the parton CSV terms.

II. METHOD

In terms of quark distributions, charge symmetry implies

upðx;Q2Þ ¼ dnðx;Q2Þ; dpðx;Q2Þ ¼ unðx;Q2Þ; (1)

with analogous relations for the antiquark distributions.
A measure of the size of the violation of charge symmetry
is given by the ‘‘CSV parton distributions,’’ defined in
terms of the Mellin moments as

�um� ¼
Z 1

0
dxxmðup�ðxÞ � dn�ðxÞÞ (2)

¼ hxmip�u � hxmin�d (3)

and

�dm� ¼
Z 1

0
dxxmðdp�ðxÞ � un�ðxÞÞ (4)

¼ hxmip�d � hxmin�u (5)

for the spin-independent distributions, with analogous
expressions for the spin-dependent case. Here, the plus
(minus) superscripts indicate C-even (C-odd) distributions:

q�ðxÞ ¼ qðxÞ � �qðxÞ: (6)

The Mellin moments accessible to lattice simulations
alternate between C-even and C-odd moments with in-
creasing m; the (m� 1)th spin-independent (SI) and mth
spin-dependent (SD) lattice moments are defined as

hxm�1iBq ¼
Z 1

0
dxxm�1ðqBðxÞ þ ð�1Þm �qBðxÞÞ; (7)

hxmiB�q ¼
Z 1

0
dxxmð�qBðxÞ þ ð�1Þm��qBðxÞÞ: (8)

Recent lattice simulations from the QCDSF/UKQCD
Collaboration [8] give results for the first two SD and first
SI lattice moments. As these Nf ¼ 2þ 1 lattice simula-

tions use degenerate light quarks, the CSV terms cannot be
directly evaluated from the simulation results using
Eqs. (2) and (3) (as this would give zero in each case).
The problem can, however, be approached indirectly.
The original analysis of the QCDSF/UKQCD

Collaboration lattice data used a linear flavor expansion
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at the simulation SU(3) symmetric point to estimate the
CSV terms [8]. That is, the CSV terms were expressed in
terms of hyperon moments as

�u ¼ m�

�
�@hxipu

@mu

þ @hxipu
@md

�
þOðm2

�Þ; (9)

wherem� ¼ ðmd �muÞ, and �dmay be written in a similar
way. The equivalence of the u and d quarks in the simula-
tions, i.e., that @hxind=@md ¼ @hxipu=@mu and @hxind=@mu ¼
@hxipu=@md, has been used to simplify the expression.

Near the SU(3) symmetric point, the strange quark is
considered as a ‘‘heavy light quark,’’ so that

@hxipu
@mu

� hxi�0

s � hxipu
ms �ml

;
@hxipu
@md

� hxi�þ
u � hxipu
ms �ml

; (10)

@hxipd
@mu

� hxi�0

u � hxipd
ms �ml

;
@hxipd
@md

� hxi�þ
s � hxipd
ms �ml

: (11)

Rearranging, the CSV momentum fractions can be
written as1

�u

hxipu�d

¼ 1

2

m�

�mq

ðhxi�þ
u � hxi�0

s Þ=hxipu�d

ðm2
K �m2

�Þ=X2
�

; (12)

�d

hxipu�d

¼ 1

2

m�

�mq

ðhxi�þ
s � hxi�0

u Þ=hxipu�d

ðm2
K �m2

�Þ=X2
�

; (13)

where �mq ¼ ð2ml þmsÞ=3 and X2
� ¼ ð2m2

K þm2
�Þ=3.

Similar expressions hold for the spin-dependent CSV
moments. This method allows an estimate of CSV at the
SU(3) symmetric point.

To evaluate the CSV terms at the physical point, we
perform a chiral extrapolation of the lattice data for the
quark moments [17]. As the isospin-averaged and isospin-
broken expressions for the Mellin moments as functions of
pseudoscalar or quark mass have the same unknown pa-
rameters, a fit to the available isospin-averaged lattice results
allows the CSV terms to be evaluated from the isospin-
broken expressions using Eqs. (2) and (3)—a technique
also used in [18]. These expressions can be evaluated at
any pseudoscalar masses, in particular at the physical point.

III. EXTRAPOLATION OF LATTICE DATA

A. Fit to isospin-averaged lattice data

In previous work, we described an isospin-averaged
chiral perturbation theory fit to QCDSF/UKQCD
Collaboration lattice data for the first few Mellin moments
of quark distributions [8]. Complete details of the fit for-
mulas, fit parameters, and method are given in Ref. [17].

In brief, chiral perturbation theory expansions, described
in Ref. [17], were fit to QCDSF/UKQCD Collaboration
lattice data for the first spin-independent and zeroth and
first spin-dependent moments. The fit functions include
loop corrections and counterterms to leading nonanalytic
order. In particular, the effect of chiral loops with both
octet and decuplet baryon intermediate states, as well as,
for the spin-dependent moments, loops involving a transi-
tion between octet and decuplet baryons, are included.
Tadpole diagrams and terms representing wave function
renormalization are also considered.
The finite-range regularization scheme (FRR) is used to

regularize the loop integrals. This technique, discussed fur-
ther in Refs. [19–21], involves the introduction of a mass
scale � through a regulator uðkÞ inserted into each integral
expression. � is related to the scale beyond which a formal
expansion in powers of the Goldstone boson masses breaks
down (this scale is typically ��=3 for a dipole). For this

analysis, a dipole regulator uðkÞ ¼ ð �2

�2þk2
Þ2 and a regulator

mass� ¼ 1 GeV are chosen. This is based on a comparison
of the nucleon’s axial and induced pseudoscalar form factors
[22] and the value of � deduced from a lattice analysis of
nucleon magnetic moments [23]. All results are insensitive
to this choice; choosing different regulator forms, for ex-
ample monopole, Gaussian or sharp cutoff, and allowing �
to vary by�20% does not change the results of the analysis
within the quoted uncertainties.
Within the FRR framework, expressions for loops with

octet intermediate states involve the integral

Jðm2Þ ¼ 4

3

Z 1

0
dk

k4u2ðkÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ3 (14)

with the finite-range regulator uðkÞ inserted. The normal-
ization of Jðm2Þ has been defined so that the nonanalytic
part matches the common form of dimensionally regular-
ized (DR) results, as Jðm2Þ !DR m2 ln ðm2=�2Þ. Loops with
decuplet intermediate states may be written in an analo-
gous way, in terms of

J1ðm2; �Þ ¼ 4

3

Z 1

0
dk

k4u2ðkÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þ2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
þ �Þ (15)

and

J2ðm2; �Þ ¼ 4

3

Z 1

0
dk

k4u2ðkÞ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
þ �Þ2 ; (16)

which describe loops with one and two decuplet propaga-
tors, respectively. The tadpole contributions are written in
terms of

JTðm2Þ ¼ 4
Z 1

0
dk

k2u2ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ; (17)

which has the same nonanalytic structure as J, i.e.,
JTðm2Þ !DRm2 ln ðm2=�2Þ. To make comparison with DR
expressions clear, we make the integral replacement

Iðm�Þ ! ~Iðm�Þ ¼ ½Iðm�Þ � d�0 � d�2 m
2
��; (18)

1In Ref. [8], the factor of (1=2) appearing at the beginning of
the following equations was erroneously omitted. As a result, the
values quoted for the CSV terms were too large by a factor of 2.
Corrected results are given in the first column of Table I.
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where d�0 and d�2 denote the leading analytic parts of the

Taylor expansion of the integral, and I represents any of
the integrals in Eqs. (14)–(17).

The fit to the lattice results is performed by minimizing
the sum of �2 for each set of moments. There are 24 lattice
data points available for each moment considered [8,24].
The fit parameters, discussed in detail in Ref. [17] and
listed in Appendix A, are different for each moment. For
the zeroth spin-dependent moment there are eight free
parameters, while both the first spin-dependent and first
spin-independent moments have nine fit parameters.

Figures 5, 6, 7, taken from Ref. [17] and located in
Appendix B, show the quality of fit for each moment.

Here X� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

K þm2
�Þ=3

q
¼ 411 MeV is the simula-

tion center of mass of the pseudoscalar meson octet.
Ratios of moments are shown and the X� normalization
is taken for the figures so that they may be easily compared
against published results [8]. The quality of fit is clearly
acceptable in each case, with the �2=dof between 0.6 and
0.9 for each moment. All �2 values are less than one as the
effect of correlations between the original lattice data
could not be included. Figures 1–3 show the fits to the
data in a form suitable for the extraction of the CSV terms
at the unphysical symmetric point by Eqs. (12) and (13).
The full analysis, presented in the next section, includes an
extrapolation to the physical point.

B. Evaluation of CSV terms

As described in Sec. II, the CSV terms given in
Eqs. (2) and (3) may be evaluated by simply substituting
the best-fit parameters of the isospin-averaged fit described
in Sec. III A into the full SU(3), isospin-broken, perturba-
tion theory expressions for the CSV terms. For example,
��um may be expressed as a function of quark mass in the
form [17]

��um ¼ hxmip�u � hxmin�d
¼ aðmÞ

� þ 1

16�2f2
ðbðmÞ

� þ dðmÞ
� þ gðmÞ

� Þ; (19)

where

aðmÞ
� ¼ 1

2
ð��nðmÞ

1 þ �nðmÞ
2 þ �nðmÞ

3 þ �nðmÞ
6 ÞBðmu �mdÞ;

(20)

bðmÞ
� ¼ 1

6
ffiffiffi
3

p ðD2 � 2DF� 3F2Þ sin ð2�Þð5��ðmÞ þ 2��ðmÞ þ 6�	ðmÞÞ½~Jðm2
�0
Þ � ~Jðm2


Þ�

þ 1

24
½�D2ð9��ðmÞ þ 2��ðmÞ þ 8�	ðmÞÞ þ 2DFð19��ðmÞ þ 10��ðmÞ þ 24�	ðmÞÞ þ 3F2ð5��ðmÞ þ 2��ðmÞ

þ 8�	ðmÞÞ�½~Jðm2
K0Þ � ~Jðm2

K�Þ� þ 1

24
ð5��ðmÞ þ 2��ðmÞÞ½~JTðm2

K0Þ � ~JTðm2
K�Þ�; (21)

dðmÞ
� ¼ � 1

72
ð5��ðmÞ þ 2��ðmÞ þ 6�	ðmÞÞC2½~J2ðm2

K0 ; �Þ � ~J2ðm2
K� ; �Þ�

� 1

108
ð5��ðmÞ ���0ðmÞÞC2½~J2ðm2

K0 ; �Þ � ~J2ðm2
K� ; �Þ�; (22)

1 u 1 s

1 s 1 u

1.0 0.5 0.0 0.5 1.0
0.15

0.10

0.05

0.00

0.05

0.10

0.15

mK
2 m 2 X 2

1
q

1
q'

1
up

1
dp

FIG. 1 (color online). Illustration of the fit to the zeroth spin-
dependent moments; data from Ref. [8].
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FIG. 2 (color online). Illustration of the fit to the first spin-
dependent moments; data from Ref. [8].
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gðmÞ
� ¼ � 4

9
ffiffiffi
3

p ðD� 3FÞ sin ð2�Þ�!ðmÞ½~J1ðm2
�0 ; �Þ

þ ~J1ðm2

; �Þ� þ 2

9
ðD� 3FÞ�!ðmÞ½~J1ðm2

K0 ; �Þ
� ~J1ðm2

K� ; �Þ�; (23)

and expressions for the (subtracted) integrals ~J are given in
the previous section. Clearly, entirely analogous expres-
sions may be written for ��dm and the spin-independent
CSV terms. These, taken from Ref. [17], are given in
Appendix A. We remind the reader that, to the same order
in the broken SU(3) symmetry, analogous expressions for
each quark flavor combination in each octet baryon are
expressed in terms of different linear combinations of the
same coefficients. The general case is given in Ref. [17].

In the above expression, meson masses take the form

m2
�� ¼ Bðmu þmdÞ; (24)

m2
�0 ¼BðmuþmdÞ�2B

3
ð2ms�ðmuþmdÞÞ sin

2�

cos2�
; (25)

m2
K� ¼ Bðms þmuÞ; (26)

m2
K0 ¼ Bðms þmdÞ; (27)

m2

 ¼ B

3
ð4ms þmu þmdÞ

þ 2B

3
ð2ms � ðmu þmdÞÞ sin

2�

cos 2�
; (28)

and the �0 � 
 mixing angle � is given by

tan 2� ¼
ffiffiffi
3

p ðmd �muÞ
2ms � ðmd þmuÞ : (29)

The parameters �nðmÞ
i , ��ðmÞ, ��ðmÞ, and �	ðmÞ are

determined, for m ¼ f0; 1g, from the isospin-averaged

fits. All that remains to be specified for an evaluation of
��um from the expression above are values for Bmq.

To evaluate the CSV terms at the physical point we take
as input the estimate for the physical up-down quark mass
ratio from Ref. [25]

R :¼ mu

md

¼ 0:553� 0:043; (30)

determined by a fit to meson decay rates. We note that this
value is compatible with more recent estimates of the ratio
from 2þ 1 and 3 flavor QCD and QED [26,27], and lies
within uncertainties of the FLAG lattice averaging group
estimate R ¼ 0:47ð4Þ [28]. The Gell-Mann-Oakes Renner
relation suggests the definition

! ¼ Bðmd �muÞ
2

:¼ 1

2

ð1� RÞ
ð1þ RÞm

2
�ðphysÞ ; (31)

which allows one to define

Bmu ¼ m2
�ðphysÞ=2�!; (32)

Bmd ¼ m2
�ðphysÞ=2þ!; (33)

Bms ¼ m2
KðphysÞ �m2

�ðphysÞ=2: (34)

Here, m�ðphysÞ ¼ 137:3 MeV and mKðphysÞ ¼ 497:5 MeV

are taken to be the physical isospin-averaged meson
masses [29].
As the available QCDSF/UKQCD Collaboration lattice

results are presented only in terms of ratios of moments,
there is an unknown constant scaling factor Z associated
with all data points. This Z is distinct for each moment
(zeroth and first SD and first SI) under consideration. These
constants are determined by matching the extrapolations
for the isovector moments to experimental values at the
physical point at 4 GeV2 [30–32]:

gA ¼ h1ip�u��d ¼
expt

1:2695ð29Þ; (35)

hxip�u��d ¼
expt

0:190ð8Þ; (36)

hxipu�d ¼
expt

0:157ð9Þ: (37)

The uncertainty of these experimental numbers is propa-
gated into the final results. The full error analysis also takes
account of correlated uncertainties between all of the fit
parameters in the original fits [17], as well as allowing for
the stated variation of R. The regulator mass� ¼ 1 GeV is
allowed to vary by �20%, which is again propagated into
the final uncertainty. Changing the regulator uðkÞ within
the FRR scheme leads to small variations of order 1%.
The results of this analysis are summarized and com-

pared with previous work in Table I. While the light
quark ratio R was used as input in this calculation, the

x u x s

x s x u

1.0 0.5 0.0 0.5 1.0
0.15
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0.00

0.05

0.10
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mK
2 m 2 X 2

x
q

x
q'

x
up

x
dp

FIG. 3 (color online). Illustration of the fit to the first spin-
independent moments; data from Ref. [8].

P. E. SHANAHAN, A.W. THOMAS, AND R.D. YOUNG PHYSICAL REVIEW D 87, 094515 (2013)

094515-4



determination of the CSV terms via a linear flavor expan-
sion [8] used the quark mass ratio 3ðmd �muÞ=ðmd þ
mu þmsÞ ¼ 0:066ð7Þ [25]. The choice of R made here
sets this ratio to the same value. The other inputs used in
both calculations, namely the experimental isovector mo-
ments at the physical point, take the same values in both
calculations. Thus, the linear and chiral results in Table I
are directly comparable.

In particular, evaluating the chiral perturbation
theory expressions for the CSV terms at the point where
ðmd þmuÞ ¼ 2ms and both ðmd �muÞ and ðmu þmd þ
msÞ take their physical values, labeled ‘‘SU(3)-sym’’ in
Table I, gives results which may be directly compared
with the linear flavor expansion calculation. As might be
anticipated from an inspection of Figs. 1–3 which show
fits qualitatively consistent with straight lines, chiral loop
corrections to the CSV terms at this point are small and
within uncertainties.

Comparison with results evaluated at the physical pseu-
doscalar masses gives an indication of the chiral loop
corrections in moving away from the SU(3) point. Again,
these corrections are small in the spin-dependent case,
while being more significant in the spin-independent
case. It is noted that, in contrast to the results of the linear
flavor expansion, the chiral perturbation theory results are
based on fits for the quark distribution moments to all
lattice data simultaneously (for each moment), and thus
include the proper correlations between quark moments in
each of the baryons. As a consequence, even with more fit
parameters, the uncertainties are comparable to the simple
linear fits.
The origin of the chiral loop contributions to the CSV

terms can be seen clearly from the form of Eq. (19) [and the
analogous Eqs. (A1), (A6), and (A7) in Appendix A]. One
contribution to the ðu� dÞmoments is illustrated diagram-
matically in Fig. 4. The kaon loop diagrams shown, and the
analogous diagrams for the ðd� uÞ moments, give contri-
butions to the CSV terms proportional to ½~Jðm2

K0Þ �
~Jðm2

K�Þ�, which is nonvanishing when m2
K0 � m2

K� . The

corresponding wave function renormalization terms, as
well as tadpole and decuplet kaon-loop diagrams, also
contribute to the CSV terms proportional to ½~Jðm2

K0Þ �
~Jðm2

K�Þ�. In the spin-independent case, this kaon mass

difference effect yields the only chiral loop corrections to
the CSV terms. For the spin-dependent moments, however,
additional terms proportional to ½~Jðm2

m0
Þ � ~Jðm2


Þ� also

contribute. Cancellation of octet loop terms with wave
function renormalization contributions ensures that these
terms vanish in the SI case.
The chiral loops also account for the corrections in

moving from the ‘‘SU(3) point’’ to the physical point.
For example, as one moves along the line of constant
singlet quark mass [ðmu þmd þmsÞ ¼ constant] from
the SU(3) symmetric point to the physical point, the dif-
ference ½~Jðm2

K0Þ � ~Jðm2
K�Þ� decreases in magnitude by

approximately 30%.

TABLE I. Comparison of results. The column labeled
‘‘Linear’’ gives the results which were published with the lattice
simulation results [8], calculated using a linear flavor expansion
about the SU(3) symmetric point. These have been corrected
from the values quoted in [8], as explained in the footnote
preceding Eq. (12). ‘‘Chiral’’ gives the results of this work,
i.e., including chiral physics, both at the comparable ‘‘SU(3)
symmetric’’ point [with ðmd þmuÞ ¼ 2ms but the physical
ðmd �muÞ], labeled ‘‘SU(3)-sym,’’ and at physical pseudoscalar
masses.

Moment

Linear:

SU(3)-sym

Chiral:

SU(3)-sym

Chiral:

physical

��u0þ �0:0057ð14Þ �0:0063ð13Þ �0:0061ð13Þ
��d0þ �0:0018ð6Þ �0:0019ð6Þ �0:0018ð6Þ
��u1� �0:0010ð3Þ �0:0007ð2Þ �0:0007ð2Þ
��d1� �0:0004ð1Þ �0:0003ð1Þ �0:0002ð1Þ
�u1þ �0:0012ð3Þ �0:0013ð3Þ �0:0023ð7Þ
�d1þ 0.0010(2) 0.0012(2) 0.0017(4)

FIG. 4. Illustration of some of the octet loop terms contributing to ��um ¼ hxmip�u � hxmin�d or �um ¼ hxmipu � hxmind. These
contributions are nonvanishing when the loop pseudoscalar masses are different, i.e., when m2

K0 � m2
K� .
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IV. CONCLUSION

We have used a chiral perturbation theory analysis to
extrapolate QCDSF/UKQCD Collaboration lattice data for
the first several Mellin moments of quark distribution
functions to the physical quark masses. This technique
allows the charge symmetry violating parton distributions
to be evaluated at the physical point.

The conclusion of this study is quite clear. The chiral
corrections to the spin-dependent CSV moments are very
small. In particular, an analysis of the same lattice data using
a linear flavor expansion about the SU(3) symmetric point
gave compatible results [8]. A detailed analysis shows that
both the chiral corrections at the SU(3) symmetric point, as
well as the extrapolation from this point to the physical
quark or pseudoscalar masses, are small effects.

At the physical point, this analysis gives the spin-
dependent CSV terms to be ��u0þ¼�0:0061ð13Þ,
��d0þ ¼ �0:0018ð6Þ, ��u1� ¼ �0:0007ð2Þ, and
��d1� ¼ �0:0002ð1Þ. As a result, one would expect
CSV corrections to the Bjorken sum rule [33,34] to appear
at the half-percent level. Measuring these corrections
would require significant improvement over the current
best determination of the sum rule to 8% precision at
Q2 ¼ 3 GeV2 from a recent COMPASS Collaboration
experiment [35].

For the spin-independent moments, the chiral correc-
tions are more significant. This analysis gives �u1þ ¼
�0:0023ð7Þ and �d1þ ¼ 0:0017ð4Þ, in good agreement
with previous phenomenological estimates of CSV both
within the MIT bag model [5,7] and using the MRST
analysis [4]. These results support the conclusion [3,7]
that partonic CSV effects may reduce the 3	 discrepancy
with the standard model reported by the NuTeV
Collaboration [36] by up to 30%.
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APPENDIX A: EXTRAPOLATION FORMULAS

This section gives formulas for the spin-dependent and
spin-independent charge symmetry violating quark distri-
butions as functions of quark and meson mass. All integrals
are defined in the body of the report.
The fit parameters which appear in the following ex-

pressions are discussed in detail in Ref. [17]. For the zeroth
spin-dependent moment there are eight free parameters; six

linearly independent linear coefficients �nð0Þi¼1�6, the

baryon-baryon-meson coupling constant D, and an opera-

tor insertion parameter�	ð0Þ. Both the first spin-dependent
and first spin-independent moment have nine fit parame-

ters; six linear coefficients �nð1Þi¼1�6 (nð2Þi¼1�6), and three

operator insertion parameters ��ð1Þ, ��ð1Þ, �	ð1Þ (�ð2Þ,
�ð2Þ, 	ð2Þ) in the spin-dependent (-independent) case.
Baryon-baron-meson couplings F and D are set to their

physical values by D ! Dphys ¼ 3
5 gAphys

for each of the

first-moment fits. For all three fits, SU(6) symmetry is
used to set F ¼ 2

3D and C ! Cphys ¼ � 6
5gAphys

is fixed.

Decuplet (�) and transition (!) insertion parameters are
also fixed for each fit, either by using SU(6) symmetry to
relate them to other fit parameters, or, in the case of � for
the first spin-independent moment, by using an experimen-
tal result, as detailed in Ref. [17]. Best fit values and
uncertainties for all fit parameters are given in Table II.

1. Spin-dependent CSV terms

This section gives an explicit expression for the spin-
dependent CSV distribution ��dm as a function of quark
and meson mass. The corresponding expression for ��um

is given in the body of the report.

��dm ¼ hxmip�d � hxmin�u
¼ �aðmÞ

� þ 1

16�2f2
ð �bðmÞ

� þ �dðmÞ
� þ �gðmÞ

� Þ; (A1)

�aðmÞ
� ¼ 1

2
ð��nðmÞ

3 þ �nðmÞ
6 ÞBðmu �mdÞ; (A2)

TABLE II. Values of the fit parameters corresponding to the fits shown in Appendix B. All ð�ÞnðjÞi have dimensions (GeV�2); other
parameters are dimensionless.

First spin-indep. nð2Þ1
nð2Þ2 nð2Þ3 nð2Þ4 nð2Þ5 nð2Þ6 �ð2Þ �ð2Þ 	ð2Þ

1.1(25) �7:0ð28Þ 8.3(26) 0.5(27) 11(4) 6.2(24) �4:1ð17Þ �8:6ð31Þ 7.5(26)

Zeroth spin-dep. �nð0Þ1
�nð0Þ2 �nð0Þ3 �nð0Þ4 �nð0Þ5 �nð0Þ6 D �	ð0Þ

4.9(84) 0.5(98) �2:2ð58Þ �15ð17Þ 0.2(50) �1:1ð88Þ 0.74(24) �0:22ð26Þ
First spin-dep. �nð1Þ1

�nð1Þ2 �nð1Þ3 �nð1Þ4 �nð1Þ5 �nð1Þ6 ��ð1Þ ��ð1Þ �	ð1Þ

�1:5ð13Þ 6.3(29) �3:9ð16Þ �7:0ð46Þ �1:0ð11Þ �6:0ð28Þ 0.41(50) �1:5ð10Þ �0:93ð61Þ
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�bðmÞ
� ¼ 1

6
ffiffiffi
3

p ðD2 � 2DF� 3F2Þ sin ð2�Þð��ðmÞ þ 4��ðmÞ þ 6�	ðmÞÞ½~Jðm2
�0
Þ � ~Jðm2


Þ�

þ 1

24
½D2ð��ðmÞ � 4��ðmÞ � 8�	ðmÞÞ þ 6DFð��ðmÞ þ 4��ðmÞ þ 8�	ðmÞÞ þ F2ð5��ðmÞ þ 20��ðmÞ

þ 24�	ðmÞÞ�½~Jðm2
K0Þ � ~Jðm2

K�Þ� � 1

24
ð��ðmÞ þ 4��ðmÞÞ½~JTðm2

K0Þ � ~JTðm2
K�Þ�; (A3)

�dðmÞ
� ¼ � 1

72
ð��ðmÞ þ 4��ðmÞ þ 6�	ðmÞÞC2½~J2ðm2

K0 ; �Þ � ~J2ðm2
K� ; �Þ�

þ 1

324
ð5��ðmÞ ���0ðmÞÞC2½~J2ðm2

K0 ; �Þ � ~J2ðm2
K� ; �Þ�; (A4)

�gðmÞ
� ¼ þ 4

9
ffiffiffi
3

p ðD� 3FÞ sin ð2�Þ�!ðmÞ½~J1ðm2
�0 ; �Þ þ ~J1ðm2


; �Þ� þ 4

9
F�!ðmÞ½~J1ðm2

K0 ; �Þ � ~J1ðm2
K� ; �Þ�: (A5)

2. Spin-independent CSV terms

This section gives explicit expressions for the spin-
independent CSV distributions as functions of quark and
meson mass.

�um¼hxmipu�hxmind¼aðmÞþ 1

16�2f2
ðbðmÞþdðmÞÞ; (A6)

�dm¼hxmipd�hxminu¼ �aðmÞþ 1

16�2f2
ð �bðmÞþ �dðmÞÞ; (A7)

aðmÞ ¼ 1

2
ð�nðmÞ

1 þnðmÞ
2 þnðmÞ

3 þnðmÞ
6 ÞBðmu�mdÞ; (A8)

bðmÞ ¼ 1

24
½D2ð7�ðmÞ � 2�ðmÞÞ þ 6DFð�ðmÞ � 2�ðmÞÞ

þ 3F2ð5�ðmÞ þ 2�ðmÞÞ�½~Jðm2
K0Þ � ~Jðm2

K�Þ�
þ 1

24
ð5�ðmÞ þ 2�ðmÞÞ½~JTðm2

K0Þ � ~JTðm2
K�Þ�; (A9)

dðmÞ ¼ � 1

72
ð5�ðmÞ þ 2�ðmÞ þ 6	ðmÞÞC2½~J2ðm2

K0 ; �Þ

� ~J2ðm2
K� ; �Þ� � 1

36
ð3�ðmÞ � �0ðmÞÞC2½~J2ðm2

K0 ; �Þ
� ~J2ðm2

K� ; �Þ�: (A10)

�aðmÞ ¼ 1

2
ð�nðmÞ

3 þ nðmÞ
6 ÞBðmu �mdÞ; (A11)

�bðmÞ ¼ 1

24
½�D2ð7�ðmÞ þ 4�ðmÞÞ þ 6DFð�ðmÞ þ 4�ðmÞÞ

� 3F2ð�ðmÞ þ 4�ðmÞÞ�½~Jðm2
K0Þ � ~Jðm2

K�Þ�
� 1

24
ð�ðmÞ þ 4�ðmÞÞ½~JTðm2

K0Þ � ~JTðm2
K�Þ�; (A12)

�dðmÞ ¼ � 1

72
ð�ðmÞ þ 4�ðmÞ þ 6	ðmÞÞC2½~J2ðm2

K0 ; �Þ

� ~J2ðm2
K� ; �Þ� þ 1

108
ð3�ðmÞ � �0ðmÞÞC2½~J2ðm2

K0 ; �Þ
� ~J2ðm2

K� ; �Þ�: (A13)

APPENDIX B: FIGURES

This section shows the fits to QCDSF/UKQCD lattice
results discussed in Sec. III A. The figures are taken from
Ref. [17] and are included here to give an indication of the
quality of fit.
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FIG. 5 (color online). Illustration of the fit to the zeroth spin-
dependent moments; data from Ref. [8].
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