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Abstract 

Molecular association of various aromatic hydrocarbons (D, including sterically hindered 
donors) with a representative group of diverse acceptors (A = quinone, trinitrobenzene, 
tetracyanoethylene, tropylium, tetranitromethane, and nitrosonium) is visually apparent in 
solution by the spontaneous appearance of distinctive colors. Spectral (UV−vis) analyses of 
the colored solutions reveal their charge-transfer origin (λCT), and they provide quantitative 
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information of the intermolecular association in the form of the KDA and εCT values for the 
formation and visualization, respectively, of different [D,A] complexes. Importantly, such 
measurements establish charge-transfer absorption to be a sensitive analytical tool for 
evaluating the steric inhibition of donor−acceptor association. For example, the steric 
differences among various hindered aromatic donors in their association with quinone are 
readily dramatized in their distinctive charge-transfer (color) absorptions and verified by X-ray 
crystallography of the charge-transfer crystals and/or QUANTA molecular modeling 
calculations of optimum intermolecular separations allowed by van der Waals contacts.  

Introduction 
Molecular recognition and preassociation are conceptually vital to catalytic stereospecificity 
and other contemporaneous topics in organic chemistry like self-assembly and organization, 
supramolecular (host−guest) chemistry, etc.1-3Of the various measures available for the 
quantitative evaluation of intermolecular interactions in solution especially weak nonbonded 
ones the appearance of new spectral bands arising from the charge-transfer (CT) transitions 
between electron donors and electron acceptors is especially useful and easy to apply.4-6 
Indeed, the ubiquitous CT absorptions are diagnostic of a very wide spectrum of intermolecular 
electron donor−acceptor (DA) interactions arising in extremely stable, isolable 1:1 complexes 
on one hand,7 to highly transient complexes (with collisional lifetimes) at the other extremum.8 
From a structural point of view, however, it is not at all clear a priori what the critical 
donor−acceptor encounter (distance) must be for the relevant charge-transfer absorptions to 
be in evidence.9  

In order to establish the limits to which charge-transfer is applicable as an analytical probe for 
intermolecular interactions, we employ in this study four classes of aromatic donors (Chart 1), 
in which the essential benzenoid (donor) π-chromophore is sterically encumbered to various 
degrees by increasing alkyl bulk. Thus, the first (simply methylated) member in each class 
represents the sterically most accessible donor, and all members in each class are of 
comparable donor strengths.10 

 

Chart 1  
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In a complementary way, we identify two classes of sterically graded electron acceptors in 
Chart 2. As such, the planar π-acceptors are presented in the order of their increasing size 
from tetracyanoethylene to 1,3,5-trinitrobenzene. Among the σ-acceptors, the diatomic 
nitrosonium cation and dibromine are the smallest and least subject to steric hindrance, 
especially in comparison with the larger, tetrahedral acceptors tetranitromethane and carbon 
tetrabromide. The relative acceptor strengths in Chart 2 are indicated by the trend in the 
reduction potentials (E°red V vs SCE).11,12  

Donor-acceptor pairs in solution are quantitatively monitored in this study by UV−vis spectral 
changes, and the relevant charge-transfer interactions identified in X-ray crystal structures and 
compared with molecular modeling calculations. Steric effects are not only exploited in the 
structural requirements for the intermolecular formation of 1:1 donor−acceptor complexes but 
also to achieve intramolecular selectivity in biaryls and in a tethered donor containing more 
than one aromatic center.  

 

Chart 2  

Results and Discussion 
I. Visual Detection of Intermolecular Donor−Acceptor Associations. Exposure of the 
various methylbenzenes in Chart 1 to the prototypical π-acceptor chloranil (CA) spontaneously 
resulted in brightly colored dichloromethane solutions. The colorations progressively evolved 
from yellow (mesitylene) to orange (durene) to purple (hexamethylbenzene) in line with the 
decreasing ionization potentials of the aromatic donors.10 Similar vivid colorations were also 
observed when the same methylbenzenes were mixed with other electron acceptors such as 
1,3,5-trinitrobenzene (TNB), and further red-shifts in colors occurred with the stronger π-
acceptor tetracyanoethylene (TCNE) as well as the tropylium cation (TR+) in Chart 2.  

II. Quantification of Donor−Acceptor (π−π) Associations. The UV−vis spectral changes in 
Figure 1 typically show the monotonic growth of the diagnostic charge-transfer absorbance 
with its visible maximum at λCT = 520 nm upon the incremental addition of hexamethylbenzene 
(HMB in Chart 1) to a solution of chloranil (CA) in dichloromethane at 24 °C. This well-resolved 
(featureless) absorption band was ascribed to the intermolecular donor−acceptor association, 
i.e. 
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in which the characteristic color derives from the charge-transfer transition, as originally 
formulated by Mulliken.4 Such a structural assignment was readily verified by the isolation of 
dark purple crystals of the 1:1 complex in >95% yield from an equimolar solution of 
hexamethylbenzene and chloranil, simply by the very slow removal of dichloromethane in 

vacuo. X-ray crystallography of the charge-transfer crystal revealed the hexamethylbenzene to 
be directly juxtaposed on the chloranil and separated by an interplanar distance of d = 3.51 Å, 
as illustrated in the top and side perspectives AT and AS (all hydrogens omitted for clarity).13,14 
Indeed, the observed donor−acceptor separation in the purple crystal is remarkably close to 
the calculated distance of d = 3.57 Å by energy minimization of the intermolecular van der 
Waals contacts between hexamethylbenzene and chloranil. The predicted structure based on 
the QUANTA molecular modeling analysis15 is shown in the space-filling representation B 
below.  

 

 

For the quantitative analysis of the donor−acceptor association in solution, the 
spectrophotometric absorbance changes in Figure 1 were treated by the Benesi-Hildebrand 
procedure,16 i.e. 
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where ACT is the molar absorbance and εCT is the extinction coefficient of the charge-transfer 
band at the monitoring wavelength (generally close to λmax). For hexamethylbenzene (D) 
concentrations much greater than that of chloranil, a plot of [CA]/ACT vs the reciprocal donor 
concentration was linear, and the least-squares fit produced a correlation coefficient of greater 
than 0.999 in the inset of Figure 1. From the slope [KDAεCT]-1 and the intercept [εCT]-1, the 
values of the association constant and the extinction coefficient were readily extracted as KDA 
= 2.8 M-1 and ε520 = 2800 M-1 cm-1, respectively. Such a limited magnitude of KDA for 
hexamethylbenzene and chloranil indicated that the donor−acceptor interaction is described as 
weak at best (ΔG°DA = −0.6 kcal mol-1), as typical for the spontaneous formation of electron 
donor−acceptor complexes of quinones (and other π-electron acceptors) with various types of 
other electron donors (such as alkenes, enol ethers, sulfides, etc.).17  

 

Figure 1 Spectral (UV−vis) changes attendant upon the incremental addition of 
hexamethylbenzene to chloranil in dichloromethane. Inset:  Benesi−Hildebrand plot. 

The donor−acceptor interactions of the homologous methylbenzenes in Chart 1 with chloranil 
showed a progressive red-shift of the charge-transfer band λCT for HMB > DUR > MES, as 
listed in Table 1 (column 4). The same trend was observed in the association constants KDA, 
but the magnitude of the change was somewhat limited (see column 5). Weak but distinctive 
donor−acceptor interactions of hexamethylbenzene were also indicated by the comparison of 
the charge-transfer absorptions (λCT) and the magnitudes of the formation constants (KDA) with 
the other π-acceptors including trinitrobenzene, tropylium, and tetracyanoethylene, as listed in 
Tables 1 and 4. For comparative purposes, the intensities of the CT (color) absorptions of the 
various donor−acceptor complexes in Table 1 are given by the values of KDAεCT in column 7.18  
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Table 1. Donor−Acceptor Association of Various Methylbenzenes with Different π-Acceptorsa 

 

a In dichloromethane containing 4−6 mM acceptor and 50−500 mM aromatic donors at 24 °C. 

III. Complete Steric Inhibition of Donor−Acceptor (π−π) Association. Analogous exposure 
of hexaethylbenzene (HEB) to chloranil led to no coloration, and no new CT absorption band 
was observed in the colorless dichloromethane solution even in the presence of a large excess 
of HEB. Furthermore, many attempts to isolate charge-transfer crystals of the HEB complex 
with chloranil in various molar ratios from dichloromethane, chloroform, acetone, ethyl acetate, 
etc. were all unsuccessful, and low-temperature crystallization merely led to phase separation 
of the individual (pure) components. Such a striking difference between hexaethylbenzene and 
hexamethylbenzene (vide supra) was not restricted to chloranil. Thus, all other π-acceptors 
including trinitrobenzene, tropylium, and tetracyanoethylene showed distinctive CT colorations 
ranging from yellow to orange to green when mixed with hexamethylbenzene, whereas no (or 
very faint) colorations were detected with hexaethylbenzene at even higher concentrations. 
The UV−vis spectral changes in Figure 2 confirmed that neither chloranil nor trinitrobenzene 
participated in charge-transfer association with hexaethylbenzene, and the smallest acceptors 
tetracyanoethylene and tropylium showed (at best) very weak CT interactions with HEB (Table 
2).19,20  

The comparative charge-transfer behaviors notwithstanding, the intrinsic electron-donor 
properties of HEB are even somewhat better than those of HMB insofar as their relative 
oxidation potentials of Eox° = 1.59 and 1.62 V vs SCE, respectively.10 In order to clarify this 
anomalous variation (of λCT vs Eox°) between HMB and HEB, we synthesized the novel hybrid 
triethylmesitylene (TEM) with an intermediate oxidation potential of Eox° = 1.61 V vs SCE. In 
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fact, the exposure of TEM to chloranil immediately led to the characteristic purple coloration of 
the charge-transfer association (λCT = 516 nm), and dark purple crystals of the EDA complex 
were readily isolated in high yields from an equimolar mixture of triethylmesitylene and 
chloranil. Indeed, the charge-transfer parameters of the purple [TEM, CA] were essentially 
identical to those of the HMB analogue. Further comparisons of the TEM and HMB complexes 
with trinitrobenzene, tropylium, and tetracyanoethylene in Tables 1 and 2 established the same 
similarities. However, the association constants of the TEM complexes (Table 2, column 5) 
were always roughly half the value of KDA for the corresponding HMB complex (Table 1) in 
dichloromethane. The latter was consistent with a statistical factor of 0.5 for only half the faces 
available for association, as established by the unique conformation of TEM in the chloranil 
complex shown below in structure C by X-ray crystallography. Such a tripodal arrangement of 
all three ethyl groups on the opposite face of TEM is directly related to the conformation of the 
ethyl groups on both faces of HEB with quasi D3d symmetry in structure D which was 
previously established by Mislow and co-workers,21 i.e.  

 

 



Table 2. Donor−Acceptor Association of Sterically Hindered Hexaalkylbenzenes with π-
Acceptorsa 

 

a See Table 1.b Not determined.c No new absorption band.d Estimated values, see 
Experimental Section. 

From such a comparative behavior of HMB, TEM, and HEB with chloranil as well as the other 
π-acceptors TNB, TR+, and TCNE it is easy to conclude that a group of three (1,3,5) ethyl 
substituents is sufficient for the complete steric inhibition of the face of a benzenoid (donor) 
chromophore for intermolecular association by a π-acceptor. Moreover, the comparable steric 
inhibition is achieved by tris-annulations at the α-carbons, as presented in the bicyclic structure 
TET (see Table 2, last 3 entries) and the homologous TMT. Energy minimization between 
chloranil and HEB was predicted with the aid of QUANTA molecular modeling calculations to 
occur at an interplanar distance of d = 4.50 Å in structure E, and the predicted separation of 
chloranil and TET was d = 4.51 Å in structure F. As such, the difference of 0.9 Å between the 
observed separation of 3.6 Å in [HMB, CA] and the predicted separation of 4.5 Å in [HEB, CA] 
could represent a “gray” area in which very weak, but visually (color) and spectrally (CT) 
observable association may be apparent. In order to pursue this possibility, we synthesized a 
series of unsymmetrical aromatic donors designed to cover the benzenoid face only partially.  



 

IV. Steric Modulation of Donor−Acceptor (π−π) Associations. Mesitylene (MES) yielded a 
bright yellow solution when exposed to chloranil, but 1,3,5-tri-tert-butylbenzene (TTB) under 
the same conditions, as expected, led to no coloration. However, intermediate behavior was 
shown by the homologous tert-butylxylene (TXY) which afforded a very pale yellow solution 
with chloranil, and the coloration with di-tert-butyltoluene (DTT) was barely discernible. The 
quantitative effects of these color (intensity) changes are given by the values of KDAεCT in 
Table 3 (column 6),20 which were obtained from the spectrophotometric analysis of the charge-
transfer absorptions (Figure 3A) attendant upon the incremental additions of these aromatic 
donors to chloranil in dichloromethane. The qualitative trend of the color intensity followed the 
monotonic decrease in the association constant KDA with increasing number of tert-butyl 
groups.22 However, the latter had no significant effect on the intrinsic donor strength, since the 
values of the oxidation potentials Eox° tabulated in column 2 were uniformly invariant. This 
observation, taken together with the constancy of the charge-transfer transition (λCT in column 
3), indicated that the interplanar separations (d) between the chloranil and MES, TXY, and 
DTT in the donor−acceptor associations were all comparable,23 despite the decreasing 
strength of the interaction (ΔGDA). In order to identify the origin of the difference, we carried out 
the QUANTA molecular modeling analysis of the nonbonding interactions in all four 
donor−acceptor associations. It is particularly noteworthy that energy minimization was 
predicted to occur at essentially the same interplanar separation of d = 3.4 Å in the chloranil 
complex with MES, TBX, and DTT in structures G, H, and J, respectively, but at a significantly 
larger separation of d = 4.5 Å for tri-tert-butylbenzene in structure K. Such a donor−acceptor 
association in the mono- and di-tert-butyl-substituted donors was achieved by a small parallel 
shift of chloranil away from the tert-butyl group(s).24  
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Figure 2 Steric hindrance in the CT absorption bands of HMB (thick line), TEM (dashed line), 
and HEB (thin line) complexed with (A) chloranil, (B) trinitrobenzene, and (C) tropylium 
obtained by spectral subtraction of the uncomplexed acceptor from the experimental UV−vis 
spectra for (A) 6 mM CA with 50 mM HMB, 50 mM TEM, and 500 mM HEB in CH2Cl2, (B) 5 
mM TNB with 100 mM HMB, 100 mM TEM, and 500 mM HEB in CH2Cl2, and (C) 9 or (4.5) 
mM TR+ BF4- with 22 mM HMB, 22 mM TEM, and (22 mM) HEB in CH3CN. 

 

Figure 3 Partial steric hindrance in donor−acceptor association of (A) 4 mM CA with 250 mM 
MES, TXY, and DTT, (B) 4 mM CA with 240 mM ME, MEA, and MEA2, and (C) 1.7 mM TCNE 
with 102 mM PET and HEB in dichloromethane, obtained as difference spectra analogous to 
those in Figure 2. 

 

Indeed, such limited lateral displacements along the aromatic planes are not expected to be 
important factors in the charge-transfer transitions to significantly alter the values of λCT.25  

  



Table 3. Donor−Acceptor Association of the Class II, III, and IV Aromatic Donors with 
Chloranila 

 

a From 4 mM CA and 0.01−1 M donor in dichloromethane at 24 °C.b -dSee Table 2. 

Among the class II donors (based on durene in Chart 1), the tetramethyl derivative TMA 
showed the same “partial” steric behavior relative to the completely hindered octamethyl 
analogue OMA (and the bicyclic version DMA) at the other extremum. For example, the results 
in Table 3 (entry 6) point to the strongly diminished donor−acceptor interaction of TMA relative 
to DUR in its association with chloranil,26 in a manner similar to the differentiation of TXY and 
MES in the tert-butyl series (class III). Similarly, the bis-annulated donors OMA and DMA were 
subject to complete steric inhibition, much like tri-tert-butylbenzene in class III and TET and 
TMT in class I.  

The replacement of a pair of methyl groups in HMB with methoxy groups render the class IV 
aromatic ethers to be the best π-donors by virtue of the low Eox° values in Table 3.27 As such, 
these methyl ethers were more tolerant to steric encumbrance the bis-annulated MEA2 being 



much less subject to partial steric hindrance than its counterpart DMA in class II, as shown by 
a direct comparison of KDA and KDAεCT in entry 11 with those in entry 8 in Table 3. Repeated 
attempts to grow single crystals of the weak yellow complex [MEA2,CA] for X-ray 
crystallography were unsuccessful. However, from the significantly blue-shifted value of λCT = 
452 nm in column 4, we tentatively conclude that donor−acceptor association of the strong 
donor MEA2 and chloranil probably occurs at an intermediate interplanar separation of d 
greater than 3.5 Å (but less than 4.5 Å).28  

A close inspection of the charge-transfer absorption of the small and rather powerful π-
acceptor tetracyanoethylene (TCNE) with high concentrations of the highly hindered 
hexaethylbenzene revealed a weak but distinctive absorbance at λCT = 540 nm (Table 4).20 In 
order to determine how hexaethylbenzene could be subject to partial steric hindrance, we 
synthesized the hybrid pentaethyltoluene (PET) to establish evidence for donor−acceptor 
association with TCNE. UV−vis spectral analysis (Figure 3c) indeed revealed a blue complex 
to be formed in CH2Cl2 with values of KDA and εCT which were substantially less than those 
evaluated for either HMB or TEM. In particular, the value of εCT = 300 M-1 cm-1 for the [PET, 
TCNE] was sharply diminished from εCT = 5200 M-1 cm-1 for [HMB, TCNE], and such a 
significant difference could result from the reduced π-orbital overlap of PET and TCNE. 
Although repeated attempts to grow single crystals of [PET, TCNE] suitable for X-ray 
crystallography failed, QUANTA molecular modeling studies showed that donor−acceptor 
association was possible at an interplanar separation of d = 3.5 Å by a parallel shift along the 
aromatic plane, much in the manner previously described in structures H and J.24 It is 
noteworthy that with the exception of the lateral slippage of ∼2 Å, structure L for [PET, TCNE] 
is akin to the centrosymmetric structure of [HMB, TCNE] with d = 3.35 Å (established by X-ray 
crystallography)29 as illustrated in the top perspective M. If so, the donor−acceptor association 
observed between the highly hindered HEB and tetracyanoethylene, albeit weak (Table 4, 
entry 4),20 may be achieved by a conformational change of a single ethyl group in 
hexaethylbenzene by a 180° rotation about the aromatic−Cα bond,21b so as to effect the partial 
steric hindrance analogous to the [PET, TCNE] structure in L.24 Indeed the complete absence 
of any donor−acceptor association of the conformationally rigid tris-annulated donor TET with 
tetracyanoethylene (Table 4, entry 5) lends a certain credence to this possibility. Be that as it 
may, the enhanced donor−acceptor association of the tetracyanoethylene with HEB 
(compared to that with chloranil) was in line with its smaller size and increased acceptor 
strength. In order to consider these factors further, we next asked how molecular shape could 
influence the selectivity in donor−acceptor associations by utilizing (a) the powerful diatomic 
cation NO+ with Ered° = 1.28 V vs SCE as well as the uncharged tetranitromethane (TNM) as 
rather small σ-acceptors12 and (b) the substituted biaryls and a tethered aromatic system to 
serve as bichromophoric donors, as follows.  
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Table 4. Donor−Acceptor Association of Hexaalkylbenzenes with Tetracyanoethylenea 



 

a From 2 mM TCNE and 10−100 mM donor in dichloromethane at 24 °C.c ,dSee Table 2. 

V. Shape Selectivity of Aromatic Donors. A. With σ-Acceptors. Exposure of nitrosonium 
(NO+) tetrafluoroborate to hexamethylbenzene in acetonitrile immediately resulted in an 
intense red coloration, and the UV−vis spectral analysis of the bright red solution revealed a 
well-resolved CT absorption band (λCT = 337 nm) with a characteristic low-energy band 
extending beyond 600 nm, as shown in Figure 4A. Although the extinction coefficient of εCT = 
3100 M-1 cm-1 in Table 5 was in line with those evaluated for the HMB complexes with the π-
acceptors in Table 1, the association constant of KDA = 31000 M-1 was more than four orders of 
magnitude larger  indicative of an exceptionally strong donor−acceptor association of NO+ 
with HMB.30  
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Figure 4 Steric effects in charge-transfer absorptions from σ-acceptors with aromatic donors:  
(A) 5 mM NO+BF4- with 1 mM HMB, HEB, and TET (as indicated); NO+BF4- alone (···) in 
acetonitrile and (B) 2 M TNM with 5 mM HMB, HEB and TET as indicated; TNM alone (···) in 
dichloromethane. 

Table 5. Donor−Acceptor Association of Hexaalkylbenzenes with Nitrosonium 
Tetrafluoroboratea 

 



a In acetonitrile containing 1 mM NOBF4 and 5−10 mM donor at 24 °C. 

Surprisingly, the same red color (with comparable intensity) was observed when 
hexaethylbenzene was treated with NO+BF4- under identical (concentration) conditions, and 
the UV−vis spectrum in Figure 4A confirmed the mostly unaltered charge-transfer absorption. 
More surprising were the results in Table 5 which showed that the highly hindered tris-
annulated donors TET and TMT enjoyed undiminished donor−acceptor association with NO+, 
the measured association constants in all cases being uniformly large, with KDA > 3 × 104 M-1. 
In order to account for such an unexpected stability, we grew red crystals of the HEB and TET 
complexes with NO+SbCl6- for X-ray crystallographic analysis (see Experimental Section). 
Indeed, the excellent quality of both single crystals allowed an unambiguous assignment of the 
nitrogen terminus of the slightly tilted NO+ to be centrally situated over the benzenoid (donor) 
chromophore at a nonbonded distance of 2.08 Å in structures N and P. The donor−acceptor 
association, characterized as the very close encounter of NO+ to the benzenoid centers of both 
hexaethylbenzene and TET (inside van der Waals distance), is achieved by significant 
incursion within the “picket fence” formed by three (alternating) ethyl groups in structure N and 
three ethano bridges in structure P. The tight fit of NO+ within the van der Waals cavity in the 
HEB complex (shown in N) is sufficient to severely dampen its librational (crystallographic) 
disorder.31 It is particularly noteworthy that such a donor−acceptor interaction derives from the 
intrinsic donor properties of TET and HEB that are akin to that in the electron-rich HMB,33 as 
shown by the constant values of Eox° in Table 4. As such, the nitrosonium association in the 
TET and HEB complexes (which occurs in the teeth of the potentially repulsive interactions 
with the ethyl and ethano substituents) is allowed by the dimensions of the (van der Waals) 
cavity sufficient to accommodate the diatomic acceptor.34 The three-dimensional requirements 
for the nestling of NO+ is graphically illustrated by the space-filling representations R and S. 
For comparison, the molecular structure of the unhindered hexamethylbenzene complex32b is 
presented in Q.  
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As a further elaboration of the shape-selectivity of aromatic donors, we examined the 
donor−acceptor interaction with the tetrahedral σ-acceptor tetranitromethane (TNM). Thus, the 
exposure of a colorless solution of TNM to hexamethylbenzene in dichloromethane 
immediately resulted in a dark red solution, the UV−vis spectrum of which showed an intense 
(unresolved) CT absorption that extended to well beyond 600 nm (Figure 4B).35 The 
quantitative treatment of the absorbance data according to the Benesi−Hildebrand procedure 
yielded the values of KDA and εCT for the donor−acceptor association in Table 6 which were 
substantially less than those for the NO+ complex. It is particularly noteworthy that the 
association of TNM with the hindered HEB resulted in a blue-shift of the nondescript CT tail 
absorption in Figure 4B, but the quantitative (UV−vis) spectral analysis indicated that the 
association constant of KDA = 1.5 M-1 was only slightly less than that with HMB (by about a 
factor of 3). Furthermore, the highly hindered tris-annulated donors TET and TMT were not 
significantly different from HEB insofar as their association with TNM. We interpret the rather 
invariant values of the extinction coefficients in Table 6 (column 5) to be consistent with 
optimal CT coupling of the small-sized TNM irrespective of steric hindrance from the aromatic 
donor. Although attempts to grow single crystals of the TNM complexes were unsuccessful, 
the QUANTA molecular modeling calculations revealed rather large donor−acceptor 
separations of a single NO2 group of TNM to the HMB centroid in structure T and to the tris-
annulated TET in structure U.36  
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Table 6. Donor−Acceptor Association of Hexaalkylbenzenes with Tetranitromethanea 

 

a In dichloromethane containing 0.2 M TNM and 5−50 mM donor at 24 °C. 

The mixture of hexamethylbenzene with carbon tetrabromide (colorless) resulted in a pale 
yellow solution which showed a weak tailing UV−vis absorbance without a discernible 
absorption maximum arising from the blue-shifted charge-transfer band. Such an overlap of 
the CT absorption with the local absorption of CBr4 precluded a quantitative evaluation of the 
donor−acceptor association.  

B. In Bichromophoric Systems. Exposure of p,p‘-dimethylbiphenyl (T-T) to chloranil in 
dichloromethane was accompanied by an immediate color change to a bright purple solution. 
UV−vis spectral analysis of the well-resolved CT absorption band (λCT = 502 nm in Table 7) 
indicated a very weak association of T-T to chloranil with KDA = 0.09 M-1 and a value of εCT = 
6000 M-1 cm-1 in line with the other chloranil complexes with methylbenzenes in Table 1. By 
analogy with the structure V (top perspective) of the biphenyl/tetracyanobenzene complex 
previously established by X-ray crystallography,37 a similar centrosymmetric structure for the 
intermolecular association of the bitolyl T-T with chloranil was indicated. In marked contrast, 
the unsymmetrically permethylated homologue pentamethylphenyl-p-toluene (PM-T) afforded 
a dark purple solution. The UV−vis spectral analysis of the charge-transfer absorption (λCT = 
510 nm) indicated a substantially larger association with KDA = 0.99 M-1 but significantly 
diminished value of εCT = 700 M-1 cm-1, which we interpreted as a shape-selective association 
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of chloranil with the pentamethylphenyl moiety. Indeed, X-ray crystallography of the purple 
[PM-T,CA] confirmed this spectral assignment and revealed the interplanar separation of d = 
3.41 Å with significant slippage along the pentamethylphenyl plane to avoid the orthogonal tolyl 
moiety as shown in the side and top perspectives WS and WT.  

 

 

By comparison, the unsymmetrically hindered pentaethylphenyl-p-toluene (PE-T) with chloranil 
afforded a yellow solution. The charge-transfer absorption λCT = 437 nm and εCT = 70 M-1 cm-1 
in Table 7 were indicative of an analogous slipped structure for [PE-T,CA], but with the 
chloranil complexed to the less hindered tolyl moiety.38  
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Table 7. Donor−Acceptor Association of Various Biphenyls and the Tethered Aromatic Donor 
with Chloranila 

 

a See Table 1. 

A qualitative view of steric hindrance was also useful in predicting the site selectivity of 
donor−acceptor association in bifunctional aromatic donors that were not directly connected, 
as in the bichromophoric HMB-MEA2 in which hexamethylbenzene (HMB) was tethered to the 
bis-annulated ether MEA2. Thus the treatment of the tethered donor HMB-MEA2 with chloranil 
afforded a dark purple solution in which UV−vis spectral analysis yielded the charge-transfer 
parameters in Table 7 (entry 4) that were essentially identical with those obtained for the 
mononuclear HMB in Table 1 (entry 1). Indeed, X-ray crystallographic analysis of the [HMB-
MEA2, CA] complex provided unambiguous support for the predicted structure Y.  



 

Summary and Conclusions 
Visualization (color) and attendant charge-transfer absorption are reliable and sensitive 
analytical probes for monitoring the donor−acceptor (DA) association of the various aromatic 
hydrocarbons in Chart 1 with the different types of π- and σ-acceptors in Chart 2. Thus, the 
facile molecular association of the polymethylbenzenes, including hexamethylbenzene HMB, 
with all the π-acceptors is immediately apparent by the vividly colored solutions, the UV−vis 
spectral analysis of which reveals new charge-transfer absorption bands (λCT) for the 
quantitative evaluation of the association constant (KDA) as well as the CT color (εCT). In 
marked contrast, the homologous congener hexaethylbenzene HEB shows neither color 
change nor charge-transfer absorption when exposed to the same π-acceptors under identical 
conditions. Such unfavored molecular associations of HEB are readily ascribed to its unique 
conformational structure D, in which the alternant ethyl groups sterically protect both 
benzenoid faces from the close approach of all planar π-acceptors. Indeed, QUANTA 
molecular modeling calculations predict the steric envelope around HEB to have an average 
van der Waals “thickness” of 2r ≃ 6.4 Å, which is significantly larger than that (4.0 Å) for the 
lower homologue HMB. As such, we conclude, that the difference of Δr = 1.2 Å represents an 
upper limit for the molecular association of any of the π-acceptors with the benzenoid 
chromophore.  

X-ray crystallography establishes the hexamethylbenzene association with chloranil to be 
optimized at an interplanar distance of d = 3.51 Å in the cofacial (sandwich) structure A. It is 
noteworthy that such a donor−acceptor separation corresponds to the sum of van der Waals 
contact of hexamethylbenzene and chloranil,39a and this conclusion is supported by the 
HMB/CA separation of r = 3.57 Å calculated with the aid of QUANTA molecular modeling. It is 
tempting to conclude from this computational analysis that molecular associations leading to 
charge-transfer absorptions derive from inner-sphere interactions involving the intimate van 
der Waals contact of the donor and acceptor chromophores.39b According to this formulation, 
any steric encumbrance of either the donor or acceptor (or both) that extends much beyond 
the sum of van der Waals radii of the chromophores will lead to sharply diminished charge-
transfer absorptions. However, shape selectivity can be an ameliorating factor in at least 2 
ways. First, unsymmetrical steric encumbrances in π-donors [such as those in the mono-and 
di-tert-butyl derivatives TXY and DTT, as well as in semi-annulated TMA and MEA (see Chart 
1)] allow the close cofacial (inner-sphere) approach of π-acceptors by a small parallel shift or 
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“slippage” along the aromatic planes, as illustrated by structures H, L, and W. Second, small 
electron-poor molecules such as σ-acceptors [in which the electron deficiency is either largely 
localized at a single atom as in NO+, CBr4, Br2, etc. or on a small group of atoms as in RNO2, 
O3, ArN2+, SO2, etc.] can approach the benzenoid chromophore in sterically encumbered 
donors [such as hexaethylbenzene HEB and the multiply annulated analogues TET, TMT, 
OMA, DMA, and MEA2] with van der Waals cavities of sufficient size to allow the nestling of a 
single (acceptor) center as in the NO+ complexes with structures N and P or close approach of 
multiple centers as in the TNM complexes with structures T and U.  

The modulation of steric effects also allows the selective complexation of unsymmetrically 
substituted biphenyls as in the slipped structure W and in the tethered bichromophoric donor 
as in structure Y. The chemical consequences of such shape-selective complexations of 
(poly)chromic donors and acceptors will be presented separately.  

Experimental Section 
Materials. Hexaethylbenzene (Acros), hexamethylbenzene, durene, 4,4‘-dimethylbiphenyl, 
1,3,5-tri-tert-butylbenzene, and 3,5-di-tert-butyltoluene (Aldrich) were purified by repeated 
crystallization from ethanol and heptane. Mesitylene (Aldrich) and 1-tert-butyl-3,5-
dimethylbenzene (Wiley) were purified by fractional distillation. Tetrachloro-p-benzoquinone 
and tetracyanoethylene (Aldrich) were sublimed in vacuo and recrystallized from benzene. 
1,3,5-Trinitrobenzene was purified by crystallization from ethanol. Tropylium tetrafluoroborate 
(Aldrich) and nitrosonium tetrafluoroborate (Pfaltz and Bauer) were purified by recrystallization 
from an acetonitrile/dichloromethane mixture. Dimethoxydurene,40 9,10-dimethoxy-
1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene,41 1,2,3,4,5,6,7,8-octahydro-1,4:5,8-
dimethanoanthracene,42 1,4-dimethoxy-2,3-dimethyl-5,6,7,8-tetrahydro-5,8-
methanonaphthalene:41 [oil, 1H NMR (CDCl3) δ 1.32 (d, J = 7.2 Hz, 2H), 1.54 (d, J = 8.7 Hz, 
1H), 1.76 (d, J = 8.7 Hz, 1H), 2.00 (d, J = 7.2 Hz, 2H), 2.20 (s, 6H), 3.64 (s, 2H), 3.82 (s, 6H); 
13C NMR (CDCl3) 12.64, 27.39, 40.89, 49.00, 61.04, 127.53, 137.64, 148.08], 1,1,4,4,5,5,8,8-
octamethyl-1,2,3,4,5,6,7,8-octahydroanthracene43 [mp 222−223 °C (lit.43 mp 220−222 °C); 1H 
NMR (CDCl3) δ 1.52 (s, 24H), 1.90 (s, 8H), 7.44 (s, 2H); 13C NMR (CDCl3) 32.25, 34.18, 
35.54], 1,1,4,4-tetramethyl-1,2,3,4,5,6,7,8-octahydroanthracene43 [mp 121−122 °C (lit. mp43 
121−123 °C); 1H NMR (CDCl3) δ 1.38 (s, 8H), 1.71 (s, 4H), 1.88 (sym m, 4H), 2.84 (sym m, 
4H), 7.11 (s, 2H); 13C NMR (CDCl3) 26.61, 29.30, 32.22, 34.05, 35.44, 127.15, 134.47, 
142.31], 2,3,4,5,6-pentaethyl-4‘-methylbiphenyl44 [mp 89−91 °C; 1H NMR (CDCl3) δ 1.05 (t, J = 
7.4 Hz, 6H), 1.35 (t, J = 7.5 Hz, 6H), 1.38 (t, J = 7.5 Hz, 3H), 2.44 (q, J = 7.4 Hz, 4H), 2.52 (s, 
3H), 2.82 (q, J = 7.5 Hz, 4H), 2.85 (q, J = 7.5 Hz, 2H), 7.24 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.8 
Hz, 2H); 13C NMR (CDCl3) 16.00, 16.10, 21.46, 22.41, 23.79, 128.53, 130.04, 135.72, 137.62, 
138.45, 139.36, 139.58, 140.29], and 2,3,4,5,6,4‘-hexamethylbiphenyl45 [mp 90−91 °C; 1H 
NMR (CDCl3) δ 2.09 (s, 6H), 2.40 (s, 6H), 2.44 (s, 3H), 2.54 (s, 3H), 7.14 (d, J = 7.8 Hz, 2H), 
7.35 (d, J = 7.8 Hz, 2H); 13C NMR (CDCl3) 16.82, 16.98, 18.59, 21.41, 129.14, 129.57, 131.00, 
132.45, 134.00, 135.81, 139.99, 140.18], 1,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-
triethanotriphenylene46 (TET), and 1,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-
trimethanotriphenylene47 (TMT) were available from literature procedures. Synthesis of the 
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tethered 9-[3-(pentamethyl-phenyl)-1-propyloxy]-10-methoxy-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-
dimethanoanthracene (HEB-MEA2) will be described elsewhere. Pentaethyltoluene (PET) was 
prepared from hexaethylbenzene by refluxing a mixture of hexaethylbenzene (6.15 g, 25 
mmol) and acetyl chloride (2.0 g, 25.5 mmol) in carbon disulfide (25 mL) in the presence of 
anhydrous aluminum chloride for 8 h. The resulting deep brown solution was cooled to room 
temperature, poured over a mixture of ice (200 g), concentrated hydrochloric acid (25 mL), and 
extracted with ether (4 × 50 mL). The combined ether extracts were washed with water and 
dried over anhydrous magnesium sulfate. Removal of the solvent and recrystallization form 
ethanol afforded white needles of pentaethylacetophenone48 (6.2 g, 95%); mp 136−137 °C 
(lit.48 mp 136−137 °C). A solution of pentaethylacetophenone (6.0 g, 23 mmol) in trifluoroacetic 
acid (25.5 mL) and water (4.5 mL) was refluxed for 16 h and cooled to room temperature. The 
dark brown reaction mixture was poured over ice and extracted with ether (4 × 50 mL). The 
ether layers were washed with water and dried over anhydrous magnesium sulfate. 
Evaporation of the solvent in vacuo furnished pentaethylbenzene as an oil [GC-MS m/z 218 
(M+), calcd for C16H26]. The resulting crude pentaethylbenzene was dissolved in acetic acid (15 
mL) and treated with paraformaldehyde (0.75 g, 25 mmol) and 5 mL of a 31 wt % HBr in acetic 
acid.49 The mixture was heated for 12 h at 80 °C and then poured into 100 mL water. The 
crystalline precipitate thus formed was filtered off, washed with water, and dried in vacuo to 
afford (bromomethyl)pentaethylbenzene (7.0 g, 22.5 mmol); GC-MS m/z 310, 312 (M+), calcd 
for C17H27Br. To a solution of crude (bromomethyl)pentaethylbenzene (6.22 g, 20 mmol) in 
anhydrous diethyl ether (100 mL) was added lithium aluminum hydride (0.76 g, 20 mmol), and 
the mixture was refluxed for 2 h. The usual aqueous workup resulted an oily residue which 
upon crystallization form ethanol afforded pure pentaethyltoluene as colorless prisms (3.7 g, 
80%):  mp 45−46 °C; 1H NMR (CDCl3) δ 1.44 (sym m, 15 H), 2.54 (s, 3H), 2.93 (quintet, 10H); 
13C NMR (CDCl3) 14.86, 15.38, 15.91, 16.07, 22.24, 22.51, 23.16, 132.18, 137.71, 138.26, 
138.62. GC-MS m/z (M+), 232, calcd for C17H28. Anal. Calcd for C17H28:  C, 87.86; H, 12.14. 
Found:  C, 88.06; H, 12.00. Triethylmesitylene (TEM) was prepared by dropwise addition of a 
30% solution of HBr in acetic acid (100 mL) to a stirred mixture of paraformaldehyde (12 g, 0.4 
mol) and 1,3,5-triethylbenzene (16.2 g, 0.1 mol) in glacial acetic acid (25 mL) at 25 °C.49 The 
resulting mixture was heated at 100 °C for 72 h, cooled to room temperature, and poured over 
ice−water (250 mL) mixture. The precipitate thus obtained was filtered, washed with water, and 
dried in vacuo. The crude pale brown solid (38 g) was dissolved in diethyl ether (200 mL) and 
added dropwise to a suspension of lithium aluminum hydride (10 g) in diethyl ether during a 1 
h period. The resulting mixture was refluxed for 4 h and cooled to room temperature. The usual 
workup as above and crystallization from ethanol afforded pure triethylmesitylene (74%):  mp 
55−56 °C; 1H NMR (CDCl3) δ 1.22 (t, J = 7.5 Hz, 9H), 2.37 (s, 9H), 2.79 (q, J = 7.5 Hz, 6H); 
13C NMR (CDCl3) 13.97, 15.50, 23.79, 131.43, 138.88. GC-MS m/z (M+), 204, calcd for C15H24. 
Anal. Calcd for C15H24:  C, 88.16; H, 11.84. Found:  C, 88.37; H, 11.68.  

Dichloromethane (Mallinckrodt analytical reagent) was repeatedly stirred with fresh aliquots of 
concentrated sulfuric acid (∼20% by volume) until the acid layer remained clear. After 
separation, it was washed successively with water, aqueous sodium bicarbonate, water, and 
aqueous sodium chloride and dried over anhydrous calcium chloride. The dichloromethane 
was distilled twice from P2O5 under an argon atmosphere and stored in a Schlenk tube 
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equipped with a Teflon valve fitted with Viton O-rings. Acetonitrile (Fischer) was stirred with 
KMnO4 for 24 h, and the mixture was refluxed until the liquid was colorless. The MnO2 was 
removed by filtration. The acetonitrile was distilled from P2O5 under an argon atmosphere and 
then refluxed over CaH2 for 6 h. After distillation from the CaH2, the solvent was stored in a 
Schlenk flask under an argon atmosphere. The UV−vis absorption spectra were recorded on a 
Hewlett-Packard 8450A diode-array spectrometer. The 1H and 13C NMR spectra were 
recorded on a General Electric QE-300 spectrometer, and chemical shifts are reported in ppm 
units downfield from tetramethylsilane.  

The Formation Constants of Donor−Acceptor Complexes. General Procedure. Typically, 
in a 1-cm square quartz cuvette (UV cell) equipped with a side arm and Schlenk adapter was 
placed 1−4 mM solution of chloranil (with the aid of a hypodermic syringe) under an argon 
atmosphere. A known amount of arene donor was added in increments, and the absorbance 
changes were measured at the absorption maxima as well as two other wavelength close to 
the absorption maxima (see Figure 1). The absorbance data were then evaluated with the aid 
of the Benesi−Hildebrand correlation in eq 2.16 From the linear plot of [CA]/ACT against [arene]-
1, consisting of at least eight data points, the slope was estimated as (KDAεCT)-1 and the 
intercept as (εCT)-1. Linear fits obtained by least square method had a correlation coefficient of 
>0.999. The runs were made in duplicate to ensure the reproducibility of the spectra. Detailed 
procedures for the quantification of DA complex formation with various electron acceptors such 
as tetracyanoethylene,18 1,3,5-trinitrobenzene,11 tropylium tetrafluoroborate,50 
tetranitromethane,35 and nitrosonium tetrafluroborate30 have been described previously. 
Estimation of the Formation Constants for DA Complexes from Hindered Donors. In 
cases of the hindered arene donors (in which no charge-transfer absorption band was 
detected), the upper limits of the formation constants (KDA) were estimated as follows. The 
detection limit of the spectrophotometer was taken as 0.01 absorbance unit for an average 
charge-transfer extinction coefficient of εCT = 1000 M-1 cm-1. We calculated the lowest 
concentration of the donor−acceptor complex detectable by UV−vis spectroscopy to be [D,A] = 
0.01/εCT = 1 × 10-5 M. If no DA complex was detected at a donor concentration of [D] = 0.1−0.5 
M and an acceptor concentration of [A] = 4−10 mM, the upper limit for the formation constant 
was taken as KDA = [DA]/[D] [A] < 0.025−0.002 M-1 (see Tables 1 and 2). The DA complexes 
with KDA < 0.025 M-1 were generally considered to be contact charge-transfer complexes.8,51  

Simulation of the Intermolecular Separations in Donor−Acceptor Complexes by 
Molecular Modeling Calculations. The most energetically favorable separation of the donor 
and acceptor in isolated [D,A] complexes was searched with the aid of molecular modeling 
calculations (CHARMm program,54 vers. 22, Molecular Simulation Inc., 1994) which included 
both intramolecular force field (such as covalent bond, bond angle, and torsion angle 
potentials) and intermolecular interactions (including Columbic and Lennard-Jones potential 
terms). The initial molecular models of the interacting arene donors and the various electron 
acceptors (see Charts 1 and 2) were constructed with the aid of the graphics package 
QUANTA15 running on a Silicon Graphics ONYX Reality workstation. The optimization of the 
geometry of the individual molecules was carried out by initial energy minimization using the 
Steepest Descents (SD) algorithm53 to remove any obvious improper conformations, and this 
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was followed by 1000 steps of ABNR54 (Adopted Basis of Newton-Raphson) algorithm in 
“CHARMm” to reach the minimum of molecular potential energy. The charges of the individual 
molecules were balanced using Gasteiger's method,52 thereby resulting in neutral molecules. 
The energy minimization package CHARMm allowed any number of molecules within a single 
structure file to be simulated. Thus, the optimized donor and acceptor molecules were put 
together in random orientation and the intermolecular separation distance between them was 
varied from 3.0 to 5.0 Å, and the relative orientation of the interacting molecules was also 
varied prior to the energy minimization. The energy minimization of the various resulting 
aggregates was carried out in a similar way as described for the individual molecules, i.e., 
using the Steepest Descents algorithm53 to remove unfavorable steric contacts followed by 
1000 steps of ABNR54 algorithm. The geometry and the separation distances between donor 
and acceptors molecules of the minimized structures were analyzed using the XP graphical 
package56 after the energy tolerance was satisfied.  

Isolation and X-ray Crystallography of Donor−Acceptor Complexes. The chloranil 
complexes were crystallized from an equimolar solution of CA and HMB, TEM, or PM-T by 
very slow evaporation of dichloromethane. Since the similar treatment of the tethered HEB-

MEA2 yielded an amorphous solid, a 1:1 CH2Cl2/CCl4 mixture was used to prepare dark purple 
crystals of [HMB-MEA2,CA]. For the nitrosonium complexes, hexaethylbenzene (HEB) was 
added to a flask that contained nitrosonium hexachloroantimonate, and a minimum amount of 
dichloromethane was added under an argon atmosphere at 0 °C. The undissolved solid was 
removed by filtration, and the resulting dark colored solution was carefully layered with 
anhydrous toluene (30 mL) and stored in the refrigerator (−10 °C). After 48−72 h, dark red 
crystals of HEB/NO+ complex were deposited at the dichloromethane/toluene interface. A 
similar procedure yielded dark red crystals of the TET/NO+ complex.  

The X-ray crystallography of the donor−acceptor complexes was carried out with a Siemens 
SMART diffractometer equipped with a CCD detector at −150 °C. The structures were solved 
by direct methods55 and refined with IBM Pentium and SGI Indigo computers. In the various 
chloranil complexes, the intramolecular dimensions of CA and the arene donors were the 
same as those observed in uncomplexed molecules. However, the arene complexed to 
nitrosonium cation in [HEB,NO+] and [TET,NO+] showed slight lengthening of all aromatic C
C double bonds when compared with crystal structures of the uncomplexed donors. The 
pertinent intermolecular orientations as PLUTO plots (generated from the XP graphical 
package)56 are shown in structures A, C, N, P, W, and Y, and the critical interplanar 
separations (d) are included. The crystallographic data are on deposit and can be obtained 
from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 
1EZ, U.K.  
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13 Harding, T. T.; Wallwork, S. C. Acta Crystallogr. 1955, 8, 787. Also, see:  Jones, N. D.; 
Marsh, R. E. Acta Crystallogr. 1962, 15, 809. 

14 Molecular structures presented hereinafter as PLUTO plots (Motherwell, W. D. S.; Clegg, 
W. Program for Plotting Molecular and Crystal Structures 1978, Cambridge, U. K.) were 
produced with the aid of an XP-graphical package.56 

15 QUANTA (vers. 4.11) from Molecular Simulations, Inc., 16 New England Executive Park, 
Burlington, MA 081803-5297. See:  Experimental Section for a brief description of the 
molecular modeling package. 

16 (a) Benesi, H. A.; Hildebrand, J. J. J. Am. Chem. Soc. 1949, 71, 2703. (b) Person, W. B. J. 
Am. Chem. Soc. 1965, 87, 167. (c) Foster, R. Molecular Complexes; Crane, Russak & 
Co.:  New York, 1974; Vol. 2. 

17 (a) Horner, L.; Merz, H. Ann. Chem. 1950, 89, 570. (b) Rathore, R.; Kochi, J. K. 
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18 The slope of the Benesi−Hildebrand relationship as given by KDAεCT is the “effective 
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19 For the tetracyanoethylene data, see:  Table 4. 
20 The values of KDAεCT in the table provide a numerical guide to the visual intensity of the 
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21 (a) Iverson, D. J.; Hunter, G.; Blount, J. F.; Damewood, Jr., J. R.; Mislow, K. J. Am. Chem. 
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J. Am. Chem. Soc. 1980, 102, 5942. (c) Hunter, G.; Weakley, J. R.; Mislow, K.; Wong, 
M. G. J. Chem. Soc., Dalton Trans. 1986, 577. 
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in color intensities arising from the chloranil complexes with MES, TXY, and DTT in 
Table 3. Such differences in color intensity result mainly from the variations of εCT since 
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24 (a) The barrier to the rotation of the aryl−ethyl bond in HEB has been estimated to be 11.8 

kcal mol-1.21a (b) The reduced overlap of the donor−acceptor π-orbitals as a result of 
such a parallel shift is reflected in a corresponding decrease in the εCT values with 
increasing number of tert-butyl groups in Table 3 (see entries 1−4). (c) According to 
Mulliken,4a the charge-transfer intensity (KDAεCT) derives from the transition moment 
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dimethoxy-substituted benzene ring by the norbornane framework. 

27 See:  Foster, R. in ref 4 for the relationship between the donor strength and Eox°, as 
measured electrochemically (see Experimental Section). 

28 Molecular modeling calculations predict an optimum separation of ∼4 Å. 
29 Maverick, E.; Trueblood, K. N.; Bekoe, D. A. Acta Crystallogr., Sect. B 1978, 34, 2777. 
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	Abstract
	Molecular association of various aromatic hydrocarbons (D, including sterically hindered donors) with a representative group of diverse acceptors (A = quinone, trinitrobenzene, tetracyanoethylene, tropylium, tetranitromethane, and nitrosonium) is visually apparent in solution by the spontaneous appearance of distinctive colors. Spectral (UV−vis) analyses of the colored solutions reveal their charge-transfer origin (λCT), and they provide quantitative information of the intermolecular association in the form of the KDA and εCT values for the formation and visualization, respectively, of different [D,A] complexes. Importantly, such measurements establish charge-transfer absorption to be a sensitive analytical tool for evaluating the steric inhibition of donor−acceptor association. For example, the steric differences among various hindered aromatic donors in their association with quinone are readily dramatized in their distinctive charge-transfer (color) absorptions and verified by X-ray crystallography of the charge-transfer crystals and/or QUANTA molecular modeling calculations of optimum intermolecular separations allowed by van der Waals contacts. 
	Introduction
	Molecular recognition and preassociation are conceptually vital to catalytic stereospecificity and other contemporaneous topics in organic chemistry like self-assembly and organization, supramolecular (host−guest) chemistry, etc.1-3Of the various measures available for the quantitative evaluation of intermolecular interactions in solution/especially weak nonbonded ones/the appearance of new spectral bands arising from the charge-transfer (CT) transitions between electron donors and electron acceptors is especially useful and easy to apply.4-6 Indeed, the ubiquitous CT absorptions are diagnostic of a very wide spectrum of intermolecular electron donor−acceptor (DA) interactions arising in extremely stable, isolable 1:1 complexes on one hand,7 to highly transient complexes (with collisional lifetimes) at the other extremum.8 From a structural point of view, however, it is not at all clear a priori what the critical donor−acceptor encounter (distance) must be for the relevant charge-transfer absorptions to be in evidence.9 
	In order to establish the limits to which charge-transfer is applicable as an analytical probe for intermolecular interactions, we employ in this study four classes of aromatic donors (Chart 1), in which the essential benzenoid (donor) π-chromophore is sterically encumbered to various degrees by increasing alkyl bulk. Thus, the first (simply methylated) member in each class represents the sterically most accessible donor, and all members in each class are of comparable donor strengths.10
	/
	Chart 1 
	In a complementary way, we identify two classes of sterically graded electron acceptors in Chart 2. As such, the planar π-acceptors are presented in the order of their increasing size from tetracyanoethylene to 1,3,5-trinitrobenzene. Among the σ-acceptors, the diatomic nitrosonium cation and dibromine are the smallest and least subject to steric hindrance, especially in comparison with the larger, tetrahedral acceptors tetranitromethane and carbon tetrabromide. The relative acceptor strengths in Chart 2 are indicated by the trend in the reduction potentials (E°red V vs SCE).11,12 
	Donor-acceptor pairs in solution are quantitatively monitored in this study by UV−vis spectral changes, and the relevant charge-transfer interactions identified in X-ray crystal structures and compared with molecular modeling calculations. Steric effects are not only exploited in the structural requirements for the intermolecular formation of 1:1 donor−acceptor complexes but also to achieve intramolecular selectivity in biaryls and in a tethered donor containing more than one aromatic center. 
	/
	Chart 2 
	Results and Discussion
	I. Visual Detection of Intermolecular Donor−Acceptor Associations. Exposure of the various methylbenzenes in Chart 1 to the prototypical π-acceptor chloranil (CA) spontaneously resulted in brightly colored dichloromethane solutions. The colorations progressively evolved from yellow (mesitylene) to orange (durene) to purple (hexamethylbenzene) in line with the decreasing ionization potentials of the aromatic donors.10 Similar vivid colorations were also observed when the same methylbenzenes were mixed with other electron acceptors such as 1,3,5-trinitrobenzene (TNB), and further red-shifts in colors occurred with the stronger π-acceptor tetracyanoethylene (TCNE) as well as the tropylium cation (TR+) in Chart 2. 
	II. Quantification of Donor−Acceptor (π−π) Associations. The UV−vis spectral changes in Figure 1 typically show the monotonic growth of the diagnostic charge-transfer absorbance with its visible maximum at λCT = 520 nm upon the incremental addition of hexamethylbenzene (HMB in Chart 1) to a solution of chloranil (CA) in dichloromethane at 24 °C. This well-resolved (featureless) absorption band was ascribed to the intermolecular donor−acceptor association, i.e.
	/
	in which the characteristic color derives from the charge-transfer transition, as originally formulated by Mulliken.4 Such a structural assignment was readily verified by the isolation of dark purple crystals of the 1:1 complex in >95% yield from an equimolar solution of hexamethylbenzene and chloranil, simply by the very slow removal of dichloromethane in vacuo. X-ray crystallography of the charge-transfer crystal revealed the hexamethylbenzene to be directly juxtaposed on the chloranil and separated by an interplanar distance of d = 3.51 Å, as illustrated in the top and side perspectives AT and AS (all hydrogens omitted for clarity).13,14 Indeed, the observed donor−acceptor separation in the purple crystal is remarkably close to the calculated distance of d = 3.57 Å by energy minimization of the intermolecular van der Waals contacts between hexamethylbenzene and chloranil. The predicted structure based on the QUANTA molecular modeling analysis15 is shown in the space-filling representation B below. 
	/
	/
	For the quantitative analysis of the donor−acceptor association in solution, the spectrophotometric absorbance changes in Figure 1 were treated by the Benesi-Hildebrand procedure,16 i.e.
	/
	where ACT is the molar absorbance and εCT is the extinction coefficient of the charge-transfer band at the monitoring wavelength (generally close to λmax). For hexamethylbenzene (D) concentrations much greater than that of chloranil, a plot of [CA]/ACT vs the reciprocal donor concentration was linear, and the least-squares fit produced a correlation coefficient of greater than 0.999 in the inset of Figure 1. From the slope [KDAεCT]-1 and the intercept [εCT]-1, the values of the association constant and the extinction coefficient were readily extracted as KDA = 2.8 M-1 and ε520 = 2800 M-1 cm-1, respectively. Such a limited magnitude of KDA for hexamethylbenzene and chloranil indicated that the donor−acceptor interaction is described as weak at best (ΔG°DA = −0.6 kcal mol-1), as typical for the spontaneous formation of electron donor−acceptor complexes of quinones (and other π-electron acceptors) with various types of other electron donors (such as alkenes, enol ethers, sulfides, etc.).17 
	/
	Figure 1 Spectral (UV−vis) changes attendant upon the incremental addition of hexamethylbenzene to chloranil in dichloromethane. Inset:  Benesi−Hildebrand plot.
	The donor−acceptor interactions of the homologous methylbenzenes in Chart 1 with chloranil showed a progressive red-shift of the charge-transfer band λCT for HMB > DUR > MES, as listed in Table 1 (column 4). The same trend was observed in the association constants KDA, but the magnitude of the change was somewhat limited (see column 5). Weak but distinctive donor−acceptor interactions of hexamethylbenzene were also indicated by the comparison of the charge-transfer absorptions (λCT) and the magnitudes of the formation constants (KDA) with the other π-acceptors including trinitrobenzene, tropylium, and tetracyanoethylene, as listed in Tables 1 and 4. For comparative purposes, the intensities of the CT (color) absorptions of the various donor−acceptor complexes in Table 1 are given by the values of KDAεCT in column 7.18 
	Table 1. Donor−Acceptor Association of Various Methylbenzenes with Different π-Acceptorsa
	a In dichloromethane containing 4−6 mM acceptor and 50−500 mM aromatic donors at 24 °C.
	III. Complete Steric Inhibition of Donor−Acceptor (π−π) Association. Analogous exposure of hexaethylbenzene (HEB) to chloranil led to no coloration, and no new CT absorption band was observed in the colorless dichloromethane solution even in the presence of a large excess of HEB. Furthermore, many attempts to isolate charge-transfer crystals of the HEB complex with chloranil in various molar ratios from dichloromethane, chloroform, acetone, ethyl acetate, etc. were all unsuccessful, and low-temperature crystallization merely led to phase separation of the individual (pure) components. Such a striking difference between hexaethylbenzene and hexamethylbenzene (vide supra) was not restricted to chloranil. Thus, all other π-acceptors including trinitrobenzene, tropylium, and tetracyanoethylene showed distinctive CT colorations ranging from yellow to orange to green when mixed with hexamethylbenzene, whereas no (or very faint) colorations were detected with hexaethylbenzene at even higher concentrations. The UV−vis spectral changes in Figure 2 confirmed that neither chloranil nor trinitrobenzene participated in charge-transfer association with hexaethylbenzene, and the smallest acceptors tetracyanoethylene and tropylium showed (at best) very weak CT interactions with HEB (Table 2).19,20 
	The comparative charge-transfer behaviors notwithstanding, the intrinsic electron-donor properties of HEB are even somewhat better than those of HMB insofar as their relative oxidation potentials of Eox° = 1.59 and 1.62 V vs SCE, respectively.10 In order to clarify this anomalous variation (of λCT vs Eox°) between HMB and HEB, we synthesized the novel hybrid triethylmesitylene (TEM) with an intermediate oxidation potential of Eox° = 1.61 V vs SCE. In fact, the exposure of TEM to chloranil immediately led to the characteristic purple coloration of the charge-transfer association (λCT = 516 nm), and dark purple crystals of the EDA complex were readily isolated in high yields from an equimolar mixture of triethylmesitylene and chloranil. Indeed, the charge-transfer parameters of the purple [TEM, CA] were essentially identical to those of the HMB analogue. Further comparisons of the TEM and HMB complexes with trinitrobenzene, tropylium, and tetracyanoethylene in Tables 1 and 2 established the same similarities. However, the association constants of the TEM complexes (Table 2, column 5) were always roughly half the value of KDA for the corresponding HMB complex (Table 1) in dichloromethane. The latter was consistent with a statistical factor of 0.5 for only half the faces available for association, as established by the unique conformation of TEM in the chloranil complex shown below in structure C by X-ray crystallography. Such a tripodal arrangement of all three ethyl groups on the opposite face of TEM is directly related to the conformation of the ethyl groups on both faces of HEB with quasi D3d symmetry in structure D which was previously established by Mislow and co-workers,21 i.e. 
	/
	/
	Table 2. Donor−Acceptor Association of Sterically Hindered Hexaalkylbenzenes with π-Acceptorsa
	a See Table 1.b Not determined.c No new absorption band.d Estimated values, see Experimental Section.
	From such a comparative behavior of HMB, TEM, and HEB with chloranil as well as the other π-acceptors TNB, TR+, and TCNE it is easy to conclude that a group of three (1,3,5) ethyl substituents is sufficient for the complete steric inhibition of the face of a benzenoid (donor) chromophore for intermolecular association by a π-acceptor. Moreover, the comparable steric inhibition is achieved by tris-annulations at the α-carbons, as presented in the bicyclic structure TET (see Table 2, last 3 entries) and the homologous TMT. Energy minimization between chloranil and HEB was predicted with the aid of QUANTA molecular modeling calculations to occur at an interplanar distance of d = 4.50 Å in structure E, and the predicted separation of chloranil and TET was d = 4.51 Å in structure F. As such, the difference of 0.9 Å between the observed separation of 3.6 Å in [HMB, CA] and the predicted separation of 4.5 Å in [HEB, CA] could represent a “gray” area in which very weak, but visually (color) and spectrally (CT) observable association may be apparent. In order to pursue this possibility, we synthesized a series of unsymmetrical aromatic donors designed to cover the benzenoid face only partially. 
	/
	IV. Steric Modulation of Donor−Acceptor (π−π) Associations. Mesitylene (MES) yielded a bright yellow solution when exposed to chloranil, but 1,3,5-tri-tert-butylbenzene (TTB) under the same conditions, as expected, led to no coloration. However, intermediate behavior was shown by the homologous tert-butylxylene (TXY) which afforded a very pale yellow solution with chloranil, and the coloration with di-tert-butyltoluene (DTT) was barely discernible. The quantitative effects of these color (intensity) changes are given by the values of KDAεCT in Table 3 (column 6),20 which were obtained from the spectrophotometric analysis of the charge-transfer absorptions (Figure 3A) attendant upon the incremental additions of these aromatic donors to chloranil in dichloromethane. The qualitative trend of the color intensity followed the monotonic decrease in the association constant KDA with increasing number of tert-butyl groups.22 However, the latter had no significant effect on the intrinsic donor strength, since the values of the oxidation potentials Eox° tabulated in column 2 were uniformly invariant. This observation, taken together with the constancy of the charge-transfer transition (λCT in column 3), indicated that the interplanar separations (d) between the chloranil and MES, TXY, and DTT in the donor−acceptor associations were all comparable,23 despite the decreasing strength of the interaction (ΔGDA). In order to identify the origin of the difference, we carried out the QUANTA molecular modeling analysis of the nonbonding interactions in all four donor−acceptor associations. It is particularly noteworthy that energy minimization was predicted to occur at essentially the same interplanar separation of d = 3.4 Å in the chloranil complex with MES, TBX, and DTT in structures G, H, and J, respectively, but at a significantly larger separation of d = 4.5 Å for tri-tert-butylbenzene in structure K. Such a donor−acceptor association in the mono- and di-tert-butyl-substituted donors was achieved by a small parallel shift of chloranil away from the tert-butyl group(s).24 
	/
	Figure 2 Steric hindrance in the CT absorption bands of HMB (thick line), TEM (dashed line), and HEB (thin line) complexed with (A) chloranil, (B) trinitrobenzene, and (C) tropylium obtained by spectral subtraction of the uncomplexed acceptor from the experimental UV−vis spectra for (A) 6 mM CA with 50 mM HMB, 50 mM TEM, and 500 mM HEB in CH2Cl2, (B) 5 mM TNB with 100 mM HMB, 100 mM TEM, and 500 mM HEB in CH2Cl2, and (C) 9 or (4.5) mM TR+ BF4- with 22 mM HMB, 22 mM TEM, and (22 mM) HEB in CH3CN.
	/
	Figure 3 Partial steric hindrance in donor−acceptor association of (A) 4 mM CA with 250 mM MES, TXY, and DTT, (B) 4 mM CA with 240 mM ME, MEA, and MEA2, and (C) 1.7 mM TCNE with 102 mM PET and HEB in dichloromethane, obtained as difference spectra analogous to those in Figure 2.
	/
	Indeed, such limited lateral displacements along the aromatic planes are not expected to be important factors in the charge-transfer transitions to significantly alter the values of λCT.25 
	Table 3. Donor−Acceptor Association of the Class II, III, and IV Aromatic Donors with Chloranila
	a From 4 mM CA and 0.01−1 M donor in dichloromethane at 24 °C.b -dSee Table 2.
	Among the class II donors (based on durene in Chart 1), the tetramethyl derivative TMA showed the same “partial” steric behavior relative to the completely hindered octamethyl analogue OMA (and the bicyclic version DMA) at the other extremum. For example, the results in Table 3 (entry 6) point to the strongly diminished donor−acceptor interaction of TMA relative to DUR in its association with chloranil,26 in a manner similar to the differentiation of TXY and MES in the tert-butyl series (class III). Similarly, the bis-annulated donors OMA and DMA were subject to complete steric inhibition, much like tri-tert-butylbenzene in class III and TET and TMT in class I. 
	The replacement of a pair of methyl groups in HMB with methoxy groups render the class IV aromatic ethers to be the best π-donors by virtue of the low Eox° values in Table 3.27 As such, these methyl ethers were more tolerant to steric encumbrance/the bis-annulated MEA2 being much less subject to partial steric hindrance than its counterpart DMA in class II, as shown by a direct comparison of KDA and KDAεCT in entry 11 with those in entry 8 in Table 3. Repeated attempts to grow single crystals of the weak yellow complex [MEA2,CA] for X-ray crystallography were unsuccessful. However, from the significantly blue-shifted value of λCT = 452 nm in column 4, we tentatively conclude that donor−acceptor association of the strong donor MEA2 and chloranil probably occurs at an intermediate interplanar separation of d greater than 3.5 Å (but less than 4.5 Å).28 
	A close inspection of the charge-transfer absorption of the small and rather powerful π-acceptor tetracyanoethylene (TCNE) with high concentrations of the highly hindered hexaethylbenzene revealed a weak but distinctive absorbance at λCT = 540 nm (Table 4).20 In order to determine how hexaethylbenzene could be subject to partial steric hindrance, we synthesized the hybrid pentaethyltoluene (PET) to establish evidence for donor−acceptor association with TCNE. UV−vis spectral analysis (Figure 3c) indeed revealed a blue complex to be formed in CH2Cl2 with values of KDA and εCT which were substantially less than those evaluated for either HMB or TEM. In particular, the value of εCT = 300 M-1 cm-1 for the [PET, TCNE] was sharply diminished from εCT = 5200 M-1 cm-1 for [HMB, TCNE], and such a significant difference could result from the reduced π-orbital overlap of PET and TCNE. Although repeated attempts to grow single crystals of [PET, TCNE] suitable for X-ray crystallography failed, QUANTA molecular modeling studies showed that donor−acceptor association was possible at an interplanar separation of d = 3.5 Å by a parallel shift along the aromatic plane, much in the manner previously described in structures H and J.24 It is noteworthy that with the exception of the lateral slippage of ∼2 Å, structure L for [PET, TCNE] is akin to the centrosymmetric structure of [HMB, TCNE] with d = 3.35 Å (established by X-ray crystallography)29 as illustrated in the top perspective M. If so, the donor−acceptor association observed between the highly hindered HEB and tetracyanoethylene, albeit weak (Table 4, entry 4),20 may be achieved by a conformational change of a single ethyl group in hexaethylbenzene by a 180° rotation about the aromatic−Cα bond,21b so as to effect the partial steric hindrance analogous to the [PET, TCNE] structure in L.24 Indeed the complete absence of any donor−acceptor association of the conformationally rigid tris-annulated donor TET with tetracyanoethylene (Table 4, entry 5) lends a certain credence to this possibility. Be that as it may, the enhanced donor−acceptor association of the tetracyanoethylene with HEB (compared to that with chloranil) was in line with its smaller size and increased acceptor strength. In order to consider these factors further, we next asked how molecular shape could influence the selectivity in donor−acceptor associations by utilizing (a) the powerful diatomic cation NO+ with Ered° = 1.28 V vs SCE as well as the uncharged tetranitromethane (TNM) as rather small σ-acceptors12 and (b) the substituted biaryls and a tethered aromatic system to serve as bichromophoric donors, as follows. 
	/
	Table 4. Donor−Acceptor Association of Hexaalkylbenzenes with Tetracyanoethylenea
	a From 2 mM TCNE and 10−100 mM donor in dichloromethane at 24 °C.c ,dSee Table 2.
	V. Shape Selectivity of Aromatic Donors. A. With σ-Acceptors. Exposure of nitrosonium (NO+) tetrafluoroborate to hexamethylbenzene in acetonitrile immediately resulted in an intense red coloration, and the UV−vis spectral analysis of the bright red solution revealed a well-resolved CT absorption band (λCT = 337 nm) with a characteristic low-energy band extending beyond 600 nm, as shown in Figure 4A. Although the extinction coefficient of εCT = 3100 M-1 cm-1 in Table 5 was in line with those evaluated for the HMB complexes with the π-acceptors in Table 1, the association constant of KDA = 31000 M-1 was more than four orders of magnitude larger/ indicative of an exceptionally strong donor−acceptor association of NO+ with HMB.30 
	/
	Figure 4 Steric effects in charge-transfer absorptions from σ-acceptors with aromatic donors:  (A) 5 mM NO+BF4- with 1 mM HMB, HEB, and TET (as indicated); NO+BF4- alone (···) in acetonitrile and (B) 2 M TNM with 5 mM HMB, HEB and TET as indicated; TNM alone (···) in dichloromethane.
	Table 5. Donor−Acceptor Association of Hexaalkylbenzenes with Nitrosonium Tetrafluoroboratea
	a In acetonitrile containing 1 mM NOBF4 and 5−10 mM donor at 24 °C.
	Surprisingly, the same red color (with comparable intensity) was observed when hexaethylbenzene was treated with NO+BF4- under identical (concentration) conditions, and the UV−vis spectrum in Figure 4A confirmed the mostly unaltered charge-transfer absorption. More surprising were the results in Table 5 which showed that the highly hindered tris-annulated donors TET and TMT enjoyed undiminished donor−acceptor association with NO+, the measured association constants in all cases being uniformly large, with KDA > 3 × 104 M-1. In order to account for such an unexpected stability, we grew red crystals of the HEB and TET complexes with NO+SbCl6- for X-ray crystallographic analysis (see Experimental Section). Indeed, the excellent quality of both single crystals allowed an unambiguous assignment of the nitrogen terminus of the slightly tilted NO+ to be centrally situated over the benzenoid (donor) chromophore at a nonbonded distance of 2.08 Å in structures N and P. The donor−acceptor association, characterized as the very close encounter of NO+ to the benzenoid centers of both hexaethylbenzene and TET (inside van der Waals distance), is achieved by significant incursion within the “picket fence” formed by three (alternating) ethyl groups in structure N and three ethano bridges in structure P. The tight fit of NO+ within the van der Waals cavity in the HEB complex (shown in N) is sufficient to severely dampen its librational (crystallographic) disorder.31 It is particularly noteworthy that such a donor−acceptor interaction derives from the intrinsic donor properties of TET and HEB that are akin to that in the electron-rich HMB,33 as shown by the constant values of Eox° in Table 4. As such, the nitrosonium association in the TET and HEB complexes (which occurs in the teeth of the potentially repulsive interactions with the ethyl and ethano substituents) is allowed by the dimensions of the (van der Waals) cavity sufficient to accommodate the diatomic acceptor.34 The three-dimensional requirements for the nestling of NO+ is graphically illustrated by the space-filling representations R and S. For comparison, the molecular structure of the unhindered hexamethylbenzene complex32b is presented in Q. 
	/
	/
	As a further elaboration of the shape-selectivity of aromatic donors, we examined the donor−acceptor interaction with the tetrahedral σ-acceptor tetranitromethane (TNM). Thus, the exposure of a colorless solution of TNM to hexamethylbenzene in dichloromethane immediately resulted in a dark red solution, the UV−vis spectrum of which showed an intense (unresolved) CT absorption that extended to well beyond 600 nm (Figure 4B).35 The quantitative treatment of the absorbance data according to the Benesi−Hildebrand procedure yielded the values of KDA and εCT for the donor−acceptor association in Table 6 which were substantially less than those for the NO+ complex. It is particularly noteworthy that the association of TNM with the hindered HEB resulted in a blue-shift of the nondescript CT tail absorption in Figure 4B, but the quantitative (UV−vis) spectral analysis indicated that the association constant of KDA = 1.5 M-1 was only slightly less than that with HMB (by about a factor of 3). Furthermore, the highly hindered tris-annulated donors TET and TMT were not significantly different from HEB insofar as their association with TNM. We interpret the rather invariant values of the extinction coefficients in Table 6 (column 5) to be consistent with optimal CT coupling of the small-sized TNM irrespective of steric hindrance from the aromatic donor. Although attempts to grow single crystals of the TNM complexes were unsuccessful, the QUANTA molecular modeling calculations revealed rather large donor−acceptor separations of a single NO2 group of TNM to the HMB centroid in structure T and to the tris-annulated TET in structure U.36 
	/
	Table 6. Donor−Acceptor Association of Hexaalkylbenzenes with Tetranitromethanea
	a In dichloromethane containing 0.2 M TNM and 5−50 mM donor at 24 °C.
	The mixture of hexamethylbenzene with carbon tetrabromide (colorless) resulted in a pale yellow solution which showed a weak tailing UV−vis absorbance without a discernible absorption maximum arising from the blue-shifted charge-transfer band. Such an overlap of the CT absorption with the local absorption of CBr4 precluded a quantitative evaluation of the donor−acceptor association. 
	B. In Bichromophoric Systems. Exposure of p,p‘-dimethylbiphenyl (T-T) to chloranil in dichloromethane was accompanied by an immediate color change to a bright purple solution. UV−vis spectral analysis of the well-resolved CT absorption band (λCT = 502 nm in Table 7) indicated a very weak association of T-T to chloranil with KDA = 0.09 M-1 and a value of εCT = 6000 M-1 cm-1 in line with the other chloranil complexes with methylbenzenes in Table 1. By analogy with the structure V (top perspective) of the biphenyl/tetracyanobenzene complex previously established by X-ray crystallography,37 a similar centrosymmetric structure for the intermolecular association of the bitolyl T-T with chloranil was indicated. In marked contrast, the unsymmetrically permethylated homologue pentamethylphenyl-p-toluene (PM-T) afforded a dark purple solution. The UV−vis spectral analysis of the charge-transfer absorption (λCT = 510 nm) indicated a substantially larger association with KDA = 0.99 M-1 but significantly diminished value of εCT = 700 M-1 cm-1, which we interpreted as a shape-selective association of chloranil with the pentamethylphenyl moiety. Indeed, X-ray crystallography of the purple [PM-T,CA] confirmed this spectral assignment and revealed the interplanar separation of d = 3.41 Å with significant slippage along the pentamethylphenyl plane to avoid the orthogonal tolyl moiety as shown in the side and top perspectives WS and WT. 
	/
	/
	By comparison, the unsymmetrically hindered pentaethylphenyl-p-toluene (PE-T) with chloranil afforded a yellow solution. The charge-transfer absorption λCT = 437 nm and εCT = 70 M-1 cm-1 in Table 7 were indicative of an analogous slipped structure for [PE-T,CA], but with the chloranil complexed to the less hindered tolyl moiety.38 
	Table 7. Donor−Acceptor Association of Various Biphenyls and the Tethered Aromatic Donor with Chloranila
	a See Table 1.
	A qualitative view of steric hindrance was also useful in predicting the site selectivity of donor−acceptor association in bifunctional aromatic donors that were not directly connected, as in the bichromophoric HMB-MEA2 in which hexamethylbenzene (HMB) was tethered to the bis-annulated ether MEA2. Thus the treatment of the tethered donor HMB-MEA2 with chloranil afforded a dark purple solution in which UV−vis spectral analysis yielded the charge-transfer parameters in Table 7 (entry 4) that were essentially identical with those obtained for the mononuclear HMB in Table 1 (entry 1). Indeed, X-ray crystallographic analysis of the [HMB-MEA2, CA] complex provided unambiguous support for the predicted structure Y. 
	/
	Summary and Conclusions
	Visualization (color) and attendant charge-transfer absorption are reliable and sensitive analytical probes for monitoring the donor−acceptor (DA) association of the various aromatic hydrocarbons in Chart 1 with the different types of π- and σ-acceptors in Chart 2. Thus, the facile molecular association of the polymethylbenzenes, including hexamethylbenzene HMB, with all the π-acceptors is immediately apparent by the vividly colored solutions, the UV−vis spectral analysis of which reveals new charge-transfer absorption bands (λCT) for the quantitative evaluation of the association constant (KDA) as well as the CT color (εCT). In marked contrast, the homologous congener hexaethylbenzene HEB shows neither color change nor charge-transfer absorption when exposed to the same π-acceptors under identical conditions. Such unfavored molecular associations of HEB are readily ascribed to its unique conformational structure D, in which the alternant ethyl groups sterically protect both benzenoid faces from the close approach of all planar π-acceptors. Indeed, QUANTA molecular modeling calculations predict the steric envelope around HEB to have an average van der Waals “thickness” of 2r ≃ 6.4 Å, which is significantly larger than that (4.0 Å) for the lower homologue HMB. As such, we conclude, that the difference of Δr = 1.2 Å represents an upper limit for the molecular association of any of the π-acceptors with the benzenoid chromophore. 
	X-ray crystallography establishes the hexamethylbenzene association with chloranil to be optimized at an interplanar distance of d = 3.51 Å in the cofacial (sandwich) structure A. It is noteworthy that such a donor−acceptor separation corresponds to the sum of van der Waals contact of hexamethylbenzene and chloranil,39a and this conclusion is supported by the HMB/CA separation of r = 3.57 Å calculated with the aid of QUANTA molecular modeling. It is tempting to conclude from this computational analysis that molecular associations leading to charge-transfer absorptions derive from inner-sphere interactions involving the intimate van der Waals contact of the donor and acceptor chromophores.39b According to this formulation, any steric encumbrance of either the donor or acceptor (or both) that extends much beyond the sum of van der Waals radii of the chromophores will lead to sharply diminished charge-transfer absorptions. However, shape selectivity can be an ameliorating factor in at least 2 ways. First, unsymmetrical steric encumbrances in π-donors [such as those in the mono-and di-tert-butyl derivatives TXY and DTT, as well as in semi-annulated TMA and MEA (see Chart 1)] allow the close cofacial (inner-sphere) approach of π-acceptors by a small parallel shift or “slippage” along the aromatic planes, as illustrated by structures H, L, and W. Second, small electron-poor molecules such as σ-acceptors [in which the electron deficiency is either largely localized at a single atom as in NO+, CBr4, Br2, etc. or on a small group of atoms as in RNO2, O3, ArN2+, SO2, etc.] can approach the benzenoid chromophore in sterically encumbered donors [such as hexaethylbenzene HEB and the multiply annulated analogues TET, TMT, OMA, DMA, and MEA2] with van der Waals cavities of sufficient size to allow the nestling of a single (acceptor) center as in the NO+ complexes with structures N and P or close approach of multiple centers as in the TNM complexes with structures T and U. 
	The modulation of steric effects also allows the selective complexation of unsymmetrically substituted biphenyls as in the slipped structure W and in the tethered bichromophoric donor as in structure Y. The chemical consequences of such shape-selective complexations of (poly)chromic donors and acceptors will be presented separately. 
	Experimental Section
	Materials. Hexaethylbenzene (Acros), hexamethylbenzene, durene, 4,4‘-dimethylbiphenyl, 1,3,5-tri-tert-butylbenzene, and 3,5-di-tert-butyltoluene (Aldrich) were purified by repeated crystallization from ethanol and heptane. Mesitylene (Aldrich) and 1-tert-butyl-3,5-dimethylbenzene (Wiley) were purified by fractional distillation. Tetrachloro-p-benzoquinone and tetracyanoethylene (Aldrich) were sublimed in vacuo and recrystallized from benzene. 1,3,5-Trinitrobenzene was purified by crystallization from ethanol. Tropylium tetrafluoroborate (Aldrich) and nitrosonium tetrafluoroborate (Pfaltz and Bauer) were purified by recrystallization from an acetonitrile/dichloromethane mixture. Dimethoxydurene,40 9,10-dimethoxy-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene,41 1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene,42 1,4-dimethoxy-2,3-dimethyl-5,6,7,8-tetrahydro-5,8-methanonaphthalene:41 [oil, 1H NMR (CDCl3) δ 1.32 (d, J = 7.2 Hz, 2H), 1.54 (d, J = 8.7 Hz, 1H), 1.76 (d, J = 8.7 Hz, 1H), 2.00 (d, J = 7.2 Hz, 2H), 2.20 (s, 6H), 3.64 (s, 2H), 3.82 (s, 6H); 13C NMR (CDCl3) 12.64, 27.39, 40.89, 49.00, 61.04, 127.53, 137.64, 148.08], 1,1,4,4,5,5,8,8-octamethyl-1,2,3,4,5,6,7,8-octahydroanthracene43 [mp 222−223 °C (lit.43 mp 220−222 °C); 1H NMR (CDCl3) δ 1.52 (s, 24H), 1.90 (s, 8H), 7.44 (s, 2H); 13C NMR (CDCl3) 32.25, 34.18, 35.54], 1,1,4,4-tetramethyl-1,2,3,4,5,6,7,8-octahydroanthracene43 [mp 121−122 °C (lit. mp43 121−123 °C); 1H NMR (CDCl3) δ 1.38 (s, 8H), 1.71 (s, 4H), 1.88 (sym m, 4H), 2.84 (sym m, 4H), 7.11 (s, 2H); 13C NMR (CDCl3) 26.61, 29.30, 32.22, 34.05, 35.44, 127.15, 134.47, 142.31], 2,3,4,5,6-pentaethyl-4‘-methylbiphenyl44 [mp 89−91 °C; 1H NMR (CDCl3) δ 1.05 (t, J = 7.4 Hz, 6H), 1.35 (t, J = 7.5 Hz, 6H), 1.38 (t, J = 7.5 Hz, 3H), 2.44 (q, J = 7.4 Hz, 4H), 2.52 (s, 3H), 2.82 (q, J = 7.5 Hz, 4H), 2.85 (q, J = 7.5 Hz, 2H), 7.24 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H); 13C NMR (CDCl3) 16.00, 16.10, 21.46, 22.41, 23.79, 128.53, 130.04, 135.72, 137.62, 138.45, 139.36, 139.58, 140.29], and 2,3,4,5,6,4‘-hexamethylbiphenyl45 [mp 90−91 °C; 1H NMR (CDCl3) δ 2.09 (s, 6H), 2.40 (s, 6H), 2.44 (s, 3H), 2.54 (s, 3H), 7.14 (d, J = 7.8 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H); 13C NMR (CDCl3) 16.82, 16.98, 18.59, 21.41, 129.14, 129.57, 131.00, 132.45, 134.00, 135.81, 139.99, 140.18], 1,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-triethanotriphenylene46 (TET), and 1,2,3,4,5,6,7,8,9,10,11,12-dodecahydro-1,4:5,8:9,12-trimethanotriphenylene47 (TMT) were available from literature procedures. Synthesis of the tethered 9-[3-(pentamethyl-phenyl)-1-propyloxy]-10-methoxy-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene (HEB-MEA2) will be described elsewhere. Pentaethyltoluene (PET) was prepared from hexaethylbenzene by refluxing a mixture of hexaethylbenzene (6.15 g, 25 mmol) and acetyl chloride (2.0 g, 25.5 mmol) in carbon disulfide (25 mL) in the presence of anhydrous aluminum chloride for 8 h. The resulting deep brown solution was cooled to room temperature, poured over a mixture of ice (200 g), concentrated hydrochloric acid (25 mL), and extracted with ether (4 × 50 mL). The combined ether extracts were washed with water and dried over anhydrous magnesium sulfate. Removal of the solvent and recrystallization form ethanol afforded white needles of pentaethylacetophenone48 (6.2 g, 95%); mp 136−137 °C (lit.48 mp 136−137 °C). A solution of pentaethylacetophenone (6.0 g, 23 mmol) in trifluoroacetic acid (25.5 mL) and water (4.5 mL) was refluxed for 16 h and cooled to room temperature. The dark brown reaction mixture was poured over ice and extracted with ether (4 × 50 mL). The ether layers were washed with water and dried over anhydrous magnesium sulfate. Evaporation of the solvent in vacuo furnished pentaethylbenzene as an oil [GC-MS m/z 218 (M+), calcd for C16H26]. The resulting crude pentaethylbenzene was dissolved in acetic acid (15 mL) and treated with paraformaldehyde (0.75 g, 25 mmol) and 5 mL of a 31 wt % HBr in acetic acid.49 The mixture was heated for 12 h at 80 °C and then poured into 100 mL water. The crystalline precipitate thus formed was filtered off, washed with water, and dried in vacuo to afford (bromomethyl)pentaethylbenzene (7.0 g, 22.5 mmol); GC-MS m/z 310, 312 (M+), calcd for C17H27Br. To a solution of crude (bromomethyl)pentaethylbenzene (6.22 g, 20 mmol) in anhydrous diethyl ether (100 mL) was added lithium aluminum hydride (0.76 g, 20 mmol), and the mixture was refluxed for 2 h. The usual aqueous workup resulted an oily residue which upon crystallization form ethanol afforded pure pentaethyltoluene as colorless prisms (3.7 g, 80%):  mp 45−46 °C; 1H NMR (CDCl3) δ 1.44 (sym m, 15 H), 2.54 (s, 3H), 2.93 (quintet, 10H); 13C NMR (CDCl3) 14.86, 15.38, 15.91, 16.07, 22.24, 22.51, 23.16, 132.18, 137.71, 138.26, 138.62. GC-MS m/z (M+), 232, calcd for C17H28. Anal. Calcd for C17H28:  C, 87.86; H, 12.14. Found:  C, 88.06; H, 12.00. Triethylmesitylene (TEM) was prepared by dropwise addition of a 30% solution of HBr in acetic acid (100 mL) to a stirred mixture of paraformaldehyde (12 g, 0.4 mol) and 1,3,5-triethylbenzene (16.2 g, 0.1 mol) in glacial acetic acid (25 mL) at 25 °C.49 The resulting mixture was heated at 100 °C for 72 h, cooled to room temperature, and poured over ice−water (250 mL) mixture. The precipitate thus obtained was filtered, washed with water, and dried in vacuo. The crude pale brown solid (38 g) was dissolved in diethyl ether (200 mL) and added dropwise to a suspension of lithium aluminum hydride (10 g) in diethyl ether during a 1 h period. The resulting mixture was refluxed for 4 h and cooled to room temperature. The usual workup as above and crystallization from ethanol afforded pure triethylmesitylene (74%):  mp 55−56 °C; 1H NMR (CDCl3) δ 1.22 (t, J = 7.5 Hz, 9H), 2.37 (s, 9H), 2.79 (q, J = 7.5 Hz, 6H); 13C NMR (CDCl3) 13.97, 15.50, 23.79, 131.43, 138.88. GC-MS m/z (M+), 204, calcd for C15H24. Anal. Calcd for C15H24:  C, 88.16; H, 11.84. Found:  C, 88.37; H, 11.68. 
	Dichloromethane (Mallinckrodt analytical reagent) was repeatedly stirred with fresh aliquots of concentrated sulfuric acid (∼20% by volume) until the acid layer remained clear. After separation, it was washed successively with water, aqueous sodium bicarbonate, water, and aqueous sodium chloride and dried over anhydrous calcium chloride. The dichloromethane was distilled twice from P2O5 under an argon atmosphere and stored in a Schlenk tube equipped with a Teflon valve fitted with Viton O-rings. Acetonitrile (Fischer) was stirred with KMnO4 for 24 h, and the mixture was refluxed until the liquid was colorless. The MnO2 was removed by filtration. The acetonitrile was distilled from P2O5 under an argon atmosphere and then refluxed over CaH2 for 6 h. After distillation from the CaH2, the solvent was stored in a Schlenk flask under an argon atmosphere. The UV−vis absorption spectra were recorded on a Hewlett-Packard 8450A diode-array spectrometer. The 1H and 13C NMR spectra were recorded on a General Electric QE-300 spectrometer, and chemical shifts are reported in ppm units downfield from tetramethylsilane. 
	The Formation Constants of Donor−Acceptor Complexes. General Procedure. Typically, in a 1-cm square quartz cuvette (UV cell) equipped with a side arm and Schlenk adapter was placed 1−4 mM solution of chloranil (with the aid of a hypodermic syringe) under an argon atmosphere. A known amount of arene donor was added in increments, and the absorbance changes were measured at the absorption maxima as well as two other wavelength close to the absorption maxima (see Figure 1). The absorbance data were then evaluated with the aid of the Benesi−Hildebrand correlation in eq 2.16 From the linear plot of [CA]/ACT against [arene]-1, consisting of at least eight data points, the slope was estimated as (KDAεCT)-1 and the intercept as (εCT)-1. Linear fits obtained by least square method had a correlation coefficient of >0.999. The runs were made in duplicate to ensure the reproducibility of the spectra. Detailed procedures for the quantification of DA complex formation with various electron acceptors such as tetracyanoethylene,18 1,3,5-trinitrobenzene,11 tropylium tetrafluoroborate,50 tetranitromethane,35 and nitrosonium tetrafluroborate30 have been described previously. Estimation of the Formation Constants for DA Complexes from Hindered Donors. In cases of the hindered arene donors (in which no charge-transfer absorption band was detected), the upper limits of the formation constants (KDA) were estimated as follows. The detection limit of the spectrophotometer was taken as 0.01 absorbance unit for an average charge-transfer extinction coefficient of εCT = 1000 M-1 cm-1. We calculated the lowest concentration of the donor−acceptor complex detectable by UV−vis spectroscopy to be [D,A] = 0.01/εCT = 1 × 10-5 M. If no DA complex was detected at a donor concentration of [D] = 0.1−0.5 M and an acceptor concentration of [A] = 4−10 mM, the upper limit for the formation constant was taken as KDA = [DA]/[D] [A] < 0.025−0.002 M-1 (see Tables 1 and 2). The DA complexes with KDA < 0.025 M-1 were generally considered to be contact charge-transfer complexes.8,51 
	Simulation of the Intermolecular Separations in Donor−Acceptor Complexes by Molecular Modeling Calculations. The most energetically favorable separation of the donor and acceptor in isolated [D,A] complexes was searched with the aid of molecular modeling calculations (CHARMm program,54 vers. 22, Molecular Simulation Inc., 1994) which included both intramolecular force field (such as covalent bond, bond angle, and torsion angle potentials) and intermolecular interactions (including Columbic and Lennard-Jones potential terms). The initial molecular models of the interacting arene donors and the various electron acceptors (see Charts 1 and 2) were constructed with the aid of the graphics package QUANTA15 running on a Silicon Graphics ONYX Reality workstation. The optimization of the geometry of the individual molecules was carried out by initial energy minimization using the Steepest Descents (SD) algorithm53 to remove any obvious improper conformations, and this was followed by 1000 steps of ABNR54 (Adopted Basis of Newton-Raphson) algorithm in “CHARMm” to reach the minimum of molecular potential energy. The charges of the individual molecules were balanced using Gasteiger's method,52 thereby resulting in neutral molecules. The energy minimization package CHARMm allowed any number of molecules within a single structure file to be simulated. Thus, the optimized donor and acceptor molecules were put together in random orientation and the intermolecular separation distance between them was varied from 3.0 to 5.0 Å, and the relative orientation of the interacting molecules was also varied prior to the energy minimization. The energy minimization of the various resulting aggregates was carried out in a similar way as described for the individual molecules, i.e., using the Steepest Descents algorithm53 to remove unfavorable steric contacts followed by 1000 steps of ABNR54 algorithm. The geometry and the separation distances between donor and acceptors molecules of the minimized structures were analyzed using the XP graphical package56 after the energy tolerance was satisfied. 
	Isolation and X-ray Crystallography of Donor−Acceptor Complexes. The chloranil complexes were crystallized from an equimolar solution of CA and HMB, TEM, or PM-T by very slow evaporation of dichloromethane. Since the similar treatment of the tethered HEB-MEA2 yielded an amorphous solid, a 1:1 CH2Cl2/CCl4 mixture was used to prepare dark purple crystals of [HMB-MEA2,CA]. For the nitrosonium complexes, hexaethylbenzene (HEB) was added to a flask that contained nitrosonium hexachloroantimonate, and a minimum amount of dichloromethane was added under an argon atmosphere at 0 °C. The undissolved solid was removed by filtration, and the resulting dark colored solution was carefully layered with anhydrous toluene (30 mL) and stored in the refrigerator (−10 °C). After 48−72 h, dark red crystals of HEB/NO+ complex were deposited at the dichloromethane/toluene interface. A similar procedure yielded dark red crystals of the TET/NO+ complex. 
	The X-ray crystallography of the donor−acceptor complexes was carried out with a Siemens SMART diffractometer equipped with a CCD detector at −150 °C. The structures were solved by direct methods55 and refined with IBM Pentium and SGI Indigo computers. In the various chloranil complexes, the intramolecular dimensions of CA and the arene donors were the same as those observed in uncomplexed molecules. However, the arene complexed to nitrosonium cation in [HEB,NO+] and [TET,NO+] showed slight lengthening of all aromatic C/C double bonds when compared with crystal structures of the uncomplexed donors. The pertinent intermolecular orientations as PLUTO plots (generated from the XP graphical package)56 are shown in structures A, C, N, P, W, and Y, and the critical interplanar separations (d) are included. The crystallographic data are on deposit and can be obtained from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U.K. 
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