

University of Groningen

Charge Transfer Salts of Benzene-Bridged 1,2,3,5-Dithiadiazolyl Diradicals. Preparation, Structures, and Transport Properties of 1,3- and 1,4-[(S2N2C)C6H4(CN2S2)][X] (X = I, Br)

Bryan, C.D.; Fleming, R.M.; George, N.A.; Glarum, S.H.; Haddon, R.C.; MacKinnon, C.D.; Oakley, R.T.; Palstra, T.T.M.; Perel, A.S.; Cordes, A.W.

Published in:

Journal of the American Chemical Society

DOI:

10.1021/ja00131a009

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Bryan, C. D., Fleming, R. M., George, N. A., Glarum, S. H., Haddon, R. C., MacKinnon, C. D., Oakley, R. T., Palstra, T. T. M., Perel, A. S., & Cordes, A. W. (1995). Charge Transfer Salts of Benzene-Bridged 1,2,3,5-Dithiadiazolyl Diradicals. Preparation, Structures, and Transport Properties of 1,3- and 1,4-[(S2N2C)C6H4(CN2S2)][X] (X = I, Br). *Journal of the American Chemical Society, 117*(26). https://doi.org/10.1021/ja00131a009

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

compound	[3][I]*	[1][Br] (R = H)	[4][Br]	[3][Br]
formula	$S_4N_4C_8H_4I$	S_2N_2 CHBr	$\mathrm{C_8H_4N_4S_4Br}$	$C_8H_4N_4S_4B_T$
	411.29	185.06	364.29	364.29
crystal size, mm	$0.40 \times 0.12 \times 0.62$	0.18 x 0.30 x 0.34	$0.52 \times 0.26 \times 0.14$	$0.16 \times 0.34 \times 0.36$
	black	red	black	black
crystal mount	on glass fiber by epoxy	in capillary with epoxy	in capillary by epoxy	on fiber with silicone glue
	28.12(1)	7.0375(7)	10.553(9)	5.649(4)
	3.487(3)	8.375(3)	16.382(3)	25.777(2)
c, À	12.28(2)	8.883(2)	7.113(2)	16.560(9)
β , deg		103.58(2)	112.13(6)	95.79(5)
V, ų	1204(2)	508.86	1139(1)	2399(2)
cell detn, refls	25	25	25	25
cell detn, 2θ range, deg	16-20	16 - 21	16-40	15-20
d(calcd), g cm ⁻³	2.27	2.415	2.12	2.02
	Ima2	P21/a	C2/c	P2 ₁ /c
	4	4	4	8
F000	787.12	351.92	715.86	1433.5
radiation	MoK_{α} , graphite monochromated	$\operatorname{MoK}_{\alpha}$, graphite monochromated	$\operatorname{MoK}_{\alpha}$, graphite monochromated	$\operatorname{MoK}_{\alpha}$, graphite monochromated $\operatorname{MoK}_{\alpha}$, graphite monochromated
λ, Å	0.71073	0.71073	0.71073	0.71073
×	293	296	293	293
coeff,mm ⁻¹	3.28	8.63	4.26	4.04
diffractometer	Enraf-Nonius CAD-4	Enraf-Nonius CAD-4	Enraf-Nonius CAD-4	Enraf-Nonius CAD-4
scan technique	<i>θ-2θ</i>	θ -2 θ	θ -2 θ	θ -2 θ
scan speed, deg min-1	4-16 (in omega)	4-16 (in omega)	4-16 (in omega)	4-16 (in omega)
scan width, deg	$1.0 + 0.35 \tan \theta$	$1.0 + 0.35 \tan \theta$	$1.0 + 0.35 \tan \theta$	$1.0 + 0.35 \tan \theta$
2θ range, deg	4-50	4-50	4-50	4-50
h, k, 1 ranges	-33,33; 0,4; -14,14	-8,8; 0,9; 0,10	0,12; -19,19; -8,8	6,6; 0,30; 0,19
exposure time, hrs	15.5	13.6	21.3	47.6
std refl indices	-1,-1,3; 0,2,1; 0,4,0	-3,1,2; 2,-3,-1; 0,0,4	5,3,-3; 1,-5,-2; -1,5,2	2,0,2; 1,2,-5; 0,7,4
drift of stds, %	1.4	1.3	1.1	1.9
absorption correction	analytical	empirical psi scans	empirical psi scans	empirical psi scans

Table S1 Crystal and refinement data

0.50-1.00	4224 0.076	1483	Direct Methods	0.074, 0.103	1.58	0.05	0.000		-0.81(18), +1.01(18)	NRC386 ^c	Internat. Tables for Crystallography (Vol 4)	idealized positions	C-H = 0.95Å;	$U = U_C + 0.01$
0.64-1.00	1008 0.028	786	Direct Melinous	0.033, 0.075	1.37	0.05	0.000	108(85) ^b	-0.51(9), +0.47(9)	NRC386 ^c	Internat. Tables fo	idealized positions	d(C-H) = 0.95;	$U = U_C + 0.01$
0.8529-0.9961 1858	892 0.031	679	55	0.043, 0.064	1.13	0.05	0.000	none	-1.2(3), +0.5(3)	NRC386 ^c	Internat. Tables for Crystallography (Vol 4)	idealized positions	$d(C-H) = 0.95 \dot{A}$	
0.44-1.00	574 0.065	336 Direct Methods	70	0.057, 0.081	1.49	² 0.05	0.007	none	-0.5(1), +0.4(1)	NRC386 ^c	Internat. Tables fo	idealized positions	$d(C-H) = 0.95\dot{A}$	
absorption, range refl meas	uniqu <i>e</i> refls R for merge	data with $I > 3\sigma(I)$	solution memor parameters refined	$R(F^2), R_{w}(F^2)^{a}$	GOF	p, $w^{-1} = [\sigma^2(I) + pI^2]/4F^2$ 0.05	largest Δ/σ	extinction correction	final diff map, e Å ⁻³	programs	scattering factors	H atom treatment		

 ${}^{a}R = [\Sigma | |F_{o}| - |F_{c}|] / [\Sigma |F_{o}|]; R_{w} = \{ [\Sigma w | |F_{o}| - |F_{c}| |^{2}] / [\Sigma (w |F_{o}|^{2})] \}^{1/2}$

^bLarson, A.C., in Crystallographic Computing, edited by F.R. Ahmed, p. 291, 1970, Copenhagen, Munksgaard.

^cA PC version of NRCVAX, an interactive program system for structure analysis; see E.J. Gabe, Y. LePage, J.P. Charland, F.L. Lee, and P.S. White, J. Appl. Cryst. 22, 383 (1989). *Special Note: Isotropic temperature factors of N1, N2, C1, C2, and C3 were refined independently, but the subsequent anisotropic distortions of these temperature factors were linked to reduce the number of parameters refined. Iodine position occupancies were determined during isotropic refinement and locked at those values prior to anisotropic refinement.

16888-M3

Table S2 Atomic parameters x, y, z and B_{eq}/B_{iso} for [4][I] and [3][I]. ESDS refer to the last digit printed.

			[4] [I]		
	x	Y	$oldsymbol{z}$	B_{eq}/B_{iso}	occupancy
I1	0	0	0	7.70(19)	0.472
I2	0.225	0	0	7.9 (4)	0.221
I3	0.500	0	0	5.8 (5)	0.104
S	0	0.10269(5)	0.19337(3)	3.05(3)	1.0000
N	0	0.11573(20)	0.28955(12)	2.80(8)	1.0000
Cl	0	0	0.32886(19)	2.21(11)	1.0000
C2	0	0	0.41657(18)	2.16(10)	1.0000
C3	0	0.11905(23)	0.45886(14)	3.10(9)	1.0000
Н3	0	0.201	0.431	3.9	
			[3] [I]		
	x	Y	$oldsymbol{z}$	B_{eq}/B_{iso}	occupancy
I1	0.5000	0	1.0000	3.5 (9)	0.2466
12	0.5000	0.5000	1.0155 (9		0.2458
13	0.4971 (3)	0.234 (3		4.3 (7)	0.2538
S1	0.88868(17)	0.1570 (17			1.0000
S2	0.92550(17)	0.1388 (20			1.0000
N1	0.8370 (6)	0.123 (4) 0.3505 (12) 4.3 (3)	1.0000
N2	0.8782 (7)	0.106 (5) 0.1884 (13) 5.4 (3)	1.0000
C1	0.8389 (6)	0.090 (5) 0.2471 (14) 3.9 (3)	1.0000
C2	0.7913 (7)	0.038 (4) 0.1856 (14) 3.4 (3)	1.0000
C3	0.7921 (7)	-0.070 (5) 0.0771 (15) 3.9 (3)	1.0000
C4	0.7500	-0.133 (11) 0.0262 (15) 4.7 (13)	1.0000
C5	0.7500	0.117 (7) 0.2387 (15) 3.5 (10)	1.0000

 ${\it B}_{\it eq}$ is the mean of the principal axes of the thermal ellipsoid.

16888-M4

Table S3 Interatomic distances (Å) and angles (deg) in [3][I].

Distances		Angles	
S1-S2	2.067(13)	S2-S1-N1	94.1(7)
S1-N1	1.619(18)	S1-S2-N2	94.2(7)
S2-N2	1.613(21)	S1-N1-C1	113.5(14)
N1-C1	1.276(23)	S2-N2-C1	112.8(14)
N2-C1	1.32(3)	N1-C1-N2	125.2(18)
C1-C2	1.55(3)	N1-C1-C2	117.3(16)
C2-C3	1.39(3)	N2-C1-C2	117.5(16)
C2-C5	1.360(20)	C5-C2-C1	118.8(15)
C3-C4	1.356(22)	C5-C2-C3	122.0(17)
		C1-C2-C3	119.1(15)
		C4-C3-C2	118.3(17)
		C3-C4-C3 ^a	121.5(19)
		C2-C5-C2 ^a	117.3(18)

^aSymmetry code: 1.500-x, y, z

Table S4 Anisotropic temperature factors u(i,j) * 100 for [3][I]. ESDs refer to the last digit printed.

	ul1	u22	u33	u12	u13	u23
I1	3.2 (6)	3.9(7)	6.1 (5)	2.4(18)	0.0	0.0
I2	5.7 (10)	5.4(8)	6.7 (6)	4.7(18)	0.0	0.0
13	4.5 (5)	4.4(5)	7.4 (4)	3.3(17)	0.3 (4)	1.16(25)
S1	5.20(24)	11.1(4)	4.27(18)	0.5(3)	0.53(19)	0.6 (4)
S2	5.69(24)	12.1(5)	5.55(21)	1.4(3)	2.02(25)	0.5 (5)
N1	7.5 (5)	4.7(3)	4.3 (3)	0.3(4)	1.0 (3)	-0.1 (3)
N2	8.8 (5)	6.0(3)	5.6 (3)	0.3(4)	1.0 (3)	-0.1 (3)
C1	7.0 (5)	4.1(3)	3.8 (3)	0.3(4)	1.0 (3)	-0.1 (3)
C2	6.3 (5)	3.5(3)	3.1 (3)	0.3(4)	1.0 (3)	-0.1 (3)
C3	7.0 (5)	4.1(3)	3.8 (3)	0.3(4)	1.0 (3)	-0.1 (3)
C4	8.9 (19)	7.7(19)	1.3 (8)	0.0	0.0	0.8 (13)
C5	6.9 (14)	4.0(13)	2.2 (9)	0.0	0.0	0.2 (10)

Anisotropic temperature factors are of the form: $\exp[-2\pi^2(h^2U_{11}a^{*2} + k^2U_{22}b^{*2} + l^2U_{33}c^{*2} + 2hkU_{12}a^*b^* + 2hlU_{13}a^*c^* + 2klU_{23}b^*c^*)].$

Table S5 Atomic parameters x, y, z and B_{eq}/B_{iso} for [1][Br] (R = H). ESDs refer to the last digit printed.

	x	Y	z	B_{eq}/B_{iso}
Br	0.24355(12)	0.42096(10)	0.34541(9)	3.20(4)
S1	0.2926 (3)	0.5313 (3)	0.68768(23)	2.92(9)
S2	0.1677 (3)	0.3141 (3)	0.65796(24)	3.00(9)
N 1	0.3080 (13)	0.5416 (10)	0.8675 (8)	4.3 (4)
N2	0.1538 (12)	0.2925 (9)	0.8332 (8)	3.9 (4)
C1	0.2323 (15)	0.4137 (12)	0.9208 (11)	4.3 (5)
H1	0.234	0.409	1.029	5.1

 \mathbf{B}_{eq} is the mean of the principal axes of the thermal ellipsoid

Table S6 Interatomic distances (Å) and angles (deg) in [1][Br] (R = H).

Distances	3	Angles	
S1-S2	2.011(3)	S2-S1-N1	96.1(3)
S1-N1	1.577(7)	S1-S2-N2	95.7(3)
S2-N2	1.593(7)	S1-N1-C1	112.2(6)
N1-C1	1.332(13)	S2-N2-C1	112.1(7)
N2-C1	1.319(13)	N1-C1-N2	123.8(8)
C1-H1	0.959(9)	N1-C1-H1	118.5(10)
		N2-C1-H1	117.7(10)

Table S7 Anisotropic temperature factors, u(i,j)*100 for [1][Br] (R = H). ESD's refer to the last digit printed.

	u11(U)	u22	u33	u12	u13	u23
Br	5.22(6)	4.02(6)	3.13(5)	-0.01(4)	1.42(4)	-0.17(3)
S1	4.92(13)	3.35(12)	2.96(10)	-0.35(9)	1.16(9)	-0.32(8)
S2	5.14(13)	3.36(11)	3.08(11)	-0.42(9)	1.34(9)	0.08(8)
N1	7.6 (5)	6.0 (5)	3.0 (4)	-0.4 (4)	1.7 (4)	-0.6 (3)
N2	6.4 (5)	5.4 (5)	3.3 (4)	0.2 (4)	1.8 (3)	0.6 (3)
Cl	7.6 (7)	6.0 (6)	3.1 (5)	1.2 (5)	1.5 (4)	0.9 (4)

Anisotropic temperature factors are of the form:

$$\exp[-2\pi^2(h^2U_{11}a^{*2} + k^2U_{22}b^{*2} + l^2U_{33}c^{*2} + 2hkU_{12}a^*b^* + 2hlU_{13}a^*c^* + 2klU_{23}b^*c^*)].$$

Table S8 Atomic parameters x, y, z and B_{eq}/B_{iso} for [4][Br] and [3][Br]. ESDs refer to the last digit printed.

		[4] [Br]		
	x	Y	$oldsymbol{z}$	$B_{m{eq}}$
5	•		- 1.	
Br	0	0.58350(5)	1/4	3.42(6)
S1	0.09525(17)	0.40369(8)	0.2507 (3)	2.71(8)
S2	-0.10262(15)	-0.22261(9)	0.23021(24)	2.39(8)
N1	0.1105 (5)	0.3069 (3)	0.2567 (8)	2.56(25)
N2	-0.1150 (5)	-0.1231 (3)	0.2341 (8)	2.33(24)
C1	0	0.2665 (4)	1/4	2.0 (4)
C2	0	0.1760 (4)	1/4	1.9 (3)
C3	0.1161 (6)	0.1328 (3)	0.2634 (9)	2.2 (3)
C4	0.1174 (6)	0.0493 (3)	0.2632 (9)	2.2 (3)
C5	0	0.0064 (4)	1/4	1.6 (3)
C6	0	-0.0827 (4)	1/4	1.7 (4)
H3	0.197	0.339	0.274	3.0
H4	0.199	0.479	0.275	3.0

		[3] [Br]	1	
	x	Y	z	B_{eq}/B_{iso}
Br1	0.3294(5)	0.53488(11)	0.09196(15)	4.73(14)
Br2	0.6514(5)	0.48694(11)	0.38587(22)	6.34(16)
S1	0.8102(10)	0.03532(23)	0.2007 (4)	3.2 (3)
S2	0.5304(10)	0.08447(22)	0.1892 (4)	3.1 (3)
S3	0.7063(9)	0.37296(24)	0.3278 (4)	3.2 (3)
S4	1.0491(10)	0.39938(24)	0.3617 (4)	3.2 (3)
S5	0.5176(13)	0.4259 (3)	0.0681 (4)	4.7 (3)
S6	0.7786(14)	0.4639 (3)	0.1347 (4)	5.2 (3)
S7	0.9417(10)	0.08602(23)	0.0306 (3)	3.1 (3)
S8	0.6128(10)	0.12072(23)	0.0034 (4)	3.1 (3)
N1	0.986 (3)	0.0745 (7)	0.2496 (11)	3.4 (4)
N2	0.667 (3)	0.1320 (7)	0.2347 (11)	3.1 (4)
N3	0.779 (3)	0.3128 (7)	0.3301 (10)	3.3 (4)
N4	1.166 (3)	0.3425 (7)	0.3674 (10)	3.1 (4)
N 5	0.639 (3)	0.3713 (7)	0.0734 (11)	3.9 (4)
N6	0.954 (4)	0.4149 (8)	0.1442 (12)	4.9 (5)
N 7	1.067 (3)	0.1387 (7)	0.0687 (10)	2.7 (4)
N8	0.698 (3)	0.1788 (7)	0.0351 (10)	2.9 (4)

Table S8 (cont'd)

	x	Y	$oldsymbol{z}$	B_{eq}/B_{iso}
C1	0.892 (4)		0.2658 (14)	3.4 (5)
C2	1.035 (4)	0.1604 (8)	0.3117 (12)	2.5 (4)
C3	1.246 (4)	0.1467 (9)	0.3564 (13)	3.2 (5)
C4	1.381 (4)	0.1854 (8)	0.3998 (13)	3.2 (5)
C5	1.312 (4)	0.2371 (9)	0.3959 (13)	3.4 (5)
C6	1.093 (4)	0.2500 (8)	0.3562 (12)	2.4 (4)
C7	0.957 (4)	0.2110 (8)	0.3145 (13)	2.7 (4)
C8	1.018 (4)	0.3033 (9)	0.3499 (14)	3.7 (5)
C9	0.870 (4)	0.3700 (9)	0.1122 (13)	3.4 (5)
C10	0.992 (4)	0.3225 (8)	0.1213 (12)	2.5 (4)
C11	1.223 (4)	0.3224 (10)	0.1667 (15)	4.4 (6)
C12	1.339 (4)	0.2765 (8)	0.1780 (13)	3.0 (5)
C13	1.253 (4)	0.2304 (9)	0.1415 (13)	3.2 (5)
C14	1.021 (4)	0.2295 (8)	0.0990 (13)	2.9 (5)
C15	0.904 (4)	0.2763 (8)	0.0879 (13)	2.9 (4)
C16	0.924 (4)	0.1808 (8)	0.0651 (13)	2.9 (4)
H3	1.297	0.112	0.358	4.0
H4	1.531	0.176	0.427	4.0
H5	1.422	0.262	0.419	4.2
H7	0.809	0.220	0.285	3.5
H11	1.281	0.354	0.192	5.2
H12	1.492	0.276	0.208	3.8
H13	1.348	0.200	0.144	4.0
H15	0.760	0.278	0.053	3.7

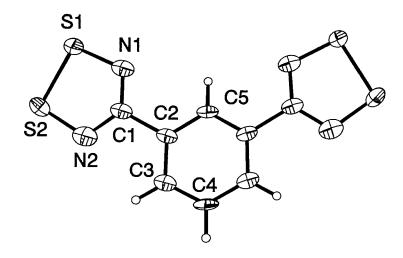
 \mathbf{B}_{eq} is the mean of the principal axes of the thermal ellipsoid

Table S9 Interatomic distances (Å) and angles (deg) in [4][Br].

Distanc	ces	Angles	
S1-S1' S1-N1 S2-S2' S2-N2 N1-C1 N2-C6 C1-C2 C2-C3 C3-C4 C4-C5	2.007(4) 1.593(5) 2.076(4) 1.637(5) 1.326(6) 1.348(6) 1.482(10) 1.387(6) 1.368(8) 1.396(7)	S1'-S1-N1 S2'-S2-N2 S1-N1-C1 S2-N2-C6 N1-C1-N1' N1-C1-C2 C1-C2-C3 C3-C2-C3' C2-C3-C4 C3-C4-C5	95.23(20) 94.79(19) 114.7(4) 114.5(4) 120.1(6) 119.9(3) 120.7(3) 118.7(6) 121.3(5) 119.6(5)
C5-C6	1.461(9)	C4-C5-C6 N2-C6-N2' N2-C6-C5	120.2(3) 121.3(6) 119.3(3)

Table S10 Interatomic distances (Å) and angles (deg) in [3][Br].

Distance				
Distances	200 (0)	N7-C16	1.35	5(3)
	020 (8)	N8-C16	1.32	
	580(18)	C1-C2	1.48	
	596 (18)	C2-C3		
	076 (8)		1.39	
	505 (19)	C2-C7	1.38	
	508 (18)	C3-C4	1.43	
S5-S6 2.004(9)		C4-C5	1.39	
	564 (20)	C5-C6	1.38	
	503 (22)	C6-C7	1.43	
	071 (8)	C6-C8	1.44	
	529 (17)	C9-C10	1.43	
	543 (18)	C10-C11		
	32 (3)	C10-C15		
	36 (3)	C11-C12		
N3-C8 1.3	38 (3)	C12-C13		
	32 (3)	C13-C14		
N5-C9 1.4	10(3)	C14-C15		
N6-C9 1.3	34 (3)	C14-C16	1.46	5 (3)
Angles				
S2-S1-N1	95.2(7)	C5-C6-C7	,	118.9(19)
S1-S2-N2	95.8(7)	C5-C6-C8	}	120.6(19)
S4-S3-N3	94.6(7)	C7-C6-C8	}	120.2(18)
S3-S4-N4	94.8(7)	C2-C7-C6	5	122.0(18)
S6-S5-N5	96.6(8)	N3-C8-N4	Ŀ	120.0(21)
S5-S6-N6	94.8(8)	N3-C8-C6	;	117.5(20)
S8-S7-N7	94.0(7)	N4-C8-C6	;	122.4(20)
S7-S8-N8	95.5(7)	N5-C9-N6	;	116.1(20)
S1-N1-C1	115.3(15)	N5-C9-C1	.0	119.7(20)
S2-N2-C1	113.0(15)	N6-C9-C1	.0	124.0(20)
S3-N3-C8	114.8(15)	C9-C10-C	11	117.9(19)
S4-N4-C8	115.8(16)	C9-C10-C	15	123.6(19)
S5-N5-C9	115.5(16)	C11-C10-	C15	118.5(19)
S6-N6-C9	116.7(17)	C10-C11-	C12	118.5(21)
S7-N7-C16	114.6(14)			122.3(20)
S8-N8-C16	113.4(14)			119.5(20)
N1-C1-N2	120.3(20)	C13-C14-	C15	117.2(19)
N1-C1-C2	121.4(19)	C13-C14-	C16	119.7(19)
N2-C1-C2	118.1(19)	C15-C14-	C16	123.0(19)
C1-C2-C3	119.2(19)	C10-C15-	C14	123.3(19)
C1-C2-C7	121.7(18)	N7-C16-N	18	122.5(18)
C3-C2-C7	119.0(19)	N7-C16-C	14	118.1(18)
C2-C3-C4	119.0(20)	N8-C16-C	14	119.3(19)
C3-C4-C5	121.5(19)			
C4-C5-C6	119.1(20)			


Table S11 Anisotropic temperature factors, u(i,j)*100 for [4][Br] and [3][Br]. ESD's refer to the last digit printed.

		[4] [Br]				
	u11(U)	u22	u33	u12	u13	u23
Br	6.61(8)	1.89(6)	5.27(7)	0.0	3.13(6)	0.0
S1	3.38(9)	1.55(8)	5.93(12)	0.18(5)	2.41(8)	-0.29(6)
S2	2.88(8)	1.57(8)	4.92(11)	0.29(5)	1.81(8)	0.06(6)
N1	3.2 (3)	1.4 (2)	5.7 (4)	-0.27(19)	2.4 (3)	0.01(20)
N2	2.7 (3)	1.7 (2)	4.9 (3)	-0.30(18)	1.94(25)	-0.20(19)
C1	3.2 (4)	0.8 (3)	4.3 (5)	0.0	2.1 (4)	0.0
C2	3.0 (4)	1.1 (4)	2.9 (4)	0.0	0.9 (4)	0.0
C3	2.6 (3)	1.8 (3)	4.1 (4)	-0.18(22)	1.7 (3)	0.26(22)
C4	2.5 (3)	2.0 (3)	4.0 (4)	-0.52(23)	1.4 (3)	0.09(22)
C5	2.5 (4)	1.5 (3)	2.2 (4)	0.0	1.2 (3)	0.0
C6	2.0 (4)	1.7 (4)	3.0 (4)	0.0	1.2 (3)	0.0
		[3] [Br]				
	u11	u22		10	12	02
Br1	7.5(2)	uzz 5.6(2)	u33	u12	u13	u23
Br2	5.6(2)	4.4(2)	4.9(2) 13.1(3)	0.4(2) 0.3(2)	0.8(1)	,
S1	3.8(2)	3.7(3)	4.4(4)	1.0(3)	-4.0(2) -1.0(3)	
S2	2.7(3)	3.9(4)	4.9(4)	-0.1(3)	-1.0(3)	, ,
S3	2.0(3)	5.3(4)	4.5(4)	-0.1(3)	-1.2(3)	
S4	3.2(3)	4.9(4)	3.8(4)	-1.1(3)	-0.6(3)	
S5	7.1(5)	3.7(4)	6.7(5)	0.3(4)	-1.6(4)	
S6	8.9(5)	4.9(4)	5.7(4)	-0.6(4)	-1.6(4)	
S7	3.2(3)	4.3(4)	3.8(3)	0.8(3)	-1.0(3)	
S8	3.0(3)	3.6(4)	4.9(4)	0.3(3)	-1.0(3)	

Anisotropic temperature factors are of the form:

$$\exp[-2\pi^2(h^2U_{11}a^{*2} + k^2U_{22}b^{*2} + l^2U_{33}c^{*2} + 2hkU_{12}a^*b^* + 2hlU_{13}a^*c^* + 2klU_{23}b^*c^*)].$$

Figure S1 ORTEP drawings (30% ellipsoids) of [3][I] (above) and [1][Br] (R = H) (below).

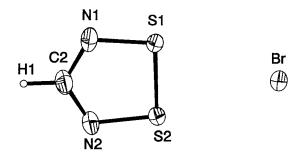
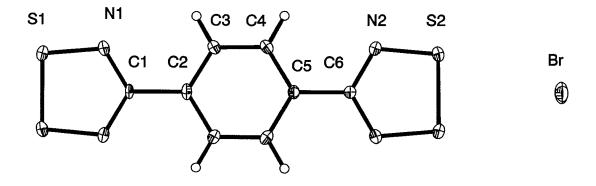
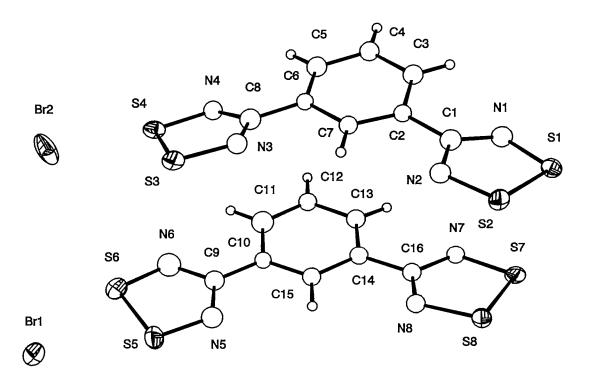




Figure S2 ORTEP drawings (30% ellipsoids) of [4][Br] (above) and [3][Br] (below).

